
Approximate Multi-Agent Planning in Dynamic

and Uncertain Environments
by ASSACH

Joshua David Redding
B.S. Mechanical Engineering APF

Brigham Young University (2003)
M.S. Mechanical Engineering

Brigham Young University (2005)
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 2011
@ Massachusetts Institute of Technology 2011. All rights reserved.

~RARIES

CHIVES

Author
Department of Aeronautics and Astronautics

December 8, 2011

C ertified by v.-. 7.....................................

Jonathan P. How
Richard C. Maclaurin Professor of Aeronautics and Astronautics

Thesis Supervisor

Certified by.............

Associate Professor of

Certified by..

Associate Professor of

'' Emilio Frazzoli
Aeronautics and Astronautics

Nicholaaby
Aerorautics apd Astronautics

Accepted by
Eytan H. Modiano

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

Approximate Multi-Agent Planning in Dynamic and

Uncertain Environments

by

Joshua David Redding

Submitted to the Department of Aeronautics and Astronautics
on January 26, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Teams of autonomous mobile robotic agents will play an important role in the future
of robotics. Efficient coordination of these agents within large, cooperative teams
is an important characteristic of any system utilizing multiple autonomous vehicles.
Applications of such a cooperative technology stretch beyond multi-robot systems to
include satellite formations, networked systems, traffic flow, and many others. The
diversity of capabilities offered by a team, as opposed to an individual, has attracted
the attention of both researchers and practitioners in part due to the associated
challenges such as the combinatorial nature of joint action selection among inter-
dependent agents. This thesis aims to address the issues of the issues of scalability
and adaptability within teams of such inter-dependent agents while planning, coor-
dinating, and learning in a decentralized environment. In doing so, the first focus
is the integration of learning and adaptation algorithms into a multi-agent planning
architecture to enable online adaptation of planner parameters. A second focus is the
development of approximation algorithms to reduce the computational complexity
of decentralized multi-agent planning methods. Such a reduction improves problem
scalability and ultimately enables much larger robot teams. Finally, we are interested
in implementing these algorithms in meaningful, real-world scenarios. As robots and
unmanned systems continue to advance technologically, enabling a self-awareness as
to their physical state of health will become critical. In this context, the architec-
ture and algorithms developed in this thesis are implemented in both hardware and
software flight experiments under a class of cooperative multi-agent systems we call
persistent health management scenarios.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

Acknowledgments

Although none of my daughter's kindergarten classmates believed her when she told

them her daddy went to school every morning instead of work, and although my son

has asked "Who's that guy standing next to Mommy?" in several family pictures,

and although it has meant that my sweet wife has been a single mother for far too

many diaper changes - I hope that my family will someday find that we made the

right choice in forgoing any resemblance of a livable income for a few too many years

and sending me back to school. Yes, the Aerospace Controls Lab has literally been

my second home for four incredible years. Many people have contributed not only to

the completion of this thesis, but also to the enjoyment and productivity of these four

years. Foremost among these is my sweetheart, Erica. Her endless patience (well,

almost endless!), heart-warming smile and deep support made it both possible and

enjoyable to wade through the challenges of earning a PhD. Between her and our kids,

my little family is an immeasurable source of real happiness and of real motivation.

Second, I'd like to acknowledge my advisor, Jonathan How, for his vision, his

talent for research, and yes, for his patience also. Somehow he always seemed to know

just the right questions to ask to prod my research in the right direction. Equally

important was his remarkable ability to tactlessly tear my research apart without

being offensive, then follow up with positive and insightful suggestions regarding a

path forward. However, even with the many ups and downs, working in Jon's lab was

really fun for me (often to the point of distraction) and I feel lucky to have had him

as an advisor.

Third, I'd like to recognize Boeing Research and Technology for their generosity in

funding my research from start to finish. Specifically, I'd like to thank Matt Vavrina

and John Vian for the time they sacrificed to listen to, plan for, discuss and support

my research on both theoretical and practical levels. It has been a pleasure working

with both of them.

Finally, down in the trenches, I'd like to formally thank my amazing lab-mates

and publicly acknowledge that this thesis would not have been possible without their

help. Specifically, I owe a special debt of gratitude to: Brett Bethke, who is ar-

guably the best teacher I have ever had (well, academically anyway) and whose smile

is unceasing; Buddy Michini, who posesses a rare blend of confidence, tenacity and

incredible aptitude and who is always willing to lend a hand (or mind); Tuna Toks6z,

whose work ethic is truly inspirational and whose coding skills are second-to-none, he

is a lifelong friend; Kemal Ure, whose sharp math skills and friendly personality will

take him far; Alborz Geramifard, who understands all things Markovian better than

anyone I know and happily shares that knowledge to the benefit of others; Sameera

Ponda, whose ability to work and think under pressure is unsurpassed; Dan Levine,

whose sense of humor I will really miss, along with his knowledge of mathematical

notation and English grammar; Luke Johnson, who has the amazing ability to fun-

damentally understand just about any tricky concept you throw at him, and who can

easily make me smile; Brandon Luders, whose help I could always count on, from

theory to implementation; Frank Fan, whose knowledge of Matlab, Fortran, [TEX,

control theory, motorcycles and fish runs deep and with whom I've shared many a

laugh; Aditya Undurti, who basically taught me how to code and who has a knack

for explaining probability theory and Kalman filtering; Andy Whitten, whose work-

ing knowledge of all things R/C and contagious optimism made me a better engineer;

Vishnu Desaraju, who is probably remotely connected to a handful of computers right

now - all through a virtual machine running on his phone; Andrew Kopeikin, who

has a real talent for commnication, both in person and on paper; and Mark Cutler,

who has hit the ground running with a keen attention to detail, a strong work ethic

and polished Matlab skills. To these and others, thank you for the lessons, the laughs

and the memories.

Contents

1 Introduction

1.1 Problem Description and Solution Approach

1.2 Summary of Contributions .

1.3 T hesis O utline .

2 Background

2.1 Cooperative Multi-Agent Systems

2.2 Multi-Agent Planning

2.2.1 Consensus-Based Bundle Algorithm

2.2.2 Dynamic Programming

2.2.3 Markov Decision Processes

2.2.4 Multi-agent Markov Decision Processes

2.2.5 Decentralized Markov Decision Processes

3 An Intelligent Cooperative Control Architecture

3.1 Cooperative Planner

3.1.1 Generalized Assignment Problem Statement

3.1.2 Cooperative Planner Problem Statement . .

3.2 Performance Analysis

3.3 Learner

3.3.1 Reinforcement Learning

3.3.2 Maximum-Likelihood Estimation

3.3.3 Adaptive Control

23

. 23

. 24

. 25

. 27

. 27

. 29

. 29

33

. 36

. 38

. 38

. 41

... 42

. 43

. 45

. 45

3.4 Example Implementations

3.4.1 Consensus-Based Cooperative Task Allocation

3.4.2 Multi-agent Persistent Surveillance

3.4.3 Actor-Critic Policy Learning

3.5 Summary of iCCA.

4 Approximate Decentralized Multi-Agent Planning

4.1 Multi-agent Markov Decision Process (MMDP) . . .

4.1.1 MMDP State-Action Space, (S x A)

4.1.2 MMDP Transition Function, P

4.1.3 MMDP Cost Function, g

4.2 Decentralized Multi-agent Markov Decision

Process (Dec-MMDP)

4.2.1 Dec-MMDP State-Action Space, (S x A) .

4.2.2 Dec-MMDP Transition Function, P

4.2.3 Dec-MMDP Cost Function, g

4.3 Group-Aggregate Decentralized Multi-agent

Markov Decision Process (GA-Dec-MMDP)

4.3.1 GA-Dec-MMDP State-Action Space, (S x A)

4.4 Choosing Features

4.5 Propagating Features

4.6 Alternative Approaches

4.7 Implementation Considerations

5 Persistent Surveillance Mission

5.1 PSM Formulated as an MMDP . . .

5.1.1 State Space S

5.1.2 Control Space A

5.1.3 State Transition Model P . .

5.1.4 Cost Function g

5.2 PSM Formulated as a Dec-MMDP .

. 46

. 46

. 50

. 53

. 57

59

. 60

. 60

. 61

. 62

. 62

. 64

. 66

. 66

. 67

. 67

. 68

. 69

. 70

. . . . 72

73

. 75

. 76

. 77

. 77

. 79

. 80

. 8 1

5.2.2 Control Space A . 83

5.2.3 State Transition Model P . 84

5.2.4 Cost Function g . 84

5.3 PSM Formulated as a GA-Dec-MMDP 85

5.3.1 State Space S . 86

5.3.2 Action Space A . 88

5.3.3 State Transition Model P . 89

5.3.4 Cost Function g . 91

5.3.5 Single-agent Policy r"=1 . 92

5.4 Complexity Comparison of Mission

Formulations . 92

6 Simulation and Experimental Results 95

6.1 Experimental Architecture . 95

6.2 Simulation Results . 97

6.2.1 Cooperative Multi-Agent Planners 99

6.2.2 Learning and Performance Analysis 102

6.3 Hardware Setup and Results . 104

6.3.1 Mobile Robotic Agents . 104

6.3.2 Automated Robot Maintenance 106

6.3.3 Indoor Metrology . 110

6.3.4 Flight-test Results . 112

7 Conclusion 115

7.1 Future Work. 118

References 120

5.2.1 State Space S .

10

List of Figures

3-1 The intelligent cooperative control architecture (iCCA) 35

3-2 An instance of iCCA using a consensus-based planner 48

3-3 Cumulative residual scores w/ and w/o iCCA 49

3-4 An instance of iCCA with an MDP-based planner 51

3-5 Results of parameter learning under iCCA 52

3-6 Description of the UAV weapon-target assignment scenario for iCCA

application . 53

3-7 An instance of iCCA with a consensus-based planner and actor-critic

reinforcement learner . 54

3-8 Comparison of cumulative rewards w/ and w/o iCCA 56

5-1 The persistent surveillance mission (PSM) scenario) 74

5-2 Approximate scaling of state-transition matrices 91

5-3 Complexity comparison of centralized and approximate planning algo-

rithm s . 94

6-1 Experimental architecture . 96

6-2 Snapshots of the PHM simulation environment running a centralized

MMDP-based planner . 97

6-3 Snapshots of the PHM simulation environment running a decentralized

Dec-MMDP-based planner . 98

6-4 Comparison of cumulative costs for the PSM scenario with 3 agents . 101

6-5 Zoomed-in comparison of cumulative costs for the PSM scenario with

3 agents 101

6-6 Comparison of cumulative costs vs. the number of agents participating

in the PSM scenario . 102

6-7 Dec-MMDP simulation results . 103

6-8 Agent platforms used in flight experiments 105

6-9 Quadrotor helicopter developed in-house 106

6-10 Automated battery change/charge station 108

6-11 One battery swap sequence from a multi-swap mission. 109

6-12 Battery swaps over a 1 hour mission 110

6-13 The MIT ACL RAVEN flight-test facility 111

6-14 The Boeing Research and Technology VSTL flight-test facility 112

6-15 Dec-MMDP flight test results . 113

Chapter 1

Introduction

Life is full of decisions. Many are trivial and inconsequential, while others complex

with serious and far-reaching implications. As humans, we often match the time spent

making a decision with our perception of its long-term implications. For example, de-

ciding what to have for breakfast typically takes only a few moments, while deciding

which college to attend, or which job to take, can take months. Robots are no excep-

tion. Having become critical tools to warfighters, first-responders, homeland security

agents and quality control inspectors, unmanned robotic systems are faced with a

variety of decisions and must also balance evaluation with action while accomplishing

their objectives.

The use of robotic and unmanned systems has been rising sharply for more than

a decade and, so far, there is no plateau on the horizon. In fact, in 2009 the U.S. Air

Force started training more pilots to operate unmanned systems than to physically

fly fighters and bombers [110]. In addition, the U.S. Congress has mandated that

by the year 2015, one-third of all ground combat vehicles will be unmanned [110].

This increase in the use and development of robotic and unmanned systems is largely

due to their ability to amplify operator capability while simultaneously reducing costs

and/or risks. The potential for this ability was seen decades ago with the development

of pilot-less "aerial torpedoes" of WWI [41], and of "Shakey" in the late sixties, which

is arguably the first major mobile ground robot development effort recorded [37].

Despite the incredible advances in the technology behind these frontrunners, the

concept of multiple unmanned vehicles cooperating seamlessly with both manned

and unmanned platforms simultaneously remains a formidable barrier. One of the

primary challenges in overcoming this barrier is trust. Psychological reasons aside,

our inability to trust an unmanned system is evidenced by the fact that the current

operator/robot ratio sits near five to one. To invert this ratio, robot predictability

must be thoroughly tested and proven. This presents major challenges not only in

human-machine interfaces, but also in the verification and validation of the algorithms

running onboard the robotic systems. With regard to the latter, a fundamental

question that remains unanswered is "How do you test a fully autonomous system?"

Similarly, "How can one predict a robot's response to a situation for which it was not

designed, or pre-programmed?" To date, there is no accepted way of subjecting an

autonomous system to every conceivable situation it might encounter in the real world

[110]. Even lowering our expectations a notch, what statistically meaningful tests are

there that will lead to acceptable confidence in the behavior of these autonomous

systems? Only as the predictability of such systems is proven beyond current levels

will our trust grow enough to invert the operator/robot ratio.

A second challenge is interoperability. As a case in point, the Army's unmanned

system A, cannot seamlessly interact with the Navy's robotic system B, particularly

when the systems are not built by the same contractor [1101. One reason for this may

be that unmanned ground and maritime systems typically use a messaging standard

called the Joint Architecture for Unmanned Systems (JAUS) [52], while unmanned

aerial systems use a NATO-mandated STANAG-4586 [54] protocol. However, re-

cent efforts in this area have produced the promising JAUS toolset [55], an open,

standards-based messaging suite currently in beta testing[110]. Additionally, the

Joint Unmanned Aircraft Systems Center of Excellence [56] is also working toward

developing communication standards to encourage interoperability between systems

from different vendors.

Another challenge for unmanned systems is computation. This is a broad chal-

lenge, with facets including processing raw sensor data to planning sequences of future

actions. To put this in context, during 2009, U.S. unmanned aerial vehicles (UAVs)

sent 24 years' worth of video footage back to operators, a number that is expected

to escalate to nearly 720 years' worth in 2011 [110]. Needless to say, this number

doesn't exactly make you want to reach for the popcorn. Similarly, making decisions

to coordinate actions and plans within a team of robotic agents is combinatorial in

nature and thus requires an extreme amount of computation to search through all

possible combinations - quickly becoming as complex as the 720 years of video, even

for teams as small as two agents. Thus, scalability is another branch of this challenge

as planning for teams of robotic agents typically grows exponentially in the number

of agents.

This thesis aims, in part, to address this issue of scalability. Specifically, one

focus is on the development of approximation algorithms to reduce the computational

complexity of decentralized multi-agent planning methods, thereby improving their

scalability and ultimately enabling larger robot teams. Another focus of this thesis is

the integration of learning algorithms into a multi-agent planning architecture that

will enable online adaptation of planner parameters. Finally, we are interested in

implementing these algorithms in meaningful, real-world scenarios. As robots and

unmanned systems continue to advance technologically, enabling a self-awareness as

to their phyisical state of health will become critical. In this context, we focus on a

specific class of cooperative multi-agent systems we call persistent health management

(PHM) scenarios.

1.1 Problem Description and Solution Approach

In the context of multiple coordinating agents, many mission scenarios of interest

are inherently long-duration and require a high level of agent autonomy due to the

expense and logistical complexity of direct human control over individual agents.

Hence, autonomous mission planning and control for multi-agent systems is an active

area of research [30, 42, 48, 72, 74, 94, 95].

Long-duration missions are practical scenarios that can show well the benefits

of agent cooperation. However, such persistent missions can accelerate mechanical

wear and tear on an agent's hardware platform, increasing the likelihood of related

failures. Additionally, unpredictable failures such as the loss of a critical sensor or

perhaps damage sustained during the mission may lead to sub-optimal mission per-

formance. For these reasons, it is important that the planning system accounts for

the possibility of such failures when devising a mission plan. In general, planning

problems that coordinate the actions of multiple agents, where each of which is sub-

ject to failures are referred to as multi-agent persistent health management problems

[106, 107]. There are two typical approaches for dealing with PHM problems [22].

The first is to construct a plan based on a deterministic model of nominal agent per-

formance. Though computationally inexpensive, this approach ignores the possibility

of random, unplanned events and simply computes a new plan when measured per-

formance deviates further than expected. Since the system does not model failures,

it cannot anticipate them, but rather responds to them once detected, this approach

is referred to as reactive.

In contrast, a second, proactive approach to planning constructs plans based on

internal, stochastic models which aim to capture the inherent possibility of certain

failures. Using stochastic models increases the complexity of computing the plan, as

it then becomes necessary to optimize expected performance, where the expectation

is taken over all possible combinations of scenarios that might occur. However, since

proactive planners dictate actions that aim to mitigate the consequences of possi-

ble future failures, the resulting mission performance can be much better than that

achieved by a reactive planner. Naturally, this potential performance increase depends

on the validity of the underlying stochastic models. When there exists uncertainty

around these models or their parameters, performance can suffer.

While cooperative, proactive planners for PHM missions can be formulated in a

number of ways (e.g. LP, MILP, heuristic [4, 61-63]), this thesis adopts a dynamic

programming approach. While further background is provided in Chapter 2, dynamic

programming presents a natural framework for formulating stochastic, sequential de-

cision making problems, such as the cooperative planning problem.

This thesis has three main areas of focus. The first is to develop an architecture

that enables learning within multi-agent PHM systems. Learning algorithms provide

a mechanism for the planner to reduce uncertainties in the underlying model by tun-

ing the associated parameters online using accumulated sensor and performance data.

Second, this thesis introduces several approximation algorithms aimed to reduce the

complexity (and thus, increase the scalability) of multi-agent planning algorithms.

The goal of these approximations is to sufficiently reduce the computation of the

multi-agent planning problem such that an online solution becomes possible which

can fully utilize the benefits of the learning mechanisms within the architecture dis-

cussed previously. The third focus of this thesis is to demonstrate and validate the

architecture and approximate planning algorithms through both simulation and flight

tests involving multiple, coordinating agents in a realistic PHM scenario.

1.2 Summary of Contributions

As mentioned, one of the three focus areas of this thesis is the integration of multi-

agent planning algorithms with online adaptation, or learning, algorithms within

a common architecture. The motivation for such an architecture is that, in many

applications, the basic form of models internal to the planner are known, while their

associated parameters are not. As a result, the uncertainty around these parameters

may lead to significant suboptimal performance in the system. This is particularly

evident when the resulting control policy from an MDP-based multi-agent planner

(one that was modeled using uncertain parameters) is actually implemented on the

multi-agent system. In addition, these parameters may well be time-varying, which

introduces further sub-optimalities, especially if the planning problem is too large

to be solved online. To address these issues, an architecture for continuous online

planning, learning and replanning is developed that combines a generic multi-agent

planner with parameter learning and performance evaluation algorithms. With regard

to the development of such an environment, this thesis contributes the following:

9 A template architecture is developed to enable the integration of multi-agent

cooperative control techniques with online learning algorithms and performance

evaluation metrics. We call the result the intelligent Cooperative Control Ar-

chitecture, or iCCA. As a modular template, iCCA permits the use of a variety

of multi-agent planning algorithms, learning methods and evaluation functions.

9 The iCCA template is instantiated under multiple combinations of planner,

learner and evaluation components and is implemented in both simulation and

flight-test environments. Planner types include MDPs and a market-based iter-

ative auction algorithm called the consensus-based bundle algorithm (CBBA).

Under the learning component, techniques such as direct adaptive control, max-

imum likelihood estimation and reinforcement learning are included.

A second focus of this thesis is the development of approximation algorithms for

the decentralized control of multiple agents in a cooperative environment. The mo-

tivation for such approximations is primarily to avoid the exponential explosion of

required calculcations when considering the combinatorial coupling between partic-

ipating agents under an MDP-based planner. This thesis addresses this challenge

by allowing each agent to represent its teammates with an approximate model while

maintaining a full-fidelity model of itself. Thus, when viewed collectively, the team

contains a full model for each agent while the problem size for each agent remains

small enough that a solution is computable within the timescale of the planning

horizon (typically seconds, or minutes). We call our approach a decentralized multi-

agent Markov decision process (Dec-MMDP) to emphasize the connection with the

well-studied Multi-agent Markov decision process (MMDP) while first identifying the

decentralized nature of the problem formulation. With regard to the development of

these approximation algorithms, this thesis makes the following contributions:

e The Dec-MMDP algorithm is developed which introduces a mechanism for re-

ducing problem size by approximately representing individual teammates using

a feature-based state aggregation technique on the full agent model. A feature

is an abstraction of a set of states and actions. For example, a binary feature

"IsHealthy" is a simple abstraction of a potentially much larger, much more

complex set of states and actions that include state-dependent fuel and actua-

tor models. We analytically show that this algorithm results in a computational

complexity that now scales as D n-i in the number of agents n rather than |Cl",
where D << C. Also, we empirically show that the resulting performance is

within 10% of that achieved by its centralized counterpart.

" An extension to the basic Dec-MMDP formulation is developed where each

agent now models the aggregate set of its teammates rather than each teammate

individually. We call this extension the group-aggregate Dec-MMDP (GA-Dec-

MMDP). We analytically show that this extension results in a computational

complexity that can be made to scale linearly in the number of agents n, rather

than exponentially. Also, we empirically show that the resulting performance

is within 20% of that achieved by its centralized counterpart.

* A method is developed for generating the feature vector, #, used in the approx-

imation algorithms listed above. We show how the components of the cost/re-

ward function are translated into features, either binary or (n - 1)-ary. Also,

we analytically show how the resulting problem complexity is affected through

construction of these features.

A third focus area deals with the autonomous planning in multi-agent robotic

systems. In particular, we investigate the persistent surveillance mission (PSM), in

which multiple unmanned aerial vehicles (UAVs) and/or unmanned ground vehicles

(UGVs) must continuously search a designated region over indefinite periods of time.

This problem directly relates to a number of applications, including search and res-

cue, natural disaster relief operations, urban traffc monitoring, etc. These types of

missions are challenging largely due to their extended duration, which increases the

likelihood that one or more agents will experience health-related failures over the

course of the mission. The planning system must anticipate and plan for these fail-

ures while maximizing mission performance. In order to investigate these issues, this

thesis:

e Formulates the persistent surveillance mission as an MMDP, which fully cap-

tures the requirement of scheduling agents to periodically move back and forth

between the surveillance location and the base location for refueling and main-

tenance. In addition, we incorporate a number of randomly-occurring failure

scenarios (such as sensor failures, actuator degradations and unexpected fuel

usage) and constraints (such as the requirement to maintain a communication

link between the base and agents in the surveillance area) into the problem

formulation. We show that the optimal policy for the persistent surveillance

problem formulation not only properly manages asset scheduling, but also an-

ticipates the adverse effects of failures on the mission and takes proactive actions

to mitigate their impact on mission performance.

* Formulates the persistent surveillance mission as a Dec-MMDP and as a GA-

Dec-MMDP. We empirically show that the resulting policies properly manage

asset scheduling while anticipating the adverse effects of failures and attempt

to take proper proactive actions so as to mitigate their impact on mission per-

formance. We further show that implementing the resulting policies in the

persistent surveillance scenario results in mission performances within 10% and

20% of the optimal solution, respectively.

* Highlights the development of an automated battery changing/charging station

for hover-capable unmanned aerial vehicles. This technology is required for a

truly autonomous persistent capability.

1.3 Thesis Outline

The remainder of this thesis is outlined as follows: Chapter 2 presents background

material on multi-agent systems, dynamic programming, Markov decision processes

(MDPs) and reinforcement learning. Next, Chapter 3 discusses the details of the in-

telligent cooperative control architecture (iCCA) and motivates the need for reduced-

complixity planning methods that can be solved online. Chapter 4 presents several

approximation algorithms designed to exploit teammate structure in a multi-agent

setting in order to reduce the compuational complexity of solution generation to

within the limits of online calculation. Specifically, the decentralized and group-

aggregate decentralized multi-agent Markov decision processes are formulated. A

particular PHM scenario known as the persistent surveillance mission (PSM) is out-

lined in Chapter 5, and both simulation and flight-test results are given in Chapter

6 as both approximation algorithms are implemented under the iCCA framework.

Finally, conclusions are offered and future work is suggested in Chapter 7.

22

Chapter 2

Background

The purpose of this chapter is to provide the foundational underpinnings of the re-

mainder of this thesis. The sections that follow provide the conceptual and algorith-

mic building blocks for the topics of cooperative multi-agent systems, multi-agent

planning, and reinforcement learning. Where appropriate, relevant work from the ex-

isting body of literature is cited and an effort is made to tie it to the scope, purpose

and contributions of this thesis.

2.1 Cooperative Multi-Agent Systems

To begin, we address the question "What is an agent"? It turns out there are a

handful of definitions centering around an "autonomous entity". For example, in the

aritificial intelligence community, an agent can be either physical or virtual, but must

be able to perceive at least some of its environment, communicate with other agents,

and act in order to achieve its goals [34, 91]. In computer science, agents typically

assume a more virtual, or software-based, role while in cooperative control an agent

commonly refers to a physical robot with tangible sensors and actuators. Russell and

Norvig [91] provide a directory of agent types, two of which are most relevant to this

thesis: utility-based and learning agents.

Utility-based agents are distinguished by their ability to calculate the "utility"

or "value" of a particular state. This allows for comparisons among reachable states

that aids the decision of which action to take. A rational utility-based agent chooses

the action that is expected to result in the most value, where this expectation may

utilize models of the environment and the agent's dynamics [91].

Learning agents have the advantage of becoming more competent over time while

acting in unknown, or partially known, environments. A learning agent is most eas-

ily thought of as comprised of a performance and a learning element. The learning

element distinguishes this type of agent above the others by using observations re-

garding its current performance (e.g. in the form of temporal difference errors) to

make improvements on future performance by modifiying the performance element

itself [91].

The remainder of this thesis considers an agent to be both utility-based and learn-

ing, as in the case of Bayesian reinforcement learning [102]. However, we also consider

an agent to be a physical, autonomous entity capable of perceiving, communicating

and acting in order to achieve its goals. Given this notion, a cooperative multi-agent

system (CMAS) is an environment with multiple communicating agents whose ac-

tions change the perceivable state of the environment [34]. Sources of uncertainty

within a CMAS include sensor noise, agent action outcome, teammate action choice

and teammate action outcome.

2.2 Multi-Agent Planning

The overall challenge of planning in a CMAS is selecting coordinating actions between

all agents in the presence of the aforementioned uncertainties.There are, in general,

two basic branches of cooperative planning for addressing this challenge: centralized

and decentralized planning. In a centralized approach, a single agent collects available

information and generates/dictates the actions, or plans, of all other participating

agents. Essentially, centralized approaches treat the whole team as a single agent as

all information is known. In general, centralized algorithms tend to be conceptually

simpler, easier to optimize, but less robust to failures [8].

In a decentralized approach, each agent decides for itself what actions it will take or

what plans it will implement, based on information perceived and/or communicated to

it. While this approach has the benefit of excluding single-point-of-failure weaknesses,

one particular challenge that does not arise in centralized architectures is that each

agent has no guarantee on what actions or plans its teammates might implement.

Now, in certain cases, e.g. identical agents, there are methods of dealing with this

issue. One such approach is known as implicit coordination [39] and involves each

agent solving an identical, centralized problem with a mutually agreed upon input.

In these cases, the same input is run through the same algorithm and results in the

same predictable output. The remainder of this thesis is restricted to the common

case where the agents in a CMAS run identical algorithms, but do not necessarily

experience identical inputs. This is known as explicit coordination [39] and means

that communication (and possibly iteration) is required to acheive agreement, or

coordination, among the agents' plans. The subsections that follow are intended to

provide sufficient background information regarding several algorithms used later in

this thesis for formulating the decentralized cooperative multi-agent planning problem

under explicit coordination.

2.2.1 Consensus-Based Bundle Algorithm

The consensus-based bundle algorithm (CBBA) is an approximate, decentralized,

multi-agent market-based task-assignment algorithm that alternates between two

phases: Bundle construction and Deconfliction. In the first phase, each vehicle gen-

erates a single, ordered "bundle" of tasks by sequentially adding the task that yields

the largest expected marginal score. The second phase resolves inconsistent or con-

flicting assignments through local communication between neighboring agents [26].

The algorithm iterates between these two phases until agreement is reached on the

assignments.

Specifically, given a list of Nt tasks and Na agents, the goal of the task allocation

algorithm is to find a conflict-free matching of tasks to agents that maximizes some

global reward. An assignment is said to be free of conflicts if each task is assigned

to no more than one agent. The global objective function is assumed to be a sum of

local reward values, while each local reward is determined as a function of the tasks

assigned to that particular agent. The task assignment problem described above can

be written as the following integer (possibly nonlinear) program:

max E Ecj(Tij (Pi(xi)))xij
i=1 j=1

Nt

subject to: Z xij < Lt, Vi E I
j=1
Na

Zxu < 1, VI E (2.1)

xi 3 E {o, 1}, V(i, j)EIX

where the binary decision variable xij is 1 if agent i is assigned to task j, and xi E

{0, I}Nt is a vector whose j-th element is xij. The index sets are defined as I A

{1, ... , Na} and J {1,. . . , Nt}. The vector pi E (J U { 0 })Lt represents an ordered

sequence of tasks for agent i; its k-th element is j E J if agent i conducts j at the

k-th point along the path, and becomes 0 (denoting an empty task) at the k-th point

if agent i conducts less than k tasks. Lt is a limit on the maximum amount of tasks

that can be assigned to an agent. The summation term in brackets in the objective

function represents the local reward for agent i. Key assumptions underlying the

above problem formulation are:

" The score cij that agent i obtains by performing task j is defined as a function of

the arrival time Tij at which the agent reaches the task (or possibly the expected

arrival time in a probabilistic setting).

* The arrival time ri is uniquely defined as a function of the path pi that agent

i takes.

" The path pi is uniquely defined by the assignment vector of agent i, xi.

Many interesting design objectives for multi-agent decision making problems fea-

ture scoring functions that satisfy the above set of assumptions. The time-discounted

value of targets [2, 11] is one such example, in which the sooner an agent arrives at the

target, the higher the reward it obtains. However, CBBA allows for various design

objectives, agent models, and constraints through the designer's choice of an appro-

priate scoring functions. If the resulting scoring scheme satisfies a certain property

called diminishing marginal gain (DMG), a provably good feasible solution is guaran-

teed. Furthermore, the score function allows for time-discounted rewards, tasks with

finite time windows of validity, heterogeneity in agent capabilities and vehicle-specific

fuel costs, all while preserving the robust convergence properties [82].

2.2.2 Dynamic Programming

Dynamic pogramming is a mathematical framework for posing sequential decision

problems, including multi-agent extensions. The basic framework incorporates two

main elements: A system model and a cost function [12]. The system model describes

the dynamics of the system, possibly including stochastic state transitions. The cost

function depends on the system state and potentially also the decision made while in

that state. The solution of a dynamic program is a policy, which essentially constitutes

a state-dependent rule for choosing which action to take from any particular state

so as to minimize the expected, discounted sum of the costs incurred as specified

by the cost function. When the state space associated with a particular dynamic

programming problem is discrete, it becomes a Markov decision process (MDP).

2.2.3 Markov Decision Processes

A Markov decision process (MDP) is a versatile mathematical framework for formu-

lating stochastic, sequential decision problems. Common among the many flavors of

MDPs are the concepts of state, action, transition and utility (also known as value).

A state, in the MDP context, defines a current snapshot of the system and simula-

taneously summarizes its relevant history. The state space of an MDP is the space

spanned by the union of all individual states. Action and transition are coupled in

the sense that given an initial state s, an action a causes a transition of the system

to a new state s'. The Markov assumption dictates that the probability of reaching a

single state s' is a function of the previous state s and not of any other state. This es-

sentially means that all the information needed for making intelligent decisions should

be wrapped into the notion of the state. Now, from any given state of the system, the

decision problem becomes "Which action do I take?". It is in addressing this question

that the fundamental concept of utility, or value, arises. Utility is conceptually simple

- it is a metric that defines the relative value of the system being in one state over

the others in the state space. Mathematically, the utility of a given state, J(s), is

connected to the current policy, w, and cost function g(s) as

oc
min J,(so) = min E (akg(sk,7(sk)) . (2.2)
7rCfl irEH [JO

A state's utility, J(s), is also known as its "cost-to-go" or, the expected cost that

the agent will receive when starting from that state and thereafter following some

fixed policy and is calculated based on reward function and transition dynamics. The

solution of an MDP is called a policy x, which specifies an action for every state the

agent might reach. The optimal policy, 7r*, specifies the best action to take at each

state, i.e. the one that will lead to the highest expected utility over the planning

horizon. An infinite-horizon, discounted MDP is specified by the following tuple: (S,

A, P, g, a), where S is the state space, A is the action space, P(s'|s, a) gives the

probability of transitioning into state s' E S given starting from state s C S and taking

action a c A, and g(s, a) gives the cost of taking action a from state s. We assume

that the model, P, is known. Future costs are discounted by a factor 0 < a < 1.

The outcome of the MDP, e.g. solution, is a policy, denoted by 7 : S -+ A, and is

a mapping of states to actions. Given the MDP specification, the policy is found by

minimizing the cost-to-go function J, over the set of admissible policies 1I, as shown

in Equation (2.2) above.

The cost-to-go for a fixed policy 7r satisfies the Bellman equation [16]

J7 (s) = g(s, w(s)) + a E P(s' s, (s)) J,(s') Vs E S, (2.3)
s' CS

which can also be expressed compactly as J, = TJr, where T, is the (fixed-policy)

dynamic programming operator [12, 13]. Further details regarding MDPs, their com-

plexity and solution approaches can be found in [79, 91, 102].

2.2.4 Multi-agent Markov Decision Processes

A multi-agent Markov decision process (MMDP) is essentially a large MDP that

simultaneously calculates decisions for more than one decision-maker. An MMDP

generalizes the above-formulated MDP to multi-agent, cooperative scenarios. An

infinite-horizon, discounted MMDP is specified by the following tuple: (n,S, A, P,

g, a), where n is the number of agents, S is now the joint state space, A is the

joint action space, P(s'|s, a) gives the probability of transitioning into joint state

s' C S from joint state s C S having taken joint action a E A, and g(s, a) gives the

cost of taking action a in state s. In the general formulation, the joint state and

action spaces are each fully-coupled and cannot be factored by agent. However, in

this thesis we assume the agents to be transition-independent. That is, we assume

the transition dynamics of one agent are completely de-coupled from, and therefore

un-influenced by, those of any other agent. This assumption enables the joint state

space to be factored as S = H Si Vi C {1 ... n}. Similarly, the joint action space

becomes A = H Ai Vi E {1 ... n}, where Si and Ai are the local state and action

spaces for agent i. It is important to note that if the cost/reward g is factorable, the

agents are considered reward-independent and if this is in conjunction with transition-

independence, then the MMDP becomes n separable MDPs. In this thesis, the agents'

rewards are considered to be coupled.

2.2.5 Decentralized Markov Decision Processes

In an MMDP, each agent has individual full observability of the joint state. This

means that each agent can itself observe the full, joint state. Hence, MMDPs do

not model observations and have been shown to be NP-Complete [70]. Relaxing

individual full observability just a notch, we arrive at joint full observability, which

means that only the combined observations of all agents can represent the full joint

state. Under this new assumption, we arrive at a decentralized Markov decision

process (Dec-MDP), which is a generalization of the MMDP in the sense that local

full observability is relaxed to joint full observability. Specifically, a Dec-MDP is

specified by the following tuple: < n, S, A, P, g, a, Z, 0 >, where n is the number

of agents, S is again the joint state space, A is again the joint action space, P(s'|s, a)

again gives the probability of transitioning to joint state s' when starting from joint

state s and taking joint action a, and g(s, a) again gives the cost of taking action a

from state s. New to this formulation however, are the set Z and the model 0. The

set Z contains all joint observations and the model O(zls, a) gives the probability of

receiving joint observation z C Z given joint state s and joint action a. Under the

assumption of joint full observability, for each joint state-action pair there exists a

joint observation z = {zi ... z} such that O(zls, a) = 1. The solution of a Dec-MDP

is a policy that maps sequences of observations to a joint action.

It is important to note that in moving from a centralized to a decentralized formu-

lation, the shift from individual to joint full observability causes the resulting problem

complexity to jump from NP-Complete to NEXP-Complete [43], which includes the

class of super-exponential problems. The primary reason for such a dramatic increase

in computational complexity is the fact that now, agents must maintain, and reason

over, a history of observations in order to infer a set of possible joint states that they

might be in. For this reason, decentralized decision problems are considerably more

difficult than their centralized counterparts - as all information cannot necessarily be

shared at each time step. For further details regarding the complexity of Dec-MDPs,

the interested reader is referred to Refs [15] and [43], where such details can be found.

Despite the added complexity, decentralized planning and control problems are

ubiquitous. Examples include space exploration rovers, load balancing in decentral-

ized queues, coordinated helicopters and sensor network management [95, 115]. The

general problem in question here turns out to be a DEC-POMDP, where joint full

observability is further relaxed to partial observability - that is, each agent may have

different partial information about the state of the world. In either case however, the

agents must cooperate to optimize some joint cost/reward function. If each agent were

to have its own cost/reward function, the result is a partially observable stochastic

game (POSG) [47].

Communication in a multi-agent setting can help reduce the general complexity

from NEXP-Complete. When messages from teammates contain information about

the state of the system, or about their intentions, the complexity can be reduced again

to NP-Complete [95, 99]. Essentially, this amounts to using inter-agent communica-

tion to replace individual full observability. In this thesis, we restrict our scope to

systems with individual full observability of the state, be it through observation or

communication.

32

Chapter 3

An Intelligent Cooperative Control

Architecture

Most applications of heterogeneous teams of autonomous robots require that partici-

pating agents remain capable of performing their advertised range of tasks in the face

of noise, unmodeled dynamics and uncertainties. Many cooperative control algorithms

have been designed to address these and other, related issues such as humans-in-the-

loop, imperfect situational awareness, sparse communication networks, and complex

environments [58, 68, 93].

While many of these approaches have been successfully demonstrated in a variety

of simulations and some focused experiments, there remains room to improve overall

performance in real-world applications. For example, cooperative control algorithms

are often based on simple, abstract models of the underlying system. This may aid

computational tractability and enable quick analysis, but at the cost of ignoring real-

world complexities such as intelligently evasive targets, adversarial actions, possibly

incomplete data and delayed or lossy communications.

Additionally, although the negative influence of modeling errors are relatively well

understood, simple and robust extensions of cooperative control algorithms to account

for such errors are frequently overly conservative and generally do not utilize observa-

tions or past experiences to refine poorly known models [1, 19]. Despite these issues

however, cooperative control algorithms provide a baseline capability for achieving

challenging multi-agent mission objectives. In this context, the following research

question arises: How can current cooperative control algorithms be extended to result

in more adaptable planning approaches?

To address this question while improving long-term performance in real-world

applications, we propose an extension to the cooperative control algorithms that

enables a tighter integration with learning techniques. Many learning algorithms are

well suited for on-line adaptation in that they explicitly use available data to refine

existing models, leading to policies that fully exploit new knowledge as it is acquired

[20, 861. Such learning algorithms, combined with a cooperative planner, would be

better able to generate plans that are not overly conservative. However, learning

algorithms are also prone to limitations, including the following:

" They may require significant amounts of data to converge to a useful solution

" Insufficient coverage of the training data can lead to "over-fitting" and/or poor

generalization

" There are no guarantees on the robustness of the closed learner-in-the-loop

system (robustness in learning algorithms typically refers to the learning process

itself)

* Exploration is often explicit (e.g., by assigning optimistic values to unknown

areas) which, in the context of cooperative control, can lead to catastrophic

mistakes

* Scenarios where agents do not share complete knowledge of the world may cause

the learning algorithm to converge to local minima or to fail to converge at all

In this thesis, we combine learning with an underlying cooperative control al-

gorithm in a general, synergistic, solution paradigm called the intelligent Coopera-

tive Control Architecture (iCCA), where some of these limitations can be addressed.

Firstly, the cooperative planner can generate information-rich feedback by exploiting

the large number of agents available for learning, addressing problems raised by in-

sufficient data. Second, learning algorithms are more effective when given some prior

iCCA' disturbances

observations
noise

Figure 3-1: An intelligent Cooperative Control Architecture designed to mitigate
the effects of modeling errors and uncertainties by integrating cooperative control
algorithms with learning techniques and a feedback measure of system performance.

knowledge to guide the search and steer exploration away from catastrophic decisions.

A cooperative planner can offer this capability, ensuring that mission objectives are

achieved even as learning proceeds. In return, the learning algorithm enhances the

performance of the planner by offering adaptability to time-varying parameters. We

later show that this combination of cooperative control and learning results in better

performance and more successful executions of real-world missions.

Figure 3-1 shows the intelligent Cooperative Control Architecture (iCCA), that

was designed to provide customizable modules for implementing strategies against

modeling errors and uncertainties by integrating cooperative control algorithms with

learning techniques and a feedback measure of system performance. The remainder

of this chapter describes each of the iCCA modules followed by a sampling of ex-

ample iCCA applications. Specifically, Section 3.1 discusses the cooperative control

algorithm requirements, Section 3.2 describes the observations and performance met-

ric(s) and Section 3.3 outlines the requirements and assumptions associated with the

learning element of iCCA. Following these descriptions, Section 3.4 provides a few

examples of the application of iCCA.

3.1 Cooperative Planner

The term planning carries several meanings. To the Al community, planning is search-

ing for a sequence of actions that, when executed, enable the agent to achieve a par-

ticular goal. To a decision-theorist, planning means choosing actions that maximize

expected reward (utility, payoff), where the reward is a function of current state, goal

state and probability of action outcomes. From a control-theoretic point of view,

planning involves calculating a sequence of control inputs to track a reference tra-

jectory with minimal error. Underlying these points of view is the common notion

of optimized action selection. In the context of multi-agent planning, it is common

to interchangeably consider optimized task selection, as tasks are readily associated

with actions. For planning purposes, the task assignment optimization must be able

to quantify the overall cost of a task. For example, given a heterogeneous team of

cooperating agents with combined state x, roles a and control input u, task cost can

be expressed over horizon T as

Jtask(T, x, a, h) = L (Ex(t), a(t), h(t)) dt + V[Ex(T), a(T)] (3.1)
incremental cost terminal cost

where L and V respectively denote the incremental and terminal cost models associ-

ated with the task (following the notation of Ref [72]). Using this definition, allowing

T -+ oc creates a persistent task while setting L = 0 creates a task with only a

terminal cost/reward. The model of incremental costs is a potential source of errors

and is a function of the expected value of the state at time t, Ex(t), agent roles a(t)

and the disturbed control input h(t) = u(t) + w(t), with disturbance w(t). In this

representation, both x(t) and w(t) are uncertain. To simplify the task allocation

optimization (via reduction of the search space), we assume task independence: task

cost is not a function of any other task cost and no ordering constraints are placed

on any set of tasks. That is, each task can be evaluated and assigned independent

of any others. This is not to say that we cannot require specific actions to follow a

prescribed sequence. For such a case, we simply lump the constrained set of actions

together into a single task.

Regardless of how it is formulated (e.g. MILP [2, 5] MDP [20], CBBA [26]), the

cooperative planner, or cooperative control algorithm, is the source for baseline plan

generation within iCCA. It is important to note that the performance and robustness

properties of the integrated system rely on the accuracy of the planner. In other words,

we assume contains sufficient models to avoid costly mistakes, but is not necessarily

detailed enough to provide an optimal solution. Therefore, the planner in iCCA is

augmented to provide access to these internal models so that the learning element

can assist in their online refinement. For those planner types that do not maintain

and/or use explicit internal models, the learner is either embedded into the planner

(e.g. reinforcement learning based planners), or the learner is implemented to alter

planner output under certain conditions. An example of this type of planner-learner

relationship is shown in Section 3.4.3, where the learner suggests candidate actions

to the planner.

Output from the performance analysis element is also available to the planner for

use in its internal optimization. In general, the cooperative planning algorithm can

act directly upon the performance observed. For example, measured versus expected

performance can produce what is often referred to as temporal-difference errors [17],

which can drive a multitude of objective functions, including those found in many

cooperative planning algorithms. In effect, we connect the cooperative planner with

both a learning method and a performance analysis method in an attempt to gener-

ate cooperative control solutions that are both robust and adaptable to errors and

uncertainties without being unnecessarily conservative.

Building on the above definition of "task", we consider first the generalized assign-

ment problem, which underlies many multi-agent task allocation schemes, including

the problem of interest: cooperative tasking. We then introduce the cooperative task-

ing, or cooperative planning problem, and formulate it as both a dynamic program

and as a decentralized auction.

3.1.1 Generalized Assignment Problem Statement

The multi-agent task allocation problem is, in essence, an instance of the generalized

assignment problem, which is an NP-hard combinatorial optimization even when

omitting the possibility of uncertainty. It can be stated as follows: Consider NA

agents and NT tasks where any agent can be assigned to perform any task. Each

task has both incremental and terminal costs/rewards that may vary depending on the

agent-task assignment. Find an overall assignment that minimizes the total cost J

while respecting each agent's budget wi. The general problem can formally be written

as the following optimization:

NA NT

minimize J =)7 Eziy Jij (3.2)
i=1 j=1

NT

SAt. x ij Jij < wi, i =I1 ... NA
j=

1

NA

)zij <l, j = 1,... NT
i=1

zij E {o, 1}, i = 1,. ... NA, j =1, . .. NT

where xi2 are the binary decision variables indicating whether agent i is assigned to

task j and J3 represents the cost of such an assignment, which can be expressed as in

(3.1) through choice of incremental and terminal costs for task j. The first constraint

ensures that each agent does not incur more cost than the designated budget wi allows.

The second constraint ensures that each task is assigned to a maximum of one agent,

and the final constraint enforces the binary nature of each agent-task assignment.

Under this formulation, the optimization is centralized and coordination is forced. In

addition, the optimization in (3.2) must be re-evaluated whenever there is a change

in the number of agents NA, the number of tasks NT, or in the cost structure Jij.

3.1.2 Cooperative Planner Problem Statement

Cooperative planning is rooted in the generalized assignment problem and can be

expressed with almost identical language as follows: Consider NA agents and NT

tasks where agent and task types must be compatible for assignment. Each task has

models for both incremental and terminal costs/rewards that may vary depending on

the agent-task assignment. Find an overall assignment that attempts to minimize the

total cost J while respecting each agent's budget wi. The cooperative planning prob-

lem can be formulated in many ways, some of which are more natural than others

given specifics of the application. For example, agent models (e.g. dynamics, health,

behavior, rules-of-engagement) may have a significant effect on the optimality and

sensitivity of plan output, yet are omitted from many problem formulations, as in

the generalized assignment problem. Formulations such as dynamic programming

however, can capture these models at the price of added complexity. In the subsec-

tions that follow, we outline two formulations of interest: dynamic programming and

decentralized auctions.

Cooperative Planning via Dynamic Programming

Dynamic programming (DP) is a powerful framework for solving sequential decision-

making problems, such as multi-agent task allocation. The DP approach consists of

two main components: a model of system dynamics and a cost function [12, 23]. The

dynamic model describes the evolution of the state of the system over time under

a given sequence of actions and is susceptible to modeling errors and parametric

uncertainties. The cost function is additive over time and depends on the state of the

system. Solving a DP amounts to finding a state-dependent rule for action selection,

T* that minimizes the total expected time-discounted cost incurred, as given by

00

J,* (so) = min E E a kg (sk, 7r(s8)), (3.3)

where the expectation E is taken over all possible future states {si, s2, .. .}, given the

initial state so and the policy r. This policy can be extremely sensitive to variations

in the dynamic model, including mild uncertainties in the model parameters [86].

This motivates the desire to learn model parameters over time.

We begin the DP formulation of the multi-agent task allocation problem by defin-

ing the system "state" at any given stage k by the number of tasks remaining to be

allocated, nT(k), and the number of agents available for assignment, nA(k). Letting

Xk - [rIT(k), nA(k)]T denote a state in the state space S = Z+ x Z+, one possible DP

formulation is due to Alighanbari [2] and is given by the following Bellman equation:

JA (Xk) - min E Pi(k)vi + aJ*,*+(Xk+l) VXk E S (3.4)
Uk~lkkBnA(k) (iCUk

s.t. Xk+1= [fT(k) - |ui|, nA(k) - \UkH

k E {, ..., K - 1}

J g = 0

where Uk denotes the set of tasks to be allocated at time k, vi is the value of task i in

the set Uk, P is the probability of successfully performing task i and K is the maxi-

mum number of timesteps considered. Planner performance at time k is encoded in

Jk. In this formulation, P(k) and vi are potential sources of modeling errors and may

encode significant uncertainty. In addition, computation time grows exponentially in

the number of tasks, making this approach infeasible for large teams of agents and/or

large numbers of tasks, and therefore ripe for new approaches toward approximations

and learned simplifications, such as those presented in Chapter 4.

Cooperative Planning via Decentralized Auction

The Consensus-Based Bundle Algorithm (CBBA) [26] is a decentralized auction-based

approximation to the generalized assignment problem given in Section 3.1.1. The ob-

jective of CBBA is to find a conflict-free assignment of tasks to agents that maximizes

some global reward. An assignment is said to be free of conflicts if each task is as-

signed to no more than one agent. The global objective function is assumed to be

the sum of local reward values, while each local reward is determined as a function

of the tasks assigned to that particular agent. CBBA consists of iterations between

two phases: a bundle building phase where each agent greedily generates an ordered

bundle of tasks, and a consensus phase where conflicting assignments are identified

and resolved through local communication between connected agents.

While the details of the formulation are left to Ref [26], there are several core

features of CBBA that can be utilized to develop an efficient planning mechanism for

heterogeneous teams. First, CBBA is a decentralized decision architecture, resulting

in a lower computational overhead as required for centralized planning with a large

number of agents. Second, CBBA is a polynomial-time algorithm [26]. The worst-

case complexity of the bundle construction is O(NTLt), where NT is the number

of tasks and Lt is the upper-bound on the length of an agent's task bundle (Lt <

NT). CBBA converges within max{ NT, LtNA}D iterations, where D is the network

diameter (D < NA). Thus, the CBBA framework scales well with the size of the

network and/or the number of tasks (or equivalently, the length of the planning

horizon). Third, various design objectives, agent models, and constraints can be

incorporated by defining appropriate scoring functions. If the resulting scoring scheme

satisfies a certain property called diminishing marginal gain (DMG) [26], a provably

good feasible solution is guaranteed. The application of learning algorithms within

the scoring function can yield significant improvements in planner performance.

3.2 Performance Analysis

One of the main reasons for encouraging cooperation in a MAS is to minimize some

cost, or otherwise optimize some objective function. Very often this objective involves

time, risk, fuel, or other similar physically-meaningful quantities. The purpose of the

performance analysis module is to accumulate observations, glean useful information

buried in the noisy observations, categorize it and use it to improve subsequent plans.

In other words, the performance analysis element of iCCA attempts to improve agent

behavior by diligently studying its own experiences [91] and compiling relevant signals

to drive the learner and/or the planner.

The use of such feedback within a planner is of course not new. In fact, there are

very few cooperative planners which do not employ some form of measured feedback.

The focus of the performance analysis block within iCCA is to extract relevant infor-

mation from the observation stream and formulate a meaningful metric that can be

used in the planner itself, and/or as input to the learner. What exactly is, or can be,

extracted from the observations is, of course, application specific. However, as the

objective is performance improvement, this module is connected with the cooperative

planner so as to gain access to the underlying cost/reward function of the problem.

In Section 3.4, we implement several methods of performance analysis based on

observed data. In the first example, we construct temporal-difference errors based on

expected and observed cost and use these errors to drive the learning of uncertain

parameters. Second, we record state-dependent observations to construct the param-

eters used by the learner. Finally, we implement a method for analyzing risk as a

form of performance and couple this with a reinforcement learning algorithm.

3.3 Learner

Although learning has many forms, iCCA provides a minimally restrictive framework

where the contributions of the learner include the following:

9 Assist the cooperative planner by adapting to parametric uncertainty of internal

models

e Suggesting candidate actions to the analysis module that the learner sees as

beneficial

Learning can leverage the multi-agent setting by collecting observations from each

member of the team and using the information from sensor data and observed or

inferred mission successes (and failures) as feedback signals to identify possible im-

provements, such as tuning the weights of an objective function. However, a trade-

mark of learning algorithms is that negative information is extremely useful, albeit

extremely costly in the cooperative control setting. Active learning algorithms can

explicitly balance the cost of information gathering against the expected value of in-

formation gathered. In the sections that follow, several types of learning algorithms

are considered for inclusion in the iCCA framework, namely reinforcement learning,

maximul-likelihood estimation, and adaptive control techniques.

3.3.1 Reinforcement Learning

The underlying goal of the two reinforcement learning algorithms presented here is

to improve performance of the cooperative planning system over time using observed

rewards by exploring new agent behaviors that may lead to more favorable outcomes.

The details of how these algorithms accomplish this goal are discussed in the following

sections.

Sarsa

A popular approach among MDP solvers is to find an approximation to Q"(s, a)

(policy evaluation) and update the policy with respect to the resulting values (policy

improvement). Temporal Difference learning (TD) [103] is a traditional policy evalu-

ation method in which the current Q(s, a) is adjusted based on the difference between

the current estimate of Q and a better approximation formed by the actual observed

reward and the estimated value of the following state. Given (St, at, rt, St+1, at+1) and

the current value estimates, the temporal difference (TD) error, 6t, is calculated as:

6t(Q) = rt +7Q"(st+1, at+1) - Q'(st, at).

The one-step TD algorithm, also known as TD(0), updates the value estimates using:

Q'(st, at) = Q'(st, at) + a6t(Q), (3.5)

where a is the learning rate. Sarsa (state action reward state action) [102] is basic

TD for which the policy is directly derived from the Q values as:

Sarsa - C, a = argmaxaQ(s, a)
r Oe(a)r

,Otherwise

This policy is also known as the c-greedy policy1 . It is important to note however,

that many exploration strategies can be used here, in place of c-greedy.

Natural Actor-Critic

In reinforcement learning, a major challenge is the so-called "exploration vs. exploita-

tion" trade-off. Often, reinforcement learning algorithms use an E-greedy approach

to dictate their exploration. This essentially means that with a fixed-probability E,

the agent will choose to explore by randomly choosing an action. Otherwise, with

probability 1- c, the agent will greedily choose the action that most likely leads to the

state with the highest value or, in other words, the action with the highest Q-value.

This approach is simple to implement and has some nice properties (e.g. it yields

ergodic policies), but consider if the probability of exploration were adjustable based

on past experience and observations? It is conceivable that this would improve explo-

ration. One method to accomplish this is to separate the policy and the Q-function

into different elements. Actor-critic methods parameterize the policy and store it

as a separate entity named the actor. In this thesis, the actor is a class of policies

represented as the Gibbs softmax distribution:

AC(= eP(s,a)/r
S(aP(sb))T'

in which P(s, a) E R is the preference of taking action a in state s, and T E [0, oc) is a

"temperature" knob allowing for shifts between greedy and random action selection.

For a tabular representation, the actor update amounts to:

P(s, a) <- P(s, a) + aQ(s, a)

following the incremental natural actor-critic framework [24]. The value of each state-

action pair (Q(s, a)) is held by the critic and is calculated/updated in an identical

manner to Sarsa in Equation (3.5).

'Ties are broken randomly, if more than one action maximizes Q(s, a).

3.3.2 Maximum-Likelihood Estimation

Maximum likelihood estimation is an analytic procedure to obtain the most likely

estimate of a parameter that produced, or is otherwise relevant to, a set of data sam-

ples. In the context of the iCCA framework, the parameters of interest are typically

internal to the Cooperative Planning module (e.g. how fast the agent can move, the

probability of a certain event occuring, etc.) and the data samples are the result of

observations and are provided by the Performance Analysis module. The process of

calculating the maximum likelihood estimate begins with writing out the likelihood

function of the data samples, i.e. the probability of obtaining these samples given

some model of their underlying probability distribution. This model is not perfectly

known, and contains unknown and/or uncertain parameters. The values of these pa-

rameters that maximize the sample likelihood are known as the Maximum Likelihood

Estimates or MLE's [50].

Drawbacks to maximum likelihood estimation include the fact that the resulting

MLE can be heavily biased when only a small set of samples is used, and that cal-

culating the MLE can require solving very complex non-linear equations. However,

on the positive side, the MLE becomes an unbiased, minimum variance estimate

as the sample size increases and MLEs have approximate normal distributions and

approximate sample variances that can be used to generate confidence bounds [50].

3.3.3 Adaptive Control

Adaptive control is an approach for handling parameter uncertainties and/or time-

varying systems. Application examples include fire-fighting helicopters that expe-

rience drastic changes in mass during a mission or high-performance aircraft that

are capable of flying in sub- and super-sonic flight envelopes [64]. In these cases,

parameters that influence system dynamics are changing over time, or are not pre-

cisely known. Adaptive control is an ideal candidate for such systems since online

parameter estimation is integrated into the control scheme, thus enabling consistent

performance even in the presence of model-parameter variations and uncertainties.

In Section 3.4, we give examples of active and passive maximum likelihood learners

in the context of a multi-agent Markov Decision Processes and a decentralized market-

based planner. Finally, we give an example of an actor-critic reinforcement learner

[24] biased and guided in its exploration by a decentralized market-based planner.

3.4 Example Implementations

In this section, we implement iCCA in the context of several cooperative control

scenarios and show how mission performance is improved over more traditional coop-

erative control strategies. First, we use a decentralized auction-based algorithm called

consensus-based bundle algorithm (CBBA) [26] as the cooperative planner. Second,

we implement a multi-agent Markov decision process (MMDP) with uncertain model

parameters. Finally, we again use a CBBA planner, but with an actor-critic rein-

forcement learning algorithm and a performance analysis module based on the notion

of risk. Aside from the performance improvements, another result of these example

problems is the realization that the planning algorithm needs to be solvable on a

timescale that is consistent with the planning frequency and planning horizon of the

problem. In some cases, with the MDP-based planners in particular, this online-

solvable characteristic presents a real challenge - one that is addressed in Chapter

4.

3.4.1 Consensus-Based Cooperative Task Allocation

In this example, we consider a multi-agent task-allocation scenario where each agent

has a specific set of capabilities, and each task a set of requirements. The challenge is

to find the assignment of agents to tasks that minimizes the objective function while

satisfiying compatability and other constraints such as specific time-windows when

the tasks need to be completed. CBBA (see 2.2.1) was implemented as the baseline

cooperative planner with several extensions to account for agent-task compatibility

and expected fuel consumption during task execution. In order to account for a

heterogeneous team, agents were classified according to their capabilities and tasks

according to their requirements. A set of constraints were then be incorporated

into the planning process specifying which types of agents can do which types of

tasks (i.e. UAVs can perform aerial surveillance, ground teams can perform rescue

operations, etc). As formulated in Ref [82], one straightforward way to incorporate

these constraints is by enforcing agents to bid zero for tasks with which they are not

compatible.

To account for fuel consumption, the score function was augmented with a fuel

penalty due to travel distance,

cj (T*) = e-'-j((jtjstat)Rj uj(T) - FADig (p2)

where F is the cost of fuel per meter incurred by agent i and ADij(pi) is the distance

traveled by the agent to get to the task location from its previous location. To ensure

satisfaction of DMG, a heuristic distance, ADj , representing the distance from the

vehicle's initial position to the task location, was used instead. Monte Carlo simula-

tion results verified that this type of heuristic penalty produced equally efficient task

allocation assignments as those obtained using the actual travel distance ADjj(pi),

while guaranteeing convergence of the algorithm to a conflict-free assignment [82].

Implementation Under iCCA

Figure 3-2 shows how this example was wrapped within the framework of iCCA.

As seen, the CBBA algorithm serves as the cooperative planner which uses inter-

nal models of vehicle dynamics to rank bids placed by participating agents. These

models, like many used in cooperative control algorithms, are good approximations

and serve their purpose well. However, refining these model parameters online can

increase overall performance without sacrificing robustness. As an example, one can

reasonably expect the outcome of the planner to be sensitive to variations in the

agent' estimated cruise velocity, as this parameter is used to calculate every bid an

agent places. These variations could easily be due to external conditions such as

wind, agent congestion, collision avoidance routines, etc. Over- or under-estimating

iCCA disturbances

observations

noise

Figure 3-2: iCCA formulation with a CBBA planner and a simple learner driven by
temporal-difference errors

its cruise velocity causes the agent to underperform with respect to its expected pay-

off as penalties are incurred for arriving outside the specific time-window for a task.

Therefore, if the agent could improve the estimate of its cruise velocity over time, it

would yield a lower-cost solution to the task-assignment problem.

In response to this, we implemented a simple, direct-adaptive controller as the

learning element of this instance of iCCA with inputs from the performance analysis

module in the form of temporal-difference errors. In direct-adaptive control, the plant

model is re-parameterized in terms of the controller parameters and then an estimator

is run on this model - thus, the controller parameters are estimated directly. In such

an approach, the gradient algorithm is commonly used to generate the adaptation

rule for evolving these parameters such that they converge to their actual values. In

general, the gradient rule can be written as:

1 = -- 7 (yp - ym) r

where y, and ym are the plant and model parameters respectively and their difference

constitutes a temporal-difference error.

10-

6-

2-

0

- 0.75

-0 Actual Velocity

0 20 40 60 80 100 120
Time (s)

Figure 3-3: Cumulative residual score (expected - actual) over the duration of the
mission. When coupled with a learner, the planner more accurately anticipates per-
formance.

The performance analysis element, labeled "TD Error Calculation", observes and

collects the scores achieved while servicing the tasks won during the bidding process.

It then compares these actual with expected scores received from queries directly

to the CBBA planner. A temporal-difference (TD) error of the form 6 = E[z] - x

captures the discrepancy between the two scores and is used to drive a direct adaptive

controller which learns the true cost of fuel. In the simulated mission scenario, a

time-discounted reward is received as a result of accomplishing a 5 s task within the

allowable time window of 15 s, while costs are accrued as a result of travel.

Figure 3-3 shows the residual mission score as a function of time. As expected, the

performance of the planning scheme increases when coupled with a learning algorithm

to reduce the uncertainty around nominal cruise velocity. This enables agents to place

more accurate bids and collect actual scores that are much closer to their expected

scores.

3.4.2 Multi-agent Persistent Surveillance

In this example, we formulate a multi-agent Markov Decision Process (MMDP) while

considering a persistent surveillance mission scenario as outlined in Ref [21]. MDPs

are a natural framework for solving multi-agent planning problems as their versatility

allows modeling of stochastic system dynamics as well as inter-dependencies between

agents [65, 84]. In the persistent surveillance problem, a group of Na UAVs are each

equipped with some type(s) of sensors and are initially located at a base location.

The base is separated by some (possibly large) distance from the surveillance location

and the objective of the problem is to maintain a specified number N, of requested

UAVs over the surveillance location at all times while minimizing fuel costs. This

represents a practical scenario that can show well the benefits of agent cooperation.

The uncertainty in this case is a simple fuel consumption model based on the

probability of a vehicle burning fuel at the nominal rate, pf. That is, with probability

pf, vehicle i will burn fuel at the known nominal rate and with probability 1 -

pf, vehicle i will burn fuel at twice the known nominal rate. When Pf is known

exactly, a policy can be constructed to optimally hedge against running out of fuel

while maximizing surveillance time and minimizing fuel consumption. Otherwise,

policies constructed under overly conservative (pg too high) or naive (pf too low)

estimates of pf will respectively result in vehicles more frequently running out of

fuel, or a higher frequency of vehicle phasing (which translates to unnecessarily high

fuel consumption). Given this qualitative statement of the persistent surveillance

problem, an MDP is formulated as detailed in Ref [86].

Implementation under iCCA

Wrapping the above problem statement within iCCA, the multi-agent MDP becomes

the cooperative planner, while the performance analysis block consists of a state-

dependent observation counter that tracks discretely observed fuel-burn events. Two

learning algorithms were implemented in this example scenario: an active and a

passive learner. Both of which are based on a maximum likelihood algorithm whose

iCCA disturbances

World
observations

noise

Figure 3-4: iCCA formulation with a multi-agent MDP planner and a ML learner
driven by ,3-distribution observation counts.

parameters are modeled as a /-distribution and are updated using the number of

observed fuel burn events, aj, as counted by the performance analysis element, as

depicted in Figure 3-4.

First, the passive learner simply uses these a inputs to calculate an estimate of

the probability of nominal fuel burn, 3f, and its corresponding variance. Second, the

active learner which, after calculating pf and the corresponding variance, searches

the possible actions and "suggests" to the planner that it take the action leading to

the largest reduction in variance around pf.

For the case of the active learner, we embed a maximum-likelihood (ML) estimator

into the MDP formulation such that the resulting policy will bias exploration toward

those state transitions that will result in the largest reduction in the expected variance

of the ML estimate ^f. The resulting cost function is then formed as

g'(x, u) = g(x, u) + Cor()f)(x) (3.6)

where C represents a scalar gain that acts as a knob we can turn to weight exploration,

and U2 (gjf)(x) denotes the variance of the model estimate in state x. The variance of

Probability of Nominal Fuel Burn Rate

A -
I V

'A

-040-

I

I/ -
I */j

I

I'
- / ~

'-4"'

~'4' -

Actual P(Non Fuel Burn)
- -- iCCA - Active Learning -

iCCA - Passive Learning
Non iCCA

0 10 20 30 40 50 60
Time Steps

Figure 3-5: Comparison of the fuel burn model parameter learned over time under
the MDP formulation

the Beta distribution is expressed as

o.2 (p5f)(x) = a1(x)a 2(x)

(ai(x) + a 2(x))2(a1(x) + a2(x) + 1)

where a1 (x) and a 2 (x) denote the counts of nominal and off-nominal fuel flow tran-

sitions observed in state x respectively, by the performance module labeled "Obser-

vation Counter" in Figure 3-4.

Figure 3-5 compares the rate at which the model parameter pf is learned by the ML

estimator that uses online observations of vehicle fuel consumption. In the passive

learning case, the planner chooses actions based on an internal objective function,

without being "nudged" by the learner. These actions lead to observations, which

in turn reduced the variance around pf, albeit not as quickly as the active learner,

as seen in Figure 3-5. For the case without iCCA, no learning is achieved and the

planner assumes pf is known, when in fact it is not, and therefore acts sub-optimally

0.75

0.7k

0.65k

(3.7)

M

+100
[2,3] .

+100

[2,3] [3,4]
+100 +200

.5 +300

.6

Figure 3-6: A team of two UAVs (triangles) maximize their reward by cooperating to
visit targets. Target nodes (circles) have a probability of receiving a reward (positive
values with probability in nearby cloud). Note that some target nodes have no value.
Allowable visit times shown in brackets.

e.g. running a higher risk of crashing, or wasting fuel.

3.4.3 Actor-Critic Policy Learning

In this example, we integrate a variant of the CBBA planner presented in Section 3.4.1

with an actor-critic reinforcement learner in the context of a stochastic multi-agent

task allocation scenario. We discuss a method for learning and adapting cooperative

control strategies in stochastic domains. We consider a small team of agents that start

by following a "safe" plan, as calculated by the baseline planner and incrementally

adapting it to maximize rewards by cooperating to visit target nodes in the network.

Figure 3-6 depicts the problem scenario where the base is highlighted as node 1

(green circle), targets are shown as blue circles and agents as triangles. The total

amount of fuel for each agent is highlighted by the number inside each triangle. For

those targets with an associated reward it is given a positive number nearby. The

MDP iCCA disturbances

World
observations

noise V V

Figure 3-7: iCCA framework as implemented. CBBA planner with the risk analysis
and actor-critic learner formulated under an MDP.

constraints on when the target can be visited are given in square brackets and the

probability of receiving the known reward when the target is visited is given in the

white cloud nearest the node.2 Each reward can be obtained only once and all edges

require one unit of fuel and one time step to traverse. We also allow UAVs to loiter

on any nodes for the next time step. The fuel burn for loitering action is also one

except for the UAVs staying in the base, where they are assumed to be stationary

and sustain no fuel cost. The mission horizon was set to 8 time steps.

Implementation under iCCA

We implemented the consensus-based bundle algorithm under the same formulation

as outlined in Section 3.4.1 with additional fuel constraints. Specifically, each agent

was given a limited amount of fuel and the combined path length of its task bundle

was constrained to be feasible with respect to fuel consumption while allowing the

agent enough reserve to return to base upon completion.

For the learning algorithm, we implemented an actor-critic reinforcement learner

2If two agents visit a node at the same time, the probability of visiting the node would increase
accordingly.

[24 which uses information regarding performance to explore and suggest new be-

haviors that would likely lead to more favorable outcomes than the current behavior

would produce. In actor-critic learning, the actor handles the policy, where in our

experiments actions are selected based on Gibbs softmax method:

eP(s,a)/T

rr(s, a) = __

in which P(s, a) is the preference of taking action a in state s, and T E (0, oc] is

the temperature parameter acting as a knob shifting from greedy towards random

action selection. Since we use a tabular representation, the actor update amounts to

P(s, a) <- P(s, a) + aQ(s, a), where a is the learning rate.

As for the critic, we employ the temporal-difference learning algorithm [102] to

update the associated value function estimate. We initialized the actor's policy by

bootstrapping the initial preference of the actions generated by CBBA.

The performance analysis block is implemented as a "Risk Analysis" tool where

actions suggested by the learner can be overridden by the baseline cooperative plan-

ner if they are deemed too "risky". This synergistic relationship yields a "safe" policy

in the eyes of the planner, upon which the learner can only improve. A trademark

of learning algorithms in general, is that negative information is extremely useful in

terms of the value of information it provides. This is unacceptable in a multi-agent en-

vironment. We therefore introduce the notion of a "virtual reward" - a large negative

value delivered to the learner for suggesting risky actions. When delivered, the learner

associates this negative reward with the previously suggested action, dissuading the

learner from suggesting it again.

The formulation shown in Figure 3-7 allows for the key concept of biased and

guided exploration such that the learner can explore the parts of the world that are

likely to lead to better system performance while ensuring that the agent remain

safely within its operational envelope and away from states that are known to be

undesirable, such as running out of fuel. The bias is introduced as the initial policy

is seeded using plans generated by the baseline CBBA planner. In order to facilitate

Optimal

CBBA
iCCA

Actor-Criti

2 4 6 8
Steps

Figure 3-8: A comparison of the collective rewards received when strictly following
plans generated by CBBA alone, actor-critic reinforcement learning inside/outside
of the iCCA environment. All are compared against the optimal performance as
calculated via dynamic programming.

the bound, the risk analysis module inspects all actions suggested by the actor and

replaces the "risky" ones with the action specified by CBBA, thus guiding the learning

away from catastrophic errors. In essence, the baseline cooperative control solution

provides a form of "prior" over the learner's policy space while also acting as a backup

policy in the case of an emergency.

We first solved the problem using backward dynamic programing in order to use

this solution as a benchmark for comparison (this took about a day and cannot be

easily scaled for larger sizes of the problem). We then ran CBBA on the expected de-

terministic problem (as converted from the stochastic problem), and ran it for 10,000

episodes. For all experiments, we set the preference of the advised CBBA state-

action pairs to 100. T was set to 1 for the actor. Figure 3-8 depicts the performance

700

600

500

400

300

200-

100

0

-100

-200

-300 -
0 10

X 104

. T

&

of iCCA and Actor-Critic averaged over 60 runs. The Y-axis shows the cumulative

reward, while the X-axis represents the number of interactions. Each point on the

graph is the result of running the greedy policy with respect to the existing prefer-

ences of the actor. For iCCA, risky moves again were replaced by the CBBA baseline

solution. Error bars represent the standard error with 90% confidence interval. In

order to show the relative performance of these methods with offline techniques, the

optimal and CBBA solutions are highlighted as lines. It is clear that the actor-critic

performs much better when wrapped into the iCCA framework and performs better

than CBBA alone. The reason is that CBBA provides a good starting point for the

actor-critic to explore the state space, while the risk analyzer filters risky actions of

the actor which leads into catastrophic scenarios.

3.5 Summary of iCCA

In summary, this chapter presented an archticture designed for the tight integration of

planning and learning techniques so as to enable performance increases as uncertain

parameters are learned and/or as an agent's policy is improved over time. The iCCA

framework consists of four modules: an autonomous agent, a cooperative planner, a

performance analysis module and a learning module. Working together in a single

environment, these modules enable a more intelligent behavior in the autonomous

agent as observations accrue and as parameter uncertainty is reduced. However,

through the example implementations it became clear that to gain full advantage of

the learning and performance analysis modules within iCCA, the planner should be

solvable on a timescale that is congruent with the learning rate. As a result of this,

the following chapter develops several approaches for approximating the cooperative

planner to enable faster solution times.

58

Chapter 4

Approximate Decentralized

Multi-Agent Planning

In the previous chapter, the intelligent cooperative control architecture was developed

to enable the tight integration of planning and learning methods within cooperative

multi-agent systems. However, through implemented examples, it became clear that

for a cooperative planning algorithm to take full advantage of online learning and

adaptation techniques, it needed to be solvable on a much shorter timescale than

many current formulations allow. Therefore, the purpose of this chapter is to address

this problem by developing an approximation approach that reduces the complexity

of multi-agent Markov decision processes (MMDPs) through targeted approximations

and decentralization.

This chapter proceeds as follows: Section 4.1 formulates the centralized, multi-

agent Markov decision process (MMDP) and derives the computational complexity of

generating a solution. Section 4.2 describes an approximate approach to formulating

MMDPs by decentralizing the problem and allowing each agent to carry a reduced-

dimension model for each of its teammates rather than a full model for each. Section

4.3 similarly describes an alternate decentralized approximation where each agent

lumps all of its teammates into a single model. Following these formulations, Sec-

tion 4.4 describes the problem of choosing features when developing an approximate

model and outlines several approaches for feature selection. We then discuss how to

model the transition dynamics of these features in Section 4.5, and provide several

approaches for doing so. In Section 4.6, we then compare our approximations with

other approaches from the literature. Finally, in Section 4.7, we offer insights into how

these algorithms will be implemented and what other factors should be considered

when doing so.

4.1 Multi-agent Markov Decision Process (MMDP)

Multi-agent Markov decision processes (MMDPs)[70] are simply larger MDPs where

the state and action spaces are often factored into smaller, local spaces per agent.

Because of this formulation, MMDPs are an inherently centralized problem. The next

few sections provide details on how an MMDP is formulated and how this formulation

affects the size of the resulting problem.

4.1.1 MMDP State-Action Space, (S x A)

A state space is meant to fully represent the state of the agent, including all aspects

and characteristics of the agent that are relevant to the underlying objective of the

problem. In addition, MMDPs require that the state have the Markov property, which

is that each state encapsulates all relevant information up to that point in time. This

means that for the Markov property to hold, the next state can only be a function

of the current state and action, nothing else. This has natural ties to the underlying

cost function of the problem as it too may not be a function of past states or actions

that are more than one timestep back.

When defining the state space of an MMDP, it is common practice to first generate

a state vector that lists the attributes or characteristics of each agent that are relevant

to the problem. For example, if we assume an agent's (x, y, z) location are relevant

to the problem, the state vector x for a team of three agents would look like

X -- [X1, Y1, Zi, X2, Y2, Z2, X3, iY3, Z3] (4.1)

Then, after defining an alphabet of possible values for each element of the state vector,

as

Xi E Xi = { 0, 1, ... 9} yi E Yi = {0, 1,.., 19} zi E Zi = {0, 1,1 . .. , 4}

the full state space is then realized by taking all possible combinations of the values

of the elements. This is known as the Cartesian product of the state vector and, for

the example above with three agents, is written as

S = X 1 x Y1 x Z1 x X 2 x Y2 X Z 2 X X 3 x Y3 x Z 3

which results in a state space of size |S| = (10 - 20 -5)3 = 1, 0003 = 1 billion states.

Similarly, an agent's action space is meant to define all possible actions the agent

is capable of taking. In a multi-agent setting, the action space typically becomes

the Cartesian product of the agent's individual action spaces. Depending on the

solution approach, one may wish to describe the state-action space jointly rather than

individually. The remainder of this chapter adopts this convention as it will become

clear that is enables easier comparison with the approximate methods developed later

in this chapter. Hence, the complexity of the state-action space for an MMDP is:

O(|S JAI) where the size of both S and A is exponential in the number of agents.

4.1.2 MMDP Transition Function, P

As in traditional MDPs, the transition function describes how the state is altered when

specific actions are taken. In the general case, the state is altered stochastically, which

means that taking a specific action from a specific state does not guarantee a single

next-state but rather a probabilistic distribution over a set of possible next-states.

It is this ability to describe and embed uncertainty in action outcome that makes

MDPs such an attractive formulation for a variety of problems. Mathematically, the

transition function P can be denoted in any number of way, such as P(s'|s, a), but

ultimately yields the probability of arriving in state s' given that action a was taken

from state s. When represented in matrix form, P is a three-dimensional matrix

of size |S| - JAI - |S|, which for large problems is not feasible to represent in matrix

form, but rather as a function whose inputs are the current state, current action and

candidate next-state and whose output is the corresponding probability.

4.1.3 MMDP Cost Function, g

The cost function of the MDP is a fundamental element of the problem as it quantifies

the qualitative "goodness" or "badness" of each state. When used in conjunction with

the transition function P and discount factor a, one can calculate the "value" of each

state using the Bellman equation

V(s) = max (P(s'Is, a)(R(s, a) + aV(s'))

A state's "value", V(s), is defined as the cost an agent can expect to incur over

its lifetime when starting in that state and thereafter following the corresponding

fixed-policy. Essentially what this means is that a state's "value" encapsulates the

probabilistic "goodness" or "badness" of all the states that are reachable from the

current state as well as a discounted version for those states that are reachable from

the original reachable states and so on. This process is achieved in a number of ways,

such as value-iteration or policy-iteration, both of which build the value function of

the MDP.

4.2 Decentralized Multi-agent Markov Decision

Process (Dec-MMDP)

In the multi-agent MDP setting described in the previous section, all agents are

modeled identically within the MMDP. However, upon decentralizing the problem,

each agent now has the choice of how to model its teammates. If a model identical

to its own is used, the MMDP is recovered. The purpose of this section is to provide

a method for approximating the model of an agent and to show how this model is

central in the developement of a decentralized multi-agent Markov decision process

(Dec-MMDP).

The approximation presented here is centered around independent agents that

choose their own actions based on current knowledge of themselves and their team-

mates. Each Dec-MMDP is formulated from the perspective of a single agent, thus the

full, n-agent problem is a collection of n Dec-MMDPs. However, as the term "decen-

tralized" implies, each problem is solved independently such that each agent chooses

its own actions. With this in mind, each Dec-MMDP is a tuple (n, S, A, p, g, a, x"l

where n is the number of agents, S is the discrete state space of the problem, A is

the local action space of the agent for which the Dec-MMDP is formulated, P(s'|s, a)

gives the transition probability from state s to state s' under action a, and gq(s, a)

gives the cost of taking action a from state s. Future costs are discounted by a factor

0 < a < 1. Finally, 7n=l is a fixed-policy that results from formulating and solving

a single-agent MDP with identical local state, local action, transition dynamics and

cost function.

Note that this formulation can be made more general by allowing for different state

and action spaces and cost functions across the agents, however for the purposes of

this thesis, we will assume that the agents are homogeneous in local state and action

spaces as well as their local cost functions. Therefore, we can skip the subscripts

on A, P and g. A policy of the Dec-MMDP is denoted by i : S -+ A, and maps

each state of an agent's state space to a local action. Also, the action space of a

Dec-MMDP is not joint, but rather contains only local actions.

Solving a Dec-MMDP is accomplished in an identical fashion as the centralized,

MMDP case which seeks to minimize the problem's cost-to-go function, J,, over the

set of admissible policies H, as shown here:

00

min J,(so) =minE E akg(sk,7(s0)
rl rCf k=

In the following sections the elements of the Dec-MMDP tuple are formulated for

agent i with the set Q representing agent i's teammates (i.e. Q - {1... n} \ {i}).

4.2.1 Dec-MMDP State-Action Space, (S x A)

In a factorized MMDP, the state-action space can be written as the Cartesian product

of agent i's state-action space with that of its teammates, as shown by

S x A = (S, x Ai) x (S x A). (4.2)

Taking a careful look at Equation (4.2) above, we realize that the complexity of the

state-action space is largely embedded within (SQ x AQ), which denotes the joint

state-action space of all of agent i's teammates. This realization naturally leads to

questions regarding the necessity of representing each teammate exactly and how

sensitive the optimal solution is to approximations of this set. The decentralized

multi-agent Markov decision process (Dec-MMDP) presented in this section aims

to reduce this joint teammate state-action space to a lower-dimensional one using

approximation.

While the Dec-MMDP formulation is decentralized, each agent still needs to carry

a model of its teammates in order to promote the generation of cooperative plans and

achieve low-cost solutions to the underlying optimization problem. Hence, there is an

inherent cost/complexity tradeoff where a low-complexity teammate model naturally

incurs a higher cost as it cannot produce the cooperation necessary for a low-cost

solution. Conversely, a highly complex teammate model, e.g. one that matches

the agent's own model, completely captures the inter-agent coupling can therefore

generate cooperative behavior that leads to low-cost solutions. We seek the bal-

ance point where the model complexity is such that the problem can be solved in

a reasonable amount of time while minimizing the cost-increase associated with a

lower-dimensional teammate model.

To accomplish this balance, SQ is the cartesian product of agent i's representation

for each teammate j, as shown by SQ = HgcQ Sig. Therefore, due to the decentral-

ized nature of the Dec-MMDP, Sij denotes agent i's representation of teammate i's

approximated state-action space, rather than just its state space alone. This is due

to the fact that teammate actions are not explicitly represented in Dec-MMDPs, un-

like MMDPs, and the complexity savings in this element are a direct result of their

absence. The construction of Sij is the mechanism by which the complexity of the

resulting multi-agent planning problem can be reduced. The motivation behind this

mechanism is the fact that in many multi-agent scenarios, each agent does not need

to carry a high-fidelity model of its teammates. Rather, an abstract model can often

yield minimal loss in terms of performance, while simultaneously accomplishing large

gains in terms of reducing the computational requirements of generating a solution.

In light of this, the designer of the Dec-MMDP formulation has the challenge of con-

structing Sij in order to balance the loss in performance with gains in computational

efficiency.

One approach to address this challenge is to use feature-based function approxi-

mation on the full teammate state-action space, (SQ x AQ), to remove state-action

pairs that are unnecessary or unimportant for agent i to represent locally. Thus, Sij

would ideally be comprised of features that capture the reward/cost coupling between

agent i and its teammates. The Dec-MMDP formulation uses the feature vector / to

attempt this.

Sij = #(sj, T"- (sM), (4.3)

where # approximates agent j's state and its behavior as a vector of "features" and sj

is teammate j's local state (note that this implies full, individual observability). As

the purpose of # is to extract only the information relevant to the inter-agent coupling

in the cost function, it is very similar to the features used in approximate dynamic

programming [16] to quantize problems with large state spaces. This approach avoids

enumerating the full cartesian product of agent i's and each of its teammates' full

state spaces. Choosing a set of features is not a trivial task, and the performance

of the approximate model depends on how well the approximation captures the full

model. Section 4.4 is dedicated to this topic. The resulting complexity of the state-

action space for an Dec-MMDP is: O (ISillAIl (|#l|-1)) where the size of # depends

on the number of features chosen to represent each teammate.

4.2.2 Dec-MMDP Transition Function, P

This section describes how action choice from a given state influences possible future

states. It is important to note that this thesis assumes agents that are "transition

independent". That is, the set of possible future states for agent i, given a start state

and an action, is not influenced by the action choice of any other agent j E Q. This

assumption allows the transition function, P, to be written as

P=[Ai (4.4)
L0 PQ

where P transitions the local states and PQ transitions the features which represent

the teammate states. Propagation of the local states is typically intuitive to the

problem designer. However, much less intuitive are the transition dynamics of the

features that represent the teammates. Also, it is unfortunately common that the

problem solution is as sensitive to the accuracy of the feature transition model, PQ,

as it is to the local transition model P. For this reason, Section 4.5 is dedicated to

discussing this problem and presents several approaches for dealing with it.

4.2.3 Dec-MMDP Cost Function, g

The cost function of the Dec-MMDP formulation is conceptually identical to that

of MDP and MMDP, namely a function of only the current state and action that

providess a real-valued scalar indicating how "good" or "not good" the combination

is. As the mission scenarios addressed in this thesis are primarily concerned with

costs, this element is set up to penalize any undesirable outcomes in the formulation.

However, the presence of approximations in forming S remove some of the cost

coupling between agents and cannot therefore "peak" into future possibilities the way

the centralized problem can. The general cost function for multi-agent scenarios can

typically be split into coupled and non-coupled costs as

g(s, a) = Ci + CQ + CG, (4.5)

where C, represents agent i's local costs based only on its local actions. On the other

hand, CQ captures agent i's local costs that resulted from joint states and/or joint

actions and CG captures global costs affecting both agent i and its teammates.

4.3 Group-Aggregate Decentralized Multi-agent

Markov Decision Process (GA-Dec-MMDP)

In this section, we present an extension to the Dec-MMDP formulation of Section 4.2

that enables the group of agent i's teammates to now be represented as an aggregate,

rather than as individuals. Hence, we call this new approximation the group-aggregate

Dec-MMDP (GA-Dec-MMDP). As the with the Dec-MMDP, each GA-Dec-MMDP

is formulated from the perspective of a single agent, causing the full, n-agent prob-

lem to be a collection of n GA-Dec-MMDPs, each represented again by the tuple

(n, S, A, P, g, y, 7r" 1). The following section discusses in the detail the formulation

of the state-action space for the GA-Dec-MMDP as it differs from the Dec-MMDP

formulated previously. However, the transition and cost functions remain identical to

the Dec-MMDP formulation and are not duplicated here.

4.3.1 GA-Dec-MMDP State-Action Space, (S x A)

Like the Dec-MMDP, the GA-Dec-MMDP presented in this section also aims to re-

duce the joint teammate state-action space to a lower-dimensional one using function

approximation. To do this, we again rely on a set of features, #, to locally represent

the large joint teammate state-action space. The difference here however, is that

now approximates the group of teammates as a whole rather than a single team-

mate. Hence, the resulting complexity of the state-action space for a GA-Dec-MMDP

is: 0 (Sill A l#|) where the size of # depends on the number of features chosen to

represent the set of all teammates.

4.4 Choosing Features

For the purposes of this research, a feature is essentially a basis function used in the

approximation of another, more complex function. Specificcally in the context of the

persistent health missions that are the topic of this thesis, a feature is an abstraction

or conglomerate of possibly multiple states. The purpose of such a feature is to provide

a more compact representation of an overarching function or space. Choosing a set

of features to approximate a larger set of states is a non-trivial task, as the set of

features with which the states could be described is typically large. Feature selection

is the process of determining which subset of the possible features should be included

so as to result in the best performance and lowest computational complexity. The

challenge is that the number of potential subsets grows exponentially with respect to

the number of features [60]. Hence, including unnecessary features results in increased

computation while excluding important features will clearly reduce the quality of the

resulting solution [83]. For these reasons, feature selection remains an important

and very active area of research in the machine learning and artificial intelligence

communities [33, 57, 60, 80, 83, 111].

As the task of automatic feature selection is indeed so challenging, it is often

accomplished via an experienced problem designer with vast and insightful domain

knowledge. However, even without such knowledge there are a few resources available

that can act as guides in determining the right set of features for the desired approx-

imation, including the (GA)-Dec-MMDP approximations given above. For instance,

the value-function, or Q-function, associated with the problem of interest provides

much insight into the relationship of each state with those that are reachable from it.

Unfortunately, having the value- or Q-function means that the problem has already

been solved. We are, however, still formulating the problem, and therefore have no

such value- or Q-function available. So, we could instead analyze the value-function

produced by a similar problem formulation. Or, though admittedly less insightful

than the value-function, we could use the underlying cost function of the problem to

guide our feature selection process.

One of the main benefits of using the cost function as a guide, see for example

Equation (4.5), is that the designer can immediately gain insight into the sensitivity

of g(s, a) with respect to each of the components of CQ. Armed with this knowledge,

the problem designer can then build the feature set # such that the state-action pairs

within (SQ x AQ) that most influence g(s, a) are captured, while those that have little

or no impact are discarded.

4.5 Propagating Features

Once a set of features has been selected, the remaining challenge is to express their

transition dynamics. This can be tricky as features often have a less-intuitive mean-

ing than states or actions. Additionally, general methods for modeling the transition

dynamics of features is a topic that is not well-covered in the literature. We present

three candidate approaches for generating the feature transition dynamics, given in

Equation (4.4) as PQ. In the first approach, we solve the original, un-approximated

problem of interest for the case of fewer agents, thereby making the computational

complexity just small enough that policy construction becomes feasible on a reason-

able time-scale. We then run virtual trajectories through this policy and build a

history of virtual states. For each snapshot of the virtual state in the history, we

can generate the appropriate feature(s), thus creating a history of virtual features. A

data-driven model for the feature transitions can then be created from this history

of features. This model must then be somehow scaled up to fit problem formulations

with more agents. Details regarding the implementation of this method can be found

in Section 5.3.3.

A second approach for generating the feature transition dynamics is similar to the

first, but uses a policy generated through a heuristic planner for the proper number

of agents, so post-process scaling is not required.

Finally, the third approach is an iterative process to generate the feature transition

dynamics. After an initial guess at how the feature transitions should look (this guess

can be generated using either of the first two approaches) the iteration consists of the

following steps:

1. Use the current feature-transition model to solve the problem of interest, thereby

constructing a policy

2. Similar to the first two cases, we then run virtual state trajectories through

this policy to create a history of virtual states, from which a candidate feature-

transition model is built directly

3. This candidate model then becomes the current feature-transition model

If the problem parameters are known and static, any of these approaches only

needs to be performed once, offline, prior to solving the approximate problem of in-

terest. However, when the parameters are dynamic and unknown, the construction of

PQ needs to be brought into the inner-loop and thereby be solved/re-solved online. In

which case the computational complexity of generating a solution grows accordingly.

4.6 Alternative Approaches

As stated in Section 2.2.5, the general problem we are interested in solveing is the

decentralized Markov decision process (Dec-MDP). There are other approaches for

approximating the full Dec-MDP other than the MMDP and the two approxima-

tions outlined above. Most notable among these are the decentralized transition-

independent Markov decision process (TI-Dec-MDP) [9, 10] and the sparse-interaction

decentralized Markov decision process (SI-Dec-MDP) [70, 71].

TI-Dec-MDPs are introduced in [10] and assume, as the name suggests, transition

indepence of each of the participating agents. Transition independence is defined as

when an agent's dynamics are unaffected by any other agent's state-action pair. That

is, agent i is transition independent if:

P(s'lsi, ai, sQ, aQ, s') = P(s'l si, ai) Vi E 1 .. . n}

Central to this approach is the notion of an event, which is a desired snapshot of the

system state and possibly also the joint action. After creating this list of possible

events, along with the probability of each one occurring and its associated reward/-

cost, then multiple TI-Dec-MDPs can be instantiated and handed to a coverage-set

algorithm that decides which instances to include in the problem formulation. In

[112], a reward dependent TI-Dec-MDP is reformulated into a maximization prob-

lem with non-linear constraints so as to avoid the exponential increase in complexity.

The constraints are then discretized into piecewise linear chunks and a mixed-integer

linear program with hill-climbing search is formed which can be solved using any

off-the-shelf solver. In [81], a TI-Dec-MDP is reformulated as a separable bilinear

program and issues with the coverage set algorithm (CSA), which is needed in the

solution of TI-Dec-MDPs, are brought forth. Namely that there are no error bounds

associated with CSA and, although it typically gives good anytime performance, it is

shown to be numerically unstable and have exponential complexity in the number of

best-response policies. So, the authors reformulate the CSA algorithm and provide

an online error bound for the resulting approximate solutions. Finally, in our own

experiences, the required set of events can be very cumbersome to develop. And,

although the computational complexity is linear in the size of the event list, this list

can easily reach the order of magnitude of the state space to accurately describe the

problem of interest.

SI-Dec-MDPs [71] are a subclass of Dec-MDPs that attempt to factor the joint

state space into two disjoint sets: states where agents are independent and states

where they can interact. In regions where an agent is independent, a single-agent

MDP is used for its decision making. In the interaction areas, full observability of all

interacting agents allows for an MMDP to be formed around these joint interaction

states only, and it is then used for local decision making [70, 71]. In [100], the

decentralized multi-agent planning problem is cast as a Markov game, but is similar to

SI-Dec-MDP as agent interactions are modeled as local and a differentiation is made

between where agents interact and where they act independently - which reduces

the complexity from NEXP-Complete to NP-Complete. The key differences between

SI-Dec-MDP and the (GA-)Dec-MMDP developed above are how the state space is

divided and what information is shared at any given step.

4.7 Implementation Considerations

As mentioned in Section 4.2, a collection of n (GA-)Dec-MMDPs are needed to model

and solve a n-agent cooperative planning problem. As the (GA-)Dec-MMDP approxi-

mations assume full, individual observability, the agents must be able to communicate

when implemented in practice. This communication is in two forms: local state and

intended action. As each agent shares its local state, all agents can re-construct the

full system state locally. Each agent then translates the portion of this state regarding

its teammates into corresponding features. Each agent then chooses its own action

based on its own state and an internal prediction of what each of its teammates ac-

tion choice will be (or, what the aggregate teammate action will be in the case of

GA-Dec-MMDP). A consensus loop must then occur until the predicted teammate

actions match those broadcast by the teammates themselves.

Chapter 5

Persistent Surveillance Mission

This chapter focuses on detailing an extension of the persistent surveillance mission

(PSM) first proposed and developed by Bethke et al. [21] as the mission scenario under

which the architecture of Chapter 3 and the cooperative planning algorithms of Chap-

ter 4 are to be implemented. The mission involves a group of N autonomous agents,

each equipped with some type of sensor and initially situated at some base location,

as shown in Figure 5-1. Their objectives are to continuously survey a pre-specified

region of interest and to closely track any objects of interest discovered there. The

problem becomes challenging when stochastic models for sensor and actuator health

are included in the formulation as well as stochastic dynamics for fuel consumption.

As seen in Figure 5-1, the mission area is divided into three distinct regions geo-

graphicallty. These regions are labeled as the Base, Communication and Task areas.

Aerial agents (UAVs) start at the base area and travel from there to other regions for

tasking and communication duties. As fuel depletes, or failures occur, these agents

must return to base for refueling and/or repair. The communication area is a tran-

sition region between the base and tasking areas and is where an agent can act as a

relay link for communication between the base and tasking areas. This communica-

tion area also serves as a base for a team of ground agents (UGVs). In the tasking

area, several target vehicles are hidden among a number of neutral vehicles - this

is where the persistent surveillance and tracking takes place. The objective of the

mission is to search for target vehicles in the tasking area while continuously tracking

Figure 5-1: Mission scenario: N autonomous agents cooperate to continuously sur-
vey a specified region and to track any objects of interest discovered there while
maintaining constant communication with the base location. This behavior is to be
persistently maintained even under sensor, actuator and battery health degradations.

those that have already been detected. Targets can be discovered and tracked by

both UAVs and UGVs. However, news of the discovery can only reach the agents at

the base station if an additional UAV is located in the communication area to act as

a relay.

Vehicle dynamics provide a number of interesting health management aspects to

the problem. In particular, management of fuel is an important concern in extended-

duration missions such as the persistent surveillance problem. The UAVs have a

specified maximum fuel capacity Fma,, and we assume that the rate at which they

burn fuel, Fburn, may vary randomly during the mission due to bursts of aggressive

maneuvering, engine wear and tear, adverse environmental conditions, damage sus-

tained during flight, etc. Thus, the total flight time each vehicle achieves on Fmax

units of fuel is a random variable, and this uncertainty must be accounted for in the

problem formulation. If a vehicle runs out of fuel while in flight, it is considered

Crashed and is no longer available for tasking. The vehicles can refuel however, at

a rate Frefuel by returning to the base location where a battery changing/charging

station automates the refueling process.

Moreover, each agent has a non-zero probability of experiencing a sensor failure

during the mission. Such a failure may decrease an agent's capability to below that

which is required for successful completion of its task(s). For instance, a vehicle with

a failed sensor cannot effectively search for, or track, any of the targets in the tasking

area. However, it can still act as a communication relay. Similarly, there exists a non-

zero probability that an agent may experience an actuator degradation that decreases

its maneuverability such that it can no longer be used for target-tracking, but only

for searching or as a communication relay. However, unlike crashes, all failures and

degradations can be repaired once the vehicle returns to the base location.

Based on the problem description above, plans could be explicitly described to

induce and encourage inter-agent cooperation. However, heuristic approaches such

as this are not robust to events such as sensor failures, actuator degradations and

uncertain fuel use. Therefore, it is desirable to model the mission as a stochastic

optimal control problem which can be initially solved off-line to extract a reason-

able policy without explicitly forcing a heuristic strategy. Furthermore, under the

iCCA architecture, online adaptation of planner parameters becomes possible and,

when combined with online-solvable planning algorithms such as the Dec-MMDPs and

GA-Dec-MMDPS presented in the previous chapter, results in an adaptive planning

system that learns to improve over time and with experience.

5.1 PSM Formulated as an MMDP

An infinite-horizon, discounted multi-agent MDP (MMDP) is specified by (n, S, A,

P, g, a), where n is the number of agents, S is the state space, A is the action space,

P(s'|s, a) gives the transition probability from state s to state s' under action a, and

g(s, a) gives the cost of taking action a in state s. We assume that the MDP model

is known. Future costs are discounted by a factor 0 < a < 1. A policy of the MDP

is denoted by r : S -± A, and is a mapping of states to actions. Given the MDP

specification, the problem is to minimize the cost-to-go function J, over the set of

admissible policies H, as shown here:

min J,(so) = minIE [akg(sk,ssk))

For notational convenience, the cost and state transition functions for a fixed

policy 7 are defined as gT= g(s, 7(s)), P,,s, - Ps,,(7r(s)) respectively. The cost-to-go

for a fixed policy -r satisfies the Bellman equation [16]

SSJ,(s') Vs E S, (5.1)
s'es

which can also be expressed compactly as J, = TJr, where T, is the (fixed-policy)

dynamic programming operator.

5.1.1 State Space S

The state of each UAV is given by three scalar variables describing the vehicle's

location, fuel remaining and health status. The location of agent i is denoted as yi,

where

yz E Y = {YB, YC, Ys} (5.2)

where YB is the Base area, Yc is the Communication Relay area, and Ys is the

Surveillance area shown in Figure 5-1. Similarly, the fuel state of agent i, denoted fi,
is described by a discrete set of possible fuel quantities,

fz E F ={0, Af, 2Af,... ,Fmax - Af, Fmax} (5.3)

where Af is an appropriate discrete fuel quantity (Af = 1, and Fmax =10 for this

research). Agent i's health status, hi, is described by a discrete set of possible health

states, given by

hi E H ={Hnom, Hsns, Hact}. (5.4)

where Hnom, Hns and Hact respectively represent nominal health, a failed sensor and

a damaged actuator.

The total system state vector x for the centralized formulation is thus given by

cross product of the states yg, fi and hi (Equations (5.2)-(5.4)) for each UAV, as

shown by x = [y fi hi, ... , y,, fa, h,]. The size of the state space is found by

counting all possible realizations of x, which yields IS| = (|Y| x |F| x |H)n.

5.1.2 Control Space A

The actions available to each agent in general are u { -1, 0, + 1}, which corre-

spond to {"Move toward Base", "Stay", "Move toward Surveillance"} respectively.

However, the specific controls ua available for the ith agent depend on the agent's

current location y, and its remaining fuel fi, according to the following rules:

{-1, 0, + 1}, if yj = YC

{iG -1, 0}, if yj = YS (5.5)
{0, + 1}, if yi = YB

{0}, if fi = o

The total system action vector u for the centralized formulation is given by the

cross product of ui for each agent, as shown by u = [ui, ... , u]. The size of

the action space is found by counting all possible realizations of u, which yields

JAI = (UIl)n = 34n.

5.1.3 State Transition Model P

The state transition model P captures the qualitative description of the dynamics

given at the start of this section. The model for agent location y can be factored into

dynamics for each individual agent, which are deterministic and are described by the

following rules:

y(k + 1) =

yi (k),

YB,

Ys,

Yc,

Yc,

if f = 0 or ui(k) = 0

if y (k) = Yc and ui(k) =-1

if yi(k) = Yc and ui(k) = +1

if y (k) = Ys and ui(k) = -1

if y (k) = YB and ui(k) = +1

(5.6)

The dynamics for the fuel state fi are stochastic with parameter pfue representing

the probability of burning fuel at the nominal rate Fbu,. So, with probability pfue,

fuel is consumed at a rate of Fburn per time step. And with probability 1 - pfue, fuel

is consumed at twice the nominal rate. Specifically, this model evolves according to

the following rules:

fi(k + 1) =

0,

fi(k) + Fre fue,

Sfi(k),

fi(k) - Fburn,

fl(k) - 2Fburn,

if fi(k) = 0

if y2(k) = Y

if y (k) = Y

if y (k) #Y

if y2(k) f Y

and ui (k) c {-1, 0}

and fi(k) = Fmax

Prob = pfuel

Prob = 1 - pfueI

The health state of each agent is also a stochastic model with parameters pss and

Pact representing the probability of a sensor failure, and actuator damage respectively.

(5.7)

This health model evolves according to the following rules:

hi(k), if fi = 0

Hom , if yi(k)=YB

hi(k + 1) Hnom, if y (k) #YB and hi(k) = Hom Prob = (1 - Pns)(1 - Pact)

Hsns, if yi(k) $ YB and hi(k) = Hnom Prob = Pens(1 - Pact)

Hact, if yi(k)> YB and hi(k) = Hom Prob = Pact

(5.8)

5.1.4 Cost Function g

The cost function g(x, u) is set up to penalize any undesirable outcomes in the mission,

and is characterized by Equation (5.9). For the persistent surveillance mission, the

undesirable outcomes include: (1) Having less than the desired number of agents in

the surveillance region, and (2) Having no communication relay. The first undesirable

outcome results in a small cost of Cgap for each of the 6s missing agents, where

6s = max ((nd - ns), 0), nd is the desired number of agents, and ns is the actual

number of healthy agents in the surveillance area. Note that we assume the existence

of an indicator function comm(x), which returns 1 if a communication relay is present

and 0 otherwise. Finally, failure to provide a communication relay or to maintain any

agents in the surveillance area results in a high cost of Cfail. Combined, the cost

function can be expressed as:

0 if comm(x) = l and ns = nd

g(x, u) = Cgap - 6S if comm(x) = 1 and ns > 0 and ns < nd (5.9)

Cf ail otherwise

As seen, the cost is zero only when the desired number of healthy agents are in the

surveillance area and a communication relay is provided.

5.2 PSM Formulated as a Dec-MMDP

The MMDP formulated in the previous section, inherently captures all inter-agent

coupling while exhaustively searching the joint state-action space for the specific state-

action combinations that result in optimal planner output. However, this approach

is known to not scale well in the number of agents and, in practice, is slow to solve

even for the case of the persistent search and track mission with 3 agents.

Motivated by the need to construct and adapt planner output in real-time (or ap-

proximate such output as accurately as possible), it is worthwhile to consider alternate

problem formulations to the full, centralized case, such as a decentralized formulation

[14, 15, 70, 95]. In particular, decentralized planners that scale well while yielding

results that are close to optimal are particularly appealing. Additionally, staying

near stochastic optimal control is also appealing due to the natural integration of

uncertainty within the problem formulation.

As a result, one promising field of research that addresses these issues is ap-

proximate dynamic programming. Essentially, the goal of any approximate dynamic

programming method applied to a multi-agent planning problem is to capture the

inter-agent coupling with a minimal number of states. In many scenarios, including

the persistent search and track mission here, inter-agent coupling is limited to the

cost function (see Section 5.1.4) as state-transition dynamics are completely decou-

pled (see Section 5.1.3).

How well this inter-agent cost-coupling is captured has a large effect on the opti-

mality of the solution. Unfortunately, capturing this coupling also causes an increase

in problem size and therefore computational complexity. What is largely missing is

a knob that gives the problem designer control over the inherent trade-off between

problem size (e.g. solution speed) and the level of inter-agent coupling captured in

the formulation (e.g. solution optimality). Motivated by this, we formulate a de-

centralized multi-agent Markov decision process (Dec-MMDP), the solution of which

suggests an action for a single agent based on its local state and a feature-based

abstraction/approximation of its teammate's local states. The Dec-MMDP provides

the missing control knob in the form of how agent i models its teammates.

A Dec-MMDP is a tuple (n, S, A, P, g, a, 7r" 1) where n is the number of agents, S

and A are again the state and action spaces respectively but both will be constructed

differently from the MMDP formulation. As before, Pij(u) gives the transition prob-

ability from state i to state j under action u, and g(i, u) gives the cost of taking

action u in state i. Future costs are still discounted by a factor 0 < a < 1. Finally,

r 1 is a fixed-policy that results from a single-agent MDP (formulated identically

as in Section 5.1 with n = 1). It should be noted here that it takes a collection of n

Dec-MMDPs to solve the same problem as a single MMDP. This is due to the fact

that each Dec-MMDP is formulated for a single agent, as is evident in the form of

the action space. However, each Dee-MMDP is solved independently.

This formulation can be made more general by allowing for different action spaces

and cost functions across the n Dec-MMDP instances. However, for the purposes of

this thesis, the agents are homogeneous, which enables the convenient dropping of the

subscripts on A, P and g. A policy of the Dec-MMDP is denoted by -r : S -+ A, and

is a mapping of states to actions. In this case, however, the state is not necessarily

full and the actions are not joint, but rather single-agent actions. The problem is still

solved identically to the centralized case, seeking to minimize the cost-to-go function

J, over the set of admissible policies H, as shown here:

min J, (io) = min E a k g(ik, 7r4(i)).

The next sections detail the components of the Dec-MMDP as formulated for

agent i, with its set of teammates denoted as Q, where Q - {1... n} \ {i}.

5.2.1 State Space S

When transitioning to the decentralized case, the state space of agent i must somehow

account for the intended actions of its teammates as the formulation no longer enu-

merates the joint action set. To accommodate this, agent i's state space is factorized

in the following manner:

S = S, x So, (5.10)

where Si is agent i's local state space, such that

S, = Y x F x H. (5.11)

The joint state space of agent i's teammates is given by So, where

SQ= fSij, Vj E- Q, (5.12)

where Sij is to be understood as agent i's representation of agent j's local state-

action space. Obviously, if Sij = (Y x F x H x A), this would result in a problem

that is computationally intractable even for the case of n = 3, similar to the MMDP

formulation for that case. To avoid this issue of dimensionality, we implement a state

aggregation approach to construct Sij in a way that approximates (or, aggregates)

the state-action space of agent i's teammates.

Hence, the construction of Si3 is the knob that gives the problem designer control

over the trade-off between problem size and the level of inter-agent coupling captured

in the formulation. The fully-coupled problem can be re-captured by letting Sij =

S. x A, where S. = Y x F x H, allowing agent i a full description of every other

agent, including their intended actions. Alternatively, agent i can completely ignore

his teammates, and thus formulate a single-agent MDP, by letting Sij = 0. Thus, Sij

represents a mechanism for approximating the state-action space of each of agent i's

teammates, whereby solution optimality can potentially be sacrificed for a reduction

of the size of state space (IS|). One approach for constructing Sij is by using linear

approximation of the form

Siy #(,s, 7"-,(sM), (5.13)

where # approximates agent j's state and its behavior as a vector of "features". The

purpose of # is to extract only the information relevant to the inter-agent coupling

in the cost function, yielding a set of features. In this sense, # is very similar to the

features used in approximate dynamic programming[16] to quantize problems with

large state spaces. The 7r" function is a fixed policy used to predict the intended

action of each teammate. In this example, the following set of mutually exclusive,

binary features are used:

#{Y-, Y- Y , Y-, Y Ys0}, where (5.14)

* Y4 denotes teammate j as being in the Base location, moving

lance,

toward Surveil-

* Y - means j is in the Communication location, moving toward Base,

" Y* means j is in the Communication location, staying put,

* Yj means j is in the Communication location, moving toward Surveillance,

" Y - means j is in the Surveillance location, moving toward Base, and

* Ys" denotes j as being in the Surveillance location, staying put.

This set of features essentially constitutes a one-step approximation to the full,

infinite-horizon problem. The total system state vector x for the decentralized for-

mulation is thus given by outer product of the state vector x = [yi f2 hi, SQ]. The

size of the state space is found by counting all possible realizations of x, yielding

S| = (|Y| x |F| x |H|) x |Sjl|- 1.

5.2.2 Control Space A

The control space in the decentralized problem differs from the centralized formulation

in that here it is for a single agent. However, even if the control space were joint,

since the construction of the state space allows for approximating teammate states,

it cannot be guaranteed that the actions agent i chooses for his teammates will be

the same actions they will choose for themselves. Otherwise, the actions available

to agent i are identical to those formulated in the centralized Section 5.1.2 above.

The total system action vector u for the decentralized formulation is simply u = ui,

leaving the size of the action space JAI = (luil).

5.2.3 State Transition Model P

The state transition model for Si is identical to that in 5.1.3. For S, however,

transitions according to the following model:

Yo, if sj(k)=YB Prob-0.5

Y', if sj(k) =YB Prob=0.5

Yc, if s(k) = Yc

si (k + 1) =< Y , if sj (k) = YJ (5.15)
Ys, if sj(k) = Yg

Y§-, if s(k) = Ys Prob = 0.5

YS, if sg(k) =Ys Prob = 0.5

Ys,I if sj (k) = Ys

5.2.4 Cost Function g

The cost function g(x, u) in the decentralized case is also set up to penalize any

undesirable outcomes in the mission, where the undesirable outcomes still include:

(1) Having less than the desired number of agents in the surveillance region, and (2)

Having no communication relay. Combined, the cost function is again expressed as:

0 if comm(x) = 1 and ns = nd

g(x, u) Cga, -6s if comm(x) = l and ns > 0 and ns < nd (5.16)

Cf ai otherwise

However, while identical to the centralized case, the presence of approximations

through Sij remove some of the cost coupling between agents and the cost func-

tion cannot therefore "peak" into future possibilities the way the centralized problem

can. This is due to the fact that agent i can only use elements of its represented state

S = Si x So and local actions to determine cost. Remembering that SQ approximates

the state-action space of all its teammates down to an n - 1 element vector #, agent

i can only "guess" when calculating ns and determining the output of the comm(x)

indicator function. Made according to the rules in Equation (5.17), these "guesses"

result in sub-optimal behavior, and therefore incur more cost than in the centralized

case.

ns =ns + 1, if sj = YS

comm(x) 1, if sj = Y5 (5.17)

comm(x) 0, otherwise

5.3 PSM Formulated as a GA-Dec-MMDP

Motivated by the need to construct and adapt planner output in as close to real-

time as possible, previous work has considered alternate problem formulations where

approximations were introduced in the formulation itself, rather than applied to the

solution approach, e.g. decentralized sparse-interaction MDPs [69] and decentralized

multi-agent MDPs (Dec-MMDPs) [87].

In a previous decentralized approximation (see [87]), each agent represented its

teammates with a reduced-dimensional model, generated using state aggregation on

the full model. The focus of this section is to extend this approach and allow each

agent to approximate all of its teammates collectively with a single, reduced model.

This model is generated using aggregation techniques on the joint state-action space

of the teammates. The motivation for this approach comes from the decision-making

perspective of an individual agent: that as long as someone satisfies mission goals/-

constraints, it does not need to know specifically who, or how. Thus, the aggregated

state of all of an agent's teammates is reduced to a combination of features, such as

the total number of agents in surveillance area, or whether another agent will act as

the communication relay. The particular advantage of this formulation is that the

growth of the size of the state space can be made linear in the number of agents,

rather than exponential.

A GA-Dec-MMDP is a tuple (n, S, A, P, g, a, 7") where n is the number of

agents, S and A are again the state and action spaces and Pi (u) again gives the

transition probability from state i to state j under action u. As before, g(i, u) gives

the cost of taking action u in state i and future costs are still discounted by a factor

0 < a < l and 7r= 1 remains a fixed policy that results from a single-agent MDP. The

differences are in how S, A and P are constructed, which is outlined in the following

sections where the components of the GA-Dec-MMDP are formulated for agent i,

with its set of teammates denoted as Q {1 ... n} \ {i}.

5.3.1 State Space S

In the GA-Dec-MMDP formulation, the state space is factored as:

S=Stx SQ

where Si denotes the local state of agent i and SQ represents the collective state-action

space for all of agent i's teammates, or the group-aggregate state.

For the PSM mission, the local state of each agent is given by three scalar variables

describing the agent's location, fuel remaining and health status. The location of

agent i is denoted as yi, where

yi G {YBYC,YS} (5.18)

where YB is the Base area, Yc is the Communication Relay area, and YS is the

Surveillance area shown in Figure 5-1. Similarly, the fuel state of agent i, fi, is

described by a discrete set of possible fuel quantities,

fi E {0, Af,2Af, ... , Fmax - Af, Fmax} (5.19)

where Af is an appropriate discrete fuel quantity. Agent i's health status, hi, is

described by a discrete set of possible health states, given by

hi E {Hnom, Hsns, Hact} (5.20)

where Hom, H,,, and Hact respectively represent nominal health, a failed sensor

and a damaged actuator. Combining these parts, an agent's local state space, Si, is

defined by the cross product of the states yi, fi and hi, which yields

Si = [yi x fi x hi]

The purpose of the group aggregate state, SQ, is to compactly represent all of

agent i's teammates. Although the content of SQ is problem-dependent, the objective

function provides a guideline for its construction. For example, in the PSM mission,

the objective is to avoid gaps in the coverage of the surveillance and communication

regions. To accomplish this, the agents must coordinate their actions, keeping their

own health and the health of their teammates in mind. The optimal way to achieve

this coordination in the presence of uncertainties, is by formulating the problem as

an MMDP and solving it exactly. However, this is intractable for teams larger than

n = 3, for the PSM mission. So, to avoid enumerating all possible combinations

of yi, fi and hi for each teammate, agent i aggregates the state-action spaces of its

teammates into a set of features using #

SQ = #(Si), Vj E Q, (5.21)

where Sij is agent i's representation of agent j's local state-action space and # is

a function that extracts information relevant to the inter-agent coupling in the cost

function. Forward propagation of the state of each teammate is accomplished using

agent i's perception of their local state and agent i's non-cooperative policy 7 rn 1 .

In other words, agent i predicts each teammate's action based on what he would do

if his teammate's local state were his own. Agent i then evaluates these predicted

teammate states against elements of his local cost function to construct SQ. Hence,

the aggregate state is written as

0 0

SQ = [Inc>1 x ns] 0 n (5.22)
1 0

1 n -2

where nc denotes the number of teammates in the communication area and n E

{0, n - 1} the number of teammates in the surveillance area. I[ncyo) E {0, 1} is

an indicator function on whether the communication requirement is satisfied. The

system state vector x for this formulation is given by x = [yi fi hi, SQ]. The size

of the state space is found by counting all possible realizations of the state vector x,

yielding |S| = (|Y| x |FI x |H|) x |SQl, which scales linearly in n as |Y|, |FI, and |HI

are constants and |SQ l = 2n.

5.3.2 Action Space A

The control space differs from the centralized formulation in that here it is for a

single agent. However, even if the control space were joint, since the construction of

the state space allows for approximating teammate states, it cannot be guaranteed

that the actions agent i chooses for his teammates will be the same actions they will

choose for themselves. Otherwise, the actions available to each agent in general are

U C {--1, 0, + 1}, which correspond to {"Toward Base", "Stay", "Away from Base"}

respectively. However, the specific controls zi available for the ith agent depend on

the agent's current location yj and its remaining fuel fi, according to the following

{-1, 0,

{-1, 0},
ti E

{0, + 1},

{0},

+-1}, if yj = Yc

if yj = Y

if yi = YB

if fi = 0

The total system action vector u for the decentralized formulation is simply u = ui,

leaving the size of the action space |AI = (|uil).

5.3.3 State Transition Model P

The state transition model P captures the qualitative description of the dynamics of

the state, given an action. As the state is divided into Si and SQ, transitions for each,

Pi and PQ, are given.

Local State Transitions, P

The model for agent location yj are deterministic and are described by the following

rules:

y(k + 1) = <

y1(k), if: f = 0

YB, if: y (k) = YB, ai(k) 0

YB, if: y (k) Yc, ui(k) -1

Yc, if: y (k) = Yc, ui(k) = 0

Yc, if: y (k) = YB, ui(k) +1

Yc, if: yi(k) = Ys, ui(k) = -1

Ys, if: yj(k) Ys, ui(k) = 0

Ys, if: y2(k) = Yc, ui(k) = +1

The dynamics for the fuel state fi are stochastic with parameter pf representing the

probability of burning fuel at the nominal rate of one Af per timestep. Specifically,

89

rules:

(5.23)

(5.24)

fi evolves according to the following rules:

0,

Fma,

fi(k) - Af,

fi (k) - 2Af,

if: fi(k) = 0

if: y (k) = YB

w/ Pr(pf) if yi(k) $ YB

w/ Pr(1 - p) if yi(k) $ YB

The health state of each agent is also a stochastic model with parameters p, and

Pa representing the probability of a sensor failure, and actuator damage respectively.

This health model evolves according to the following rules:

hi(k + 1) =

hi (k),

Hnom,

Hsns

Hacd

if fi = 0

if y2 (k) = YB

w/ Pr(1 - Ps - Pa) if hi(k) = Hnom

w/ Pr(p,) if hi(k) = Hnom

w/ Pr(pa) if hi(k) = Hnom

Feature Transitions, PQ

An accurate description of the dynamics of the features describing agent i's teammates

is critical for agent i to make intelligent, low-cost decisions. However, just as agent

i relies on knowing each of its teammates' future states, each teammate also relies

on knowing the future state of their teammates - including agent i's. In order to

circumvent this problem, an iterative approach to determining PQ was implemented

where an initial guess was made for PQ which was used in calculating policies for n

GA-Dec-MMDPs. Using these policies, a look-up table that quantitatively describes

the transition probabilities between all realizations of (SQ x AQ) was generated by

evaluating corresponding state trajectories while running the PSM mission with n = 5

agents [87]. This process was repeated until the PQ converged to that shown in the

upper-left of Figure 5-2. Transferring this approximation to cases with more agents

fi(k + 1) = (5.25)

(5.26)

P for n =5 P for n =6, interpolated from n =5

1 - 1 -

2- 2

3-
3-

4-

4-5-

- 6-

1-

7- 8

66

9
8-

10

9-18

1 2 3 4 5 60 7 2 8 4 9 1 28 10 1 16 1

S (k+1) S (k+1)

Pi forn= 8, interpolated fromn=5 forn= 10, interpo ated from n = 5

2 -2-

4-
4-

6 -

8-

8 - =10 U
10 12

12-
16-

14 -1

2 4 6 8 10 12 14 2 4 6 8 10 12 14 16 18

S0(k+1) S0(k+1)

Figure 5-2: Bicubic interpolation of the empirically-determined transition probabil-
ities for Po- from ni = 5 (top-left) to nr= 10 (bottom-right). Darker areas indicate
higher probability and each row sums to 1.

(cases intractable for MMDP and even for Dec-MMDP) is not immediately clear.

One approach is gleaned from the image processing literature, as scaling the empirical

look-up table is essentially the same problem as zooming in on an image. Figure 5-2

visualizes the results of using bicubic interpolation to estimate the feature transition

probabilities for cases where n > 5.

5.3.4 Cost Function g

The cost function g(x, u) in the decentralized case is set up to penalize any undesirable

outcomes in the mission. However, the presence of approximations in forming S8

remove some of the reward coupling between agents and cannot therefore "peek" into

future possibilities the way the centralized problem can.

g(x, u) =Cunn + Cmotumot + Csns'sns+
(5.27)

Cs(n - 1 - n,) + Cc (1 - I[nc>o + Crn,

where C, are costs associated with the following numbers: n, E {0, 1} denotes

agent movement, nmot E {0, 1} indicates if the agent is in the task area with a

degraded motor, ns E {0, 1} indicates if the agent is in the task area with failed

sensor, n. E {O, n} denotes the number of capable agents in the surveillance area,

nc E {0, n} denotes the number of agents in the communication area, and nx is the

number of agents that have run out of fuel (crashed).

5.3.5 Single-agent Policy gr"--i

Both Dec-MMDP and GA-Dec-MMDP formulations utilize a fixed policy, 7r=, that

is the result of formulating and solving a single-agent MDP where S is Si from Section

5.3.1, A is identical to that formulated in Section 5.3.2, P is P from Section 5.3.3

and g is modified to remove the communication relay requirement.

5.4 Complexity Comparison of Mission

Formulations

As the focus of this thesis is on problem formulation rather than on any particular

solution approach, all solutions are computed using exact value-iteration, which is

known to be O(IS|2 |Al) [16]. Because of this, we can use the term "computational

complexity" in lieu of "state-space size". Tables 5.1 and 5.2 provide an idea of the

connection between state-space size and the computation time required to initially

solve the PSM mission when formulated as an MMDP, Dec-MMDP and GA-Dec-

MMDP.

In the preceding sections, we formulated the PSM mission scenario as an MMDP,

Dec-MMDP and GA-Dec-MMDP. Figure 5-3 graphically conceptualizes the relative

MMDP Dec-MMDP GA-Dec-MMDP
States 389,017 2,628 365

Computation Time 18m 8s 1.2s 0.9s

Table 5.1: Comparison of problem size and computation-time required for centralized
and decentralized MDP-based multi-agent planners for a 3-agent persistent surveil-
lance mission

MMDP Dec-MMDP GA-Dec-MMDP
States 28,398,241 15,768 511
Computation Time 3 wks 2.8s 1.1s

Table 5.2: Comparison of problem size and computation-time required for centralized
and decentralized MDP-based multi-agent planners for a 4-agent persistent surveil-
lance mission

complexity of each of these formulations as the number of participating agents in-

creases. Note, the y-axis of the figure is log-scale and shows the exponential growth

in n of MMDPs and in (n - 1) of Dec-MMDPs. The GA-Dec-MMDP formulation

however, remains linear in n. Also of interest is the black horizontal dashed line

shown in Figure 5-3, which represents the approximate size of the PSM formulation

whose solution can be re-computed online as parameter estimates change. That is,

when bootstrapping a previous solution, formulations with roughly 200, 000 states

are solvable on a timescale commensurate with the dynamics of the mission. Chap-

ter 6 provides a performance comparison under both software and hardware flight

experiments.

10 20

1018 __ S = IL x F x HI x | |"~ (Dec-MMDP)

10 16 - S = IL x F x HI x |$| (GA-Dec-MMDP)

Cl) 1014

a>CI)
+_0 12
CU 10

.W

EU)

o 1010 -

_0 _ Online-Solvable_

10 -

102
3 4 5 6 7 8 9 10

Number of Agents

Figure 5-3: As the number of agents n increases, the resulting state space, and
therefore also the computational complexity associated with calculating a solution
to the PSM scenario, can grow exponentially and the choice of planning algorithm
becomes critical. Note, the y-axis is log scale.

Chapter 6

Simulation and Experimental

Results

The purpose of this chapter is to present experimental results from both software-

and hardware-based flight experiments where the iCCA framework of Chapter 3 is

combined with the approximate planning formulations of Chapter 4 under the PSM

mission described in Chapter 5. In addition, this chapter provides the environmen-

tal details surrounding these experiments, such as the hardware developed in-house

specifically for the purposes of this thesis and the PSM mission. We proceed as fol-

lows: Section 6.1 presents and discusses the iCCA framework as implemented for both

hardware- and software-based experiments. Section 6.2 presents simulation results

and details of the software-based simulation environment while Section 6.3 discusses

the necessary elements of the hardware flight tests and presents the corresponding

results.

6.1 Experimental Architecture

Figure 6-1 shows how the iCCA framework connects with the simulation and hard-

ware experiments presented in the remainder of this chapter. The red arrows below

and beside the Mission Software module represent a software switch that enables

commands to be sent to either robotic agents in hardware or to simulated agents in

Figure 6-1: Depiction of the software and hardware loops used in generating simu-
lation and flight test results. A software switch in the Mission Software (shown in
red) toggles between flying simulated and actual hardware agents. Under simulation
(left), a physics-based mathematical agent model propagates agent kinematic states.
When flying in hardware (right), a Vicon motion capture system tracks and reports
agent kinematic states.

software. The Visualization Software receives location and pose information (loca-

tion, attitude, velocites, rates, etc...) about each participating agent either from the

camera-based, indoor metrology system (see Section 6.3.3) or from a bank of software

agent models. This information is graphically depicted alongside input commands

within a 3D model of the mission environment to provide an excellent, interactive

system for algorithm development and experimentation.

The Mission Software module manages the mission scenario throughout the dura-

tion of each experiment, including initialization and iCCA interaction. This module

also receives position and pose information for each agent and uses this information

to construct the "state" of the system in the format expected by iCCA's coopera-

tive planner. This system state is then sent to iCCA, which queries the cooperative

planner's policy for the "best" action.

This architecture was developed for the purposes of algorithm development and

streamlining the transition to hardware flight experiments and is used in the sim-

ulation and hardware flight experiments that are detailed in the remainder of this

chapter. It is important to note that the planning algorithms were intentionally

made blind to whether hardware- or simulated-agents were being used. This allows

the physical transition between software- and hardware-based tests to be realized by

Figure 6-2: A simulated persistent surveillance mission (PSM) using the centralized
multi-agent MDP (MMDP) formulation. The agents must coordinate to ensure no
gaps in surveillance coverage while maintaining a communication relay.

toggling a boolean (software switch) in the common Visualization Software. This

switch is shared with the Mission Software of Figure 6-1. Figures 6-2 and 6-3 are

screenshots of the Visualization Software during simulated mission experiments.

6.2 Simulation Results

Figures 6-2 and 6-3 depict a series of screenshots from simulations running the per-

sistent surveillance mission under centralized and Dec-MMDP policy formulations,

respectively. In each of the series, the aerial agents (yellow) take-off from the base lo-

cation, move toward the surveillance area and begin searching for targets (red). Upon

Figure 6-3: A simulated persistent surveillance mission (PSM) using the decentralized
multi-agent MDP (Dec-MMDP) formulation. The agents must coordinate to ensure
no gaps in surveillance coverage while maintaining a communication relay.

detection, ground agents (blue/green) assume tracking duty while the aerial agents

continue searching. The white/blue ground agents are "civilians" and the ground

agents must avoid collisions with them. Throughout the mission, aerial and ground

agents alike must occasionally return to base to refuel. The agents must coordinate

with each other when doing so to ensure that no gaps in the coverage of the surveil-

lance region occur and that whenever one or more agents are in the surveillance area,

there is another providing a communication relay with the base.

Algorithm 1 State-dependent Heuristic

Input: agents
Output: u
Initialize: ii = commAgent = -1
for a in agents:

ii += 1
if a.pos==BASE and a.fuel==Fmax:

U[ii] = 1
elif a.pos==COMM and a.fuel>2:

if commAgent==ii or commAgent<O:
U[ii] = 0
commAgent = ii

else :
u[ii] = 1

elif a.pos==COMM:
U[ii] = -1
if commAgent==ii:

commAgent = -1

elif a.pos==SURV and a.fuel < 4:
u[ii] = -1

elif a.pos==SURV:
if commAgent<0:

U[ii] = -1
commAgent = ii

else :
u[ii] = 0

6.2.1 Cooperative Multi-Agent Planners

Monte Carlo style simulations of the full, stochastic PSM scenario were run in this

environment for several planning approaches, including: A non-cooperative approach;

a state-dependent heuristic; a fully centralized MMDP (for the case of n = 3 only);

a Dec-MMDP as formulated in Section 5.2; and a GA-Dec-MMDP, as formulated in

Section 5.3.

First, the non-cooperative approach simulates each agent acting for itself only

and is included as benchmark to allow a more complete understanding of the costs

incurred by the cooperative planners. Second, Algorithm 1 shows the state-dependent

heuristic that represents the type of behavior a human operator might encode for an

unmanned agent in the PSM mission. Essentially, this heuristic tells each agent to

"Go to the surveillance area until a fixed fuel-level is reached, then go back to base

to refuel. Secondly, if along the way, an agent finds itself in the communication area

with sufficient fuel then it will become the comm-relay if no other agent is currently

fulling the role. It will perform this task until a fixed fuel-level and then go refuel.

The other three planners up for comparison are MDP-based, and as this research

focuses on problem formulation rather than on particular solution approaches, all

solutions were computed using exact value-iteration, which is known to be O(IS 2 JA I)
[16]. Because of this, we can use the term "computational complexity" in lieu of

"state-space size".

For the PSM scenario simulations, the following parameters were used: Af = 1,

Fmax = 10, pf = 0.50, pa = 0.05, ps = 0.10. The simulations were run on a 64-

bit quad-core Intel Xeon 3.33GHz CPU running Ubuntu 11.04 with GCC 4.5 and

12GB of RAM. For the cases where n is greater than three, the MMDP approach

is simply not tractable, having more than 28 million states when n = 4. Therefore,

comparisons beyond n = 3 do not include MMDP results. Similarly, the Dec-MMDP

approach remains computationally tractable until n = 5 agents, beyond which it

too becomes intractable. The GA-Dec-MMDP approach however, remains tractable

through n = 10. We therefore compare GA-Dec-MMDP with the non-cooperative

and state-dependent heuristic approaches for cases when n > 5.

After ensuring identical starting conditions, each planner was simulated for 500

steps, 50 times each, logging the joint state trajectories for each system. Using these

state histories, the average cumulative return for each planner was calculated using

an evaluation cost function described by

g(x) = Cc (I - Ino] + C,(n - 1 - n,) (6.1)

where n, is the number of capable agents in the surveillance area and nc is the number

of agents in the communication area. Figure 6-4 compares the scores of the different

planners for the case of three agents (n = 3) in the persistent surveillance mission.

100

4000

3000

2000

1000

0
400

200

0
300 350 400 450 500

Figure 6-4: Comparison of cumulative costs over a 500 step stochastic PSM mission
for the case of three agents (n = 3). As expected, the non-cooperative solution scores
poorly while the MDP-based solutions provide the lowest cost solutions.

1400 1

1200 - GA-Dec-MMDP
Dec-MMDP

o 1000- MMDP

ID 800-

cu 600-

E 400-

200-

0
30

-20
a

10
4

-0 11111%.

Cl, 0
0

St-10
0 50 100 150 200 250

Steps
300 350 400 450 500

Figure 6-5: Removing the non-cooperative and heuristic-based approaches allows a
clearer comparison of the cumulative costs over a 500 step mission for the case of
three agents between the MDP-based methods only. As seen, Dec-MMDP results in
roughly 10% higher cost than the MMDP while GA-Dec-MMDP yields approximately
20% higher cost.

101

50 100 150 200 250
Steps

I-

0

2 x 10

1.8- Non-cooperative
1.8 - Heuristic

1.6 - GA-Dec-MMDP
- Dec-MMDP

1.4 --- MMDP
0

0 1.2-

-.9 1-

E 0.8-

o 0.6-

0.4-

0.2-

0 I I I I

3 4 5 6 7 8 9 10
Number of Agents

Figure 6-6: Comparison of resulting cumulative cost after a 500 step stochastic PSM
mission as a function of the number of participating agents. GA-Dec-MMDP (red)
remains the lowest cost tractable solution through n = 10 agents.

As expected, the MMDP results in the minimum cost solution, while the Dec-MMDP

and GA-Dec-MMDP approximations are within 10% and 20% respectively. As the

non-cooperative and state-dependent heuristic approaches result in much higher cost,

and Figure 6-5 removes them for a closer look at the MDP-based strategies alone.

Scaling up now to n = 10, Figure 6-6 shows how the cumulative cost scales with

the number of participating agents. While we cannot compare with the centralized

MMDP or Dec-MMDP in these cases, the main point of this figure is to show that

the cumulative cost of the GA-Dec-MMDP approximation consistently results in a

much lower cost than the heuristic approach.

6.2.2 Learning and Performance Analysis

The previous section compares the performance of the cooperative planning module

within iCCA for various formulations of the PSM scenario. In this section, we wrap

these planners within the iCCA framework and show the results of the learning and

performance analysis elements of iCCA for the complete, simulated system.

102

-- -- 'uec-MMUr W/ Known F-rtz1-)
CD
0o 400-

300-

E200 -

0 100 --

0
20

15-

CO)
o 10-

0 1 1 1

0.4
U-

_ 0.2

0 --
0 10 20 30 40 50 60

Time (min)

Figure 6-7: Results of formulating the persistent surveillance mission as a Dec-MMDP
and implementing it in the hardware simulation environment portrayed in Figure 6-
1 (left). On the top, accumulated cost is shown (lower is better) as the mission is
carried out. In the middle, a filtered piecewise derivative of the top subplot provides
a notion of how fast costs are being incurred. Finally, the lower subplot shows an
agent's estimate of the probability of experiencing a sensor failure, which is updated
over time by the learning algorithm. Solutions to the cooperative planner formulation
are generated online as the uncertainty around the model parameter decreases.

The PSM scenario as formulated contains a number of uncertain parameters, to

which the system performance is, to varying degrees, sensitive. For instance, there

is a non-zero probability that an agent's sensor may fail during any state transition

not involving the base area. The likelihood of this happening affects the policy of the

associated cooperative planner. The policy, in turn, affects the performance of the

system as it dictates decision-making. This relationship is shown in Figure 6-7.

Figure 6-7 consists of three subplots. The top plot shows the sum of the accu-

mulated cost incurred by the cooperative planner for each agent in the mission thus,

lower is better. The middle subplot is a filtered piecewise derivative of the top subplot

and provides a notion of how fast costs are being incurred as the mission is carried out.

103

The bottom plot shows a single agent's estimate of the probability of experiencing a

sensor failure, which is updated by the learning algorithm as the mission is carried

out. At the start, when the estimated probability of sensor failure is high (bottom

subplot), costs are incurred at a higher rate (green, solid) than when the parameter

is known (black, dashed), as shown in the top and middle subplots. This is expected

behavior since intelligent cooperation between agents relies on knowledge of sensor

reliability, with perfect reliability leading to the lowest cost cooperative plans. The

bottom subplot of Figure 6-7 shows how the probability of sensor failure parameter

is initially high, and is learned through experience and interactions. As the parame-

ter estimate (green, solid) approaches its true value (black, dashed) the rate of cost

accrual decreases to eventually match the rate of cost accrued when the parameter is

known. This result demonstrates the desired interaction between the planning and

learning algorithms.

6.3 Hardware Setup and Results

There are three fundamental categories of hardware when flight-testing persistent,

multi-agent missions indoors: mobile robotic agents, automated maintenance, and

a fast and accurate global metrology system. This section discusses each of these

categories and details the specific components used in the persistent surveillance

mission scenario.

6.3.1 Mobile Robotic Agents

Four different agent platforms are used in the PSM scenario consisting of an aerial

agent (a quadrotor UAV) and three variations of ground-based (UGV) agents. Re-

ferring to Figure 6-8, the quadrotors (one shown in upper-left) and the blue, camera-

equipped UGVs (one shown in upper-right) comprise the team of agents planning the

persistent mission. In addition, the yellow and green colored UGVs (lower left) are

the targets that need to be discovered in the surveillance area while the white UGVs

(lower right) represent civilians and are to be avoided.

104

Figure 6-8: Four agent platforms used in flight experiments: Team UAV (top left),
Team UGV (top right), Target UGV (bottom left), and a Civilian UGV (bottom
right).

Also visible in Figure 6-8, the quadrotor UAVs were equipped with a wifi-enabled

webcam and a recharge-capable base. The webcam provides a real-time capabil-

ity for detecting the target UGVs while the base allows the quadrotor to lock into

the change/charge station for refueling. In addition, team member UGVs are also

equipped with onboard cameras for real-time detection of the target UGVs amongst

the "civilians". Commonly available color detection algorithms were run to provide

detection and localization of the target UGVs once seen in the camera image.

In addition, to answer the need for inexpensive, autonomous, aerial mobile robots,

we also developed an in-house quadrotor platform for use in PSM and related flight ex-

periments. The quadrotor, pictured in Figure 6-9, is built on a carbon-fiber and foam

sandwich plate frame with brushless motors, electronic speed controllers [51], and an

off-the-shelf autopilot board with accelerometers, gyros and a pic-based microcontroller[53]

The firmware for the autopilot was also developed in-house to close the roll and pitch

105

Figure 6-9: Quadrotor helicopter built in-house to answer our need for an inexpensive,
autonomous, aerial mobile robot. .

loops and yaw rate loop onboard for stable, hovering flight. As a bonus, the elec-

tronic speed controllers provide feedback on how much current the corresponding

motor is drawing as well as its approximate temperature. These readings are useful

in generating a snapshot of the vehicle's health in real-time.

6.3.2 Automated Robot Maintenance

As missions involving UAVs lengthen in duration, frequent and robust refueling be-

comes critical to overall success. In the research setting, refueling typically means

charging or swapping onboard batteries. Most recently, the use of a high energy

laser beam to charge the battery during flight has been introduced[75]. Automating

and/or streamlining the recharging procedure has been the topic of much previous

work [7, 28, 29, 45, 46, 59, 98, 104, 107-109]. However, waiting for a battery to

properly recharge can be very time-consuming, causing delays in the overall mission.

Also, "cold" battery swapping techniques require a complete shutdown of the vehicle's

onboard electronics as the spent battery is swapped for a new one. This adds further

delay and a potential for losing onboard data and state information.

As slow recharge times and cold battery swaps are undesirable, this section intro-

106

duces an automated, portable landing platform capable of "hot" swapping batteries

such that the UAV remains powered up throughout the process. The automated

station holds a buffer of seven batteries in a novel dual-drum structure that enables

time-efficient swapping. Each drum consists of four battery bays, each of which can

be connected to a charger for proper battery maintenance and charging. The hot-

swap capability, in combination with local recharging and a large battery capacity

allow this platform to refuel multiple UAVs for long-duration and persistent missions

with minimal delays and without vehicle shutdowns.

Under a nominal payload (including a 1350mAh 12.6 V battery and USB cam-

era), the quadrotors detailed in Section 6.3.1 above have a conservative flight time

of about 7 minutes. The change/charge station can hold seven additional batteries,

which enables a flight time of nearly an hour without utilizing the station's recharge

capabilities. However, enabling the local recharge capability removes the upper limit

on the operational flight time (when servicing a single vehicle), as a spent battery

typically needs less time to charge than the flight time provided by the other batteries

in the station (assuming that all seven batteries are fully-charged initially).

Figure 6-10 shows the complete system for automated battery maintenance. As

seen, a retro-fitted quadrotor sits in a sloped landing plate and is held securely in

place with two locking arms. The quadrotor lands between two rotating drums, each

consisting of four battery bays which can carry (and optionally recharge) a single

battery. The system as a whole provides a fully automated battery change/charge

capability which can eliminate the need for a human operator to manually swap or

recharge the batteries on the vehicle. Such a system offers an efficient and portable

solution to the battery recharge problem.

The battery swapping process consists of the following 6 steps, which are also

illustrated in Figure 6-11:

1. A quadrotor lands on the center plate, turns off its motors, and sends a message

to the off-board control software indicating that the landing is complete.

2. The off-board control software commands the change station to lock/align the

107

Battery Sloped landing
bay plate

Drum I
Drum 2

Servo

Copper
recharge Bay

rail icrocentroler

Onboard Locking arm
microcontrolier

Figure 6-10: The change/charge station is outfitted with 11 motors, 2 servos, 9 limit
switch sensors, 2 rotational encoders, 3 custom PCBs, 3 microprocessors, an XBee
wireless modem and optionally 8 battery chargers (not shown).

quadrotor using its servo arms. A proper lock/alignment will activate the center

switch, thereby notifying the off-board software.

3. With the quadrotor properly aligned and locked, the control software then scans

the voltage levels of each bay and determines which bay is empty and which

contains the battery with the highest voltage level. Commands are then sent

to the change station to rotate the drums such that these two bays are aligned

with the center section.

4. Once the drums are properly rotated, the control software sends commands to

the change station to eject the charged battery from its bay while moving the

spent battery out from under the quadrotor and toward the empty bay.

5. As the charged battery moves into its proper place in the receiver under the

108

(a) Quadrotor hovers over pad and descends to (b) Quadrotor clamped to pad with shore power
land

(c) New battery chosen and right drum rotates (d) Drums now aligned

(e) Replacement battery pushed into place (f) After the battery swap is finished, the clamps
(right to left), moving the old battery into the are released
left drum

(g) Quadrotor motors restarted (h) Quadrotor takes off and returns to mission

Figure 6-11: One battery swap sequence from a multi-swap mission.

109

50

45

0 10 20 30 40 50 60

T (min)

Figure 6-12: Plot of the collective control input to a quadrotor helicopter during a
second mission lasting > 60 minutes. As seen, battery swaps require less than 30s
between steps 1 and 6 of the swap sequence.

quadrotor, it activates the center switch and the center motor is stopped and

the locking arms are released.

6. Upon activation of the center switch, the control software then sends a message

to the quadrotor, clearing it for take-off. If this sequence is part of a larger

mission, it is then up to the mission manager to decide when/if the quadrotor

will actually take off.

Figure 6-12 shows the collective control input as it changes for a single quadrotor

during a long-duration mission. In this case, the quadrotor swapped its battery seven

times during a mission of over 60 minutes. This graph shows how the automated

battery changing concept actually enables significantly longer duration missions (po-

tentially indefinite with the inclusion of the charging mechanism) and in this case

resulting in only 4.2% down time.

6.3.3 Indoor Metrology

Flight tests and algorithm demonstrations were carried out in two physical locations:

The RAVEN facility at MIT's Aerospace Controls Lab and the VSTL at Boeing

Research and Technology in Seattle, WA.

110

Figure 6-13: The Real-time Autonomous Vehicle test ENvironment (RAVEN) in the
Aerospace Controls Lab at MIT

Figure 6-13 shows the general layout of the MIT RAVEN facility. The Realtime in-

door Autonomous Vehicle test ENvironment (RAVEN) enables rapid prototyping and

testing of a variety of unmanned vehicle technologies, such as adaptive flight control,

automated UAV recharging, autonomous UAV air combat, and coordinated multi-

vehicle search and track missions, in a controlled, indoor flight test volume. RAVEN

utilizes a camera-based motion capture system to simultaneously track multiple air-

and ground-based vehicles, and provide highly accurate position and orientation in-

formation about these vehicles in real-time. This information is then distributed to a

group of command and control computers responsible for managing the autonomous

execution of the mission.

Boeing Research and Technology has developed the Vehicle Swarm Technology

Laboratory (VSTL), an environment for testing a variety of vehicles in an indoor,

controlled environment [31]. VSTL is capable of simultaneously supporting a large

number of both air and ground vehicles, thus providing a significant advantage over

traditional flight test methods in terms of flight hours logged. As seen in Figure 6-14,

the primary components of the VSTL are: 1) A camera-based motion capture system

for reference positions, velocities, attitudes and attitude rates; 2) A cluster of off-

111

Figure 6-14: The Boeing Vehicle Swarm Technology Laboratory (VSTL), a state-of-
the-art rapid prototyping indoor flight testing facility [31]

board computers for processing the reference data and calculating control inputs; 3)

Operator interface software for providing high-level commands to individual and/or

teams of agents. These components are networked within a systematic, modular

architecture to support rapid development and prototyping of multi-agent algorithms

[31].

6.3.4 Flight-test Results

For the flight tests, three quadrotor helicopters and two ground vehicles were placed

in a persistent surveillance mission as cooperating, but independent agents. A Dec-

MMDP cooperative planner and an exponential-based learning algorithm were cou-

pled through the uncertainty of sensor failure. As the learning algorithm worked to

converge on the true value of the parameter, the planner utilized the updated esti-

mates and was able to improve subsequent plans as the parameter uncertainty was

112

600

500

400

300

200

100

15

10

I I
- II--II

U)

0U

E
U

0
U

U-

C,)

0 5 10 15 20 25
Time (min)

I I

30 35 40 45 50

Figure 6-15: Results of formulating the persistent surveillance mission as a Dec-
MMDP and implementing it in a real-time, actual flight test scenario where solutions
are generated online as the uncertainty around model parameters decreases as they
are learned using iFDD. On top, accumulated cost is shown (lower is better) as the
mission is carried out. In the middle, a filtered piecewise derivative of the top subplot
provides a notion of roughly how fast costs are being incurred. The lower subplot
shows an agent's estimate of the probability of experiencing a sensor failure, which
is updated over time by the learning algorithm. Solutions to the cooperative planner
formulation are generated online as the uncertainty around the model parameter
decreases, thus improving subsequent plans.

113

0.4

0.2-

I | 7

I I

decreased. The results in Figure 6-15 consist of three subplots. The top plot shows

the sum of the accumulated cost incurred by the cooperative planner for each agent

in the mission, thus lower is better and the slope of the lines in this plot represent the

rate at which costs are accrued. The middle subplot is a filtered piecewise derivative

of the top subplot and provides a notion of how fast costs are being incurred. The

bottom plot shows a single agent's estimate of the probability of experiencing a sensor

failure.

As expected, these results are in significant agreement with the simulation results

previously shown in Figure 6-7. As in the simulated tests, these flight results demon-

strate the desired interaction between the planning and learning algorithms and the

system's ability to learn from experience and improve the overall performance over

time.

114

Chapter 7

Conclusion

This thesis consisted of three focus areas. The first was the integration of multi-agent

planning algorithms with online adaptation, or learning, algorithms within a common

architecture. The motivation for such an architecture was that, in many applications,

the basic form of models internal to the planner are known, while their associated

parameters are not. As a result, the uncertainty around these parameters may lead to

significant suboptimal performance in the system. In addition, these parameters may

be time-varying, which introduces further sub-optimalities, especially if the planning

problem is too large to be solved online. To address these issues, an architecture

for continuous online planning, learning and replanning was developed that combines

a generic multi-agent planner with parameter learning and performance evaluation

algorithms. This thesis contributed the following:

o A template architecture was developed to enable the integration of multi-agent

cooperative control techniques with online learning algorithms and performance

evaluation metrics. We called the result the intelligent Cooperative Control

Architecture, or iCCA. As a modular template, iCCA permitted the use of a

variety of multi-agent planning algorithms, learning methods and evaluation

functions.

o The iCCA template was instantiated under multiple combinations of planner,

learner and evaluation components and was implemented in both simulation and

115

flight-test environments. Planner types included MDPs and a market-based it-

erative auction algorithm (CBBA). Under the learning component, techniques

such as direct adaptive control, maximum likelihood estimation and reinforce-

ment learning were included.

A second focus of this thesis was the development of approximation algorithms

for the decentralized control of multiple agents in a cooperative environment. The

motivation for such approximations was primarily to avoid the exponential explosion

of required calculcations when considering the combinatorial coupling between par-

ticipating agents under an MDP-based planner. This thesis addressed this challenge

by altering the problem formulation slightly to allow each agent to approximate its

teammates while maintaining a full-fidelity model of itself. Thus, when viewed col-

lectively, the team contained a full model for each agent while the problem size for

each agent remained small enough that a solution was shown to be computable within

the timescale of the planning horizon (typically seconds, or minutes). We called our

approach a decentralized multi-agent Markov decision process (Dec-MMDP) to em-

phasize the connection with the well-studied Multi-agent Markov decision process

(MMDP) while first identifying the decentralized nature of the problem formulation.

With regard to the development of these approximation algorithms, this thesis made

the following contributions:

e The basic, Dec-MMDP algorithm was developed which introduced a mechanism

for approximating individual teammates using a feature-based state aggregation

technique on the full agent model. We analytically showed that this algorithm

results in a computational complexity that scaled as |D|--I in the number of

agents n (rather than ICl" for the case of MMDP, where D << C). Also,

we empirically showed that the resulting performance was within 10% of that

achieved by its centralized counterpart when both were implemented under the

PSM scenario.

9 An extension to the basic Dec-MMDP formulation was developed where each

agent modeled the aggregate set of its teammates rather than each teammate

116

individually. We called this extension the group-aggregate Dec-MMDP (GA-

Dec-MMDP). We analytically showed that this extension resulted in a com-

putational complexity that scaled linearly in the number of agents n, rather

than exponentially. Also, we empirically showed that the resulting performance

was within 20% of that achieved by its centralized counterpart when both were

implemented under the PSM scenario.

e A method was developed for generating the feature vector, #, used in the ap-

proximation algorithms listed above. We showed how the components of the

cost/reward function were translated into features, either binary or (n - 1)-ary.

Also, we analytically showed how the resulting problem complexity is affected

through construction of these features.

The third and final focus area dealt with implementing and flight-testing the co-

operative planning algorithms within iCCA in realistic, multi-agent scenarios. In

particular, we investigated the persistent surveillance problem, in which multiple

unmanned aerial vehicles (UAVs) and/or unmanned ground vehicles (UGVs) contin-

uously searched a designated region over indefinite periods of time. This problem

directly related to a number of applications, including search and rescue, natural

disaster relief operations, urban traffe monitoring, etc. These types of missions were

shown to be challenging largely due to their extended duration, which increased the

likelihood that one or more agents would experience health-related failures over the

course of the mission. The planning system was formulated to anticipate and plan

for these failures while maximizing mission performance. In order to investigate these

issues, this thesis:

e Formulated the persistent surveillance mission as an MMDP, which fully cap-

tured the requirement of scheduling agents to periodically move back and forth

between the surveillance location and the base location for refueling and main-

tenance. In addition, we incorporated a number of randomly-occurring failure

scenarios (such as sensor failures, actuator degradations and unexpected fuel

usage) and constraints (such as the requirement to maintain a communication

117

link between the base and agents in the surveillance area) into the problem

formulation. We showed that the optimal policy for the persistent surveillance

problem formulation not only properly managed asset scheduling, but also an-

ticipated the adverse effects of failures on the mission and took proactive actions

to mitigate their impact on mission performance.

" Formulated the persistent surveillance mission as a Dec-MMDP and as a GA-

Dec-MMDP. We empirically showed that the resulting policies properly man-

aged asset scheduling while anticipating the adverse effects of failures and at-

tempted to take proper proactive actions so as to mitigate their impact on mis-

sion performance. We further showed that implementing the resulting policies

in the persistent surveillance scenario resulted in mission performances within

10% and 20% of the optimal solution, respectively.

" Highlighted the development of an automated battery changing/charging sta-

tion for hover-capable unmanned aerial vehicles. This technology was shown to

be necessary to enable truly autonomous persistent capabilities.

7.1 Future Work

While this thesis primarily considered sources of uncertainty that are independent of

system state, an interesting and important extension would be to consider sources of

uncertainty that are functions of the state. For example, the rate at which a vehicle

burns fuel can be expressed as a function of the aggressiveness of its maneuvers which,

in turn, are likely a function of its current task or location. While this extension

to incorporate state-dependent parameters adds complexity, it also enables a more

general problem statement. In addition, learning state-dependent parameters presents

an interesting problem that lends itself well to multi-agent learning methods not

covered in this thesis.

Furthermore, the idea of approximating each agentaAZs set of teammates while

maintaining a full-fidelity model of itself was presented in Chapter 4 as the basis

118

for two new problem formulations. Extending this idea of teammate approximation

to the more general Dec-MDP problem formulation is of interest as there is ample

literature on the Dec-MDP formulation as well as many published solution approaches

for benchmark comparisons.

Finally, one of the major challenges of solving feature-based approximated MDPs,

where the features are added as elements of the state, is determining how to generate

transition models for these features, since the resulting policy can be extremely sen-

sitive to these models. This topic has received little attention in the literature due to

the common use of model-free reinforcement learning methods, which do not explic-

itly carry a transition model, for solving approximate MDPs. However, when a model

is desired, it is particularly challenging to characterize feature state transitions when

the features are comprised of a non-intuitive set, or when the features themselves

have little intuition to support even a hand-coded heuristic approximation.

119

120

Bibliography

[1] M. Alighanbari, L.F. Bertuccelli, and J.P. How. A Robust Approach to the
UAV Task Assignment Problem. In IEEE Conference on Decision and Control

(CDC), pages 5935-5940, 13-15 Dec. 2006.

[2] M. Alighanbari and J. P. How. Cooperative task assignment of unmanned aerial

vehicles in adversarial environments. In American Control Conference (ACC),
pages 4661-4666 vol. 7, Portland, OR, 8-10 June 2005.

[3] M. Alighanbari and J. P. How. A robust approach to the UAV task assignment

problem. International Journal of Robust and Nonlinear Control, 18(2):118-

134, January 2008.

[4] M. Alighanbari, Y. Kuwata, and J. P. How. Coordination and control of multiple

UAVs with timing constraints and loitering. In American Control Conference

(ACC), volume 6, pages 5311-5316 vol.6, 4-6 June 2003.

[5] Mehdi Alighanbari. Task Assignment Algorithms for Teams of UAVs in Dy-

namic Environments. Master's thesis, Massachusetts Institute of Technology,
Department of Aeronautics and Astronautics, Cambridge MA, June 2004.

[6] M. Allen and S. Zilberstein. Complexity of decentralized control: Special cases.

In Adv. Neural Inform. Proc. Systems, volume 22, pages 19-27. Citeseer, 2009.

[7] D. Austin, L. Fletcher, and A. Zelinsky. Mobile Robotics in the Long Term -
Exploring the Fourth Dimension. Procedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2001.

[8] B. Basso, J. Love, and J.K. Hedrick. Airborne, autonomous & collaborative.

Mechanical engineering, 133(4):26 31, 2011.

[9] R. Becker, S. Zilberstein, and V. Lesser. Decentralized markov decision pro-

cesses with event-driven interactions. In Proceedings of the Third International

121

Joint Conference on Autonomous Agents and Multiagent Systems- Volume 1,
pages 302-309. IEEE Computer Society, 2004.

[10] R. Becker, S. Zilberstein, V. Lesser, and C.V. Goldman. Transition-independent

decentralized markov decision processes. In Proceedings of the second interna-

tional joint conference on Autonomous agents and multiagent systems, pages

41-48. ACM, 2003.

[11] J. Bellingham, M. Tillerson, A. Richards, and J. P. How. Multi-task allocation

and path planning for cooperating UAVs. In Cooperative Control: Models,
Applications and Algorithms at the Conference on Coordination, Control and

Optimization, pages 1-19, November 2001.

[12] R. Bellman. On the Theory of Dynamic Programming. Proc. of the National

Academy of Sciences of the United States of America, 38(8):716, 1952.

[13] Richard Bellman. Dynamic Programming. Dover Publications, March 2003.

[14] C.A. Bererton, G.J. Gordon, and S. Thrun. Auction mechanism design for

multi-robot coordination. In 17th Annual Conf. on Neural Information Pro-

cessing Systems, 2003.

[15] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.

The complexity of decentralized control of markov decision processes. Mathe-

matics of Operation Research, 27(4):819-840, 2002.

[16] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, MA, 2007.

[17] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

[18] Luca F. Bertuccelli. Robust Planning for Heterogeneous UAVs in Uncertain

Environments. Master's thesis, Massachusetts Institute of Technology, Depart-

ment of Aeronautics and Astronautics, Cambridge MA, June 2004.

[19] Luca F. Bertuccelli. Robust Decision-Making with Model Uncertainty in

Aerospace Systems. PhD thesis, Massachusetts Institute of Technology, De-

partment of Aeronautics and Astronautics, Cambridge MA, September 2008.

122

[20] B. Bethke, L. F. Bertuccelli, and J. P. How. Experimental demonstration of

adaptive MDP-based planning with model uncertainty. In AIAA Guidance

Navigation and Control, Honolulu, Hawaii, 2008.

[21] B. Bethke, J. P. How, and J. Vian. Group health management of UAV teams

with applications to persistent surveillance. In American Control Conference

(ACC), pages 3145-3150, Seattle, WA, 11-13 June 2008.

[22] B. Bethke, J. P. How, and J. Vian. Multi-UAV Persistent Surveillance With

Communication Constraints and Health Management. In AIAA Guidance, Nav-

igation, and Control Conference (GNC), August 2009. (AIAA-2009-5654).

[23] Brett M. Bethke. Kernel-Based Approximate Dynamic Programming Using Bell-

man Residual Elimination. PhD thesis, Massachusetts Institute of Technology,

Department of Aeronautics and Astronautics, Cambridge MA, February 2010.

[24] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Incremental natural

actor-critic algorithms. In John C. Platt, Daphne Koller, Yoram Singer, and

Sam T. Roweis, editors, NIPS, pages 105-112. MIT Press, 2007.

[25] N. Cattrysse Luk and G. Dirk. A survey of algorithms for the generalized

assignment problem. European Journal of Operational Research, 60(3):260-272,
1992.

[26] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions

for robust task allocation. IEEE Transactions on Robotics, 25(4):912-926, Au-

gust 2009.

[27] PC Chu and JE Beasley. A Genetic Algorithm for the Generalised Assignment

Problem. Computers 6 Operations Research, 24(1):17-23, 1997.

[28] Daniel R. Dale. Automated ground maintenance and health management for

autonomous unmanned aerial vehicles. Master's thesis, Massachusetts Institute

of Technology, Department of Electrical Engineering and Computer Science,

Cambridge MA, June 2007.

[29] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi, N. A. Syed, S. Sharma,

and T. Chiueh. MiNT-m: An Autonomous Mobile Wireless Experimentation

Platform. Proceedings of the 4th International Conference on Mobile Systems,

Applications and Services, 2006.

123

[30] S. de Jong, K. Tuyls, and I. Sprinkhuizen-Kuyper. Nature-Inspired Multi-

Agent Coordination in Task Assignment Problems. Proc. of the 6th European
Symposium on Adaptive Learning Agents and MAS (ALAMAS), 2006.

[31] E. Saad, J. Vian, G.J. Clark and S. Bieniawski. Vehicle Swarm Rapid Proto-
typing Testbed. In AIAA Infotech@Aerospace, Seattle, WA, 2009.

[32] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot Systems: a Classification Fo-

cused on Coordination. Systems, Man and Cybernetics, Part B. IEEE Trans-
actions, 34, 2004.

[33] T. Fawcett. Feature discovery for problem solving systems. PhD dissertation,
University of Massassachusetts, Amherst, 1993.

[34] J. Ferber. Multi-agent systems: an introduction to distributed artificial intelli-
gence, volume 222. Addison-Wesley London, 1999.

[35] M.L. Fisher, R. Jaikumar, and L.N. Van Wassenhove. A Multiplier Adjustment
Method for the Generalized Assignment Problem. Management Science, pages
1095-1103, 1986.

[36] T. Gabel and M. Riedmiller. Reinforcement learning for dec-mdps with chang-
ing action sets and partially ordered dependencies. In Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems-

Volume 3, pages 1333-1336. International Foundation for Autonomous Agents
and Multiagent Systems, 2008.

[37] D.W. Gage. Ugv history 101: A brief history of unmanned ground vehicle (ugv)
development efforts. Technical report, DTIC Document, 1995.

[38] A. George and W.B. Powell. An adaptive-learning framework for semi-
cooperative multi-agent coordination, 2007.

[39] B. Gerkey and M.J. Mataric. Are (explicit) multi-robot coordination and multi-
agent coordination really so different. In Proceedings of the AAAI spring sym-

posium on bridging the multi-agent and multi-robotic research gap, pages 1-3,
2004.

[40] B.P. Gerkey and M.J. Mataric. A Formal Analysis and Taxonomy of Task

Allocation in Multi-Robot Systems. The Int'l Journal of Robotics Research,
23(9):939, 2004.

124

[41] G. Goebel. In the public domain: Unmanned aerial vehicles, 2005.

[42] Claudia V. Goldman and Shlomo Zilberstein. Optimizing information exchange

in cooperative multi-agent systems. In Proc. of the 2nd Int'l Joint Conf. on

Autonomous Agents and Multiagent Systems, pages 137-144, New York, NY,
USA, 2003. ACM.

[43] C.V. Goldman and S. Zilberstein. Decentralized control of cooperative sys-

tems: Categorization and complexity analysis. Journal of Artificial Intelligence

Research, 22(1):143-174, 2004.

[44] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored mdps.

Advances in neural information processing systems, 2:1523-1530, 2002.

[45] Y. Hada and S. Yuta. A First-Stage Experiment of Long Term Activity of

Autonomous Mobile Robot - Result of Respective Base-Docking Over a Week.

Lecture Notes in Control and Information Sciences: Experimental Robotics VII,

271:229-238, 2001.

[46] Y. Hada and S. Yuta. A first-stage experiment of long term activity of au-

tonomous mobile robot - result of repetitive base-docking over a week. In Ex-

perimental Robotics VII, ISER '00, pages 229-238, London, UK, 2001. Springer-

Verlag.

[47] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for

partially observable stochastic games. In Deborah L. McGuinness and George

Ferguson, editors, AAAI, pages 709-715. AAAI Press / The MIT Press, 2004.

[48] M. J. Hirsch, P. M. Pardalos, R. Murphey, and D. Grundel, editors. Advances

in Cooperative Control and Optimization, volume 369. Springer, Nov 2007.

[49] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor au-

tonomous vehicle test environment. IEEE Control Systems Magazine, 28(2):51-

64, April 2008.

[50] http://itl.nist.gov/div898/handbook/index.htm. Engineering statistics hand-

book.

[51] http://mikrokopter.us.

[52] http://openjaus.com/understanding-sae-jaus

125

[53] http://sparkfun.com/products/3970.

[54] http://www.cdlsystems.com/index.php/stanag4586 .

[55] http://www.jaustoolset.org .

[56] http://www.nellis.af.mil/units/uascenterofexcellence.asp

[57] N. K. Jong and P. Stone. State abstraction discovery from irrelevant state
variables. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 752-757, 2005.

[58] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101:99-134,
1998.

[59] K. Kouzoubov and D. Austin. Autonomous recharging for mobile robotics. In
Australian Conference on Robotics and Automation, Auckland, pages 27-29,
2002.

[60] M. Kroon and S. Whiteson. Automatic feature selection for model-based rein-

forcement learning in factored mdps. In Machine Learning and Applications,
2009. ICMLA '09. International Conference on, pages 324 -330, dec. 2009.

[61] Y. Kuwata and J. P. How. Stable trajectory design for highly constrained

environments using receding horizon control. In American Control Conference
(ACC), volume 1, pages 902-907 vol.1, Boston, MA, 30 June-2 July 2004.

[62] Y. Kuwata and J. P. How. Robust cooperative decentralized trajectory opti-
mization using receding horizon milp. In American Control Conference (ACC),
pages 522-527, 9-13 July 2007.

[63] Y. Kuwata and J. P. How. Cooperative distributed robust trajectory opti-
mization using receding horizon MILP. IEEE Transactions on Control Systems

Technology, 19(2):423-431, March 2011.

[64] J. Slotine W. Li. Applied Nonlinear Control. Prentice Hall, Upper Saddle River,
NJ, 1991.

[65] M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the complexity of solving

markov decision problems. In In Proc. of the 11th Int'l Conf. on Uncertainty

in Artificial Intelligence, pages 394-402, 1995.

126

[66] J. Marschak. Elements for a theory of teams. Management Science, pages

127-137, 1955.

[67] S. Martello and P. Toth. Generalized Assignment Problems. Algorithms and

Computation, pages 351-369, 1992.

[68] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in the

presence of cost functions controlled by an adversary. In Proc. of the Twentieth

Int'l Conf. on Machine Learning, 2003.

[69] F. S. Melo and M. Veloso. Decentralized mdps with sparse interactions. Artifi-

cial Intelligence, 175:1757-1789, 2011.

[70] Francisco S. Melo and Manuela Veloso. Local multiagent coordination on decen-

tralized mdps with sparse interactions. Technical report, Carnagie Mellon Uni-

versity, 2010. http://reports-archive.adm.cs.cmu.edu/anon/anon/2010/CMU-

CS-10-133.pdf.

[71] F.S. Melo and M. Veloso. Decentralized mdps with sparse interactions. Artificial

Intelligence, 2011.

[72] R. Murray. Recent research in cooperative control of multi-vehicle systems.

ASME Journal of Dynamic Systems, Measurement, and Control, 2007.

[73] R.M. Nauss. Solving the generalized assignment problem: An optimizing and

heuristic approach. INFORMS Journal on Computing, 15(3):249, 2003.

[74] A. Nedic, A. Ozdaglar, and P.A. Parrilo. Constrained Consensus and Opti-

mization in Multi-Agent Networks. IEEE Transactions on Automatic Control,
2009.

[75] T.J. Nugent and J.T. Kare. Laser Power for UAVs, 2008.

http://lasermotive.com/wp-content/uploads/2010/04/Wireless-Power-for-

UAVs-March2010.pdf.

[76] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation in

networked multi-agent systems. Proceedings of the IEEE, 95(1):215 -233, jan.

2007.

[77] I.H. Osman. Heuristics for the Generalised Assignment Problem: Simulated

Annealing and Tabu Search Approaches. OR Spectrum, 17(4):211-225, 1995.

127

[78] L. Panait and S. Luke. Cooperative Multi-Agent Learning: The State of the
Art. Autonomous Agents and Multi-Agent Systems, 11(3):387-434, 2005.

[79] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of operations research, 12(3):441-450, 1987.

[80] R. Parr, C. Painter-Wakefield, L. Li, and M. L. Littman. Analyzing feature
generation for value-function approximation. In International Conference on
Machine Learning (ICML), pages 737-744, 2007.

[81] M. Petrik and S. Zilberstein. A successive approximation algorithm for coordi-
nation problems, 2010.

[82] S. Ponda, J. Redding, H.-L. Choi, J. P. How, M. A. Vavrina, and J. Vian. De-
centralized planning for complex missions with dynamic communication con-
straints. In American Control Conference (ACC), Baltimore, MD, July 2010.

[83] P. Pudil, J. Novovicov6, and J. Kittler. Floating search methods in feature
selection. Pattern Recognition Letters, 15(11):1119 - 1125, 1994.

[84] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, 1994.

[85] R. Radner. Team decision problems. The Annals of Mathematical Statistics,
33(3):857-881, 1962.

[86] J. Redding, B. Bethke, L. Bertuccelli, and J. How. Active learning in persistent
surveillance uav missions. In AIAA Infotech@Aerospace Conference, April 2009
(AIAA-2009-1981).

[87] J. D. Redding, T. Toksoz, N. Kemal Ure, A. Geramifard, J. P. How, M. Vavrina,
and J. Vian. Persistent distributed multi-agent missions with automated battery
management. In AIAA Guidance, Navigation, and Control Conference (GNC),
August 2011. (AIAA-2011-6480).

[88] Liran Katzir Reuven Cohen and Danny Raz. An efficient approximation for the
generalized assignment problem. Information Processing Letters, 100(4):162-

166, 2006.

[89] A. Richards, J. Bellingham, M. Tillerson, and J. P. How. Coordination and con-
trol of multiple UAVs. In AIAA Guidance, Navigation, and Control Conference

(GNC), Monterey, CA, August 2002. AIAA Paper 2002-4588.

128

[90] G.T. Ross and R.M. Soland. A Branch and Bound Algorithm for the General-

ized Assignment Problem. Mathematical programming, 8(1):91-103, 1975.

[91] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach. Prentice

Hall, 2003.

[92] M. Savelsbergh. A Branch-and-Price Algorithm for the Generalized Assignment

Problem. Operations Research, 45(6):831-841, 1997.

[93] Ketan Savla, Tom Temple, and Emilio Frazzoli. Human-in-the-loop vehicle

routing policies for dynamic environments. In IEEE Conf. on Decision and

Control, 2008.

[94] E. Semsar-Kazerooni and K. Khorasani. Multi-agent team cooperation: A game

theory approach. Automatica, 45(10):2205-2213, 2009.

[95] Sven Seuken and Shlomo Zilberstein. Formal models and algorithms for de-

centralized decision making under uncertainty. Autonomous Agents and Multi-

Agent Systems, 17(2):190-250, 2008.

[96] J. Shen, V. Lesser, and N. Carver. Minimizing communication cost in a dis-

tributed bayesian network using a decentralized mdp. In Proceedings of the

second international joint conference on Autonomous agents and multiagent

systems, pages 678-685. ACM, 2003.

[97] D.B. Shmoys and t. Tardos. An Approximation Algorithm for the Generalized

Assignment Problem. Mathematical Programming, 62(1):461-474, 1993.

[98] M. C. Silverman, B. Jung, D. Nies, and G. S. Sukhatme. Staying alive longer:

Autonomous robot recharging put to the test. Technical Report CRES-03-015,
Center for Robotics and Embedded Systems (CRES), University of Southern

California, 2003, 2003.

[99] M. T. J. Spaan, G. J. Gordon, and N. A. Vlassis. Decentralized planning

under uncertainty for teams of communicating agents. In Hideyuki Nakashima,
Michael P. Wellman, Gerhard Weiss, and Peter Stone, editors, AAMAS, pages

249-256. ACM, 2006.

[100] M.T.J. Spaan and F.S. Melo. Interaction-driven markov games for decentralized

multiagent planning under uncertainty. In Proceedings of the 7th international

joint conference on Autonomous agents and multiagent systems- Volume 1, pages

129

525-532. International Foundation for Autonomous Agents and Multiagent Sys-

tems, 2008.

[101] P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8(3):345-383, 2000.

[102] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

[103] R.S. Sutton. Learning to predict by the methods of temporal differences. Ma-

chine Learning, 3:9-44, 1988.

[104] K.A. Swieringa, C.B. Hanson, J.R. Richardson, J.D. White, Z. Hasan, E. Qian,
and A. Girard. Autonomous battery swapping system for small-scale he-

licopters. In IEEE International Conference on Robotics and Automation

(ICRA), pages 3335-3340, May 2010.

[105] M. Valenti, B. Bethke, G. Fiore, J. P. How, and E. Feron. Indoor Multi-

Vehicle Flight Testbed for Fault Detection, Isolation, and Recovery. In AIAA

Guidance, Navigation, and Control Conference (GNC), Keystone, CO, August

2006 (AIAA-2006-6200).

[106] M. Valenti, B. Bethke, J. P. How, D. P. de Farias, and J. Vian. Embedding

Health Management into Mission Tasking for UAV Teams. In American Control

Conference (A CC), pages 5777-5783, New York City, NY, 9-13 July 2007.

[107] M. Valenti, D. Dale, J. How, and J. Vian. Mission health management for

24/7 persistent surveillance operations. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference, Myrtle Beach, SC, August 2007.

[108] Mario J. Valenti. Approximate Dynamic Programming with Applications in

Multi-Agent Systems. PhD thesis, Massachusetts Institute of Technology, De-

partment of Electrical Engineering and Computer Science, Cambridge MA, May

2007.

[109] V. Vladimerouy, A. Stubbs, J. Rubel, A. Fulford, J. Strick, and G. Dullerud.

A hovercraft testbed for decentralized and cooperative control. In American

Control Conference (A CC), pages 5332-5337, Boston, MA, July 2004.

[110] L. G. Weiss. Autonomous robots in the fog of war. IEEE Spectrum, 48(8
(NA)):30, August, 2011.

130

[111] S. Whiteson, P. Stone, K. 0. Stanley, R. Miikkulainen, and N. Kohl. Automatic

feature selection in neuroevolution. In Genetic and Evolutionary Computation

Conference, pages 1225-1232, 2005.

[112] J. Wu and E.H. Durfee. Mixed-integer linear programming for transition-

independent decentralized mdps. In Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems, pages 1058-1060.

ACM, 2006.

[113] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent

cooperation: Model and experiments. In Proceedings of the fifth international

conference on Autonomous agents, pages 616-623. ACM, 2001.

[114] P. Xuan, V. Lesser, and S. Zilberstein. Modeling cooperative multiagent prob-

lem solving as decentralized decision processes. Autonomous Agents and Multi-

Agent Systems, 2004.

[115] S. Zilberstein, R. Washington, D. S. Bernstein, and A.-I. Mouaddib. Decision-

theoretic control of planetary rovers. In Michael Beetz, Joachim Hertzberg,
Malik Ghallab, and Martha E. Pollack, editors, Advances in Plan-Based Control

of Robotic Agents, volume 2466 of Lecture Notes in Computer Science, pages

270-289. Springer, 2001.

131

