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ABSTRACT
In this paper we summarize recent developments in compact dy-
namical modeling for both linear and nonlinear systems arising
in analog applications. These techniques include methods based
on the projection framework, rational fitting of frequency response
samples, and nonlinear system identification from time domain data.
By combining traditional projection and fitting methods with re-
cently developed convex optimization techniques, it is possible to
obtain guaranteed stable and passive parameterized models that are
usable in time domain simulators and may serve as a valuable tool
for analog designers in both top-down and bottom-up design flows.

Categories and Subject Descriptors: J.6 [Computer Aided En-
gineering]: Computer-aided design (CAD), G.1.6 [Optimization]:
Convex programming, I.6.0 [Simulation and Modeling]: General
General Terms: Algorithms
Keywords: Model reduction, Analog design, Semidefinite pro-
gramming, Parameterized modeling, Compact modeling

1. INTRODUCTION
As feature sizes keep decreasing and operating frequencies keep

increasing, the performance of many complex analog components
and systems is becoming crucially dependent on what the design-
ers identify as “non-idealities” or “second order effects”. These are
phenomena such as non-linearities, process variations, skin effects,
proximity effects, and substrate and magnetic coupling. Analog
designers would therefore greatly benefit from tools that generate
automatically compact dynamical models which capture quantita-
tively all such second order effects. Digital designers have indeed
been already benefitting for decades from model order reduction
tools to speed-up circuit simulations within the context of a bottom-
up library characterization step for timing analysis. However, sev-
eral significant differences between analog and digital applications
limit severely the usability of the existing model order reduction
techniques.

The first important difference is that, within the digital applica-
tions, the systems to be “reduced” are mainly, if not exclusively,
RLC interconnect networks generated by parasitic extractors (e.g.
resistance, capacitance and inductance extractors). Such systems
are linear, and are always described by constant, structured, and

semidefinite matrices. For linear systems with such specific prop-
erties, a body of methods exist (e.g. [1, 2]) that can generate au-
tomatically compact stable and passive dynamical models suitable
for time domain circuit/gate level simulations. On the contrary,
when working with analog applications, one needs to handle non-
linear circuit blocks or microelectromechanical (MEMS) devices.
Even when considering only the linear part of the analog systems
(e.g. RF inductors, passive power combiners, transmission lines)
the constraint of “constant semidefinite matrices” is always inevitably
violated. This is because the electromagnetic field solvers used to
analyze analog structures inevitably introduce numerical discretiza-
tion errors at high frequencies, and because they are forced by the
large size of the problems to use advanced formulations and ap-
proximation techniques such as substrate Green functions and fast
matrix-vector products. In many cases no internal description of
the systems is even available, and the only information provided by
the field solvers, or by measured data, is a set of frequency response
values (if the system is linear), or a set of time domain input-output
signals (if the system is nonlinear).

Another important difference between digital and analog sys-
tems is that in digital applications higher level system simulators
(e.g. timing analyzers) or top-down design methodologies do not
require dynamical state-space models for each gate, but rather just
a small set of simple equations or tabulated values relating per-
formance (or behavioral) parameters. However, in order to enable
system level simulation and fast tradeoff explorations for analog
applications, leading to robust designs insensitive to process varia-
tions and to all high frequency second order effects, it is essential to
have the ability to instantiate instantaneously parameterized com-
pact dynamical state-space models of circuit blocks.

To better highlight the differences between digital and analog
applications, we would like to emphasize that the classical name,
“model order reduction”, used in the digital community, is com-
pletely inadequate to describe the variety of techniques that are be-
ing developed to handle analog systems. We propose instead the
name “automated compact dynamical modeling”. Here the term
dynamical indicates state space models, emphasizing the fact that
for system level analog simulations it is not sufficient to generate
simple static behavioral models relating performance parameters
of a circuit block as in digital applications. The term compact as
opposed to “reduced order”, emphasizes the fact that model com-
plexity is not strictly tied to the model order (i.e. the number of
equations) as is the case in the digital interconnect linear system
world. The complexity of the generated system should instead be
measured in terms of how efficiently the generated model can be
employed in a time domain simulator. When working with analog
nonlinear systems one quickly realizes that small model orders do
not necessarily imply fast simulations. Finally, although in some
cases one might want to “reduce” a large model already given in
dynamical state space form, in all the other cases typical of the
analog world, one is only given frequency domain data, or input-
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output time domain data. Therefore a compact dynamical model
might need to be “‘identified” or “fitted” as opposed to “reduced”.
As a matter of fact, in order to address the many new challenging
analog constraints, during the last few years the automated compact
dynamical modeling community has been forced to move beyond
traditional projection-based model order reduction approaches, em-
bracing for instance recent developments in convex optimization.
In some cases, some of the more traditional projection appraoches
or unconstrained fitting techniques have been adapted to the analog
world by simply adding a perturbation step that enforces proper-
ties such as stability and passivity as a post-processing operation.
In other cases, completely new techniques have been, and are still
currently being invented.

The remainder of this paper is organized as follows. Section 2
presents projection methods for stable and passive modeling of
linear and nonlinear systems described in state-space form. Sec-
tion 3 surveys methods for compact modeling of linear systems
using rational approximation techniques for transfer matrix fitting,
combined with optimization-based stability and passivity enforce-
ment. Section 4 summarizes recent developments in stable dynam-
ical model fitting techniques using optimization to enforce stability
in nonlinear dynamical systems. Lastly, Section 5 discusses what
further steps need to be taken, both by model reduction researchers
and by the rest of the EDA community, to help compact dynamical
modeling become a mainstream tool supporting analog design.

2. PROJECTION-BASED METHODS

2.1 The Traditional Projection Framework
Most of the traditional model order reduction techniques can be

interpreted within a projection framework. In such a framework the
solution to a given large linear multi-input multi-output system

Eẋ = Ax + Bu, y = CT x, (1)

is approximated in a low-dimensional space x ≈ V x̂, where V ∈
R

N×q is the right projection matrix, x̂ is the reduced state vec-
tor, and N >> q. A reduced set of equations is then obtained
by forcing the residual, r(V x̂) = EV ˙̂x − AV x̂ − Bu, to be or-
thogonal to the subspace defined by a left projection matrix U , i.e.
UT r(V x̂) = 0. The resulting state-space model has the form

Ê ˙̂x = Âx̂ + B̂u, y = ĈT x̂ (2)

where Ê = UT EV , Â = UT AV , B̂ = UT B, and Ĉ = V T C.
The accuracy of the reduced model created via projection is com-
pletely determined by the choice of projection matrices U and V .
The most common approaches for selecting the vectors are meth-
ods based on balanced truncation, moment matching, and singular
value decomposition (e.g proper orthogonal decomposition, princi-
pal components analysis, or Karhunen-Loeve expansion). For more
details on generating projection vectors see [2, 3].

When applying projection to a nonlinear system of the form

q̇(x) = f(x, u), y = g(x), (3)

the resulting reduced model can be expressed as

˙̂q(x̂) = f̂(x̂, u), y = ĝ(x̂) (4)

where q̂(x̂) = UT q(V x̂) and f̂(x̂, u) = UT f(V x̂, u). In this case
the reduced order model (4) does not lead to substantially faster
simulation times when used in a time domain integrator, because
the vector field term f(V x̂, u) in the reduced model still has O(N)
complexity. To solve this critical problem it is common to apply
projection not to the original nonlinear system (3), but instead to
a nonlinear system defined by carefully selected approximate non-
linear functions q̃(x) and f̃(x, u).

For weakly nonlinear systems it is common to use a polynomial
expansion for the approximation. For example, for a simplified
nonlinear system ẋ = f(x) + Bu, the vector field f(x) is approx-
imated as

f(x) ≈ f̃(x) = A0 + A1x + A2(x ⊗ x) + . . . . (5)

where Ak is an N × Nk matrix containing the kth derivatives of
f(x). The new vector field f̃(x) can be easily projected given the
Kronecker product property (V x̂) ⊗ (V x̂) = (V ⊗ V )(x̂ ⊗ x̂),
resulting in the reduced vector field

f̂(x̂) = UT f̃(V x̂) = Â0 + Â1x̂ + Â2(x̂ ⊗ x̂) + . . .

where Â0 = UT A0, Â1 = UT A1V and Â2 = UT A(V ⊗ V ).
Analysis of polynomial reduced models can be further simplified
using ideas from Volterra theory, as was done in [4, 5].

An alternative approach, better suited for highly nonlinear sys-
tems, consists of interpolating between a collection of local models

f(x) ≈ f̃(x) =
∑

i

wi(x)f̃i(x), (6)

where w(x) are weighting functions. The local models are chosen
so that each individual model f̃i(x) can be reduced using projection

f̂(x̂) = UT f̃(V x̂) =
∑

i

wi(x̂)UT f̃i(V x̂), (7)

such that UT f̃i(V x̂) has low complexity. For instance, f̃i could be
polynomial functions, or even linear f̃i(x) = Aix + ki, in which
case UT f̃i(V x̂) = UT AiV x̂ + UT ki. The key idea behind the
Trajectory PieceWise Linear (TPWL) method [6] and related tech-
niques [7, 8] is to generate the local models along solution trajec-
tories of (3) in response to typical training inputs, thus keeping the
required number of local models small. A more detailed survey of
these methods can be found in [9].

2.2 Stable Projection for Linear Systems
Traditionally it is assumed that the original large system (1) pos-

sesses an extremely special structure: E = ET � 0, A � 0, and
B = C. In such cases selecting U = V (known as a congru-
ence transform or Galerkin projection) will preserve stability and
passivity in the reduced system for any choice of V . While all dig-
ital RLC type interconnect networks possess the required semidef-
inite structure, for analog modeling it is unfortunately completely
unrealistic to restrict consideration to only semidefinite systems.
Therefore for the vast majority of analog systems, the congruence
transform cannot guarantee stability and passivity of the generated
model. One possible computationally cheap solution is to use as a
first step any of the available traditional projection based methods
(including congruence transforms) and then attempt to perturb the
generated model to enforce stability and passivity. One semidefi-
nite formulation of this problem is

min
ΔÊ,ΔÂ,ΔĈ

||ΔÊ|| + ||ΔÂ|| + ||ΔĈ|| subject to (8)

Ê � 0, Â + ÂT � 0, B̂ = Ĉ.

where Ê = UT EV + ΔÊ, Â = UT AV + ΔÂ, B̂ = UT B, and
Ĉ = V T C + ΔĈ. Here stability and passivity are enforced in the
reduced model by forcing it to be described by semidefinite system
matrices, which introduces no loss of generality even if the original
system (1) is not described by semidefinite matrices [10].

Unfortunately, in most cases any such perturbation could com-
pletely destroy the accuracy of the reduced model. Instead of per-
turbing the reduced model, a better approach that can guarantee
accuracy in the reduced model is to perturb one of the projection
matrices. That is, given U and V , search for a “small” ΔU such
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that system (2), defined by reduced matrices Ê = (U +ΔU)T EV ,
Â = (U +ΔU)T AV , B̂ = (U +ΔU)T B, and Ĉ = V T C is pas-
sive. This problem can similarly be formulated as a semidefinite
program

min
ΔU

||ΔU || subject to (9)

Ê � 0, Â + ÂT � 0, B̂ = Ĉ.

It can be shown that if the original model (1) is stable and passive,
then for any projection matrix V there exist projection matrices U
such that the resulting reduced model is stable and passive [10].
These approaches can also be used to stabilize unstable models of
stable physical systems, where the instability can arise either from
numerical errors in the field solver analysis of the system, or from
a first stage projection.

2.3 Stable Vector-Field Approximation
Guaranteeing stability and passivity in the generated compact

model becomes more difficult when combining projection with func-
tion approximation for nonlinear systems. In general function ap-
proximations do not preserve stability, i.e. the nonlinear system de-
scribed by q̃, f̃ (e.g. (5) or (6)) is in general unstable. For instance,
a simple quadratic model, such as ẋ = −x2 − x, can never have a
globally stable equilibrium point. Although global stability may be
unattainable in such cases, it is almost always possible to enforce
local stability in the reduced model. Suppose x = 0 is a stable
equilibrium for the nonlinear system described by q, f . If q̃, f̃ are
chosen such that both systems have the same linear approximation
around x = 0, as is the case when using polynomial and piece-
wise polynomial approximations, then x = 0 is guaranteed to be
locally stable for the approximate system. With this information,
it is possible to use the stability-preserving projection techniques
discussed in Section 2.2 to select U, V such that a linearization of
the reduced nonlinear system q̂, f̂ has a locally stable equilibrium
point x = 0. Furthermore, it is possible to enforce local stability
at multiple linearizations by employing a nonlinear left-projection
matrix [11].

2.4 Parameterization of Projection Methods
Generating a parameterized reduced model, such as Ê(p) ˙̂x =

Â(p)x̂ + B̂(p)u for a linear system where p is a vector of design
parameters, is of critical importance if the models are to be used for
system level design trade-off explorations or for robustness verifi-
cation in the presence of process variations. Two modifications to
the previously described projection procedures must be made when
constructing parameterized models. First, the subspace defined by
V must capture the solution response to changes in parameter val-
ues. Expanding the subspace is typically achieved for linear or
linearized systems by generating projection vectors that match the
frequency response derivatives with respect to the parameters p in
addition to the frequency [12, 13, 14]. Alternative approaches for
handling variability resulting from a large number of parameters
are based on sampling and statistical analysis [15, 16].

The second issue involves specifically the case of nonlinear pa-
rameter dependence, where the system matrix or vector field must
be able to cheaply capture changes in p. One way to make a pa-
rameterized system matrix A(p), or vector field, projectable with
respect to the parameters is to represent them as a sum of non-
parameterized functions that are linear in scalar functions of the
original parameters. For instance, for the parameterized linear sys-
tem ẋ = A(p)x we seek to approximate and project as follows

A(p) ≈
κ∑

i=0

Ãigi(p) −→ Â(p) =

κ∑
i=0

(UT AiV )gi(p) (10)

such that Âi = UT AiV are constant matrices and can be precom-

puted. Here gi(p) are scalar functions of the original parameter set
p. The matrix approximation in (10) can be achieved using a poly-
nomial expansion if A(p) is known analytically, or via fitting in
the case when only samples of the matrix Ak = A(pk) are known
[14]. Similar approaches can be used to generate parameterized
nonlinear models [17].

3. RATIONAL TRANSFER MATRIX FITTING
Projection methods have been extremely successful for certain

classes of linear systems, but in many applications, such as when
modeling analog passive components affected by full-wave effects
or substrate effects, the resulting system matrices include delays
or frequency dependency. Guaranteeing stability and passivity in
such models through projection is an extremely challenging task.
An alternative class of methods capable of generating stable and
passive models for such linear systems are based on transfer matrix
fitting, where the transfer matrix, or frequency response, is defined
as H(s) = CT (sE − A)−1B.

A multi-port linear system representing impedance or admittance
is stable when its transfer matrix has no poles with positive real part
and any pole on the imaginary axis is simple. The system is passive
if, in addition to stability it satisfies the positivity condition:

H(jω) + H(jw)† � 0 ∀ω (11)

Sometimes stability and positivity are collectively referred to as
positive realness.

Schemes for enforcing passivity (i.e. stability and positivity)
in transfer matrix fitting methods can be broadly classified into
two approaches: those which use unconstrained minimization com-
bined with post-processing perturbation to enforce stability and
positivity; and those that simultaneously enforce stability and pos-
itivity during the fitting process.

3.1 Unconstrained Rational Fitting
Given a set of frequency response samples {Hi, ωi}, where Hi =

H(jωi) is the transfer matrix of some unknown multiport linear
system, the compact modeling task is to construct a low-order ra-
tional transfer matrix Ĥ(s) such that Ĥ(jωi) ≈ Hi. The most
common formulation of this problem is an L2 minimization of the
sum of squared errors

min
Ĥ

∑
i

||Hi − Ĥ(jωi)||2. (12)

Even ignoring for a moment stability and passivity constraints, the
unconstrained minimization problem (12) is still non-convex (be-
cause Ĥ is a rational function) and therefore extremely difficult
to solve. Direct minimization using a nonlinear least-squares algo-
rithm, such as Levenberg-Marquardt as in [18], yields only a locally
optimal result.

Rather than solving non-convex minimization problems, many
alternative methods apply a relaxation to the objective function re-
sulting in an optimization problem that can be solved efficiently.
One very popular approach, referred to as vector fitting, relaxes
the problem by first finding the poles ak with an iterative proce-
dure, and then, with the poles fixed, solves a linear least-squares
problem to determine the residue matrices Rk [19], resulting in a
transfer function in pole-residue form

H(s) =
∑

k

Rk

s − ak
+ D. (13)

An alternative relaxation considers the transfer function in nu-
merator and denominator form, H(s) = P (s)/q(s), where P (s)
is a matrix of polynomials and q(s) is a scalar polynomial. By first
identifying the real parts of the numerator B(jω) = 	P (jω) and
denominator a(jω) = 	q(jω), the problem can be transformed
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into a second order cone programming problem, which is a spe-
cial case of semidefinite programming and can thus be solved in an
efficient manner [20, 21]

min
B,a

∑
i

|a(jωi)	Hi − B(jωi)|2
a(jωi)

. (14)

For stable systems, P and q can then be uniquely determined from
B and a via inverse Hilbert transform after fitting.

3.2 Stability and Passivity via Post-Processing
In vector fitting methods, stability is achieved by simply reflect-

ing across the imaginary axis all the unstable poles obtained during
the iterative fitting procedure [22]. Once a stable model is obtained,
passivity is obtained by further enforcing positivity condition (11),
which is a positive-definiteness constraint on H and therefore im-
plies that the transfer matrix H(jω) has no eigenvalues with nega-
tive real part at any frequency ω. Efficient algebraic methods based
on computing the eigenvalues of the Hamiltonian matrix for the
state-space model can be used to determine the set of positivity vi-
olations [23]

Ω =
{

ωk

∣∣∣	{λ(Ĥ(jωk))} < 0
}

.

During the post-processing step, pole locations are kept fixed and
passivity is obtained by altering only the residues. This is achieved
by transforming from pole-residue form (13) to state-space form (1)
and perturbing only the output vector C. A generic formulation of
the positivity-enforcing minimal perturbation can be stated as

min
ΔC

||ΔC||X , subject to P(Ω) (15)

where P(Ω) is a positivity constraint for the transfer matrix over
the set of positivity violations, and || · ||X denotes the norm used
for quantifying the effects of the perturbation on the accuracy of the
model. In [24] it was proposed to select the norm that produces the
minimal perturbation to the impulse response of system (1), defined
as ||ΔC||X = ||ΔCKT ||2 where KT K = W is the controllabil-
ity Grammian satisfying EWAT + AWET + BBT = 0. Other
possible choices for the objective function are presented in [23].
The positivity constraint P(Ω) is enforced using first-order pertur-
bation to the eigenvalues of the Hamiltonian matrix, and can be
expressed as a linear matrix equality or matrix inequality in terms
of the unknown perturbation vector ΔC.

3.3 Stability and Passivity During Fitting
In an alternative kind of approach (typically corresponding to

the use of relaxation (14)), stability and passivity are enforced as
constraints during the fitting procedure. Specifically, stability is
achieved by requiring that a(jω) > 0 is a strictly positive poly-
nomial, where a(jω) is the real part of the denominator q(jω) of
the transfer matrix Ĥ(jω). This constraint is efficiently enforced
using a sum-of-squares (SOS) relaxation, which provides a con-
vex relation to the non-convex problem of verifying global positiv-
ity of a multivariate polynomial. To additionally obtain passivity,
the positivity constraint (11) requires the real part of the numerator
B(jω) = B(jω)T � 0, to be a symmetric positive semidefinite
matrix function. Such constraint can also be enforced using a SOS
relaxation, resulting in a single efficient semidefinite optimization
problem [20, 21].

3.4 Parameterized Rational Fitting
There are two possible approaches to generating a parameter-

ized transfer matrix Ĥ(s, p) from a given set of frequency response
samples and parameter values {Hi, ωi, pi}. The first approach is
to fit simultaneously to the frequency response data and parameter
values, i.e. minimizing the sum of |Ĥ(jωi, pi) − Hi|2. This ap-

proach was first proposed in [20] along with simultaneous enforce-
ment of stability and passivity. Alternatively, one may identify a
non-passive model Ĥ(s, p) and utilize the perturbation ideas from
section 3.2 to obtain stability and passivity at any desired parameter
value p.

The alternative approach is to first fit a set of non-parameterized
transfer matrices {Ĥk(jω)} such that Ĥk(jωi) ≈ Hi correspond-
ing to the parameter set pk, and then “interpolate” between the set
of identified models to obtain a parameterized transfer matrix satis-
fying Ĥ(jω, pk) ≈ Ĥk(jω). Techniques using this approach have
enforced stability and passivity via post-processing perturbation as
described in section 3.2 [25], but no such techniques at this time
are capable of enforcing stability and passivity as constraints dur-
ing interpolation, as described in section 3.3.

4. STABLE DYNAMICAL MODEL FITTING
The success of projection-based model reduction techniques for

linear systems led to the natural extension of such techniques to
nonlinear systems. However, nonlinear systems arising in analog
applications are often relatively small (10 − 1000 equations) com-
pared to their linear counterparts (106 equations), and the explicit
nonlinear state-space equations (3) are frequently unavailable in a
simple manner. An alternative to projection approaches for nonlin-
ear systems is what we refer to as dynamical model fitting.

4.1 Dynamical Model Fitting
Dynamical model fitting is the task of fitting a dynamical state-

space model (as opposed to fitting a “static” function such as a
transfer matrix) to a given set of data pairs {t̃i, ũi, ỹi} obtained
from the original, possibly unknown, system. In this section for
simplicity we consider only input-output models of the form

ẏ = f̂(y, u), (16)

but dynamical model fitting techniques are capable of identifying
more general state-space models of the form (4) (see [26] for a
thorough description of the state-space case). Ideally the identified
model should minimize the sum of the output errors |yi − ỹi|2,
where yi = y(t̃i) is the output of the identified model (16) in re-
sponse to given input samples u(t̃i) = ũi. Minimization of the
exact output error is a difficult problem because in general there is
no explicit expression for the model output y in terms of the un-
known model coefficients. A simpler problem is to search for f̂ in
order to minimize instead the equation error

min
f̂

∑
i

|| ˙̃yi − f̂(ỹi, ũi)||22. (17)

If the unknown functions are defined using a set of predetermined
basis functions

f̂(y, u) =
∑

j

αjφ(y, u), (18)

where φ could be for instance polynomial functions of y and u,
then an unconstrained minimization problem can be solved for the
unknown coefficients α using standard least-squares [27].

4.2 Stable Dynamical Fitting
As seen in the case of transfer matrix fitting, unconstrained min-

imization generally produces unstable models, and therefore sta-
bility must be enforced as a constraint during model identification.
Unfortunately, enforcing stability for nonlinear dynamical systems
is a difficult task. Traditional identification methods either com-
pletely ignore stability constraints or impose very restrictive struc-
tures on the model vector field f̂ [27]. In the most general sense,
stability or passivity of a dynamical system can be certified through
the existence of a positive definite storage function L(y) 
 0 that
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satisfies a dissipation constraint L̇(y) ≤ σ(y, u) for some sup-
ply rate σ(y, u) (see [28] for more details). For example, if we
consider the supply rate σ(y, u) = |u|2 − |y|2 (corresponding to
bounded input bounded output stability) and the storage function
L(y) = yT y, then system (16) is globally stable if the dissipation
constraint

yT f̂(y, u) + f̂(y, u)T y + yT y − uT u ≤ 0 (19)

is satisfied for all possible y and u satisfying (16). Therefore, one
approach to identifying stable nonlinear models is to solve opti-
mization problem (17) subject to stability constraint (19). It is im-
portant to note that dissipation constraint (19) is just one possible
constraint that certifies stability of the nonlinear system (other con-
straints can be obtained by considering different storage functions)
and is thus a sufficient condition for stability but not a necessary
condition. The precise formulation of the stability constraints is
an important consideration because, even if f̂ is considered to be
fixed, verifying whether or not constraint (19) is satisfied is a diffi-
cult task. As a result, it is typically necessary to restrict the class of
functions f̂ considered to those for which inequalities such as (19)
can easily be globally verified. For example, if f̂(y, u) is chosen
as a polynomial function, then constraint (19) can be enforced as a
semidefinite constraint using the sum-of-squares relaxation previ-
ously described in section 3.3.

In many cases enforcing dissipation constraints, such as (19),
globally for all possible solutions y, u is restrictive, since many sta-
ble systems do not satisfy such sufficient (but not necessary) con-
straint. An alternative suboptimal approach is to consider instead
only local stability, which corresponds to linearizations of the non-
linear system (16) being stable. Enforcing local stability at a finite
number of points is a much simpler task because it transforms a
single nonlinear stability constraint such as (19) into a collection
of simple linear constraints, such as searching for positive-definite
matrices Pi = P T

i satisfying PiAi + AT
i Pi ≤ 0, where Ai =

∂f̂(y, u)/∂y evaluated at some yi and ui, which is a semidefi-
nite constraint. One reasonable choice for solutions around which
to enforce local stability is the given set of training data samples
ũi, ỹi [26].

4.3 Bounding Output Error
Minimization of equation error in optimization problem (17),

subject to stability constraint, is a relatively ad-hoc procedure. As
a matter of fact, a small equation error does not guarantee a small
output error, which is the true desired measure of accuracy for the
model. This problem is analogous to the linear algebra notion that
for some b1 = Ax1 and b2 = Ax2, it is possible that ||b1 − b2|| is
small when ||x1 − x2|| is large.

By imposing certain constraints on the model to be identified it
is possible to relate the equation error to the output error for non-
linear systems. For instance, it was shown in [29] that if the iden-
tified model is incrementally stable, then the equation error serves
as an upper bound for the output error. Incremental stability, which
requires that perturbations to solutions decay, is a strong notion of
stability that implies traditional weaker notions such as bounded in-
put bounded output stability. Although enforcing incremental sta-
bility as proposed in [29] is restrictive, recent developments in [26]
provide a relaxed constraint allowing for identification of a larger
class of stable systems with output error bound at a computationally
cheaper cost.

4.4 Parameterized Model Fitting
As was the case for parameterized transfer matrix fitting in Sec-

tion 3.4, parameterized nonlinear models ẏ = f̂(y, u, p) can be
constructed by either fitting simultaneously to input-state-output
data and parameter data, or by first fitting a collection of non-
parameterized models, and then interpolating between them. For

the first approach, the basis functions must be dependent on the
parameters as well as the input and output, e.g. ψi = ψi(y, u, p)
in (18). In the simplest case the parameters can be treated as ex-
tra constant inputs, in which case no alterations to the optimization
procedure need to be made [26]. Alternatively, one can identify
separate nonlinear models ẏ = f̂k(y, u) for each set of parame-
ter values and attempt to identify a single model that “interpolates”
the individual models such that f̂(y, u, pk) ≈ f̂k(y, u) and such
that stability is enforced. To our knowledge there is currently no
reliable method available for achieving this goal.

5. CONCLUSIONS & FUTURE DIRECTIONS
In terms of the specific techniques at the core of compact dy-

namical modeling, we believe that the future is neither in projec-
tion methods nor in fitting techniques, but rather in a combination
of the two. On one side, projection methods are restrictive because
they require explicit knowledge of system equations, and in general
can preserve stability and passivity only when such equations have
a very specific structure. On the other side, fitting techniques can
be used to force stability and passivity without knowledge of the
original system equations, but they are at a fundamental disadvan-
tage because they are working with a limited amount of information
about the original system. We believe therefore that if information
about system equations and projection vectors is available, it should
be incorporated also into fitting techniques.

Leaving aside for a moment the discussion on the specific core
techniques, we also believe that the following general principles
should guide the research in automated compact dynamical model-
ing, in order to finally turn it into a reliable and effective tool in the
hands of analog designers.

The most important principle is that the generated dynamical
models should always be certifiably reliable (i.e. stable and pas-
sive) for time domain simulation. Since stability and passivity are
global properties of the systems, research should be strongly driven
toward algorithms that can certify such properties for any kind of
possible input signals, and not just for a subset of signals of a spe-
cial form, or within a limited frequency band of interest to the user.

Although models of complex analog systems are unlikely to ever
be globally accurate for any kind of input signals, fortunately, global
accuracy is not as necessary as global stability and passivity. Nev-
ertheless, we do believe that research should be driven toward algo-
rithms that clearly identify the specific subsets of input signals for
which the generated models are certifiable accurate, and for which
error bounds can be provided.

In order to truly enable high level system verification and effec-
tive design tradeoff exploration, research efforts should foster algo-
rithms that generate compact dynamical models which can then be
instantiated instantaneously by the analog design users for a range
of physical and design parameters. As for the case of input signals,
we believe that global accuracy is not necessary for the parame-
ters. Nevertheless, research should be driven toward algorithms
that clearly identify the specific continuous range of parameter val-
ues for which the models can be instantiated with certifiable accu-
racy in the form of error bounds.

From a practical point of view, the generated models must also
be easily usable within existing commercial circuit simulators and
high level simulators. On one side, algorithm developers should
focus on generating dynamical models that can be described by
existing interfaces (e.g. by explicitly and automatically generating
Verilog-A modules that implement dynamical state space models).
On the other side, EDA circuit simulators should try and provide
even more direct and efficient interfaces.

Finally, we recognize that implementing or developing new mod-
eling techniques can require a large initial investment of time and
effort, which may deter its wide spread to many potential interest-
ing applications not only within the analog community, but also to
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other communities including modeling of devices, nanotechnolo-
gies, biological systems and biomedical systems. In order to facili-
tate dissemination and future collaboration across several compact
dynamical modeling communities from different fields, algorithm
developers, whenever possible, should try and provide public do-
main distributions of software and scripts implementing their ap-
proaches, including examples and test cases.

APPENDIX A: Optimization Software.
All of the optimization problems formulated in this paper can be
solved using the freely available software SPOT [30] and SeDuMi [31],
and Matlab tools implementing methods described in this paper can
be found online at [32, 33, 34].
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