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ABSTRACT OF THESIS:

SOME CONDITIONS OF MACRO-ECONOMIC
STABILITY OF MULTIREGIONAL MODELS

Ranko Bon

Submitted to the Department of Urban Studies
and Planning on April 10, 1975 in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy

This investigation was a part of a comparative
study of the three multiregional input-output (NRIO)
models: column coefficient, row coefficient, and gravity
coefficient.

The objectives of this research were twofold:
(a) to examine the causes underlying negative values in
the inverse generated by the row coefficient model, as
well as negative projections generated by the model;
and (b) to explain why the column coefficient model did
not present any of the above problems.

In the investigation of these problems several
theorems concerning positive and non-negative matrices
associated with Leontief's input-output model were
employed and extended to multiregional input-output
models.

The results of this research provides (a) con-
struction rules for the regional trade matrix which
ensure that the projections generated by NIRIO models
will be non-negative; (b) on the basis of the above
construction rules, a test of regional trade and regional
technology data that ensures non-negative projections
for well-constructed MRIO models; and (c) an explanation
of the malfunction of the row coefficient model,
which concentrates on the violation of the above
construction rules.

Thesis Supervisor: Karen R. Polenske
Title: Associate Professor of Urban and Regional Studies
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INTRODUCTION1

This investigation was a part of a comparative

study of the three multiregional input-output (MRIO)

models: column coefficient, row coefficient, and gravity

coefficient.2

The objectives of this research were twofold:

(a) to examine the causes underlying negative values in

the inverse generated by the row coefficient model, as

well as negative projections generated by the model;

and (b) to explain why the column coefficient model did

not present any of the above problems.

The first chapter provides a brief introduction to

the two MRIO models. In the first section of the

second chapter, several theorems concerning the required

properties of the technical coefficient matrix that

ensure the generation of non-negative inverse and non-

negative projections of Leontief's input-output model

are employed and extended to MRIO models. A new theorem

The author wishes to thank Karen Polenske, Aaron
Fleisher, Nathaniel Ng, Mark Schuster, and Malte Mohr
for numerous comments and suggestions that helped
shape this work. The research reported in this paper
is financed with funds from Contract No. DOT-OS-30lo4,
University Research Program, U.S. Department of
Transportation. The author takes full responsibility
for the conclusions.

2
For a comparative analysis of the column coefficient
and gravity coefficient models see Fencl and Ng /~57.
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concerning the required properties of the regional trade

coefficient matrix that ensure the generation of non-

negative inverses and non-negative projections in MRIO

models in general is provided. In the following two

sections of the second chapter, the results concerning

MRIO models in general, which were derived in the first

section, are applied in the analysis of the two MRIO

models. The objective of these sections is to determine

whether the two models satisfy the conditions that

ensure non-negative inverses and projections. The last

section of the second chapter provides an economic

interpretation of the relationship between the column

coefficient and row coefficient models.

The results of this research provide: (a) construction

rules for the regional trade coefficient matrix that

ensure that the projections generated by MRIO models will

be non-negative: (b) on the basis of the above construction

rules, a test of regional technology and regional trade

data that ensures non-negative projections for well-

constructed MRIO models, and (c) an explanation of the

malfunction of the row coefficient model, which concetra-

tes on the violation of the above construction rules.

Finally, the policy implications of this investigation

extend the conclusions of Hawkins and Simon /77_7 from the

single-region economy to the multiregional economys if the



- 5 -

production system is internally consistent, it will be

consistent with any schedule of consumption goods, the

latter representing a set of policy variables.

MULTIREGIONAL INPUT-OUTPUT YODELS

Multiregional input-output models are essentially

conventional input-output models modified to incorporate

interregional trade.3 These models are founded on one

basic economic principles the total output of an industry

is equal to the sum of intermediate demands by various

industries (including the industry itself) and demands

by final users of the industry's products.

Mathematically, this relationship can be expressed

as a set of linear equations:

m

Xi = a x + yi (all i), (1)

j=1

where

a.. = a technical coefficient representing the

3
The reader who is not familiar with multiregional
input-output models is advised to refer to Yan Z~16J
for detailed analysis of national input-output models
and to viernyk f~9_7 for an introduction to regional
input-output models. More advanced material on the
models can be found in Polenske f~ll; 12_7.



amount of input of commodity i required by

industry j to produce one unit of output of

commodity j;

x. = total supply of commodity i;

x. = total production of commodity j;
1 Iy. = final demand of commodity i;

i,j = 1,...,m.

Assuming no trade between regions, an input-output

model for m industries and n regions can be represented

by the following set of linear equations:

og
x = a..x. + y. (all i), (2)

113 3 1
j=1

where

a = a technical coefficient representing the

amount of input of commodity i required by

industry j located in region g to produce one

unit of output of commodity ji

x~ = total supply of commodity i in region g;

x~o = total production of commodity j in region g;

y = final demand of commodity i in region gi1

i,j =

g = 1,. ..,n.

- 6 -



If equation (2) is to be used to describe a multi-

regional model, it must be further modified to account for

the commodities traded between regions. The following

two sections will describe the column coefficient and

row coefficient models, respectively, since each of the

two models utilizes a different accounting scheme for

interregional trade.

Column Coefficient Iodel 5

Interregional trade is described in the column

coefficient model by means of the following relationship:

xgh = cghxh (all i), (3)

where

x h = amount of commodity i produced in region g

that is shipped to region h;
oh

xi = total amount of commodity i consumed in

region h;

4
The reader who desires a more detailed description of
the accounting frameworks should refer to Polenske §~12J.

5
This is the version as first described by Chenery and
Clark [27 and Moses ~1J0_7.
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cgh = a trade parameter. indicating the fraction

of total consumption of commodity i in region

h that is produced in and shipped from

region g;

i = 1,0.0.,m;

g,h = 1,...,n.

Equations (2) and (3) are combined to obtain the following

set of linear equations (in matrix notation):

X = C(AX + Y), (4)

where

X = nm-1 vector of regional outputs, xqfo, arranged

as a column vector with m outputs for each of

the n regions;

C = nm.nm diagonal block matrix of regional trade

coefficients, c h = x/h, where coh = 1,

with each of the diagonals of the n-n sub-

matrices C. containing the coefficients for m

traded commodities and all off-diagonal elements

equal to zero;

A = nm-nm block diagonal matrix of regional technical

coefficients, a = x>/xoj, whereia < 1,
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with each of the n submatrices Ah along the

principal diagonal containing the m-m coefficient

matrix derived from each of the n regional input-

output tables, and the elements in all blocks off

the principal diagonal equal to zero;

Y = nm-1 vector of regional final demands, yh,

arranged as a column vector with m elements

representing the amount of commodity i purchased

by final users in each of the n regions.

In the implementation of the column coefficient model,

specified by equation (4), X is the unknown and is elimina-

ted from the right-hand side of the equation as follows:

X = CAX + CY,

X - CAX = CY,

(I - CA)X = CY,

X = (I - CA)~'CY, (5)

or

X = (C~- - A)~lY. 6  (6)

6
It should be noted that in this formulation it is implied
that IC| 1 0, since (5) and (6) are equivalent only under
this condition. This means that, among other things, C
cannot have zero columns or zero rows. In economic terms,
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To calculate the regional outputs, X, from equations (5)

or (6), matrices A and C and the vector Y must f irst be

obtained.

Row Coefficient Iodel

Since there are many similarities between the column

coefficient and row coefficient models, the latter having

been concieved as the "mirror image" of the former, the row

coefficient model will be described in less detail.

Interregional trade is described in the row coef-

ficient model by means of the following relationship:

xgh = rghxgo (all i), (7)

where

xFh = amount of commodity i produced in region g

that is shipped to region hi

x0 = total amount of commodity i produced in region g;

rh = a trade parameter, indicating the fraction of

it is implied that if there is an industry i in the
economy, then commodity i must be both produced and
consumed in region g. Consequently, this formulation may
be of restricted applicability in regional analysis. lvore
precisely, it is contingent upon the level of aggregation
of the data employed. It should be added, however, that
this problem has not appeared so far in the work with the
model, even though this formulation is typically used in
empirical work. Therefore, this implicit assumption is
likely to be reasonable for highly aggregated data.
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total production of commodity i in region g

that is shipped to region h;

i = 1,... ,m;

gh 1,...,n.

Equations (2) and (7) are combined to obtain the following

set of linear equations (in matrix notation):

R'X = AX + Y, (8)

where

X = nm-1 vector of regional outputs;

R'= transpose of R, where R is an nm.nm diagonal block

matrix of regional trade coefficients, rfh

x h o, where 2 r h = 1, with each of the

diagonals of the n-n submatrices Ri containing the

coefficients for m traded commodities and all off-

diagonal elements equal to zero;

A = nm-nm block diagonal matrix of regional technical

coefficients;

Y = nm.1 vector of regional final demands.

In the implementation of the row coefficient model,

specified by equation (8), X is the unknown and is
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eliminated from the right-hand side of the equation as

follows:

(R' - A)X = Y,

X = (R' - A) 1Y, (9)

or

X = I - (R') 'A (R') Y.7  (10)

To calculate the regional outputs, X, from equations (9)

or (10), matrices A and R' and the vector Y must first be

obtained.-

MACRO-ECONOMIC STABILITY OF

A real n-square matrix A = a is called positive

(non-negative) if a > 0 (a .. 0) for ij = l,...,n. If A

is positive (non-negative), it is denoted by A>0 (A,>0).

The properties of positive matrices were first

investigated by Perron, and then amplified and generalized

for non-negative matrices by Frobenius. Wielandt provided

considerably more simple proofs for the results of

7
It should be noted that in this formulation it is
implied that |R'| / 0, since (9) and (10) are equi-
valent only under this condition (see footnote
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Frobenius. Positive and non-negative square matrices have

played an important role in the probabilistic theory of

Markov chains, as well as in the more recent study of

linear models in economics, and particularly in connection

with the input-output model of Leontief. The matrices of

interest in this study were first noted by Iinkowski.8

In the first section of this chapter the problem

under investigation is first rigorously stated. Second,

several well-known theorems concerning the required

properties of the technical coefficient matrix that ensure

the generation of non-negative projections of Leontief's

input-output model are summarized and stated without proof.

Third, these theorems are applied to the multiregional

input-output models. And fourth, a new theorem, concerning

the required properties of the regional trade coefficient

matrix that ensure the generation of non-negative projec-

tions in YRIO models in general, is proved.

In the following two sections of this chapter the

results derived in the first section are applied in the

analysis of the column coefficient and row coefficient

8
For an historical outline of the underlying concepts,
the basic theorems on positive and non-negative matrices,
and an extensive bibliography, see Bellman §1, Ch.16,
pp.286-315_7.
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models, respectively, with the objective of determining

whether the two models satisfy the conditions that ensure

non-negative projections. A formal argument is presented

demonstrating that the mathematical properties of the

column coefficient model are compatible with the above

conditions, while the opposite is true in the case of the

row coefficient model.

The last section of this chapter provides an economic

interpretation of the formal argument concerning the

structure of the two models developed in the preceding

two sections. It is argued that the present formulation

of the row coefficient model is not a consistent "mirror

image" of the column coefficient model, as it was intended

to be.

Multiregional Input-Output Models

Consider the general formulation of an NIRIO model

that corresponds to equations (5) and (10) for the

column coefficient and row coefficient models, respectively:

X = (I - eA) - Y (11)

where

X = vector of regional outputs;



- 15 -

= diagonal block regional trade coefficient matrix;

A = block diagonal regional technical coefficient

matrix;

hY = vector of regional final demands; y >0 for

i= 1,...,m and h = 1,...,n.

It is assumed that (E, A, and Y are independent, and that

I1 - E)A I.d0.

To be economically meaningful all the elements of X

must be (a) positive for indecomposable GBA, and (b) non-

negative for decomposable EA.10 This will be ensured if

9
9atrices () A, and GDA for an n-region, m-industry
economy can be found in Appendix A.

10
An n-square matrix A (n>l) is said to be indecomposable
if for no permutation matrix T does

A =1AT A Al2A T = TAT 
[0 A22

where All and A22 are square. Otherwise A is decomposable.

If A1 2 = 0, A is completely decomposable. Terms

irreducable and reducable are often used instead of
indecomposable and decomposable. A permutation matrix
is obtained by permuting the columns of an identity

matrix. TAT is obtained by performing the same
permutation on the rows and on the columns of A. These
concepts can be economically interpreted as follows:
If n industries are connected by two-way links directly
or indirectly, the system is indecomposable. If k (k <n)
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(I - GA)~' (12)

is (a) positive for indecomposable GA, and (b) non-

negative for decomposable GA. If so much as one negative

element appears in (12), then there is at least one (Y

that will lead to economically meaningless negative

outputs. Suppose the (g,h) element of (12) is negative;

then if SY is a vector with very small elements except

for a large ' OGhy , the element x{ of X will be negative.

Indeed, since (12) represents both direct and indirect

interindustry requirements of a productive system, negative

values in (12) cannot be meaningfully interpreted in

economic terms.

The problem under investigation can therefore be

stated as follows:

I. What are the necessary and sufficient conditions

on ( that ensure that (12) is (a) positive for indecom-

posable GA, and (b) non-negative for decomposable GA,

given that A has the following properties:

industries are connected by one-way links, the system
is decomposable. The system is completely decomposable
if there are no links between two or more groups of
industries. These separable groups can then be analysed
separately. For discussion of the economic significance
of these concepts see Dorfman, Samuelson, and Solow
44, pp.254-255J.
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0 <a . < 1 (all ij), (13)

and

n

a..j < 1 (all j). (14)

i=1

II. Which MRIO models satisfy the conditions on )

to be derived under I.

Several theorems concerning a particular class of

positive and non-negative matrices arise in connection

with the solution of the system of linear equations of the

form:

n

x = a..x. + y. (all i), (1)

j=1

which is associated with Leontief's input-output model.

These will now be summarized and stated without proof.12

11
It should be noted that throughout this chapter,
whenever a symbol has no superscripts, the subscripts
denote only the position of an element within a matrix;
for instance, a.. does not mean "the amount of input

of commodity i required by industry j to produce one
unit of output of commodity j," as was the case in the
preceding chapter, but simply "an element in ith row
and jth column of matrix A."

12
For proofs see Bellman E~l, Ch.16, pp.286-31 , and
especially p.298.7, Debreu and Herstein /~33, Hadley
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THEOREM I: (I - A)~1 will be (a) positive if A> 0 and

condition (14) is satisfied, implying that A is indecom-

posable, or if conditions (13) and (14) are satisfied and

A is indecomposable,13 and (b) non-negative if conditions

(13) and (14) are satisfied and A is decomposable.

This conclusion, mutatis mutandis, applies to multi-

regional models as well.

[6, p .118-1197, Hawkins and Simon 7J, Marcus and
Minc ?8, Part II, Ch.5, pp.121-133J, Rogers [14,
Ch 7 pp.405-438, and especially Section 7.3.2, pp.418-
420), and Solow [157.

13
There is an equivalent theorem by Hawkins and Simon

7_7 that, although contained in the above theorem,
provides an important economic interpretation of the
phenomenon under investigation. Hawkins and Simon show
that a necessary and sufficient condition on A that

ensures that all the elements of (I - A)~1 are positive
is that all the principal minors of (I - A) are positive,
given that A is indecomposable. Furthermore, it is a
corollary of this theorem that a necessary and sufficient
condition that all the elements of X satisfying

(I - A)~ be positive for any Y is that all the principal
minors of (I - A) are positive. Hawkins and Simon ~7,
p.248_7 provide the following economic interpretation of
their theorem and corollary:

From the corollary, we see that if the production
equations are internally consistent in permitting
the production of some fixed schedule of consumption
goods, then these consumption goods can be obtained
in any desired proportion from this production
system. Hence the system will be consistent with
any schedule of consumption goods.
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COROLLARY I: (I - EA)~ will be (a) positive if

conditions (15a) and (16) below are satisfied, implying that

(GA is indecomposable, or if conditions (15b) and (16) are

satisfied and (BA is indecomposable, and (b) non-negative

if conditions (15b) and (16) are satisfied and GA is

decomposable:

0 <d.. <1 (all ij), (15a)

or

0 <dij < 1 (all i,j), (15b)

and

The condition that all principal minors must be
positive means, in economic terms, that the group
of industries corresponding to each minor must be
capable of supplying more than its own needs for
the group of products produced by this group of
industries.... For example, if the principal minor
involving the ith and ith commodities is negative,
this means that the quantity of the ith commodity
required to produce one unit of the 4th commodity
is greater than the quantity of the ith commodity
that can be produced with an input of one unit of
the jth commodity. Under these circumstances, the
production of these two commodities could not be
continued, for they would exhaust each other in
their joint production.

For the discussion of Hawkins-Simon conditions the reader
is advised to refer to Dorfman, Samuelson, and Solow
Z4, especially pages 215, 254-257, and 500_7, and
Solow Z-15_7.

It should be noted that the conditions of Theorem I
above are often referred to as Hawkins-Simon conditions,
even though their original result has subsequently been
considerably improved and sharpened.
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n

d. <1 (all j), (16)
i13

where

n

d : a (17)

k=1

The properties of E) that satisfy conditions on EDA

still remain to be established.

THEORE II: When conditions (13) and (14) are

satisfied, conditions (15a) or (15b) and (16) for indecom-

posable 9)A, and conditions (15b) and (16) for decomposable

(BA will be satisfied if the following necessary and

sufficient conditions on G are satisfied:

14
It should be noted that due to the construction of 8
and A all the sums d will have only one term, all

other terms being equal to zero (see Appendix . It
should also be noted that all the elements of NA will
be positive if all the elements along the diagonals of
all the blocks of 8 are positive, and if all the
elements in the blocks on the principal diagonal of A
are positive. In other words, EDA may be indecomposable
regardless of the fact that both E) and A are completely
decomposable (note that the diagonal block matrix (9 can
be transformed into a block diagonal matrix by regrouping
rows and corresponding columns with the same pattern of
elements in blocks along the principal diagonal).
Whether (9A will be indecomposable or decomposable will
depend upon the particular economic system under
investigation.
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0 4Gik < 1 (all ik), (18)

and

n

Gik s<1 (all k). (19)

i=1

The proof will be provided in two parts,

(a) sufficiency: it will be assumed that (18) and (19)

are satisfied, and (b) necessity: it will be assumed that

(18) or (19) or both are not satisfied.

Sufficiency. Condition (16) will be examined first.

From (16) and (17) it follows that

n n n

d :ika , (20)

i=1 i=1 k=1

n n

:E :E ik a kj'
k=l i=1

n n
E akj I ik '

k=l i=1

Let

n

9 =1 (all k);

i=1

s inc e
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n

akj < 1 (all j),
k=1

it follows that

n n

ik a kj1
i=1 k=1

Condition (16) is therefore satisfied, given conditions

(18) and (19). Now conditions (15a) and (15b) will be

examined. First, it follows by implication of the above

result that d . < 1 since (16) is satisfied. Second,

d. .> 0 follows from (13) and (18), ensuring that all the
13

elements of A and E, respectively, are non-negative.

The possibility of d.. > 0 has already been shown in

footnote 14 aboves all the elements of EA will be positive

if all the elements along the diagonals of all the blocks

of E are positive, and if all the elements in the blocks

on the principal diagonal of A are positive. Conditions

(15a) and (15b) are threfore satisfied as well.

Necessity. Now suppose that either (18) or (19) or

both are not satisfied.

(i) Suppose Gik < 0 (all i,k); in this case neither

(15a) nor (15b) will be satisfied since
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n

W Gikakj < 0.

k=l

If so much as one element of E) is smaller than zero, then

there is at least one A that will lead to the violation of

conditions (15a) and (15b). Suppose the (g,h) element of ®

is negative; then if column vector a of A has very small
m

elements except for a large a, the element d of E)A

will be negative.

(ii) Suppose Gik > 1 (all i,k); using the same method

of proof as was used in the treatment of sufficient

conditions above, it can be shown that in this case (15a),

(15b), and (16) will not be satisfied since

n

ik > 1 (all k),

i=1

and consequently

n n

ikakj

i=l k=l

for some values of akj, 0 <akj < 1. If so much as one

element of () is greater than one, there is at least one

A that will lead to the violation of conditions (15a),

(15b), and (16). Suppose the (g,h) element of () is greater
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than one; then if column vector a of A has very small

elements except for a large ahm, the element d m of E)A

will be greater than one.

(iii) Suppose

n

Se. > 1 (all k);
ik

in this case (15a), (15b), and (16) will not be satisfied

for the reasons discussed in (ii) above.

Therefore, when conditions (13), (14), (18), and (19)

are satisfied, the elements of' (12) will be (a) positive

when E9A is indecomposable, and (b) non-negative when )A

is decomposable. Furthermore, given that all the elements

of )Y are non-negative, all the elements of X will be

(a) positive when (A is indecomposable, and (b) non-

negative when G9A is decomposable.

Column Coefficient Yodel

Consider the formulation of the column coefficient

model that corresponds to the general formulation of an

WRIO model specified by equation (11)t

X = (I - CA)~ CY, (5)

where C = ciii has the following properties:
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13

c = 1

(all i, j),

(all j).15

(21)

(22)

Since (5) and (11) are equivalent, and since (21) and (22)

satisfy (18) and (19), it follows that the column coefficient

MRIO model satisfies the conditions on C that ensure that

(I - CA) 1 (23)

is (a) positive for indecomposable CA, and (b) non-

negative for decomposable CA. Consequently, given that

all the elements of CY are non-negative, all the elements

of X are (a) positive for indecomposable CA and (b) non-

negative for decomposable CA. In other words, the column

coefficient MRIO model is structurally correct.16

15

16

It is interesting to note that these properties are
shared by Warkov matrices, associated with finite
Warkov chains, and also that the research of the
properties of positive and non-negative matrices started
in connection with these matrices, and was only later
extended in connection with linear economic models.
For an historical outline of the underlying concepts
and an extensive bibliography, see Bellman Z~1, Ch.14,
pp.263-280_'.

Moses f~10_7 briefly argued that the column coefficient
model is consistent, although he did not provide a

and
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Row Coefficient vodel

Consider the formulation of the row coefficient

model that corresponds to the general formulation of an

MRIO model specified by equation (11):

X = - (R')-A] ~(R')-Y. (10)

where R' =r . has the following properties:

0 <.. :l (all ij), (24)

n

i = 1 (all j) . 17  (25)

i=1

The properties of (R') = r will be examined next.

Assuming that conditions (13) and (14) are satisfied,

-1 -l
I - (R') 1A (26)

will be (a) positive if conditions (27) and (28) below are

rigorous proof of his argument. Also, his argument is
incomplete since it does not take into consideration
the distinctions between positive and non-negative
matrices, and indecomposable and decomposable matrices.

17
See footnote 15.
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satisfied and (R')~ A is indecomposable, and (b) non-

negative if conditions (27) and (28) are satisfied and

(R') A is decomposable:

0 , ri j (all i,j), (27)

and

n

r l (all j). (28)

i=l

It will now be shown that elements of (R')~ do not satisfy

conditions (27) and (28).

Given properties (24) and (25) of R', the absolute

value of the dominant characteristic root1 8 of R' is equal

18
Several important problems in regional analysis require
the solution of the following set of simultaneous
linear equations:

Ax = Xx,
where A is a given square matrix, x is a column vector
of unknowns, and > is an unknown scalar. To solve for
X and x, the above equation system may be expressed as
the following system of homogeneous equations:

(>I - A)x = 0,

where I is the identity matrix of the same order as A.
Since this system of equations has a non-trivial
solution only if the determinant of the characteristic
matrix (X I - A) is equal to zero:

I - Al = 0.
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to one (Bellman Z~1, p.2?0_7). Now the characteristic

root of a matrix and its inverse are inverses of each

other (Rogers Z§14, pp.410-411_7):

1

where li is a characteristic root of R', and/2. is a

characteristic root of (R') . Consequently, since there

is a characteristic root of R' the absolute value of which

is smaller than one, then the absolute value of the

corresponding characteristic root of (R')~ will be greater

than one. Indeed, the absolute value of the dominant

characteristic root of R' will correspond to the absolute

value of the smallest characteristic root of (R') , and will

be equal to one. Therefore, the elements of (R) will take

both negative values and values greater than one. It

This equation is called the characteristic equation of
matrix A and may be expanded in powers of ; the roots
of this equation, that is, the values of X that
satisfy it, are called characteristic roots of A.
Characteristic roots are often referred to as eigenvalues,
characteristic values, proper values, and latent roots.
The largest characteristic root is called a dominant
characteristic root.

It should be noted that when a matrix is non-negative
or positive, and either its row sums or column sums
are smaller than one, its characteristic roots are all
positive, and its dominant characteristic root is
smaller than one.
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follows that (R')~I does not satisfy conditions (27) and

(28) which correspond to conditions (18) and (19) for

YRIO models in general, that is, that (R')~ 1 A does not

satisfy conditions (15a) or (15b) and (16). The row

coefficient MRIC model is, therefore, structurally

. 19incorrect.

19
It can be shown that this conclusion holds even when
the assumption that R' is non-singular, made explicitly
in footnote 7, is dropped. Suppose |R'| = 0. The least
restrictive formulation of the row coefficitn model,
that is,

X = (R' - A)~1 Y, (9)

will be considered in this case. Now a matrix will
have positive inverse if it is indecomposable and all
its elements on the principal diagonal are positive
while all the off-diagonal elements are negative;
a matrix will have non-negative inverse if it is
decomposable and all its elements on the principal
diagonal are positive while the off-dia onal elements
are non-positive (Debreu and Herstein L 3, pp.602-603_7).
Given the properties of R' and A it is obvious that
there is nothing in the structure of the row coefficient
model that prevents the elements on the principal
diagonal of R' from being smaller than the corresponding
elements of A. In other words, the elements on the
principal diagonal of (R' - A) may be non-positive.
Furthermore, the off-diagonal elements of (R' - A) can
be positive, negative, and equal to zero. Consequently,
the assumption that R' is singular does not modify the
above conclusions. (In the next section of this
chapter it will be demonstrated that a certain number
of the off-diagonal elements of (R' - A) will be
positive by structural necessity. It follows that the
row coefficient model will generate negative inverses
even when the elements on the principal diagonal of
(R' - A) are positive.)
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The Relationship Between the Column
Coefficient and Row Coefficient Models

The objective of this section is to provide an

economic interpretation of the formal argument presented

in the preceding sections, and to re-examine the structure

of the two models in more detail in light of this inter-

pretation.

The column coefficient and row coefficient models

will be developed following Chenery and Clark C~2_J in

order to trace the economic reasoning underlying the two

models. For simplicity, Chenery and Clark consider

a 2-region, n-industry model that can be easily extended

to any number of regions. For each industry i, there is a

set of accounting relations describing the flows between

the two regions, as shown in Table 1.

Table 1. INTERREGIONAL ACCOUNTS FOR INDUSTRY i

To Consuming region Production
in region

From g h

Producing
region

g Xg Xgh X
1 1 1

h X h X hh X h

Supply in g h
region Z z.
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From the above table, it follows that the production of

industry i in region g can be defined as:

Xg = X9 + Xgh (29)
131 1

while the supply of industry i in region g can be defined

ass

Z= X + X . (30)
1 1 1-

The set of input-output balance equations,

n

a X + Y (all i), (la)

j=1

cannot be solved since there are 2n equations and 6n

variables: 2n autonomous demands, 2n production levels,

and 2n import levels. In order to solve this set of

equations for given final demands, therefore, an assumption

about either supply or production must be made. An

assumption concerning supply sources will first be made,

leading to the column coefficient model: imports are a

fixed fraction of the total supply of each commodity.

(Chenery and Clark f~2_7 call these proportions "supply

coefficients.") These coefficients are defined as:
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Xgh = hh (31)
1 1 1

As Chenery and Clark [2, p.67J~ point out, "the supply

coefficient therefore extends the idea of a given marginal

propensity to import each commodity to any number of

regions."

This fixed-supply assumption makes it possible to

express the total production of industry i in region g as

a function of the total demands in all regions:

X = cZ + c hZ. (all i). (32)
1 11 11

It is now possible to solve for the production levels

corresponding to given final demands in all regions by

substituting from the set of equations (la) into (32) and

collecting terms:

n n

X = c a .X + cfa.X ] +

j=1 j=1

+ [cgy + cghY] (all i). (33)
1 1 1 1

In other words, the total production of industry i in

region g is equal to the amounts of commodity i used for

further production in both regions plus the shipments to
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both regions for final demand.

Now an assumption concerning production will be made,

leading to the row coefficient models the exports are a

fixed fraction of the total production of each commodity.

These proportions may be called "production coefficients,"

and are defined as:

gh gh g
X gh= r ghX , (34)

This fixed-production assumption makes it possible to

express the total supply of a given commodity as a function

of the total production in all regions:

g gg g hg h
Z. = r. X. + r. X. (all i). (35)1 1 1 1 1

By substituting from the set of equations (la) into (35)

and collecting terms the following set of equations is

obtained:

n

X = 1/r a .X + Y -
1 13 j

j=1

- 1/rfE Ir.X. (all i).20 (36)1 L1' 1

20
It should be noted that if there are k regions, there
may be at most (k - 1) negative terms in each
equation (36).
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That is, the total production of industry i in region g

is equal to the amount used for further production in

region g plus the shipments to the final demand in region g

minus the amount exported to region h.

The clue to the understanding of the problems

encountered in the testing of the row coefficient model

lies in the interpretation of these negative terms. It

is important to emphasize that the economic interpretation

of equations (34) and (35) is straightforward, although the

occurrence of the implied pattern of trade in actual

aninnric ,q imnlnniihlp (epnt. nerhans. for a certain

class of commodities). Difficulties arise when equations

(la) and (35) are combined. As Richardson f13, pp. 6 6 - 6 7_7

points out,

The main feature of the row coefficient model, that
the proportion of the output of industry i in region r
fg in the text abovej sold to region s f~h in the
text above_ remains constant irrespective of changes
in the level of demand in any of the regions, is
theoretically implausible, and infringes the
Walrasian assumptions of input-output models that
output changes are generated only by shifts in
demand and price changes by shifts in supply.

The conflict between these two economic principles is

expressed by the fact that the technical and trade coef-

ficients in the column coefficient model represent inputs

and imports, respectively, while they represent inputs

and exports in the row coefficient model.
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In other words, in the case of the column coefficient

model the output of an industry is determined only by the

demand for its products, while in the case of the row

coefficient model the output is determined by the demand

for its products and also by some characteristics of the

technology employed in the process of production (wherefrom

the notion of "production coefficients"). More precisely,

in the latter case it is implied that demand changes are

determined by changes in output. Equation (36) is therefore

self-contradictory.

In order to shed some additional light on the

relationship between the economic and mathematical reasons

for the failure of the row coefficient model, the structure

of the matrices (C - A) and (I - CA) for the column

coefficient model, and matrices (R' - A) and [I - (R')~1A]

for the row coefficient model will now be re-examined in

more detail. These matrices must have positive elements

on the principal diagonal and negative (non-positive)

off-diagonal elements if their inverses are to be positive

(non-negative) (see footnote 19). For simplicity, a

2-region, 2-industry economy will be considered. 21

21 atrices C, C , CA, R', (R') ~, and (R')~ 1 A in terms
of interregional trade flows for a 2-region, 2-industry
economy can be found in Appendix B.

If it is assumed that intraregional trade in each
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Consider matrix (C - A). Elements on the principal

diagonal are positive, because the elements on the principal

diagonal of C are positive and greater than one, while the

elements on the principal diagonal of A are positive and

smaller than one. Off-diagonal elements of (C-1 - A) are

non-positive, because the off-diagonal elements of C~1 are

non-positive, while the off-diagonal elements of A are

positive or non-negative. Therefore, matrix (C~ - A)

satisfies the conditions that ensure positive or non-

negative inverses.

Consider matrix (I - CA). Elements on the principal

diagonal are positive, because the elements on the principal

diagonal of CA are positive and smaller than one. Off-

diagonal elements of (T - CA) are negative or non-positive,

because the off-diagonal elements of CA are positive or

non-negative. It follows that matrix (I - CA) also

satisfies the above conditions.

commodity is greater than interregional trade in that
commodity, it follows that all the elements on the

principal diagonal of C-1 and (R')-l are positive, while
all the off-diagonal elements are negative or non-
positive. It should be added that this assumption is
corroborated by empirical evidence. Finally, if the
above assumption holds, it also follows that the

elements on the principal diagonal of C~ and (R')~1
are greater than or equal to one.
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Now consider matrix (R' - A). Elements on the

principal diagonal are not always positive, because the

elements on the principal diagonal of R' are smaller than

or equal to one, while the elements on the principal diagonal

of A are positive and smaller than one. Off-diagonal

elements of (R' - A) can be positive, negative, or equal

to zero, because the off-diagonal elements of both R' and

A are positive or non-negative. It should also be noted

that a certain number of the off-diagonal elements of

(R' - A) will always be positive; these elements represent

exports. In other words, matrix (R' - A) does not generally

satisfy the conditions that ensure positive or non-negative

inverses.

Finally, consider matrix [I - (R') . Again,

the elements on the principal diagonal are not always

positive, because the elements on the principal diagonal of

(R')~1 are greater than one, which means that the elements

on the principal diagonal of (R') A may be greater than

one. Off-diagonal elements of [I - (R')lA] can be positive,

negative, and equal to zero, because the off-diagonal

elements of (R')~ 1 A can be positive, negative, and equal

to zero. Again, it should be noted that a certain number of

the off-diagonal elements of [I - (R') -A] will always be

positive; these elements represent exports, as was the case
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with matrix (R' - A). Consequently, matrix [i - (R')~A]

also fails to satisfy the above conditions.

It can be concluded that the structures of the column

coefficient and row coefficient models are not fully

symmetrical, as they were intended to be. The mathematical

properties of the row coefficient model demand that the

technical coefficient matrix be redefined to represent

outputs, and not inputs, if the row coefficient model is

indeed to be the "mirror image" of the column coefficient

model, and also be internally consistent. One of the

objectives of future research will therefore be to examine

the economic implications of this requirement.

CONCLUSIONS

The conclusions of the evaluation of the two MRIO

models derived above are consistent with the empirical

evidence accumulated over a decade of testing. The column

coefficient model always generates an inverse with all the

elements larger than zero (positive), as well as positive

projections. The row coefficient model always generates

an inverse with a large proportion of elements smaller

than zero (negative). Also, the row coefficient model

frequently generates negative projections.

Three conclusions can be drawn from the above

discussion:
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(a) All multiregional input-output models of the

general formulation given by equation (11) must be

constructed in accordance with construction rules (13),

(14), (18), and (19), that ensure that (12) will be

(a) positive if EDA is indecomposable, and (b) non-

negative if GA is decomposable. Furthermore, given that

all the elements of the final demand vector, Y, are

non-negative, all the elements of the regional output

vector, X, will be (a) positive if (12) is positive, and

(b) non-negative if (12) is non-negative. The policy

implications of this conclusion were already mentioned

in the introductions if a productive system is internally

consistent, any schedule of regional final demands (policy

variables) can be produced.

(b) Regional trade and technology data (matrices

o and A) for well-constructed multiregional input-output

models can be tested using the conditions discussed in (a)

above. The consistency of the data with conditions (13),

(14), (18), and (19) ensures that (12) will be (a) positive

if E)A is indecomposable, and (b) non-negative if G)A is

decomposable. Furthermore, given that all the elements

of the final demand vector, Y, are non-negative, all the

elements of the regional output vector, X, will be

(a) positive if (12) is positive, and (b) non-negative

if (12) is non-negative.
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(c) Unlike the structure of the column coefficient

model, the very structure of the row coefficient model

violates the conditions (18) and (19). Now that the

structure of the MRIO models is better understood, the

research will proceed toward restructuring of the row

coefficient model in accordance with the construction

rules discussed in this work. The objective of this research

will be to construct a multiregional input-output model

that represents a consistent "mirror image" of the

column coefficient model, which the present formulation

of the row coefficient model is not.
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APPENDIX A

I ATRICES 9, A, AND ®A FOR AN
n-REGION, m-INDUSTRY ECONOY
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ITU IT zz TZ ZT

I I I I I
x x + x x
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