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Stochastic event synchrony (SES) is a recently proposed family of sim-
ilarity measures. First, “events” are extracted from the given signals;
next, one tries to align events across the different time series. The better
the alignment, the more similar the N time series are considered to be.
The similarity measures quantify the reliability of the events (the frac-
tion of “nonaligned” events) and the timing precision. So far, SES has
been developed for pairs of one-dimensional (Part I) and multidimen-
sional (Part II) point processes. In this letter (Part III), SES is extended
from pairs of signals to N > 2 signals. The alignment and SES param-
eters are again determined through statistical inference, more specifi-
cally, by alternating two steps: (1) estimating the SES parameters from a
given alignment and (2), with the resulting estimates, refining the align-
ment. The SES parameters are computed by maximum a posteriori (MAP)
estimation (step 1), in analogy to the pairwise case. The alignment (step 2)
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is solved by linear integer programming. In order to test the robustness
and reliability of the proposed N-variate SES method, it is first applied
to synthetic data. We show that N-variate SES results in more reliable
estimates than bivariate SES. Next N-variate SES is applied to two prob-
lems in neuroscience: to quantify the firing reliability of Morris-Lecar
neurons and to detect anomalies in EEG synchrony of patients with mild
cognitive impairment. Those problems were also considered in Parts I
and II, respectively. In both cases, the N-variate SES approach yields a
more detailed analysis.

1 Introduction

Neural synchrony may play an important role in information processing
in the brain. Although the details of this coding mechanism have not been
fully revealed, it has been postulated that neural synchrony may be involved
in cognition (Varela, Lachaux, Rodriguez, & Martinerie, 2001) and even in
consciousness (Singer, 2001). The correlation between different brain signals
has been studied intensively in recent years by both experimental neurosci-
entists (Abeles, Bergman, Margalit, & Vaadia, 1993; Womelsdorf et al., 2007)
and computational neuroscientists (Amari, Nakahara, Wu, & Sakai, 2003)
and also by neurologists. Indeed, various medical studies have reported
that neurological diseases, such as Alzheimer’s disease and epilepsy are
related to perturbations in neural synchrony (Matsuda, 2001; Jeong, 2004).

Motivated by the intensified interest in neural synchrony, numerous re-
searchers have developed and refined methods to quantify the synchrony
between signals (Stam, 2005; Quiroga, Kraskov, Kreuz, & Grassberger, 2002;
Pereda, Quiroga, & Bhattacharya, 2005; Toups, Fellous, Thomas, Sejnowski,
& Tiesinga, 2011). In recent work, (Dauwels, Vialatte, Rutkowski, &
Cichocki, 2008; Dauwels, Vialatte, Weber, & Cichocki, 2009a, 2009b), we
have proposed a new family of synchrony measures referred to as stochas-
tic event synchrony (SES); this class of measures is inspired by the Victor-
Purpura distance metrics (Victor & Purpura, 1997). The basic idea is as
follows. First, we extract “events” from the given time series; next, we try
to align events from one time series with events from the other. The better
the alignment, the more similar the time series are considered to be. We
also quantify the timing jitter between matched (“coincident”) events; the
smaller the timing jitter, the larger the synchrony. SES thus considers two
aspects of synchrony: reliability and timing precision. Those concepts were
also recently considered in Toups et al. (2011), and they can be understood
from an analogy. When you wait for a train at the station, the train may
come, or it may not come at all; for example, it may be out of service due to
some mechanical problem. If the train comes, it may or may not be on time.
The former uncertainty is related to reliability, whereas the latter is related
to precision.
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So far, SES has been restricted to pairs of signals. In this letter, we extend
SES from pairs of signals to N > 2 signals. The underlying principle is simi-
lar, but the inference algorithm to compute the SES parameters is fundamen-
tally different. In bivariate SES (Dauwels, Vialatte et al., 2008, 2009a, 2009b),
we applied the max-product algorithm to align pairs of sequences. We
have implemented the max-product algorithm (and various refinements)
for aligning N > 2 sequences as well; however, that approach unfortunately
leads to inaccurate alignments, probably because N-wise alignment is sub-
stantially harder than pairwise alignment. As an alternative, we solve the
N-wise alignment by integer linear programming, which yields optimal or
near-optimal alignments at reasonable computational cost.

The extension from pairs of signals to N > 2 signals is nontrivial. In
the following, we briefly touch on this issue. For N = 2, the problem of
time series comparison is essentially that of finding an alignment between
the time series. The alignment approach of Victor and Purpura (1997) was
the inspiration for bivariate SES; we have shown in Dauwels et al. (2009a,
2009b) that the alignment between two time series (say, x1 and x2) is the same
as finding an underlying time series v, which can then be transformed to x1
and x2 by a sequence of steps involving jittering the events, and insertions
and deletions. Quantifying the distance between x1 and x2 is equivalent to
finding a v that minimizes some combination of d(x1, v) and d(x2, v). By
making the combination rule for these two distances accelerating (such as
a root mean square), one can ensure that v is in the middle of x1 and x2.
Comparing x1 with x2 is equivalent to finding a hidden consensus process
v that can generate both x1 with x2. Finding the v interprets the similarity
of x1 and x2 in terms of a consensus that they both represent, but it is not
necessary to find v to quantify this similarity, since it can also be expressed
as an alignment, without an explicit v.

For N = 3, one can attempt to jointly minimize some combination of
d(x1, v), d(x2, v), and d(x3, v) without attempting to find an underlying v.
Or one can attempt to find a single v for which some combination of d(x1, v),
d(x2, v), and d(x3, v) is smallest.

Finally, for N > 3, there is at least one other possibility: the point process
might be generated by two or more hidden processes. This can first happen
at N = 4, with two hidden processes, say v and w, for which the distances
d(x1, v), d(x2, v), d(x3, w), d(x4, w) have a lower total than the distance from
any single v to all four of the observations x1, x2, x3, and x4. In other words,
for N > 3, the problem of finding multivariate similarity is generally not
the same as finding the single underlying consensus process.

In summary, there are at least three kinds of definitions of synchrony
and similarity:

1. A definition based on the N(N − 1)/2 distances d(xi, x j) between pairs
of observed processes
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2. A definition based on finding a consensus process v, which minimizes
the N distances d(xi, v)

3. A definition based on finding multiple hidden processes

For N = 2, these definitions are identical. For N = 3, the second and third are
identical but differ from the first. For N > 3, all three definitions are distinct.
In this letter, we consider the second definition: the N point processes are
generated from a (hidden) consensus process v. In future work, we will
extend N-variate SES to multiple hidden processes.

Stochastic event synchrony (SES) is applicable to any kind of time series
(e.g., finance, oceanography, seismology). We consider here neural spike
trains and electroencephalograms (EEG). More specifically, we use the SES
method to quantify the reliability of Morris-Lecar neurons and predict mild
cognitive impairment (MCI) from electroencephalograms. We also consid-
ered those problems in Part I (Dauwels et al., 2009a) and Part II (Dauwels
et al., 2009b), respectively.

This letter is organized as follows. In the next section, we explain how
SES can be extended from pairs of point processes to N > 2 point processes.
We describe the underlying statistical model in section 3 and outline our
inference method in section 4.1 We consider various extensions of our sta-
tistical model in section 5. We investigate the robustness and reliability of
the SES inference method by means of synthetic data in section 6. We use
SES to quantify the reliability of Morris-Lecar neurons section 7 and detect
abnormalities in the EEG synchrony of MCI disease patients in section 8.
We offer some concluding remarks in section 9.

Readers who are less interested in the technical details may wish to read
section 2, where the general idea is outlined, and sections 7 and 8, where
two applications are discussed. Those sections can be read independently
of the more technical sections 3 and 4.

2 Principle

Suppose that we are given N > 2 continuous-time signals (e.g., EEG signals
recorded from different channels), and we wish to determine the similarity
of those signals. In Dauwels et al. (2009b), we considered pairs of signals
(N = 2). Although the extension to N > 2 may seem straightforward, it
leads to a combinatorial problem that is much harder. In the following, we
closely follow the setting and notation of Dauwels et al. (2009b).

As a first step, we extract point processes from those N > 2 signals,
which may be achieved in various ways. As an example, we generate point
processes in the time-frequency domain. First, the time frequency (wavelet)
transform of each signal is computed in a frequency band f ∈ [ fmin, fmax].

1An implementation of N-variate SES for one-dimensional and multidimensional
point processes is available online at http://www.dauwels.com/SESToolbox/SES.html.
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Figure 1: Similarity of three EEG signals (N = 3). From their time-frequency
transforms (top), one extracts two-dimensional point processes (bump models;
bottom), which are then aligned.

Next, those maps are approximated as a sum of half-ellipsoid basis func-
tions, referred to as bumps (see Figure 1 and Vialatte et al., 2007). Each bump
is described by five parameters: time t, frequency f, width �t, height � f ,
and amplitude w. The resulting bump models represent the most prominent
oscillatory activity in the signals at hand. This activity may correspond to
various physical or biological phenomena. For example, oscillatory events
in EEG and other brain signals are believed to occur when assemblies of neu-
rons are spiking in synchrony (Buzsáki, 2006; Nunez & Srinivasan, 2006). In
the following, we develop N-variate SES for bump models. In this setting,
SES quantifies the synchronous interplay between oscillatory patterns in
N > 2 given signals, while it ignores the other components in those signals
(the background activity). In contrast, classical synchrony measures such
as amplitude or phase synchrony are computed from the entire signal; they
make no distinction between oscillatory components and the background
activity. As a consequence, SES captures alternative aspects of similarity
and hence provides complementary information about synchrony.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00235&iName=master.img-000.jpg&w=233&h=250
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Figure 2: Five bump models overlaid on top of each other (N = 5). The dashed
boxes indicate clusters. The average offset between the bumps is close to zero.

Besides bump models, SES may be applied to other sparse representa-
tions of signals. Moreover, the point processes may be defined in spaces
other than the time-frequency plane; for example, they may occur in two-
dimensional space (e.g., images), space frequency (e.g., wavelet image cod-
ing), or space time (e.g., movies). Such extensions may straightforwardly
be derived from the example of bump models (we refer to section 5 and
Dauwels et al., 2009b, for more details).

It is also noteworthy that the events in the point processes may be la-
beled by discrete tags. For example, in multineuronal recordings, the labels
would correspond to the neurons of origin. More generally, the labels may
correspond to the sites or processes of origin. SES may then be applied to
the point processes associated with each label, and it would quantify the
coupling between the different sites (e.g., neurons).

We now consider the central question: How can we quantify the similar-
ity of N > 2 point processes defined on a space S? Let us consider the ex-
ample of bump models (see Figures 1 and 2). Intuitively speaking, N bump
models (xi)i=1,2,...,N may be considered well synchronized if bumps appear
in (almost) all bump models simultaneously, apart from a constant offset in
time and frequency and a small amount of jitter in time and frequency. If
one overlays N well-synchronized bump models and removes the potential
average offsets in time and frequency (denoted by δti and δ f i respectively, for
i = 1, 2, . . . , N), bumps naturally appear in clusters that contain precisely
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Figure 3: Five bump models overlaid on top of each other (N = 5). The dashed
boxes indicate clusters. The average offset between the bumps is nonzero.

one bump from all (or almost all) bump models, as illustrated in Figure 2
for N = 5. In that example, clusters 1 and 6 contain bumps from all five
bump models xi, clusters 2 and 7 contain bumps from three bump models,
clusters 3 and 5 contain bumps from two bump models, and cluster 4 con-
tains bumps from four bump models. In general, the average offset in time
and frequency between the bumps is not necessarily zero (as illustrated
in Figure 3), and it may be harder to recognize the different clusters. The
algorithm developed in this letter is able to extract such clusters, even in
the general case of nonzero average offsets in time and frequency (as in
Figure 3).

If the point processes are well synchronized, almost all clusters contain
(close to) N bumps, specifically, one bump from each (or almost each) of the
N bump models. Therefore, an important similarity statistics is the average
number of events per cluster or, more generally, the statistical distribution
of the number of events per cluster. Moreover, as in the pairwise case
(Dauwels et al., 2009a, 2009b), one can quantify how well the bumps are
aligned within each cluster by computing the jitter sti and sfi in time and
frequency, respectively, for i = 1, 2, . . . , N.

More generally, N point processes on a space S may be considered similar
if events appear in clusters with (close to) N events and with small disper-
sion (computed by the distance measure on S). Those clusters may appear
only after certain transformations have been applied, such as translation
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(to eliminate offsets as in Figure 3), rotation, and scaling. In other words,
N point processes are considered similar if they can be transformed into
each other by a few operations, including deletions and insertions, small
random perturbations, and transformations such as translation, rotation,
and scaling.

Let us now return to bump models. We determine the SES parameters δti,
δ f i, sti, and sfi (i = 1, 2, . . . , N) and the event clusters by statistical inference,
along the lines of the pairwise case (Dauwels et al., 2009a, 2009b). We
start by constructing a statistical model that captures the relation between
the N bump models. That statistical model contains the SES parameters
besides variables related to the alignment of the different bumps. Next, we
perform inference in that statistical model, resulting in estimates for the SES
parameters and clusters. More concretely, we apply cyclic maximization, as
in the pairwise case.

In section 3, we outline our statistical model; in section 4, we describe
how we conduct inference in that statistical model.

3 Statistical Model

3.1 Casual Description. The intuitive concept of similarity outlined
in section 2 may readily be translated into a generative stochastic model.
In that model, the N point processes xi are treated as independent noisy
observations of a hidden process v. The observed sequences (xi)i=1,...,N are
obtained from v by the following four-step procedure:

1. Copy. Generate N copies of the hidden point process v.
2. Deletion. Delete some of the copied events.
3. Perturbation. Shift the remaining copies over (δti, δ f i)i=1,...,N, and ran-

domly perturb the positions, with variance (si)i=1,...,N = (sti, s f i)i=1,...,N,
amounting to the N point processes (xi)i=1,...,N.

4. Insertion. Additional events are inserted (background events) that are
unrelated to the hidden point process v and are modeled as mutually
independent.

As a result, each sequence xi consists of noisy copies of hidden events
(generated by steps 1 to 3), besides background events (generated by step 4).
The noisy copies are related to each other through the hidden events v,
whereas the background events are all independent of each other. The
point processes xi may be considered well synchronized if there are only
few deletions (see step 2) and insertions (step 4) and if the events of xi are
close to the corresponding hidden events (see step 3), apart from offsets
(δti, δ f i)i=1,...,N. Figure 4 illustrates a generative process that results in the
bump models of Figure 3. More generally, as we pointed out in the previous
section, one may include other transformations in the perturbation step
besides translation over (δti, δ f i)i=1,...,N, such as rotation and scaling.
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Figure 4: Generative model for the N = 5 bump models (xi)i=1,...,N of Figure 3.
One first generates a hidden bump model v, indicated in dashed lines. Next,
one makes N = 5 identical copies of v and shifts those over (δi)i=1,...,N =
(δti, δ f i)i=1,...,N, as indicated by the arrows (labeled δi) in cluster 1. The result-
ing events are then slightly shifted, with variance (si)i=1,...,N = (sti, s f i)i=1,...,N,
as indicated by the other arrows in cluster 1. Finally, some of those events
are deleted (with probability pd), resulting in the bump models (xi)i=1,...,N. For
example, two events are deleted in cluster 2.

Some readers may wonder why insertions need to be modeled explic-
itly. Indeed, inserting an event is equivalent to adding a hidden event
with N noisy copies, followed by N − 1 deletions. In this way, the SES
models for pairs of point processes (Parts I and II) are able to capture
insertions, even though they are not modeled explicitly (Dauwels et al.,
2009a, 2009b). However, for large N (e.g., N > 10), the cost of an insertion
becomes prohibitively large (due to the N − 1 deletions), and as a con-
sequence, the statistical model no longer captures insertions. The inserted
event will be grouped with other events, leading to incorrect clusters. There-
fore, it becomes necessary to model insertions explicitly. As an illustration,
Figure 11a shows several event clusters in addition to background events
(indicated by hexagons). More information on this application can be found
in section 7. Note that insertions are also explicitly modeled in the Victor
and Purpura (1997) distance metrics, which were the source of inspiration
for SES.
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3.2 Formal Description. We now describe the underlying stochastic
model in more detail. We refer to Table 1 for a summary of all relevant
variables and parameters. For convenience, we introduce the following
notation. The length of the point process xi is denoted by Li (with i =
1, 2, . . . , N). The individual events of point process xi are denoted by xij
(with i = 1, 2, . . . , N and j = 1, . . . , Li). The occurrence time and frequency
of those events are referred to as tij and fij, respectively. Moreover, we will
use the notation δi = (δti, δ f i), si = (sti, s f i), θi = (δi, si) (with i = 1, 2, . . . , N),
and θ = (θ1, θ2, . . . , θN).

The hidden process v = {
v1, . . . , v�

}
, which is the source of all events

in x1, x2, . . . xN (besides the background events; see step 4), is modeled
as follows. The number � of points in v is geometrically distributed with
parameter λ vol(S):

p(�) = (1 − λ vol(S))
(
λ vol(S)

)�
, (3.1)

where vol(S) is the multidimensional volume of set S. (We motivate this
choice of prior in Part I (Dauwels et al., 2009a, 2009b).) In the particular case
of bump models in the time-frequency domain, the space S is defined as

S = {(t, f ) : t ∈ [tmin, tmax] and f ∈ [ fmin, fmax]}, (3.2)

and therefore

vol(S) = (tmax − tmin)( fmax − fmin). (3.3)

Each point vk for k = 1, . . . , � is uniformly distributed in S:

p(t̃, f̃ |�) = vol(S)−�, (3.4)

where t̃ and f̃ are the positions of the hidden events (vk)k=1,...,� in time and
frequency, respectively. The amplitudes, widths, and heights of the bumps
vk are independently and identically distributed according to priors pw, p�t ,
and p� f , respectively. In the following, we will discard those priors since
they are irrelevant. With those choices, the prior of the hidden process v

equals

p(v, �) = p(�)p(v|�) ∝ (1 − λ vol(S))λ�, (3.5)

where the priors for the amplitudes, widths, and heights of the bumps vk
have been discarded for convenience.

From the hidden process v, the point processes (xi)i=1,...,N are generated
as follows (see Figure 4). We first generate N identical copies of v. Next,
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ṽ
B

ac
kg

ro
un

d
ev

en
ts

in
(x

i)
i=

1,
2,

..
.,

N
�̃

L
en

gt
h

of
ṽ
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the amplitudes, widths, and heights of the bumps are replaced by random
independent draws from priors pw, p�t , and p� f , respectively. Again, those
priors are irrelevant for what follows, and we will omit them. Next, each
event is removed with probability pd (“deletion”), independent of the other
events. The probability mass associated with the (remaining) nk copies of
(vk)k=1,...,� is given by

p(nk) = p
N−nk
d (1 − pd)

nk . (3.6)

We will need the product of p(nk) for k = 1, . . . , �:

�∏
k=1

p(nk) = pN�−Ltot

d (1 − pd)
Ltot

, (3.7)

where Ltot is the total number of events in the N point processes (xi)i=1,...,N:

Ltot =
N∑

i=1

Li. (3.8)

At last, the resulting N sequences are shifted over (δi)i=1,...,N =
(δti, δ f i)i=1,...,N, and the occurrence times and frequencies are slightly per-
turbed, resulting in the sequences (xi)i=1,...,N. As we pointed out earlier,
there might be a nontrivial timing and frequency offset between the bump
models (see Figures 3 and 4). The parameters (δti, δ f i) are introduced in
the model to account for such offsets. The offsets between v and (xi)i=1,...,N
may be modeled as bivariate gaussian random variables with mean vectors
(δti, δ f i) and diagonal nonisotropic covariance matrices Vi = diag(sti, s f i).
It is reasonable to assume that the offsets in time are independent of the
offsets in frequency, and vice versa. Therefore, we use diagonal matrices Vi.
Statistical dependencies between the perturbations in time and frequency
may be modeled by nondiagonal covariance matrices Vi. Such extensions
are straightforward, and we do not consider them here.

We adopt the improper priors p(δti) = 1 = p(δ f i) for (δti)i=1,...,N and
(δ f i)i=1,...,N respectively, and conjugate priors for sti and sfi, that is, scaled
inverse chisquare distributions:

p(sti)= (st0νt/2)νt/2


(νt/2)

e−νt st0/2sti

s
1+νt/2
ti

, (3.9)

p(s f i)=
(s f 0ν f /2)

ν f /2


(ν f /2)

e−ν f s f 0/2s f i

s
1+ν f /2

f i

, (3.10)
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where νt and ν f are the degrees of freedom, st0 and s f 0 are the width of the
scaled inverse chi square distributions, and 
(x) is the gamma function.

In Dauwels et al. (2009b), we normalized the parameters (δt, st ) and
(δ f , s f ) by the width and height of the bumps, respectively, in order to take
the size of the bumps into account. For simplicity, we will discard such
normalization factors in the following. They can easily be incorporated in
the statistical model, and we briefly address this issue in section 5.

It is also noteworthy that in Dauwels et al. (2009b), the variance of the
time and frequency perturbations in the generative process is defined as st/2
and s f /2, respectively (instead of st and sf), so that the variance between
the two observed sequences x1 and x2 is given by st and sf. Therefore, when
comparing results from bivariate and N-variate SES, a factor of two needs
to be taken into account.

For later convenience, we introduce some more notation. We denote by
vci j

the hidden event that generated xij (the jth event in point process xi).

The function c is hence a clustering function that groups the events xij into
different clusters. Since there is at most one event from point process i in
cluster k, the clustering function c fulfills the constraints

Li∑
j=1

δ
[
ci j − k

] ≤ 1,∀i, k. (3.11)

Note that certain hidden events (vk)k=1,...,� may not have any copies, since
all N copies may have been deleted. Therefore, the function c does not nec-
essarily take � different values. Without loss of generality, we will assume
that c takes values in {1, 2, . . . , L}, where L is the number of clusters and
0 ≤ L ≤ �. Note that the number L of clusters is at most Ltot, that is, the total
number of events; this maximum number occurs when each event is a clus-
ter, and hence all clusters are of size 1. With this definition of L, the number
of copies n1, . . . , nL are nonzero, whereas nL+1 = nL+2 = · · · = n� = 0. We
introduce the index set K of clusters with nk > 1:

K = {k ∈ {1, 2, . . . , L} : nk > 1}. (3.12)

We denote by Ck the set of nk copies of vk and denote its index set by Ik:

Ck = {xi j : ci j = k} and Ik = {(i, j) : ci j = k}. (3.13)

The fraction ρ of missing events in the clusters can be computed as

ρ = 1 −
∑L

k=1 nk

LN
= 1 − n̄

N
, (3.14)



Quantifying Statistical Interdependence, Part III 421

where n̄ is the average number of events per cluster. Another important
statistics is the distribution (p j)

N
j=1 of the number of events per cluster:

p j =
∑L

k=1 δ[nk − j]
L

, j = 1, 2, . . . , N. (3.15)

In this notation, the overall probabilistic model may be written as

p(x, c, v, θ, �) ∝ p(st )p(s f )(1 − λ vol(S))(λ pN
d )� p−Ltot

d (1 − pd)Ltot

·
N∏

i=1

Li∏
j=1

N
(
ti j − t̃ci j

; δti, sti

)
N

(
fi j − f̃ci j

; δ f i, s f i

)
. (3.16)

Note that the parameters N, (Li)i=1,...,N and Ltot are fixed for given point
processes. Likewise, for given clustering c, the parameters L and (nk)k=1,...,L

are fixed. The total number of deletions is given by Ldel,tot = N� − Ltot. The
number of hidden events vk without copies is given by Ldel = � − L.

As in Parts I and II, we can marginalize the statistical model p(x, c, v, θ, �)

analytically with regard to v and � (Dauwels et al., 2009a, 2009b), resulting
in p(x, c, θ ) (see appendix A):

p(x, c, θ ) ∝ γ βNL p(st )p(s f )

·
∏
k∈K

∏
(i, j)∈Ik

N
(
ti j − t̄k; δti, sti

)
N

(
fi j − f̄k; δ f i, s f i

)
, (3.17)

where

t̄k =

∑
(i, j)∈Ik

wti(ti j − δti)∑
(i, j)∈Ik

wti
, (3.18)

f̄k =

∑
(i, j)∈Ik

w f i( fi j − δ f i)∑
(i, j)∈Ik

w f i
, (3.19)

with wti = s−1
ti and w f i = s−1

f i . Interestingly, the parameters (t̄k, f̄k) may be
interpreted as the coordinates of the center of the nk copies associated with
vk (see Figure 5 b); in other words, those nk copies may be viewed as a cluster
of events whose center is located at (t̄k, f̄k). As can easily be shown, the latter
parameters are also the maximum likelihood (ML) estimates of the time and
frequency of the hidden event vk, when the copies of vk and the parameters
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Figure 5: Exemplar representation. A cluster with five events, generated from
a hidden event (dashed lines). For clarity, we have eliminated the offsets δi
in b and c. The exemplar is marked in dotted lines in c. (a) Hidden event vk
(dashed line) and its five “noisy” copies. The arrows indicate the systematic
offsets (δi) and random offsets. (b) For the sake of clarity, the offsets δi (see a)
have been eliminated. The dot corresponds to the center of the five events (see
equations 3.28 and 3.29), and the dotted lines indicate the distances d(ti j, fi j),
equation 3.27. (c) After eliminating the offsets δi, event 2 (dotted) lies the closest
to the hidden event (dashed), and it serves as exemplar. The arrows indicate the
distances d(ti j, fi j, ti′ j′ , fi′ j′ ) (see equation 4.17).
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(δi, si) are given (i = 1, 2 . . . , N). In practice, the latter are usually not given,
and therefore the coordinates t̄k and f̄k depend on how the events xij are
assigned to hidden events vk; in other words, those parameters depend on
the clustering c.

The parameters β and γ in equation 3.17 are defined as

β = pd
N
√

λ (3.20)

and

γ = (
p−1

d (1 − pd)
)Ltot

(1 − λvol(S))
1

1 − λvol(S)pN
d

. (3.21)

Note that we defined similar parameters γ and β in Parts I and II (Dauwels
et al. 2009a, 2009b); the N-variate statistical model, equation 3.17, is a natural
extension of the pairwise statistical models of Dauwels et al., (2009a, 2009b).
The constant γ does not depend on c or the SES parameters δi and si (with i =
1, . . . , N), and therefore, it is irrelevant for estimating the latter parameters
and the clusters. We will discard γ in the following.

So far, we have not yet taken background events into account. They
can be modeled as follows. Besides the hidden process v, we generate the
background events as a point process ṽ of length �̃. We define the prior
p(ṽ, �̃) similarly as p(v, �) (see equation 3.5):

p(ṽ, �̃) = p(�̃)p(ṽ|�̃) ∝ (1 − λ̃ vol(S))λ̃�̃. (3.22)

As a result, some of the events x are generated from v (according to steps
1–3), and the other events (background events) are the process ṽ. We denote
by χ the fraction of background events in x. To account for the background
events, we now assume that c takes values in {0, 1, 2, . . . , L}, where ci j = 0 iff
xij is a background event. From a given clustering function c, we can easily
infer the background events (and hence also �̃). An important statistics is
the fraction χ of background events, which can also easily be computed
from c.

We can include background events in statistical model 3.17 by multiply-
ing it with the prior p(ṽ, �̃), equation 3.22, resulting in

p(x, c, θ ) ∝ βNLβ̃ �̃ p(st )p(s f )

·
∏
k∈K

∏
(i, j)∈Ik

N
(
ti j − t̄k; δti, sti

)
N

(
fi j − f̄k; δ f i, s f i

)
, (3.23)

where the parameter β̃ = λ̃ (see equation 3.20).
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The exponent of β and β̃ in equation 3.23 clearly depends on c, and
as a result, the parameters β and β̃ affect the inference of c and the SES
parameters. As in Parts I and II, we will interpret those parameters in
terms of cost functions; the expressions log β and log β̃ are part of the cost
associated with each cluster and background event, respectively. In all our
experiments, we found that the setting β̃ = 10−20 yields satisfactory results.

3.3 Interpretation in Terms of Cost Functions. We can gain additional
insight by considering the logarithm of statistical model 3.23,

− log p(x, c, θ )= − log p(st ) − log p(s f ) − LN log β − �̃ log β̃

+
∑
k∈K

∑
(i, j)∈Ik

(
1
2

log 2πsti + 1
2sti

(ti j − t̄k − δti)
2

+1
2

log 2πs f i + 1
2s f i

( fi j − f̄k − δ f i)
2
)

+ ζ , (3.24)

where ζ is an irrelevant constant. Expression 3.24 may be considered as a
cost function that associates certain costs with each event and cluster; we
provided a similar viewpoint in Parts I and II (Dauwels et al., 2009a, 2009b).
The unit cost d0 associated with each of the L clusters is given by

d0 = −N log β. (3.25)

Likewise, the unit cost d̃0 associated with each of the background events is
given by

d̃0 = − log β̃. (3.26)

The unit cost of each event xij associated with a cluster k of size nk > 1
equals

d(ti j, fi j; c, θ ) = 1
2

log 2πsti + 1
2sti

(ti j − t̄k − δti)
2

+1
2

log 2πs f i + 1
2s f i

( fi j − f̄k − δ f i)
2. (3.27)



Quantifying Statistical Interdependence, Part III 425

This cost depends on the choice c of clusters and on the parameters θ .
Indeed, the parameters t̄k and f̄k are dependent on c and θ as follows:

t̄k =
∑N

i=1
∑Li

j=1 δ[ci j − k] wti(ti j − δti)∑N
i=1

∑Li
j=1 δ[ci j − k] wti

, (3.28)

f̄k =
∑N

i=1
∑Li

j=1 δ[ci j − k] w f i( fi j − δ f i)∑N
i=1

∑Li
j=1 δ[ci j − k] w f i

, (3.29)

with wti = s−1
ti and w f i = s−1

f i . The distance d(ti j, fi j), equation 3.27, is illus-
trated in Figure 5b.

Note that the second and fourth terms on the right-hand side of equation
3.27 are normalized Euclidean distances. Since the point processes (xi)1,...,N
are defined on the time-frequency plane (see Figure 4), the (normalized)
Euclidean distance is indeed a natural metric. In some applications, the
point process may be defined on more general spaces, in particular, curved
spaces. In such situations, one may adopt non-Euclidean distance measures.
We refer to Dauwels, Vialatte et al. (2008) for an example. To simplify the
notation, we define the unit cost of each event xij associated with a cluster
k of size nk = 1 as d(ti j, fi j; c, θ ) = 0.

We also define costs d(st ) = − log p(st ), d(s f ) = − log p(s f ), and d(θ ) =
d(st ) + d(s f ). With those definitions of unit costs, we can rewrite equation
3.24 as

− log p(x, c, θ )= d(θ ) + Ld0 + �̃d̃0

+
L∑

k=1

∑
(i, j)∈Ik

d(ti j, fi j; c, θ ) + ζ . (3.30)

This expression can be written as a function of c as follows:

− log p(x, c, θ )= d(θ ) + d0 max
i j

ci j + d̃0

∑
i j

δ[ci j]

+
maxi j ci j∑

k=1

N∑
i=1

Li∑
j=1

δ[ci j − k] d(ti j, fi j; c, θ ) + ζ̃ , (3.31)

where d(ti j, fi j; c, θ ) is given by equation 3.27. Clearly, the right-hand side
of equation 3.31 depends on c in a nonlinear fashion (see equations 3.27–
3.29).
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4 Statistical Inference

A reasonable approach to infer (c, θ ) is a maximum a posteriori (MAP)
estimation,

(ĉ, θ̂ ) = argmax
(c,θ )

log p(x, c, θ ), (4.1)

subject to equation 3.11. There is no closed-form expression for equation 4.1;
therefore, we need to resort to numerical methods. A simple technique to
try to solve equation 4.1 is cyclic maximization. We first choose initial values
θ̂ (0) and then perform the following updates for κ ≥ 1 until convergence:

ĉ(κ) = argmax
c

log p(x, c, θ̂ (κ−1)), (4.2)

θ̂ (κ ) = argmax
θ

log p(x, ĉ(κ), θ ), (4.3)

where equation 4.2 is determined subject to equation 3.11. The update,
equation 4.3, of the parameters θ is straightforward and may be carried out
by cyclic maximization (see appendix B for details). The update, equation
4.2, is far less straightforward; it involves an intractable optimization prob-
lem. We circumvent this issue by solving a related tractable optimization
problem. In the following, we describe that problem.

The update, equation 4.2, may be expanded as

ĉ(κ) = argmin
c

(
d0 max

i j
ci j + d̃0

∑
i j

δ[ci j]

+
maxi j ci j∑

k=1

N∑
i=1

Li∑
j=1

δ[ci j − k] d(ti j, fi j; c, θ̂ (κ−1))
)
, (4.4)

which is also determined subject to equation 3.11.

4.1 Equivalent (Intractable) Optimization Problem. The optimization
problem, equation 4.4, is hard to solve directly, and therefore we will solve
a related tractable optimization problem instead. In order to formulate the
latter, we introduce the following binary variables:

� bk is equal to one iff cluster k is nonempty (nk > 0 and k = 1, 2, . . . ,

Ltot).
� bijk is equal to one iff the xij belongs to cluster k, that is, ci j = k.
� eij is equal to one iff xij is a background event.
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We now rewrite equation 4.4 using that notation, which will allow us to
simplify the combinatorial problem in section 4.2.

The binary variables b are related through the constraints

bk = min

⎛
⎝1,

N∑
i=1

Li∑
j=1

bi jk

⎞
⎠ , ∀k. (4.5)

These nonlinear inequality constraints are equivalent to the linear con-
straints,

bi jk ≤ bk, ∀i, j, k, and
N∑

i=1

Li∑
j=1

bi jk ≥ bk, ∀k. (4.6)

The constraints 3.11 correspond to

Li∑
j=1

bi jk ≤ 1, ∀i, k. (4.7)

Moreover, an event is either a background event or belongs to a cluster,
which can be encoded by the constraints

L∑
k

bi jk + ei j = 1, ∀i, j, (4.8)

In this representation, we can rewrite equation 4.4 as

(
b̂(κ), ê(κ)

) = argmin
b,e

(
d0

Ltot∑
k=1

bk + d̃0

N∑
i=1

Li∑
j=1

ei j

+
Ltot∑
k=1

N∑
i=1

Li∑
j=1

bi jk d
(
ti j, fi j; b, θ̂ (κ−1)

))
, (4.9)

subject to equations 4.6 to 4.8. As we pointed out earlier, the number of
clusters is at most Ltot, the total number of events.

If xij is associated with a cluster k of size nk > 1, and hence
∑N

i=1
∑Li

j=1

bi jk > 1, the expression d(ti j, fi j; b, θ̂ (κ−1)) in equation 4.9 is given by
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equation 3.27 (see Figure 5b), with θ = θ̂ (κ−1) and

t̄k =
∑N

i=1
∑Li

j=1 bi jk ŵ
(κ−1)
ti (ti j − δ̂

(κ−1)
ti )∑N

i=1
∑Li

j=1 bi jk ŵ
(κ−1)
ti

(4.10)

f̄k =
∑N

i=1
∑Li

j=1 bi jk ŵ
(κ−1)

f i ( fi j − δ̂
(κ−1)

f i )∑N
i=1

∑Li
j=1 bi jk ŵ

(κ−1)

f i

, (4.11)

where ŵ
(κ−1)
ti = (ŝ(κ−1)

ti )−1 and ŵ
(κ−1)

f i = (ŝ(κ−1)

f i )−1; otherwise d(ti j, fi j; b,

θ̂ (κ−1)) = 0.
By exponentiating the objective function in equation 4.9, and adding the

priors in θ , we obtain the statistical model:

p
(
x, b, e, θ̂ (κ−1)

) ∝ p
(
ŝ(κ−1)

t

)
p
(
ŝ(κ−1)

f

) Ltot∏
k=1

(
βN)bk

N∏
i=1

Li∏
j=1

β̃
ei j

·
Ltot∏
k=1

N∏
i=1

Li∏
j=1

(N (ti j − t̄k; δti, sti)N ( fi j − f̄k; δ f i, s f i))
bi jk , (4.12)

which is equivalent to equation 3.23. Likewise, the constrained combinato-
rial optimization problem, equations 4.6 to 4.9, is equivalent to equation 4.4.
It is a nonlinear combinatorial optimization problem, since the objective
function (the right-hand side of equation 4.9) is nonlinear in b. Since the
problem is intractable, we simplify it. We linearize the objective function
by using an exemplar representation. The resulting linear combinatorial
optimization problem (the integer linear program, ILP) can then be solved
exactly by integer linear programming. In other words, we will approxi-
mate the original nonlinear and intractable integer program, equations 4.6
to 4.9 (which is hard to solve directly), into a linear and tractable integer
program (which is much easier to solve).

4.2 Related (Tractable) Optimization Problem. Ideally, we wish to find
the cluster centers (t̄k, f̄k), equations 4.10 and 4.11, that minimize the com-
bined total cost d(ti j, fi j), equation 3.27, of all events in the cluster. That is
an intractable problem, and we simplify it as follows. Rather than searching
through all possible cluster centers, we consider only events xij as potential
cluster centers. In other words, we consider a restricted subset of potential
centers. More specifically, we approximate the cluster center (t̄k, f̄k) by the
event xij of the same cluster that lies the closest to the center, after elimi-
nating the offset (δti, δ f i) (see Figure 5c). The events xij that serve as cluster
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centers are referred to as exemplars. This approach is inspired by other
exemplar-based clustering algorithms, including affinity propagation (Frey
& Dueck, 2007) and recent extensions (Lashkari & Golland, 2008; Givoni &
Frey, 2009).

As a result, the nonlinear cost d(ti j, fi j), equation 3.27, is approximated by
a cost that is independent of b; the nonlinear objective function (the right-
hand side of equation 4.9) becomes linear in b, and hence the nonlinear
combinatorial optimization problem, equation 4.9, is approximated by an
integer linear program. We now derive this integer linear program. Similarly
to the variables bk and bijk, we introduce the following binary variables:

� bij is equal to one iff xij is an exemplar.
� bi ji′ j′ is equal to one iff xij is associated with exemplar xi′ j′ .

In this formulation, we approximate the intractable optimization prob-
lem, equations 4.6 to 4.9, by the following integer linear program in b:

(
b̂(κ), ê(κ)

) = argmin
b,e

(
d0

N∑
i=1

Li∑
j=1

bi j + d̃0

N∑
i=1

Li∑
j=1

ei j

+
N∑

i,i′=1

Li∑
j=1

Li′∑
j′=1

bi ji′ j′ d
(
ti j, fi j, ti′ j′ , fi′ j′ ; θ̂ (κ−1)

))
, (4.13)

subject to

∑
i′ j′

bi ji′ j′ + bi j + ei j = 1, ∀i, j, (4.14)

Li∑
j=1

bi ji′ j′ ≤ bi′ j′ , ∀i, i′ 
= i, j′, (4.15)

bi ji j′ = 0, ∀i, j, j′, (4.16)

where

d(ti j, fi j, ti′ j′ , fi′ j′ ; θ̂ (κ−1))

= 1
2

log 2π ŝ(κ−1)
ti + 1

2ŝ(κ−1)
ti

(
ti j − ti′ j′ − δ̂

(κ−1)
ti

)2

+1
2

log 2π ŝ(κ−1)

f i + 1

2ŝ(κ−1)

f i

(
fi j − fi′ j′ − δ̂

(κ−1)

f i

)2
. (4.17)
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By exponentiating the objective function in equation 4.13, and adding the
priors in θ , we obtain the statistical model:

p
(
x, b, e, θ̂ (κ−1)

) ∝ p(ŝ(κ−1)
t )p(ŝ(κ−1)

f )

N∏
i=1

Li∏
j=1

(
βN)bi j β̃

ei j ·
N∏

i,i′=1

Li∏
j=1

Li′∏
j′=1

×(
N

(
ti j − ti′ j′ ; δ̂

(κ−1)
ti , ŝ(κ−1)

ti

)
N

(
fi j − fi′ j′ ; δ̂

(κ−1)

f i , ŝ(κ−1)

f i

))bi ji′ j′ . (4.18)

The objective function equation 4.13, is a linear approximation of the
nonlinear objective function, equation 4.4, and similarly, the statistical
model, equation 4.18, is an approximation of p(x, c, θ̂ (κ−1)), equation 3.23.
The resulting linear integer problem, equations 4.13 to 4.16, is much easier
to solve than the nonlinear integer problem, equations 4.6–4.9. Note that
both problems lead to similar results, since exemplars are often close to the
cluster center (see Figure 5c).

The sum
∑

i j bi j in equation 4.13 is equal to the number of exemplars;
therefore, the first term assigns a cost d0 to each exemplar. Likewise, the
second term assigns a cost d̃0 to each background event. The third term
associates the cost 4.17 to each event xij, based on its associated exemplar
xi′ j′ . This cost is independent of b, and consequently the objective function,
equation 4.13, is linear in b.

The constraints, equation 4.14, ensure that each event is either an exem-
plar, is associated with one exemplar (and not more than one exemplar),
or is a background event (insertion). The constraints, equation 4.15, encode
the fact that an event xij can be associated to an exemplar xi′ j′ (bi ji′ j′ = 1)
only iff the latter is indeed an exemplar (bi′ j′ = 1); they also ensure that at
most one event xij from xi can be associated with an exemplar xi′ j′ . Finally,
the constraints 4.16 ensure that an event xij cannot be associated with an
exemplar from the same point process xi. Without those constraints, multi-
ple events from the same point process xi may belong to the same cluster,
which is not allowed.

The combinatorial optimization problem, equations 4.13 to 4.16, is an
integer linear program in b and e, since the objective function, equation 4.13,
and constraints, equations 4.14 to 4.16, are linear in the variables b and e.
More specifically, it is a binary linear program, since all variables are binary.
Instead of solving the intractable problem, equation 4.4, or, equivalently,
equations 4.6 to 4.9, we solve the tractable problem, equations 4.13 to 4.16,
in particular, by means of off-the-shelf integer programming software.

As an alternative, we have also implemented the max-product algorithm
(and various refinements) to solve equations 4.13 to 4.16, as we did for
bivariate SES (Dauwels et al., 2009a, 2009b). Unfortunately, that approach
leads to poor results for N-variate SES. In particular, it does not always
converge, and sometimes it yields solutions that violate the constraints 4.14
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to 4.16. Those issues might be due to the fact that N-wise alignment is
significantly more complex than pairwise alignment.

Note that it is straightforward to determine estimates ρ̂, ( p̂ j)
N
j=1, and χ̂

from b̂ and ê. Also, an estimate ĉ can easily be computed from b̂ and ê as
follows. We number all exemplars from 1 to L, in arbitrary order. We then
set ĉi j = k if xij is the kth exemplar or if it is associated with the kth exemplar.
Likewise we set ĉi j = 0 if xij is a background event (êi j = 1). The resulting
estimate ĉ is an approximation of equation 3.4. With this estimate of ĉ, we
can eventually refine the estimate θ , following rule 4.3.

The resulting SES inference algorithm is summarized in Table 2.

5 Extensions

So far, we have developed N-variate SES for the particular example of bump
models in the time-frequency domain. The statistical model, equation 3.23,
and, equivalently, the cost function, equation 3.31, may easily be general-
ized, and it may be applied to different kinds of point processes. One simply
needs to define the cost functions d in equation 3.31 in a suitable manner. We
briefly outline several potential extensions and alternative applications.

� As we pointed out in Dauwels et al. (2009b), we normalized the pa-
rameters (δt, st ) and (δ f , s f ) by the width and height of the bumps,
respectively, in order to take the size of the bumps into account. Such
normalization factors can easily be incorporated in cost function 3.31.
The unit cost d(ti j, fi j; c, θ ) of an event xij is then defined as

d(ti j, fi j; c, θ ) = 1
2

log 2π s̄ti + 1
2s̄ti

(ti j − t̄k − δ̄ti)
2

+1
2

log 2π s̄ f i + 1
2s̄ f i

( fi j − f̄k − δ̄ f i)
2, (5.1)

with δ̄ti = δti �tk, δ̄ f i = δ f i � fk, s̄ti = sti �t2
k , and s̄ f i = s f i � f 2

k , where
�tk and � fk are the average width and height, respectively, of the
bumps xij in cluster k.

� As we outlined in Dauwels et al. (2009b, sect. 6), one can easily in-
corporate differences in amplitude, width, and height between the
bumps of the different point processes. Moreover, the bumps may be
oblique; they are not necessarily parallel to the time and frequency
axes.

� Until now we have considered bump models in the time-frequency
domain. However, the statistical model, equation 3.23, and, equiva-
lently, the cost function, equation 3.30, are readily extendable to point
processes in other Euclidean spaces (e.g., three-dimensional spatial
point processes or one-dimensional point processes in time domain).
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Table 2: Inference Algorithm for N-Variate SES.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00235&iName=master.img-001.jpg&w=308&h=479
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We will consider an example of the latter in section 7. The unit cost
d(ti j; c, θ ) of an event xij may then defined as

d(ti j; c, θ ) = 1
2

log 2πsti + 1
2sti

(ti j − t̄k − δti)
2, (5.2)

where we did not take the widths of the events into account. If the
latter need to be taken into account, we may normalize the parameters
(δti, sti) as in equation 5.1.

� In some applications, the point processes may be defined on curved
manifolds, and non-Euclidean distances are then more natural. For
instance, the point processes may be defined on planar closed curves.
We refer to Dauwels, Tsukada et al. (2008) for an example. The unit
cost d(ti j; c, θ ) of an event xij may then be defined by

d(ti j; c, θ ) = 1
2

log 2πsti + 1
2sti

(
g(ti j, t̄k) − δti

)2
, (5.3)

where t̄k is the center of cluster k, defined as

t̄k = argmint

∑
(i, j)∈Ik

1
sti

(
g(ti j, t) − δti

)2
, (5.4)

where g is an arbitrary function, potentially nonlinear; for g(x, y) =
x − y, we recover equation 5.2.

6 Analysis of Synthetic Data

We investigate the robustness and reliability of N-variate SES by means of
synthetic data. We consider one-dimensional and two-dimensional point
processes, as in Parts I (Dauwels et al., 2009a) and II (Dauwels et al.,
2009b), respectively. We discuss the results for one-dimensional and two-
dimensional point processes in sections 6.1 and 6.2, respectively.

6.1 One-Dimensional Point Processes. We randomly generated 1000
sets of N = 5 one-dimensional point processes according to the generative
process outlined in section 3.

We tested several values of the parameters pd, δti, and sti (σti), for i =
1, 2, . . . , 5. In particular, we tested the values pd = 0, 0.1, . . . , 0.4, and σti =
10 ms, 30 ms, and 50 ms (for i = 1, 2, . . . , 5), tmin = 0 ms, and tmax =
�0 · 100 ms. The length � was chosen as � = �0/(1 − pd), where we tested
the values �0 = 40, 100. With this choice, the expected length of the point
processes is �0, independent of pd. In one set of experiments, we set δti = 0,
for i = 1, 2, . . . , 5. In a second set, the offsets δti are drawn uniformly within
[−50 ms, 50 ms]. In each case, we did not insert events (see step 4).

We used the initial values δ̂
(0)
ti = 0 ms, and ŝ(0)

ti = (20 ms)2, (30 ms)2, for
i = 1, 2, . . . , 5. The parameter β was identical for all parameter settings:
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β = 0.04. It was optimized to yield the best overall results. We used an
uninformative prior for δti and sti: p(δti) = p(sti) = 1, for i = 1, 2, . . . , 5.
One could test various initial values of δ̂ti, for i = 1, 2, . . . , 5. However, the
number of initial conditions grows exponentially with N, and therefore it is
not really practical to test multiple values for each δ̂

(0)
ti . For example, if we

test three values for each δ̂
(0)
ti , we need to test a total of 35 = 243 initial values

δ̂
(0)
ti . Alternatively, one may use a small, random subset of initial values; for

conciseness, we do not consider that approach here.
We set β̃ = 10−20, as in all our simulations in this letter. For the synthetic

data, no background events were inferred (i.e., χ = 0 for all parameter
settings).

In order to assess the SES measures S = st, ρ, we compute for each above-
mentioned parameter setting the expectation E[S] and normalized standard
deviation σ [S] = σ [S]/E[S]. Those statistics are computed by averaging over
1000 sets of five point processes, randomly generated according to the
generative process outlined in section 3.

The results are summarized in Figure 6. From this figure, we can make
the following observations:

� The estimates of st and pd are slightly biased, especially for small �0—
�0 = 40, st ≥ (30 ms)2, and pd > 0.2. However, the bias is significantly
smaller than for bivariate SES (see Dauwels et al., 2009a).

� The estimates of st only weakly depend on pd, and vice versa.
� The estimates of st and pd only weakly depend on δti (curved versus

solid lines); they are robust to lags δt . Note that one could reduce this
dependency further by testing various initial values δ̂

(0)
ti . However,

the number of initial conditions grows exponentially with N, as we
mentioned earlier; therefore, this approach is not really practical.

� The estimates of st and pd are less biased for larger �0.

We have also observed from our experiments (not shown here):

� The estimates of δt are unbiased for all considered values of δt , st, and
pd.

� The normalized standard deviation of the estimates of δt , st, and pd
grows with st and pd, but it remains below 30%. Those estimates are
therefore reliable.

� The normalized standard deviation of the SES parameters decreases
as the length �0 increases, as expected.

6.2 Two-Dimensional Point Processes. Similarly as in the one-
dimensional case, we randomly generated 1000 sets of N = 5 two-
dimensional point processes according to the generative process outlined
in section 3.
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Figure 6: Results for N-variate stochastic event synchrony for one-dimensional
point processes. The figure shows the expected value E[σ̂t] and E[ρ̂] for the
parameter settings �0 = 40, 100, σt = 10, 30, 50 ms, and pd = 0, 0.1, . . . , 0.4. The
solid lines are for zero delays δti, whereas the dotted lines are for offsets δti
drawn uniformly within [−50 ms, 50 ms].

We considered several values of the parameters pd, δti, sti (σti), δ f i, and sfi
(σ f i), for i = 1, 2, . . . , 5. In particular, we tested the values pd = 0, 0.1, . . . , 0.4,
and σti = 10 ms, 30 ms, and 50 ms, σ f i = 1 Hz, 2.5 Hz, 5 Hz (for i = 1, 2, . . . ,
5), tmin = 0 ms, and tmax = �0 · 100 ms, fmin = 0 Hz, and fmax = �0 · 1 Hz.
The length � was chosen as � = �0/(1 − pd), where we tested the values
�0 = 40, 100. With this choice, the expected length of the point processes is
�0, independent of pd. In one set of experiments, we set δti = 0 = δ f i, for i =
1, 2, . . . , 5. In a second set, the offsets δti and δ f i are drawn uniformly within
[−50 ms, 50 ms] and [−5 Hz, 5 Hz], respectively. In each case, we did not
insert events (see step 4).

We used the initial values δ̂
(0)
ti = 0 ms, δ̂(0)

f i = 0 Hz, ŝ(0)
ti = (20 ms)2, (30 ms)2,

and ŝ(0)

f i = (2 Hz)2, for i = 1, 2, . . . , 5. The parameter β was identical for all
parameter settings: β = 0.01. It was optimized to yield the best overall



436 J. Dauwels et al.

results. We used an uninformative prior for δti, δ f i, sti, and sfi: p(δti) = p(sti)

= p(δ f i) = p(s f i) = 1.
The results are summarized in Figures 7 to 9. Overall, they are quite

similar to the ones for one-dimensional point processes (see Figure 6). We
observe the following:

� The estimates of st and pd are slightly biased. However, the bias is
significantly smaller than in the one-dimensional case, as for bivariate
SES (see Figure 4 and section 7 in Dauwels et al., 2009b).

� The bias increases with sf, which is in agreement with our expecta-
tions: the more frequency jitter there is, the more likely that some
events are reversed in frequency, and hence are aligned incorrectly.
The bias is about the same as for bivariate SES (see Dauwels et al.,
2009b).

� The estimates of st only weakly depend on pd, and vice versa.
� The estimates of st and pd are robust to lags δt and frequency offsets

δ f , since the latter can be estimated reliably.
� The estimates of st and pd are less biased for larger �0.

We have also observed from our experiments (not shown here):

� The estimates of δt and δ f are unbiased for all considered values of δt ,
δ f , st, s f , and pd.

� The normalized standard deviation of the estimates of δt , st, and pd
grows with st and pd, but it remains below 30%. Those estimates are
therefore reliable.

� The normalized standard deviation of the SES parameters decreases
as the length �0 increases, as expected.

In summary, by means of the N-variate SES inference method, one may
reliably and robustly determine the timing dispersion st and event reliabil-
ity ρ of a set of N (one-dimensional or multidimensional) point processes.
As we also observed in Dauwels et al. (2009a, 2009b) for bivariate SES,
the timing dispersion and the number of event deletions are slightly un-
derestimated due to the ambiguity inherent in event synchrony. However,
this bias is smaller for N-variate SES than for bivariate SES, especially for
one-dimensional point processes.

7 Application: Firing Reliablity of a Neuron

We consider here an application of SES that we also investigated in Dauwels
et al. (2009a): we use SES to quantify the firing reliability of neurons. We
again consider the Morris-Lecar neuron model (Morris & Lecar, 1981),
which exhibits properties of type I and II neurons (Gutkin & Ermentrout,
1998; Tsumoto, Kitajima, Yoshinaga, Aihara, & Kawakami, 2007; Tateno &
Pakdaman, 2004). The spiking behavior differs in both neuron types, as
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Figure 7: Results for synthetic data. The figure shows the expected value E[σ̂t]
and E[ρ̂] and the normalized standard deviation σ̄ [σ̂t] and σ̄ [ρ̂] for the parameter
settings �0 = 40, 100, σt = 10, 30, 50 ms, pd = 0, 0.1, . . . , 0.4, and σ f = 1 Hz. The
solid lines are for zero delays δti, whereas the dotted lines are for offsets δti and
δ f i, drawn uniformly within [−50 ms, 50 ms] and [−5 Hz, 5 Hz], respectively.
The curves for zero and random delays are practically coinciding.

illustrated in Figure 10. In type II neurons, the timing jitter is small, but
spikes tend to drop out. In type I neurons, fewer spikes drop out, but the
dispersion of spike times is larger. In other words, type II neurons prefer to
stay coherent or to be silent, and, type I neurons follow the middle course
between those two extremes (Robinson, 2003).

In Dauwels et al. (2009a) we applied bivariate SES to the data of Figure 10.
Here we apply N-variate SES to the same data set. (We refer to Dauwels et
al., 2009a, for more details on that data set.) In particular, we apply N-variate
SES to the 50 trials simultaneously.

As an illustration, we show results of N-variate SES in Figure 11. Each
cluster is indicated by a different combination of shading and marker type
(e.g., star, circle); background events are marked by hexagons.

We choose the parameters in the N-variate SES algorithm as follows.
We set δ̂

(0)
t = 0, and ŝ(0)

t = (3 ms)2, (5 ms)2, (7 ms)2 and (9 ms)2. Each
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Figure 8: Results for synthetic data. The figure shows the expected value E[σ̂t]
and E[ρ̂] and the normalized standard deviation σ̄ [σ̂t] and σ̄ [ρ̂] for the same
parameter settings as in Figure 7, but now with σ f = 2.5 Hz. Again, the curves
for zero and random delays are practically coinciding.

initialization of (δ̂(0)
t , ŝ(0)

t ) may lead to a different solution (ĉ, δ̂t , ŝt); we choose
the most probable solution—the one that has the largest value p(x, ĉ, δ̂t, ŝt )

(see equation 3.23). We set β̃ = 10−10. Larger values of β̃ lead to a pro-
hibitively large number of background events, whereas smaller values yield
no background events at all.

We computed the SES parameters for different values of β. Figure 12
shows how st (σt), ρ, and χ (fraction of background events) depend on β for
both neuron types. From those figures, it becomes immediately clear that
the parameters st (σt) and ρ hardly depend on β. For values of β < 10−4,
some of the events from the type II neuron are considered as background
events, which is obviously incorrect (see Figure 11b). Therefore, only values
β > 10−4 should be considered.

The parameter ρ is significantly smaller in type I than in type II neurons;
in contrast, st is vastly larger. This agrees with our intuition. Since in type II
neurons, spikes tend to drop out, ρ should be larger. On the other hand,
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Figure 9: Results for synthetic data. The figure shows the expected value E[σ̂t]
and E[ρ̂] and the normalized standard deviation σ̄ [σ̂t] and σ̄ [ρ̂] for the same
parameter settings as in Figure 7, but now with σ f = 5 Hz. Again, the curves
for zero and random delays are practically coinciding.

since the timing dispersion of the spikes in type I is larger, we expect st
to be larger in those neurons. We made the same observations in Dauwels
et al. (2009a).

Table 3 compares the numerical results for bivariate and N-variate SES.
As we pointed out earlier, bivariate SES defines the variance of the pertur-
bations in the generative process as st/2 (instead of st), so that the variance
between the two observed sequences x1 and x2 is given by st. In Table 3, the
standard deviations (σt = √

st) in the generative process are reported for
both bivariate and N-variate SES; the values in Dauwels et al. (2009a) differ
by a factor

√
2, since there the standard deviation between the observed

sequences is reported.
In Dauwels et al. (2009a) we assessed the reliability of the bivariate SES

estimates by means of bootstrapping (Efron & Tibshirani, 1993). We follow
a similar procedure here for the N-variate SES estimates. In particular, for
both types of neurons, we generated 1000 sets of 50 spike trains; we followed
the generative process of Figure 4, with the N-variate SES parameters of the
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(a) Spike trains from type I neuron.
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(b) Spike trains from type II neuron.

Figure 10: Raster plots of spike trains from type I (top) and type II (bottom)
neurons. In each case, 50 spike trains are shown.

actual spike trains, that is, (ρ, σt , χ) = (10.6, 0.0025, 0.035) and (ρ, σt , χ) =
(2.8, 0.18, 0.0) for type I and II neurons respectively. Next we applied N-
variate SES to the resulting 1000 sets of 50 spike trains. The expected value
and normalized standard deviation σ̄ of those estimates are reported in
Table 3. We can observe that the expected value corresponds well with the



Quantifying Statistical Interdependence, Part III 441

1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

40

45

50

t [ms]

tr
ia

l

(a) Type I spike trains clustered by N -variate SES.
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(b) Type II spike trains clustered by N -variate SES.

Figure 11: Results of N-variate SES with β = 10−3. For clarity, we show the
range t ∈ [950, 1950]. Raster plots of spike trains from type I (top) and type II
(bottom) neurons. Each cluster is indicated by a different marker type (e.g.,
star, circle). Background events are marked by hexagons and occur only for the
type I neuron.
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Figure 12: The parameters σt , ρ, and χ estimated from spike trains of type I
and type II Morris-Lecar neurons (see Figure 10): the top, middle, and bottom
figures show how σt , ρ, and χ , respectively, depend on β.
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Table 3: Estimates of Bivariate SES Parameters (ρ, σt) and N-Variate SES Param-
eters (ρ, σt , χ ).

Bivariate SES N-Variate SES

Statistics Type I Type II Type I Type II

σt 10.7 1.91 10.6 2.81
E[σt ] 10.8 1.91 10.3 2.87
σ̄ [σt ] 1.8% 1.8% 3.7% 3.0%
ρ 0.0290 0.270 0.0025 0.184
E[ρ] 0.0283 0.273 0.0036 0.186
σ̄ [ρ] 12% 3.1% 90% 15%
χ – – 0.035 0.0
E[χ ] – – 0.037 0.0
σ̄ [χ ] – – 11% 0.0%

Notes: Also shown are the results from the bootstrapping analysis of those estimates,
in particular, the expected values and the normalized standard deviations σ̄ . The ex-
pected values practically coincide with the actual estimates and the normalized standard
deviations are small; therefore, the estimates may be considered reliable.

actual value, and the normalized standard deviations are small. Therefore,
the N-variate SES estimates can be considered reliable.

We first discuss the results for the type I neuron. The estimate of σt
from bivariate and N-variate SES is almost identical; however, the estimate
of ρ is much smaller for N-variate SES than for bivariate SES. Interest-
ingly, N-variate SES inferred that about 3.5% of the events are background
events, which accounts for the larger estimate ρ = 0.029 from the bivariate
approach. In other words, type I neurons almost never fail to fire (firing
reliability of 99.75%); however, additional spikes may occur (3.5% of the
spikes). It is noteworthy that this insight was obtained by N-variate SES
and could not be revealed through bivariate SES. This example thus illus-
trates that N-variate SES not only yields more accurate estimates of the
SES parameters (see section 6), but can also lead to a more refined and
detailed analysis. Interestingly, the normalized standard deviation σ̄ [ρ] is
much larger for N-variate SES than for bivariate SES, since ρ is much smaller
for N-variate SES. However, the standard deviation σ [ρ] is small and about
the same for both models.

We now elaborate on the results for the type II neuron. The N-variate
approach leads to larger and smaller estimates of σt and ρ, respectively,
than the bivariate approach. None of the events are considered background
events (χ = 0). We have manually counted the number of deletions in
Figure 1b and obtained ρ = 0.184. The N-variate estimate of ρ is exact
and clearly the most reliable, whereas the bivariate approach overestimates
the number of deletions. Since the N-variate approach considers all point
processes simultaneously (N = 50), it infers the hidden process v more



444 J. Dauwels et al.

reliably than bivariate SES and is able to associate events x more accurately
with hidden events vk.

We have observed that the N-variate SES algorithm converges after at
most three iterations for both type I and type II neurons. In each of those
iterations, one updates the decision variables b, c, and e and the SES pa-
rameters θ . Since we allowed a maximum number of 30 iterations, we can
conclude that the algorithm has always converged in our experiments.

8 Application: Diagnosis of MCI from EEG

Several clinical studies have shown that the EEG of Alzheimer’s dis-
ease (AD) patients is generally less coherent than of age-matched control
subjects; this is also the case for patients suffering from Mild Cognitive
Impairment (MCI; see Jeong, 2004; Dauwels et al., 2010b, for a review).
In this section, we apply SES to detect subtle perturbations in EEG syn-
chrony of MCI patients. We considered this application also in Dauwels et
al. (2009b), where we applied bivariate SES. We analyze here the same EEG
data set and use the same preprocessing and bump modeling procedures as
in Dauwels et al. (2009b). The only difference is that we here apply N-variate
SES instead of bivariate SES.

We first conducted a similar statistical analysis as in Dauwels et al.
(2009b). The main results of that analysis are summarized in Figures 13
and 14; they contain p-values obtained by the Mann-Whitney test for
the parameters ρ and st respectively. This test indicates whether the pa-
rameters take different values for the two subject populations. More pre-
cisely, low p-values indicate large difference in the medians of the two
populations. The p-values are shown for σ̂

(0)
t = √s0,t = 0.1, 0.15, . . . , 0.25,

σ̂
(0)

f = √
s0, f = 0.05, 0.1, . . . , 0.15, β = 0.01, 0.001, 0.0001, T = 0.21, 0.22, 0.23,

0.24, and the number of zones NR = 3 and 5.
The results for the parameters ρ and st are quite similar to the results ob-

tained with bivariate SES (see Dauwels et al., 2009b). The lowest p-values for
ρ are obtained for T = 0.22, β = 0.01, and NR = 5 (see Figure 13e); the small-
est value is p = 5.4 · 10−4; in bivariate SES, the smallest p-value (p = 2.1·
10−4) was obtained for T = 0.22, β = 0.001, and NR = 5 (see Dauwels et al.,
2009b). As in bivariate SES, the results depend strongly on T (see Dauwels
et al., 2009b). (We provided an explanation for this dependency in Dauwels
et al., 2009b.) Interestingly, the results depend much less on σ̂

(0)
t , σ̂

(0)

f , and
β than in bivariate SES.

From bivariate and N-variate SES analysis (see Figure 13), we can con-
clude that the statistical differences in ρ are highly significant, especially for
T = 0.22 and NR = 5. There is a significantly higher degree of noncorrelated
activity in MCI patients, more specifically, a high number of noncoinci-
dent, nonsynchronous oscillatory events. As in Dauwels et al., (2009b), we
did not observe a strongly significant effect on the timing jitter st of the
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(a) β = 0.01, 3 zones (b) β = 0.001, 3 zones (c) β = 0.0001, 3 zones

(d) β = 0.01, 5 zones (e) β = 0.001, 5 zones (f) β = 0.0001, 5 zones

Figure 13: p-values obtained by the Mann-Whitney test for the parameter ρ for
σ̂

(0)
t = √

s0,t = 0.1, 0.15, . . . , 0.25, σ̂
(0)

f = √
s0, f = 0.05, 0.01, 0.15, β = 0.01, 0.001,

0.0001, T = 0.21, 0.22, 0.23, 0.24 and the number of zones NR = 3 and 5. The
p-values seem to vary little with σ

(0)
t , σ

(0)

f , and β, but are more dependent on
T and the number of zones. The lowest p-values are obtained for T = 0.22 and
NR = 5 zones; the corresponding statistical differences are highly significant.

coincident events (see Figure 14): very few p-values for st are smaller than
0.001, which suggests there are no strongly significant differences in st.

The N-variate SES model allows us to analyze the results for ρ in more
detail. We have investigated how the statistics of bump clusters differ in
controls subjects and MCI patients. More specifically, we considered the
relative frequency p j = p(nk = j) of bump clusters of size nk = j, for j =
1, 2, . . . , NR. The results are summarized in Figure 15, for the parameter
settings that yielded the smallest p-values for ρ (NR = 5 and β = 0.01). From
those figures, we can observe strongly significant differences in clusters of
size 1, 2, and 5 for T = 0.22; specifically, in MCI patients, there are fewer
clusters of sizes 5 and more clusters of sizes 1 and 2. As a result, the fraction
of missing events ρ is larger in MCI patients, as we mentioned earlier. The
smallest p-value for the parameter p2 is p = 2 · 10−5, which is substantially
smaller than the smallest p-value for ρ (p = 2.1 · 10−4 for bivariate SES and
p = 5.4 · 10−4 for N-variate SES).

In Dauwels et al. (2010a) we applied a variety of classical synchrony
measures to the same EEG data set. The main results of that analysis
are summarized in Table 4. The most significant results were obtained
with the full-frequency direct transfer function (ffDTF), a Granger measure
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(a) β = 0.01, 3 zones (b) β = 0.001, 3 zones (c) β = 0.0001, 3 zones

(d) β = 0.01, 5 zones (e) β = 0.001, 5 zones (f) β = 0.0001, 5 zones

Figure 14: p-values obtained by the Mann-Whitney test for the parameter st for
σ̂

(0)
t = √

s0,t = 0.1, 0.15, . . . , 0.25, σ̂
(0)

f = √
s0, f = 0.05, 0.01, 0.15, β = 0.01, 0.001,

0.0001, T = 0.21, 0.22, 0.23, 0.24 and the number of zones NR = 3 and 5. Very few
p-values are smaller than 0.001, which suggests there are no strongly significant
differences in st.

p
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(e) p5

Figure 15: p-values obtained by the Mann-Whitney test for the parameters pi =
p(nk = i) (with i = 1, 2, . . . , 5) for σ̂

(0)
t = √

s0,t = 0.05, 0.1, 0.15, σ̂
(0)

f = √
s0, f =

0.01, 0.15, . . . , 0.25, β = 0.01, T = 0.22, and the number of zones NR = 5.
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Figure 16: Combining p2 with ffDTF as features to distinguish MCI from age-
matched control subjects. Note that ffDTF is a similarity measure, whereas p2
is a dissimilarity measure. The (ffDTF, p2) pairs of the MCI and control subjects
tend toward the left top corner and bottom right corner respectively. The smooth
curve (solid) yields a classification rate of 87%.

(Pereda et al., 2005), resulting in a p-value of about 10−3 (Mann-Whitney
test). In Dauwels et al. (2009b), we combined ρ with ffDTF as features
to distinguish MCI from control subjects (see Figure 16). About 84% of
the subjects are correctly classified. Here we combine ffDTF with the pa-
rameter p2, computed by N-variate SES; the classification rate slightly im-
proves to about 87%. This result is encouraging; however, it is too weak
to allow us to predict AD reliably. We would need to combine synchrony
measures with complementary statistics, for example, spectral features.
We refer to Dauwels et al. (2010b) for more information on potential ex-
tensions. Moreover, the results would need to be verified on more data
sets.

In summary, N-variate SES helped us to better understand the results
from the bivariate SES analysis (Dauwels et al., 2009b): the fraction of miss-
ing events ρ is larger in MCI patients, since in those patients, there are fewer
bump clusters of sizes 5 and more clusters of sizes 1 and 2. Moreover, N-
variate SES allowed us to further improve the classification of MCI patients
versus control subjects from 84% to 87%.
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9 Conclusion

We have proposed an approach to determine the similarity of N > 2 (one-
and multi-dimensional) point processes; it is based on an exemplar-based
statistical model that describes how the point processes are related through a
common hidden process. The similarity of the point processes is determined
by performing inference in that model by means of integer programming
techniques in conjunction with point estimation of the parameters. The
proposed technique may be used for various applications in neuroscience
(e.g., in brain-computer interfaces, analysis of spike data), biomedical signal
processing, and beyond.

In bivariate SES, we apply the max-product algorithm for aligning pairs
of sequences. As we have observed, this algorithm performs poorly for
aligning N > 2 sequences. We have also experimented with various refine-
ments of the max-product algorithm, and none of them yielded satisfactory
results. An interesting topic for future research is to develop extensions of
the max-product algorithm that lead to optimal or close-to-optimal N-wise
alignments. Such message-passing algorithms are often simpler and faster
than integer linear programming techniques.

Appendix A: Derivation of the SES Model

In this appendix, we derive the N-variate SES model, equation 3.17.
We first marginalize p(x, c, v, θ, �), equation 3.16, over v; it is noteworthy

that only the gaussian terms N (·) in equation 3.16 depend on v. In the
following, we focus on those terms. For a given hidden event vk, three cases
are possible:

� All copies of vk were deleted (nk = 0). There are no gaussian terms
associated with vk in equation 3.16. Therefore, the expression may be
considered as constant with regard to vk. Integrating this equation
over vk then leads to a term vol(S). There are Ldel such terms, since the
number of hidden events vk without copies is given by Ldel.

� There is one copy of vk (nk = 1), and therefore only one gaussian term
in equation 3.16 that corresponds to vk. Integrating that term over vk
results in the (trivial) term 1.

� There is more than one copy of vk (nk > 1), and as a consequence,
several gaussian terms in equation 3.16 correspond to vk. As can be
easily shown, integrating the nk gaussian terms over vk yields these
terms:

∏
(i, j)∈Ik

N
(
ti j − t̄k; δti, sti

)
N

(
fi j − f̄k; δ f i, s f i

)
, (A.1)
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where

t̄k =
∑

(i, j)∈Ik
wti(ti j − δti)∑

(i, j)∈Ik
wti

(A.2)

f̄k =
∑

(i, j)∈Ik
w f i( fi j − δ f i)∑

(i, j)∈Ik
w f i

, (A.3)

with wti = s−1
ti and w f i = s−1

f i .

In summary, marginalizing over v results in Ldel terms vol(S), and also
in terms of the form A.1, where there is one such term for each cluster of
size nk > 1.

The result of marginalizing over v may then be written as

p(x, c, θ, �) ∝ p(st )p(s f )(1 − λ vol(S))(λvol(S)pN
d )Ldel

·(λpN
d )L p−Ltot

d (1 − pd)Ltot

·
∏
k∈K

∏
(i, j)∈Ik

N
(
ti j − t̄k; δti, sti

)
N

(
fi j − f̄k; δ f i, s f i

)
, (A.4)

where we used the decomposition

� = L + Ldel. (A.5)

Now we marginalize over the length �. The first term in the decomposi-
tion, equation A.5, is fixed for given clustering c. Therefore, marginalizing
p(x, c, θ, �) A.4 over � is equivalent to marginalizing over Ldel:

p(x, c, θ ) =
∞∑

�=0

p(x, c, θ, �) =
∞∑

Ldel=0

p(x, c, θ, �) (A.6)

∝ p(st )p(s f )(1 − λ vol(S))

∞∑
Ldel=0

(
λvol(S)pN

d

)Ldel

·(λpN
d

)L
p−Ltot

d (1 − pd)Ltot

·
∏
k∈K

∏
(i, j)∈Ik

N
(
ti j − t̄k; δti, sti

)
N

(
fi j − f̄k; δ f i, s f i

)
(A.7)

∝ p(st )p(s f )(1 − λ vol(S))
1

1 − λvol(S)pN
d

·(λpN
d )L p−Ltot

d (1 − pd)Ltot

·
∏
k∈K

∏
(i, j)∈Ik

N
(
ti j − t̄k; δti, sti

)
N

(
fi j − f̄k; δ f i, s f i

)
. (A.8)
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A sum of a geometric series occurs in equation A.7. Since |λvol(S)pN
d | =

λvol(S)pN
d < 1, we can apply the well-known formula for the sum of a geo-

metric series, resulting in equation A.8. By defining β and γ as in equations
3.20 and 3.21, respectively, we obtain statistical model 3.17.

Appendix B: Derivation of the SES Inference Algorithm

In this appendix, we derive the inference update, equation 4.3, for N-variate
SES.

The point estimates δ̂
(κ )
ti and δ̂

(κ )

f i are the (sample) mean of the timing and
frequency offset, respectively, computed between all events in xij and their
associated cluster centers:

δ̂
(κ )
ti = 1

Li

Li∑
j=1

(
ti j − t̄ĉ(κ)

i j

)
, (B.1)

δ̂
(κ )

f i = 1
Li

Li∑
j=1

(
fi j − f̄ĉ(κ)

i j

)
, (B.2)

where Li is the number of events in xi and t̄ĉ(κ)

i j
and f̄ĉ(κ)

i j
are the coordinates of

the (inferred) hidden event vĉ(κ)

i j
associated with xij. The latter hidden event

is inferred as the center of the cluster associated with xij. The coordinates t̄k
and f̄k are computed as

t̄k =

∑
(i, j)∈Î (κ)

k

ŵ
(κ)
ti (ti j − δ̂

(κ )
ti )

∑
(i, j)∈Î (κ)

k

ŵ
(κ)
ti

, (B.3)

f̄k =

∑
(i, j)∈Î (κ)

k

ŵ
(κ)

f i ( fi j − δ̂
(κ )

f i )

∑
(i, j)∈Î (κ)

k

ŵ
(κ)

f i

, (B.4)

with ŵ
(κ)
ti = (

ŝ(κ)
ti

)−1
, ŵ

(κ)

f i = (
ŝ(κ)

f i

)−1
, and Î (κ)

k is the index set of the set Ĉ(κ)

k

of events in cluster k (as specified by ĉ(κ)):

C(κ)

k = {
xi j : ĉ(κ)

i j = k
}

and I (κ)

k = {
(i, j) : ĉ(κ)

i j = k
}
. (B.5)
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The estimates ŝ(κ)
ti and ŝ(κ)

f i are obtained as

ŝ(κ)
ti =

νtst0 + Li ŝ(κ)

ti,sample

νt + Li + 2
, (B.6)

ŝ(κ)

f i =
ν f s f 0 + Li ŝ(κ)

f i,sample

ν f + Li + 2
, (B.7)

where s(κ)

ti,sample and s(κ)

f i,sample are computed as

ŝ(κ)

ti,sample = 1
Li

Li∑
j=1

(
ti j − t̄ĉ(κ)

i j
− δ̂

(κ )
ti

)2
(B.8)

ŝ(κ)

f i,sample = 1
Li

Li∑
j=1

(
fi j − f̄ĉ(κ)

i j
− δ̂

(κ )

f i

)2
, (B.9)

and where t̄k and f̄k are given by equations B.3 and B.4.
Interestingly, the right-hand side of equations B.1 and B.2 depends on

δ̂
(κ )
ti and δ̂

(κ )

f i , respectively, through equations B.3 and B.4. Therefore the
equalities B.1 and B.2 need to be solved numerically; the same holds for
equations B.6 and B.7. Those expressions may be evaluated numerically
by alternating the updates, equations B.3 and B.4 with B.1, B.2, B.6, and
B.7 with, as initial estimates, δ̂

(κ−1)
ti , δ̂

(κ−1)

f i , ŝ(κ−1)
ti , and ŝ(κ−1)

f i . It can easily
be shown that this procedure is guaranteed to converge to a local ex-
tremum; indeed, it is equivalent to cyclic maximization, where one con-
ditional maximization is in θ (resulting in equations B.1, B.2, B.6, and B.7),
and the other is in the parameters {(t̄k, f̄k)}k=1,...,L (resulting in equations B.3
and B.4).
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