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Charged particle interaction with localized wave packets in a magnetic field is formulated using the canonical
perturbation theory and the Lie transform theory. An electrostatic wave packet characterized by a wide range
of group and phase velocities as well as spatial extent along and across the magnetic field is considered. The
averaged changes in the momentum along the magnetic field, the angular momentum, and the guiding center
position for an ensemble of particles due to their interaction with the wave packet are determined analytically.
Both resonant and ponderomotive effects are included. For the case of a Gaussian wave packet, closed-form
expressions include the dependency of the ensemble averaged particle momenta and guiding center position
variations on wave packet parameters and particle initial conditions. These expressions elucidate the physics of
the interaction which is markedly different from the well known case of particle interaction with plane waves and
are relevant to a variety of applications ranging from space and astrophysical plasmas to laboratory and fusion
plasmas, as well as accelerators and microwave devices.
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I. INTRODUCTION

The interaction of charged particles with electromagnetic
waves under the presence of a magnetic field is a ubiquitous
phenomenon in a variety of natural and technological systems.
The wave-particle interactions are a common occurrence
in astrophysical and space plasmas and also have useful
applications in beam physics and accelerators [1], as well as
in laboratory and fusion plasmas [2–4]. The charged particles,
through their interaction, can collectively exchange energy
and momentum with the waves. In accelerators particles gain
energy from the electromagnetic fields, while in microwave
sources and amplifiers energetic electrons give up some
fraction of their energy to waves [5]. In fusion plasmas,
radio frequency waves are used to heat the plasma and also
to generate currents in plasmas by imparting momentum to
particles. In addition to electromagnetic waves, lower hybrid
(LH) electrostatic modes can also be used for heating and
especially for current drive in fusion plasmas [6]. In general,
the waves—either electromagnetic or electrostatic—are not in
the form of plane waves. Rather, they are wave packets that
are localized in space and could also be of finite duration in
time. This is commonly the case in fusion plasmas where the
externally applied rf waves have a finite spatial extent, as well
as in space plasmas, where LH solitary structures occur [7].
The spatial or temporal extent of the wave pulses could be as
small as a few cycles or even subcycles, differing significantly
from ordinary adiabatically modulated wave packets. So the
wave-particle interaction is a finite transit-time interaction
which is qualitatively different from the continuous interaction
in the case of a plane wave.

In a uniform, static magnetic field, there are two basic
mechanisms by which particles exchange energy and momen-
tum with wave packets: resonant and nonresonant. Consider
a Fourier component of a wave packet representing one plane
wave of frequency ω and parallel wave vector k‖. By parallel
or perpendicular we mean the components of a vector parallel
or perpendicular, respectively, to the direction of the imposed

magnetic field. For resonant interactions, the parallel velocity
of the particle has to be such v‖ = (ω − n�c)/k‖, where n is
an integer and �c is the cyclotron frequency of the particle.
Since a wave packet is composed of many plane waves, the
resonant interaction occurs only for those particles in the
distribution function that satisfy the above condition for any
plane wave. On the other hand, the nonresonant interaction is
between particles and the envelope of the wave packet and is
referred to as the ponderomotive force [8]. The resonant and
nonresonant interactions are clearly different. The condition
for resonant interaction is satisfied in a restricted domain
of the dynamical phase space of the particle. The nonlinear
ponderomotive effect depends on the average force seen by a
charged particle as it traverses the wave packet and depends
on the particle velocity and the spatial profile of electric field
of the wave packet [9]. The bulk of the particles is affected
by the ponderomotive force due to their interaction with the
spatially localized wave packet.

Since wave-particle interactions are of fundamental im-
portance in physics and a paradigm for dynamical chaos in
Hamiltonian systems [9], the interaction with spatially or tem-
porarily modulated waves has been studied for many different,
and special, cases. The motion of particles in the presence
of adiabatically varying waves has been studied in [10]. The
interaction of particles, moving along the magnetic field,
with periodic, spatially localized, static, coherent, electrostatic
wave packets has been studied in [11] while the single-pass
interaction was discussed in [12,13]. The energy transfer
between particles and wave packets has been analytically
formulated, in the Born approximation, in [14] as well as
in [15]. An extensive study of the ponderomotive force on
particles has been carried out for the adiabatic case by Cary
and Kaufman [8] and for the nonadiabatic case by Dodin [16].

In this paper, we study the dynamics of charged particles, in
a uniform magnetic field, interacting with an electrostatic field
localized in space and time. The realm of validity of the widely
used electrostatic approximation is that of short-wavelength
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plasma modes; for example, LH waves fall into that category.
The form of the field is assumed to be quite general with
no restrictions on the phase and group velocities of the wave
packet. The temporal and spatial extent of the wave packet
is arbitrary, except for the requirement that the perpendicular
width of the wave packet is much larger than the Larmor radius
of the particle. Since we make no adiabatic approximations,
the wave packets can range from ordinary slowly modulated
wave packets to wave fields that either span few cycles or
are subcycle. The main aim of this paper is the study of the
finite transit-time interaction effects on the collective particle
dynamical behavior.

Our approach is based on a Hamiltonian action-angle
formulation with the canonical perturbation method [9] and
Lie transform techniques [17] being utilized for the calculation
of angle averaged variations of the actions corresponding
to the particle parallel and angular momentum as well as
its guiding center position. The method naturally couples
analytical information on single particle dynamics to the
collective particle behavior as described by the aforementioned
averaged action variations. The analytical results focus on
the dynamical aspects of the finite transit-time interaction
and on the dependence of the particle collective behavior
on both particle and wave packet characteristics. Therefore,
taking advantage of the generality of the results, rather than
specifying a particular plasma mode, we present characteristic
cases of qualitatively different particle collective behavior.
Depending on the specific application aiming at either parallel
or angular momentum or guiding center position variation (or
a mixture of them), the wave packet characteristics can be
chosen appropriately in order to optimize the desired effect.
For the case of plasma particles the wave packet parameters
are obtained from a self-consistent plasma dispersion relation
such as that of LH waves exhibiting a wide range of phase
and group velocity values. On the other hand, for the case of
a particle beam in a vacuum, as in accelerators or microwave
devices, the wave packet parameters are determined simply by
the geometry and the wave launching conditions.

II. HAMILTONIAN FORMULATION
FOR THE PARTICLE DYNAMICS

The Hamiltonian of a particle with charge q and mass M ,
moving in a homogeneous, static, magnetic field B = B0ẑ is

H0 = 1

2M

∣∣∣∣p − q

c
A0

∣∣∣∣
2

, (1)

where A0(r) = −B0yx̂ is the vector potential corresponding to
the prescribed magnetic field, p = (px,py,pz) is the momen-
tum of the particle with its components written out in Cartesian
geometry, and c is the speed of light. The canonical momenta
are px = Mvx − M�cy, py = Mvy , and pz = Mvz, where
v = (vx,vy,vz) is the velocity of the particle. The Hamiltonian
H0 describes the motion of a gyrating particle with cyclotron
frequency �c = qB0/Mc. We transform to the guiding center
(gc) variables using the generating function

F1 = M�c

[
1
2 (y − Y )2 cot φ − xY

]
. (2)

The transformed Hamiltonian is

H0 = P 2
z

2M
+ Pφ�c, (3)

where (Pz,z), (Pφ,φ), and (M�cX,Y ) are the new pairs of
canonical coordinates. (X,Y,z) are the appropriate Cartesian
components of the gc position vector. Pz is the component of
the gc momentum along B; Pφ = Mv2

⊥/2�c = (Mc/q)μ =
M�cρ

2/2 is the magnitude of the gc angular momentum;
μ = Mv2

⊥/2|B| and ρ = v⊥/�c are the magnetic moment
and Larmor radius, respectively, of the particle; and φ =
tan−1(vx/vy) is its gyration angle. If we perform another
canonical transformation using the generating function F1 =
(1/2)M�cY

2 cot θ , the Hamiltonian H0 in Eq. (3) remains
the same, but the gc position, in the plane perpendicular to
B, is expressed in terms of polar canonical coordinates θ =
tan−1(Y/X) and Pθ = (M�c/2)R2

gc, with R2
gc = X2 + Y 2.

Finally, the dynamical phase space of the particle is spanned
by a set of canonically conjugate coordinates z = (J,θ ), where
J = (Pz,Pφ,Pθ ) and θ = (z,φ,θ ) are the canonical momenta
or actions and positions or angles, respectively. The actions
Pz and Pφ correspond to momentumlike variables while the
action Pθ corresponds to a spacelike variable.

We consider the interaction of the charged particle with a
spatially localized wave packet described by an electrostatic
potential of the form

� = �0(r − Vt ; t) sin (kr − ωt) , (4)

where V is the group velocity of the wave packet. The
fast variation within the wave packet is given in terms of
the angular frequency ω and the wave vector k. Without
loss of generality, we can assume that k = k⊥ŷ + k‖ẑ is in
the y-z plane. In the form for �0, the argument r − Vt

gives the spatial modulation while the argument t gives the
temporal modulation of the wave packet. This form implies
that no significant spreading of the wave packet takes place.
The important consequences of spreading wave packets have
long been identified experimentally and theoretically [18].
However, the interaction of the particles with the wave packet
depends on the transit time of the particles through the wave
packet. For a large variety of applications it is realistic to
assume that this time is small compared to the characteristic
time for the spreading of the wave packet.

The Hamiltonian, in gc coordinates, that includes the
interaction of the particle with the electrostatic potential is

H = H0 + H1, (5)

where

H1 =
(

1

2i

)
q�0 (r − Vt ; t) ei(k‖z−ωt)

× e−ik⊥Rgc sin θ eik⊥ρ sin φ + c.c. (6)

Since H1 is a periodic function of φ, a Fourier expansion
leads to

H1 =
(

1

2i

)
q�0 (r − Vt ; t) ei(k‖z−ωt)e−ik⊥Rgc sin θ

×
+∞∑

m=−∞
(−1)mJm(k⊥ρ)e−imφ + c.c. (7)
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The Hamiltonian H in Eq. (5) with H0 given in Eq. (3) and
H1 in Eq. (7) is quite general since we have not specified
either the profile of the electrostatic potential or the group
velocity of the wave packet. The Hamiltonian H is, in general,
nonintegrable and so it is difficult to analytically determine
the effect of the wave packet on particles interacting with
it. In order to proceed analytically, we study the effect of
the wave packet on particles perturbatively with the wave
amplitude being the perturbation parameter. We consider the
general case where the wave packet propagates obliquely with
respect to the magnetic field. In general, the wave packet
characteristics, for example, its phase velocity, group velocity,
spatial and temporal extent, and amplitude, are given by linear
and nonlinear plasma processes. The linear characteristics are
governed by the dispersion relation for prescribed plasma
parameters. We calculate the average change in the momentum
and transverse gc position of an ensemble of particles due to
their interaction with the wave packet. The particle ensemble
is assumed to be a distributed set of initial conditions. We
further assume that the Larmor radius of any particle is small
compared to the spatial width of the wave packet across B. We
do not impose any other restrictions on the form of the wave
packet, so that our model applies not only to ordinary wave
packets but also to few cycles and subcycle wave packets.

III. CANONICAL PERTURBATION THEORY

We rewrite the Hamiltonian in Eq. (5) as

H = H0 + εH1, (8)

where ε is a dimensionless ordering parameter. We assume that
the wave packet acts perturbatively on the motion of a particle,
so ε is used as a perturbation (order-keeping) parameter which,
eventually, is set to unity.

The unperturbed particle motion is described by the
zero-order Hamiltonian H0 given in Eq. (3). The canonical
momenta, or actions, Pz and Pφ are invariants of the motion, so
that the corresponding canonical angles z and φ, respectively,
evolve linearly with time. The third set of canonically
conjugate variables (Pθ ,θ ), corresponding to the transverse gc
coordinates, do not appear in H0. So they are both constants
of the unperturbed motion. The effect of the wave packet on
particles is included in the perturbed Hamiltonian H1, which is
a function of all the canonical actions and angles and of time.
For an arbitrary wave packet, the complete H is not integrable.

We use the canonical perturbation theory to perturbatively
study the effect of the wave packet on the motion of particles
interacting with it [9]. The ordering parameter is ε, and
the general strategy is to construct near-identity canonical
transformations T so that, order by order, we can determine
the invariants that describe the particle motion. At any order
of ε, the transformation T leads to a new Hamiltonian K

which is a function of the new canonical momenta only.
These canonical momenta are the approximate invariants of
the motion. The Lie canonical transform formulation results in
an explicit form for the generating function. This is in contrast
to the mixed-variable generating functions which result in
implicit relations between the old and the new canonical
variables. The Lie transformations are defined in terms of

the operators T = e−L, where Lf = [w,f ], w is the Lie
generating function, and [ , ] denotes the Poisson bracket.

In the Lie canonical perturbation scheme, the old Hamilto-
nian H , the new Hamiltonian K , the transformation operator
T , and the Lie generator w are each expressed as a power
series in ε,

X(z,t,ε) =
∞∑

n=0

εnXn(z,t), (9)

where X represents any of the variables {H,K,T ,L,w} [17].
We choose w0 such that T0 is the identity transformation I .
Then, to second order in ε, T and T −1 are

T = I − εL1 + ε2

2

(
L2

1 − L2
)

(10)

and

T −1 = I + εL1 + ε2

2

(
L2

1 + L2
)
. (11)

The corresponding generating functions w1,2 are obtained from

∂w1

∂t
+ [w1,H0] = K1 − H1, (12)

∂w2

∂t
+ [w2,H0] = 2K2 − L1(K1 + H1). (13)

The left-hand sides of Eqs. (12) and (13) are the total time
derivatives of w1 and w2 along the unperturbed orbits given by
H0. Consequently, they are determined by integrating the right-
hand sides along these orbits H0. The new Hamiltonians K1

and K2 are arbitrary and can be chosen to be either functions of
the new actions or constants. Clearly, the latter is a convenient
choice. Thus, in Eq. (12), we set K1 = 0 and solve for w1,

w1 = −
∫ t

H1 (J,θ ,s) ds, (14)

with the integral being along the unperturbed orbits

J = const., (15)

θ = θ0 + ωt, (16)

where ω = ∂H0/∂J = (Pz/M,�c,0) is a vector composed of
the unperturbed frequencies for the three degrees of freedom.
At second order in ε, we can also set K2 = 0 in Eq. (13), and,
similarly, solve for w2. However, as we show below, there is
no need to have an explicit form for w2 in our calculations.

IV. AVERAGED ACTION VARIATIONS

The time evolution, from an initial time t0 to time t , of
any well-behaved function of phase space coordinates f (z)
is given by f (z(t ; t0)) = SH (t ; t0)f (z0) where z0 = z(t0; t0)
and SH (t ; t0) is the time evolution operator corresponding to
H . The derivation of SH (t ; t0) is equivalent to solving the
equations of motion which, in general, is not possible for the
nonintegrable system in Eq. (8). However, the Lie perturbation
theory can be used to determine a transformation to a new
set of canonical variables z′ = (J′,θ ′) with the corresponding
Hamiltonian K having a simpler evolution operator SK (t ; t0).
This is the case when K is chosen to be a function of the
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new actions J′ only. Then J′ are constants of the motion and
SK (t ; t0) evolves the angles θ ′ such that

f (z′(t ; t0)) = SK (t ; t0)f (z′
0) = f [(J′

0,θ
′
0 + ωK (J′

0)(t − t0)],

(17)

where ωK (J′
0) = ∇J′

0
K(J′

0). In other words, the evolution of
f (z) can be obtained by transforming to the new canonical
variables z′, applying the time evolution operator SK (t ; t0) to
the transformed function and then transforming back to the
original canonical variables z. Then [17],

f (z(t ; t0)) = T (z0,t0)SK (t ; t0)T −1(z0,t0)f (z0), (18)

where we have used the property that T commutes with any
function of z [17]. The Lie generators are determined for the
finite time interval [t0,t] using the fact that w1(z0,t0) = 0 and
w2(z0,t0) = 0, so that T (z0,t0) = I . The evolution of f (z) in
Eq. (18) from t = t1 to t = t2 is

f (J,θ )t2 = T −1
[
Jt1 ,θ t1 + ωK

(
Jt1

)
(t2 − t1),t2

]
f (J,θ )t1 , (19)

where f (z)t = f (z(t)).
The three components of the action vector J = (Pz,Pφ,Pθ )

represent, respectively, the linear momentum, the angular
momentum, and the transverse gc position of the particles.
Then, setting f = P
 in Eq. (19), where 
 = z, φ, or θ , we
obtain the variations of the actions

δP
(t2) ≡ P
(t2) − P
(t1) = (
L1 + 1

2L2 + 1
2L2

1

)
P
(t1). (20)

We define the ensemble average of any dynamical variable
ζ as

〈ζ 〉 = 1

(2π )2Lz

∫ ∞

−∞
dz

∫ 2π

0
dθ

∫ 2π

0
dφ ζ, (21)

where the initial conditions of the particles are uniformly
distributed in z, θ , and φ over the ranges indicated by the
limits of the integrals, and Lz is a normalizing length along
the z direction which will be determined later. From Eqs. (7),
(12), and (13) we find, upon integrating by parts, that

〈LnP
〉 = 〈[wn,P
]〉 = 0, n = 1,2. (22)

This follows from the fact that w1,2 are periodic in φ and θ and
vanish as z → ±∞. Thus, upon ensemble averaging, only the
third term in the right-hand side of Eq. (20) is nonzero, so that

〈δP
〉 = 1

2

∂

∂P


〈(
∂w1

∂


)2〉
. (23)

The averaged variation of the actions of the particles, due
to a complete interaction with the wave packet, is obtained
from Eq. (23) in the limit w1(t1 → −∞,t2 → +∞) ≡ w∞

1 .
The averaged variations are accurate to second order in ε even
though w1 is accurate to first order in ε. This is consistent with
Madey’s theorem and its generalizations [19].

V. ANALYTICAL RESULTS FOR A
GAUSSIAN WAVE PROFILE

We apply the general formalism developed above to study
the interaction of particles with a Gaussian wave packet,

�0(x,y,z; t) = Fe
−
(

x2+y2

a2⊥
+ z2

a2‖

)
e
− t2

a2
t , (24)

where a⊥ and a‖ are the perpendicular and parallel spatial
widths, respectively, at is a measure of the temporal duration of
the wave packet, and F is its maximum amplitude. Substituting
Eq. (24) in Eq. (7) and using Eq. (14) we obtain

w1 = −qFτ

√
π

2i
e
− τ2 |R|2

a2
t e−τ 2|R×T−1|2e−i(k⊥Rgc sin θ−k‖z)

×
∑
m

Gm(t)Jm(k⊥ρ)e− τ2�2
m

4 eiτ 2�mR·T−1
e−imφ + c.c.,

(25)

where

R =
(

Rgc cos θ

a⊥
,
Rgc sin θ

a⊥
,

z

a‖

)
(26)

is the normalized gc position,

T−1 =
(

Vx

a⊥
,
Vy

a⊥
,
Vz − Pz/M

a‖

)
, (27)

and V = (Vx,Vy,Vz) is the group velocity of the wave packet.
The components of T−1 correspond to the inverse transit times
of the particle through the wave packet along each direction.
The transit time vector T is not to be confused with the Lie
operator T . τ , the autocorrelation time of the wave packet as
seen by the particles, is given by

τ−2 = |T−1|2 + a−2
t , (28)

where τ is a measure of the effective interaction time which
takes into account both the transit time of the particle through
the wave packet and the finite duration of the wave packet. We
have also defined

�m = k‖Pz/M − ω − m�c (29)

and

Gm(t) = 1

2

[
1 + erf

(
t

τ
− τ

2
(2R · T−1 + i�m)

)]
. (30)

For �m = 0, Eq. (29) gives the resonance condition between
the particle and the fast oscillations within the packet.
Equation (30) is the time dependence of the transient particle
dynamics during its interaction with the wave packet. Note
that limt→+∞ Gm(t) = 1.

The first exponential term in Eq. (25) depends on the finite
time duration of the wave packet. It approaches unity for wave
packets which persist for long times (at → ∞). Its effect is
increased as at decreases, revealing the fact that particles with
small |R| will have a significant interaction with the wave
packet during the time that its amplitude is nonzero. The
second exponential term in Eq. (25) reflects the dependence
of the interaction on the angle between the group velocity
of the wave packet and the particle gc position, as it is to
be expected for scatteringlike interaction. The dependence
on the angle is given by a Gaussian with its width being
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determined by the effective duration of the interaction τ . The
third exponential term Eq. (25) depends on �m and signifies
the resonant character of the interaction. When k‖ �= 0, the
effect of the interaction is localized in phase space to regions
around �m(Pz) = 0. These are the Doppler-shifted resonances
with harmonics of �c. The width of the area in phase space
depends on τ . The limit as τ goes to infinity corresponds to
an interaction with plane waves having discrete spectra. The
exponential terms are then replaced, as expected, by the Dirac
δ functions. We must emphasize that the interaction with wave
packets of finite spatial and temporal extent properly accounts
for the finite transit-time interaction and, furthermore, removes
singularities in the vicinity of gyro resonances which plague
the interaction with plane waves. The first order generating
function w1 includes all the essential information about the
interaction of particles with wave packets.

By substituting w1, as given from Eq. (25), in Eq. (23),
we obtain quantitative results for the averaged momentum
variations 〈δP
〉 (
 = z, φ or θ ) which are accurate to second
order in ε. Averaging over z according to Eq. (21) involves
integrating the first and second exponential terms of Eq. (25)
which have a Gaussian dependence on z. This results in the
appearance of a scaling factor related to the width in z of this
Gaussian which can be chosen as the normalization length Lz

in Eq. (21),

Lz = 1

τ

√
∂2

∂z2

( |R|2
a2

t

+ |R × T−1|2) = a‖
√

2τ

√
V 2

x +V 2
y

a2
⊥

+ 1
a2

t

.

(31)

This normalization length directly reflects the physical fact
that only a finite portion of the particles with initial positions
along the z direction actually interact with the localized wave
packet due to either its finite time duration (at �= ∞) or its
nonzero perpendicular group velocity (Vx,Vy �= 0).

Before discussing the results obtained from our perturbation
analysis, it is useful to relate our theory to previous studies on
nonlinear wave-particle interactions. The case of a plane wave
corresponds to a wave packet having infinite time duration
(at ) and spatial width (a⊥,a‖) and has been studied for
perpendicular (k‖ = 0) and for oblique propagation (k‖ �= 0)
of the electrostatic wave [2]. The cases of perpendicular
and oblique propagation correspond to qualitatively different
dynamics since, for the former, the resonance condition does
not depend on the particle momentum. This corresponds
to an intrinsic degeneracy of the Hamiltonian system [9].
When k‖ �= 0, the phase space of those particles is strongly
affected by the wave for which the resonance condition is
fulfilled. For a multiple number of plane waves, forming a
wave packet with a discrete spectrum, the analysis is similar
to that of one plane wave [3] with the spectral components
of the wave packet determining the resonant parts of phase
space. For parallel propagation (k⊥ = 0) of the wave, the
interaction with a particle is along the direction of the magnetic
field and independent of the gyration of the particle. The
resonance condition is given by vz = ω/k‖ and the wave
strongly affects those particles whose velocities are equal
to the phase velocity of the wave along the magnetic field.
For this case, particle interaction with a spatially localized

wave packet has been studied [13]. Localized wave packets
with a compact support, so that lim|r|→±∞ �0 = 0, have a
continuous spectrum which is centered around the wave vector
k and the resonance condition does not lead to a discrete
set of momenta in the dynamical phase space. The collective
effects of transit-time interactions on the wave-particle energy
and momentum transfer have been studied analytically for a
particular set of wave packets that have continuous spectra
[14,15]. These studies are special cases of the more general
particle interaction with wave packets described in this paper.

In the following, we investigate the dependence of the
averaged variations of particle transverse position (Pθ ), par-
allel momentum (Pz), and the angular momentum (Pφ), on
parameters describing the wave packet. We normalize the
various parameters as follows: Time is expressed in units
of 1/�c, distances in units of 1/|k|, speeds in units of
�c/|k|, and the amplitude of the wave potential F in units
of q|k|2/(M�2

c). We assume that, initially, all particles have
Pθ = 1 so that they can actually be approached by the wave
packet. For larger values of Pθ , from the first and the second
exponential term in Eq. (25), the strength of the particle
interaction with the wave packet is weaker. We are primarily
interested in the effect of a spatially localized wave packet
so we consider long duration times and set at = 105. In all
cases, for a complete interaction of the particles with the wave
packet, the limit w∞

1 ≡ limt→∞ w1 is applied to Eq. (25) and
substituted in Eq. (23). From these equations it is evident that
all variations are proportional to the square of (Fτ ), which
has the dimensions of an action (energy × time), so that the
normalized variations are defined as

�P
 ≡ 〈δP
〉
(Fτ )2

, 
 = z,φ,θ. (32)

Moreover, the amplitude F of the wave packet is normalized
with respect to its spatial extent as F = (π3/2a2

⊥a1
‖)−1.

For k⊥ = 0, that is, a wave packet with just a parallel phase
velocity, �Pφ = 0. In Figs. 1(a) and 1(b) we plot �Pz as
a function of Pz for various parameters. The variation of
�Pz is significant around Pz = 1, which corresponds to the
resonance condition �0 = k‖Pz/M − ω = 0. The width in Pz

around Pz = 1 where the variation is significant, depends on
the spatial width of the wave packet along the magnetic field
(a‖). Comparing Figs. 1(a) and 1(b), we note that a smaller
a‖ leads to a broader interaction region in Pz. However, as
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2

Pz

ΔPz
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FIG. 1. (Color online) Parallel momentum variation for the case
of a wave packet with phase velocity parallel to the magnetic field
(k⊥ = 0). The wave packet parameters are k‖ = 1, ω = 1, Vx = Vy = 0,
Vz = 0 (red, solid line), 0.5 (green, dashed line), a⊥ = 100, at = 105.
(a) a‖ = 100; (b) a‖ = 10.
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FIG. 2. (Color online) Guiding center position variation for the
case of a wave packet with phase velocity parallel to the magnetic
field (k⊥ = 0). The wave packet parameters are k‖ = 1, ω = 1, Vy =
Vz = 0, Vx = 0.1 (red, solid line), 0.3 (green, dashed line), a‖ = 100,
at = 105. (a) a⊥ = 100; (b) a⊥ = 10.

the parallel group velocity Vz is increased the magnitude of
the variation in �Pz increases. For narrower wave packets,
with a‖ being small, the profile of �Pz is asymmetric with
respect to the exact resonance value Pz = 1. Narrow wave
packets have a few periods of the oscillating wave. The
asymmetry with respect to Pz = 1 indicates that the interaction
between particles with parallel velocities greater than the phase
velocity of the wave packet is different from that of particles
with parallel velocities smaller than the phase velocity. From
Eqs. (28) and (27) we note that for larger a‖, the dependence on
Vz − Pz/M weakens, so that in Eq. (25) the exponential term
exp(−τ 2�2

m/4) depends on Pz through �m only. This gives a
symmetric profile around Pz = 1. In contrast, for a narrower
wave packet the dependence on Pz through Vz − Pz/M in
Eq. (28) cannot be ignored. Then the exponential term depends

on Pz through both �m and τ leading to an asymmetry around
Pz = 1.

Figures 2(a) and 2(b) show the variation �Pθ as a func-
tion of Pz. Since Pθ = (M�c/2)R2

gc, the ensemble averaged
transverse position of the gc, Rgc, can be deduced from
these figures. The transverse drift of the gc requires that the
perpendicular group velocity of the wave packet be nonzero.
In comparison with �Pz (as shown in Fig. 1), for the same
wave packet parameters, �Pθ is smaller by at least two orders
of magnitude. This is due to the fact that the underlying
mechanisms of the two variations are essentially different: The
parallel momentum variation, when k‖ is nonzero, corresponds
to a resonant effect that would take place whether the wave
is localized or not, while the gc position variation effect
depends on the transverse localization of the wave packet and
increases with decreasing a⊥.

The variations �Pφ , �Pz, and �Pθ as functions of Pz for
a wave packet with k‖ = 0 are shown in Fig. 3. The resonance
condition �m = ω + m�c = 0 is independent of Pz. So the
variation of �Pφ , �Pz, and �Pθ with Pz is through the first
and second exponential terms in Eq. (25) taking into account
and depending strongly on the finite spatial width and temporal
duration of the wave packet. Note that these variations would
be independent of Pz for the case of an infinite wave spatial
extent, as in the case of a plane wave. While for a wave packet
with phase velocity along the magnetic field we have �Pφ = 0,
the variation in �Pφ for a wave packet with perpendicular
phase velocity is due to the cyclotron resonance. On the other
hand, the variation in �Pz is a result of the ponderomotive
force, and it would be zero for the case of a plane wave.
Figures 3(a)–3(c) correspond to the case where the frequency
of the wave packet is not exactly resonant with the cyclotron
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FIG. 3. (Color online) Angular/parallel momentum and gc position variations for the case of a wave packet with phase velocity perpendicular
to the magnetic field (k‖ = 0) for particles having Pφ = 0.5 (red, solid lines) and Pφ = 2 (green, dashed lines). The wave packet parameters
are k⊥ = 1, Vx = Vy = Vz = 0, a‖ = 100, a⊥ = 100, at = 105. (a)–(c) ω = 1.1; (d),(e),(f) ω = 1.

016404-6



INTERACTION OF CHARGED PARTICLES WITH . . . PHYSICAL REVIEW E 85, 016404 (2012)

−6 −4 −2 0 2 4 6
0

0.1

0.2

Pz

ΔPφ

(a)

−1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

Pz

ΔPz

(b)

−1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

Pz

ΔPθ

(c)

−6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

Pz

ΔPφ

(d)

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

Pz

ΔPz

(e)

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

Pz

ΔPθ

(f)

FIG. 4. (Color online) Angular/parallel momentum and gc position variations for the case of a wave packet with phase velocity oblique to
the magnetic field for particles having Pφ = 0.5 (red, solid lines) and Pφ = 1.5 (green, dashed lines). The wave packet parameters are k‖ = 1,
k⊥ = 1, ω = 1, Vx = Vy = Vz = 0, a⊥ = 100, at = 105. (a)–(c) a‖ = 15; (d)–(f) a‖ = 5.

frequency (ω �= 1). Comparing these with the results shown
in Figs. 3(d)–3(f) for the exactly resonant wave frequency, we
note that, apart from some form differences in the variations
of �Pφ and �Pθ with Pz, the most significant differences are
between the parallel momentum variations �Pz [Figs. 3(b)
and 3(e)]. As the wave frequency becomes closer to the exact
resonant value �Pz becomes higher and narrower in Pz due
to the exponential dependence on Pz provided by the term
exp(−τ 2�2

m/4) in Eq. (25). In this case the mismatch between
the wave frequency and the gyrofrequency determines the
range of Pz for which the variation �Pz is significant. The
maximum values of �Pz in the resonant case decrease rapidly
with increasing perpendicular group velocity and/or parallel
spatial width of the wave packet. All three variations in the
resonance and off-resonance cases depend on the initial values
of Pφ (related to the Larmor radius) for the particles, which is
the common case whenever k⊥ �= 0.

The interaction of particles with a wave packet having an
oblique direction of phase velocity is shown in Fig. 4. The
variations in �Pφ , �Pz, and �Pθ are localized in the vicinity
of the resonances �m(Pz) = 0. The various peaks correspond
to different integers m. For broad wave packets with large a‖,
the resonances in Pz are well separated and well localized
as seen in Figs. 4(a)–4(c). Also, the variation of �Pφ , �Pz,
and �Pθ with Pz is sensitive to the initial value of Pφ of
the particles. For narrower wave packets, the neighboring
resonances can overlap, leading to a broader profile. This is
evident in Figs. 4(d)–4(f). In all cases, very narrow resonance
appears in the vicinity of Pz = 0 (shown out of scale in the
plots in Fig. 4). Figure 5 shows the variation of �Pφ , �Pz, and
�Pθ with Pz in a narrow range around Pz = 0. The interesting
behavior and the large amplitude variations in the narrow range
of Pz displayed in Fig. 5, show the strength of the fundamental
interaction between particles and wave packets when the
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FIG. 5. (Color online) Angular/parallel momentum and gc position variations for the same case depicted in Figs. 4(a)–4(c) in a very narrow
area around Pz = 0 [shown out of scale in Figs. 4(a)–4(c)].
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velocity of the particles matches the group velocity of the wave
packet; that is, particles are stationary in the frame moving with
the group velocity Pz = MVz. Such particles interact with the
wave packet for the duration time at . The third exponential
term in Eq. (25) is maximum when k‖Vz − ω − m�c = 0 so
that these particles feel a wave that has constant amplitude
and phase. This type of interaction is important not only due
to the large values of parallel momentum variation �Pz [two
orders of magnitude larger than the other resonances shown in
Fig. 4(b)] but also due to its strong localization with respect
to particle initial parallel momentum Pz. However, in a given
distribution function, the density of such particles is usually
small.

VI. SUMMARY AND CONCLUSIONS

We have developed a general formulation for the interaction
of charged particles with an electrostatic wave packet in a
magnetic field. The magnetic field is assumed to be uniform
and stationary and the wave packet propagates at any arbitrary
angle to the magnetic field. The Larmor radius of the particles
is assumed to be small compared to the spatial dimensions of
the wave packet. The change in ensemble averaged transverse
gc position, parallel momentum, and angular momentum of the
particles is determined using Lie transform canonical perturba-
tion theory. The formalism includes resonant and nonresonant
wave-particle interactions. The resonant interaction is between
harmonics of the cyclotron frequency of the particles and
the Doppler-shifted frequency of the rapid oscillations within
the wave packet. The nonresonant interaction is due to the
ponderomotive force which arises from the finite spatial extent
of the wave packet. The general formalism allows for wave

packets with a wide range of phase and group velocities as
well as spatial widths.

The formalism is applied to a Gaussian wave packet in order
to provide closed-form expressions elucidating the physics
of the interaction. These expressions include all the essential
features of the interaction in terms of the ensemble averaged
particle momenta and gc position variations as well as their
dependencies on wave packet parameters and particle initial
conditions. The effect of the finite spatial and temporal width
of the wave packets are taken into account through parameters
such as the effective duration of the interaction. The latter
corresponds to the autocorrelation time of the wave packet as
seen by the particles and determines the width of the resonance
in the momentum space. The effect of nonzero group velocity
of the wave packet is also included in these expressions
taking into account the scattering character of the interaction.
Characteristic cases have been considered for the study of
particle momentum and spatial transport across the magnetic
field showing marked differences with the well known case of
particle interaction with plane waves. The respective results
are relevant to a variety of plasmas ranging from laboratory
fusion plasmas to space and astrophysical plasmas, as well as
to applications related to accelerators and microwave devices.
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