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A Study of Inter-Individual Differences in the DNA

Damage Response

by Meriem SEFTA

Abstract

Agents that damage our DNA are omnipresent in our environment and inside
our cells themselves. Left unrepaired, DNA damage can lead to premature aging,
neurodegeneration and cancer. Humans have thus evolved intricate and widespread
mechanisms to repair and manage this damage. These mechanisms-called the DNA
damage response-often involve cell cycle arrest. Cell cycle arrest gives the cells
precious extra time to utilize its diverse set of repair pathways. Among these is the
homologous recombination pathway, which repairs DNA double-strand breaks.
When the damage is deemed irreparable, a cell can choose to die: this allows for the
maintenance of genomic integrity of the organism.

Humans share 99.9% of the same genetic information. The remaining 0.1% is
responsible for all genetic variations between individuals. This includes differences
in disease susceptibility. In this study, we examined the inter-individual differences
in the DNA damage response. To do so, we used a panel of twenty-four B
lymphoblastoid cell lines derived from twenty-four healthy individuals of diverse
ancestries. This panel had already been shown to display a broad range of
sensitivity to several DNA damaging agents.

We focused our attention on the alkylating agents temozolomide and
methylnitronitrosoguanidine (MNNG). While MNNG has been extensively studied as
a model DNA damaging drug, temozolomide is used in the clinic today to treat
astrocytoma and glioblastomas. The two drugs are often referred to as functional
analogues. We wanted to see if the cell lines' relative sensitivities to both drugs
would be similar, which would support the analogy made between the drugs, or
different, which would refute it. Furthermore, we measured the amounts of sister
chromatid exchanges (SCEs) induced by temozolomide treatment to determine if
the sensitivity measured by growth inhibition post-treatment was correlated with
the amount of temozolomide-induced SCEs. For the cell lines tested, we found that
the MNNG-induced sensitivity was similar to that induced by temozolomide. We also
found a cell line in which temozolomide induced a large growth inhibition, all the
while inducing no detectable SCEs.

Thesis Advisor: Leona Samson
Title: Professor of Biological Engineering and Biology, Director, Center for
Environmental Health Sciences
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Introduction
1. DNA damage and the DNA damage response

DNA damaging agents are omnipresent, whether it be in our environment, or

inside our bodies themselves. The exogenous sources of DNA damage include UV

radiation from sunlight, elements in our food and drinks, and chemical pollutants.

Some chemotherapeutic agents used in the clinic today to treat cancers also function

as DNA damaging agents. The endogenous sources of DNA damage are just as

varied. Our cells' metabolism, as well as their inflammatory responses generate

reactive oxygen species and reactive nitrogen species that can cause DNA lesions 78.

Furthermore, our cells also have to manage DNA's intrinsic chemical instability, as

well as its replication errors 2. In total, it is estimated that each of our cells is faced

with 105 DNA lesions each day. 6

Unrepaired DNA damage can have harmful consequences. At the cellular

level, it can lead to mutations, chromosomal aberrations, cell cycle delay or arrest,

and cell death 10. These effects have consequences at the organism level; they can

lead to cancer, premature aging, neurodegeneration, tissue toxicity and endothelial

damage 1 6.

In order to counteract DNA lesions, humans have evolved a very broad and

intricate response system-called the DNA damage response (DDR)-that is

triggered in our cells in the presence of damage. This response is initiated when

sensors detect damage; the signal is amplified through the recruitment of mediators

and then of transducers and effectors that lead to diverse cellular responses 12.

When a cell deems that the damage is too great, it can trigger its own cellular

death. If it does not die, a cell can arrest itself, thus providing crucial extra time for

the repair machineries to process the damage. If residual damage is left at the time



of DNA replication, mutations and chromosomal aberrations can arise. This can

eventually lead to cancer 1i (figure 1).

The types of damage that can occur in our DNA are diverse. As a

consequence, the DNA repair processes that our cells have evolved are also diverse.

Small DNA adducts can be removed through direct reversal by proteins like 06-

methylguanine-DNA methyltransferase 15 16. Base excision repair (BER) is also

solicited in the case of small, non-helix-distorting base lesions in the genome. In

BER, a DNA glycosylase recognizes the lesion, flips the damaged base out of the

double helix, and cleaves the N-glycosidic bond of the damaged base, leaving an

abasic site. DNA is then nicked at this site, and several enzymes are recruited to fill

and ligate the resulting DNA 1-. In the case of helix-distorting lesions or pyrimidine

dimers like the ones induced by UV damage, nucleotide excision repair (NER) often

comes into play. The enzymes involved in NER will successively recognize the

lesion, locally unwind the DNA, remove a single stranded stretch of 25-30

nucleotides, then fill and ligate the gap M. Homologous recombination is the process

by which cells repair double-strand breaks by using a homologous template 9 , while

in non-homologous end-joining, the break ends are directly ligated without the need

for a homologous templateto. Finally, a cell can call upon translesion synthesis, a

DNA damage tolerance process that allows the DNA replication machinery to

replicate past DNA lesions 21.

The effects and importance of all the varied signals initiated after DNA

damage are still not completely understood and are active areas of research. Several

genome-wide screens for genes conferring susceptibility for DNA damage have

revealed that the DNA damage response actually involves a great multitude of actors

and processes in the cell. These actors haven't all been fully characterized22 23.
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2. The Cell decision process

In a multicellular organism, the process by which some cells chose to die in

the presence of damage that is deemed irreparable is crucial for the maintenance of

that organism's genomic integrity. A cell that decides against death despite the

presence of damage can accumulate mutations or chromosomal aberrations, two

hallmarks of cancer 24 If the cells of an organism chose to die too frequently, it is

also detrimental, as it can lead to unwanted cell death and premature tissue aging25.

Many elements are known to factor into this decision, and experimental evidence

shows that it depends on the cell type and on the amount of damage.

The cell decision process is frequently deregulated in cancer. The p53 tumor

suppressor gene, called the "guardian of the genome", has been shown to be a

master player in this process. p53 is mutated in 50% of all cancers 26.

3. Of inter-individual differences and personalized therapies

Humans share 99.9% of the same genetic information. The genetic diversity

of the human race as we know it is contained in the remaining 0.1%. Learning about

the genetic difference between humans can be used to understand population

history, trace lineages, analyze natural selection trends, and-above all-to predict

disease susceptibility' .

The genetic variations in human populations are varied. A Single Nucleotide

Polymorphism (SNP) refers to a DNA sequence variation of a single nucleotide

within a sequence that is present in 1% or more of the population; over ten million

such variants have been identified and validated in the human population. A short

tandem repeat (STR) in DNA occurs when a pattern of two or more nucleotides is

repeated and the repeated sequences are directly adjacent to each other. In human

populations, a short tandem repeat polymorphism (STRP) occurs when homologous



STR loci differ in the number of repeats. There are currently over 10 000 published

STR sequences in the human genome. Finally, insertions or deletions of certain parts

of the DNA sequence in different individuals also contribute to human genetic

diversity 8 .

These genetic variations can have consequences at the level of the cell, and of

the whole organism. It is therefore not surprising that several of them have been

implicated in disease susceptibility, and in patient response to a number of

therapeutic drugs. Today however, only about 10% of labels for FDA-approved

drugs contain pharmacogenetic information29. In the case of cancer drugs, most of

these drugs are only efficient in a small fraction of patients. Patients generally have

to change drug treatment strategies several times before an efficient one is found, if

ever. In order to improve the success rate of these drugs, it is becoming clear that

treatment strategies must become more personalized U'. Beyond personalized

treatment, health care today is also aiming towards becoming increasingly capable

of predicting and preventing cellular dysfunction and disease 33 .

The DNA damage response is no exception to these inter-individual

variations. It has been shown that human populations display a broad range of

sensitivities to different DNA damaging agents 3 (figure 2).

Numerous single genetic variants have been directly linked to disease states.

For instance, this is the case for sickle-cell anemia, where a single base mutation is

responsible for the disease34 . However, an increasing body of work is revealing that

each inter-individual polymorphism usually only leads to very subtle variations in

the cell, if any. A systems-wide approach is therefore necessary to integrate all of the

variations between individuals, and infer their influence-as a whole-on cellular

and organism processes35 .
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4. Experimental system used to study the DDR in different
individuals

Temozolomide, MNNG, and the DNA damage response they initiate:

Temozolomide is a chemotherapeutic drug used in the clinic today. It can be

used for the treatment of Grade IV astrocytoma - an aggressive brain tumor, also

known as glioblastoma multiforme, as well as anaplastic astrocytoma. It has been

available in the US since August 1999, and in other countries since the early 2000s3 6

4

At physiologic pH, temozolomide is converted to the short-lived active

compound MTIC (3-methyl-(triazen-1-yl)imidazole-4-carboxamide). While MTIC can

react with cellular proteins, the cytotoxicity of MTIC is due primarily to the 06-

methylguanine (06MeG)and 3-methyladenine (3MeA) methylation adducts 3 (figure

3).

In the presence of temozolomide, cells activate their DNA damage response.

The first step in the repair process most notably involves the use of the 06-

methylguanine-DNA methyltransferase (MGMT) repair protein. MGMT is a direct

reversal suicide enzyme that directly removes methyl adducts from 06MeG DNA

bases 38 (figure 5). If replication occurs before a given 06MeG lesion has been

repaired, the replication machinery will mistake the guanine for an adenine and pair

it with a thymine, thus creating a mismatch. An accumulation of mismatches can

directly signal for cell death. If the cell decides to survive, and the mismatch repair

machinery does not process this error, the mismatch will lead to a permanent

mutation at the next round of replication. When the mismatch repair machinery

does attempt to repair the mismatch, it is believed that since the cell will remove the

newly synthesized one, ie the thymine; the mismatch repair machinery will again

pair a thymine with the 06MeG; this leads to a futile repair cycle where the damaged



base never gets removed39 . This cycling eventually leads to replication fork collapse

and double strand breaks. Finally, double strand breaks can also signal for cell

death, or be processed through homologous recombination -IQM. (figure 6)

Methylnitronitrosoguanidine (MNNG) is a biochemical tool used

experimentally as a carcinogen and mutagen - (figure 4). Its cytotoxicity is also

primarily due to the 06MeG and 3MeA adducts, and MGMT is also strongly solicited

in response to MNNG induced damage. As a consequence, MNNG is often used as a

functional analogue of temozolomide 01-5. While the main cytotoxic lesions of

MNNG are the same as those of temozolomide, the other effects that both drugs have

on a cell could very well be different, and make the overall sensitivity of a given cell

line to each drug different.

For these reasons, we decided to investigate the DNA damage response to

temozolomide and to MNNG in different individuals.
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The Coriell panel of cell lines:

We focused our attention on a panel of twenty-four genetically diverse cell

lines. These twenty-four cell lines are a subset of a larger set of 450 B

lymphoblastoid cell lines; the subset maintains the diversity of the larger set 46. All

of them were derived from the blood of healthy United States citizens with

ancestries from around the globe. B lymphocytes were purified from the blood

samples, and then immortalized by Epstein Barr Virus (EBV) transformation. Since

EBV transformation does not affect p53 function, it is a reasonable assumption that

the DNA damage response in these cell lines is a mirror of what it is in the different

individuals. 4

Previous work conducted by Samson and colleagues has shown that these

cell lines display a broad range of sensitivity to the DNA alkylating agents MNNG

(figure 2). Using computational machine learning techniques, they successfully

identified 48 genes with basal expression that predicts susceptibility with 94%

accuracy. This leads us to believe that the panel of twenty-four cell lines is a good

experimental system to pursue studies on inter-individual differences in the DNA

damage response 3.

5. Goal of the study and project design

The goal of this thesis was to i) measure the sensitivity of the panel of twenty

four cell lines to the cytotoxic agents temozolomide and MNNG using a high-

throughput growth inhibition assay developed in the Samson laba; ii) in the case of

temozolomide, also measure the drug's induction of SCEs-a surrogate marker for

homologous recombination events, in order to compare this data to the growth

inhibition data.



Results and Discussion

1. A high-throughput growth inhibition assay is used to
measure temozolomide and MNNG induced cytotoxicity and
cell cycle effect.

Introduction:

Temozolomide and MNNG are two alkylating agents that are often used

interchangeably in the scientific community as they are thought to be analogues.

Their main cytotoxic lesions are 3MeA at the 06MeG (figures 3 and 4). However,

they also react with the proteins of a cell, and these reactions could be different for

both drugs. Furthermore, these drugs could have differing cytotoxicity kinetics. As a

consequence, a given individual may have differing sensitivities to both drugs.

To investigate this possibility, we worked with a panel of twenty-four cell

lines derived from twenty-four United States individuals. Previous work on these

cell lines from the Samson lab has revealed that they display a very broad range of

sensitivity to MNNG. It has also been shown that a cell line that is very resistant to

one source of damage can be sensitive to another. We wanted to determine i) if the

24 cell lines display as broad of a range of sensitivity to temozolomide as they do to

MNNG and ii) if the order of the cell lines in this range is the same for both drugs.

We used a high-throughput growth inhibition assay for measuring the

sensitivity of the cells. This assay was developed in the Samson lab, and has a

dynamic range comparable to that of the slower clonogenic survival assay, the

current gold standard for assessing cellular growth inhibition after DNA damage5 . In

the high-throughput method, BrdU-a thymidine analog-is added to the media of

cells. As the cells proliferate, they incorporate the BrdU into the A-T rich regions of



their DNA. Hoechst, a dye that preferentially binds AT-rich regions in the DNA, is

quenched by BrdU. Cells that have divided zero, one or two times in the presence of

BrdU can therefore be differentiated based on the level of quenched Hoechst

fluorescence, thus giving a measure of cell proliferation.

After cells were treated with temozolomide or MNNG, they were allowed to

recover for the duration of two doubling times, and then left to proliferate in the

presence of BrdU for another two doubling times (as shown in figure 7). The cells

were subsequently lysed to extract their nuclei and stained with Hoechst dye and

propidium iodide (PI). Figure 8 illustrates how this experimental set up allowed us

to distinguish first cell cycle nuclei from second and third cell cycle nuclei, as well as

G1 phase nuclei from S/G2 phase nuclei. The PI and Hoescht fluorescence of the

nuclei were measured by flow cytometry. Figure 9 shows the kinds of plots we

obtained, and how the data was gated and analyzed. The relative growth inhibitions

of treated samples versus mock treated samples give reproducible measures of the

sensitivity of the cells to treatment.
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Results & Discussion:

1. Results with the TK6 cell line

We treated our cells with MNNG or temozolomide. We used a dose range of 0

to 480 [M for temozolomide and 0 to lpg/mL for MNNG (figures 10 and 11). Both of

these drugs' main cytotoxic lesions are 06MeG and 3MeA. A frontline repair pathway

used by cells to repair the induced damage is direct removal of the methyl adducts

with the suicide repair protein 06-methylguanine-DNA methyltransferase (MGMT).

It has previously been reported that cells lacking MGMT are particularly sensitive to

such alkylating agents 48. It is therefore not surprising that the B lymphoblastoid cell

line TK6, which also lacks MGMT, is extremely sensitive to both drugs.

2. Dynamic range

With the dose ranges used (ie 0-480ptM for temozolomide and 0-1pg/mL for

MNNG), the growth inhibition dose-response curves for our twenty-four

lymphoblastoid cell lines from twenty-healthy individuals of diverse ancestry span

two logs. This is very large, and in the case of temozolomide-where all twenty-four

cell lines were assayed-allows us to partition the cell lines into three groups: i) the

very resistant cell lines, from most resistant to least resistant: cell lines #7, 3,16 and

14, ii) the mildly sensitive cell lines, # 21, 22, 6, 8, 13, 12, 19, 23, 17, 1, and 20, and

iii) the very sensitive cell lines, # 9, 11, 5, and 4. This ranking is based on their

sensitivity at the 480 pM. At the 0.5[tg/mL dose for MNNG, which is approximately

equivalent to the 480 p.M dose of temozolomide, the order of the cell lines, from

most resistant to most sensitive, is: #16, 14, 23, 21, 6, 20, 17, 11, 5, and 4. This is

almost exactly the same order as the one they are in for the temozolomide growth

inhibition dose-response curves. From these observations we can conclude that

temozolomide and MNNG have very similar cytotoxic powers.
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3. Dose response profiles for MNNG and temozolomide are different than with
BCNU

The advantage of a dose response curve is that is allows us to see the killing

profiles of each cell line. This high-throughput growth inhibition assay had already

been conducted in the Samson lab using the DNA damaging drug BCNU (figure 12) 5.

The profiles in that case were similar in all the cell lines: linear when plotted on a

log scale. For temozolomide and MNNG however, beyond displaying different

absolute sensitivities at any given dose, the twenty-four cell lines also display

different profiles for their dose response curves (all curves are plotted in log scale).

Furthermore, for each cell line tested for MNNG and for temozolomide sensitivity,

the profiles are the same with both drugs. For some (e.g. #6 and #1), the slopes are

very steep for the lower doses, and then the curves reach a plateau. For others (e.g.

#11), the slope is very gentle for the lower doses, and then becomes steeper as the

dose increases. Finally, some cell lines (e.g. #5) have a linear dose response. We can

conclude that for both drugs, the cells solicit the same DDR mechanisms as the

amount of damage increases. These are not the same mechanisms that are solicited

in response to BCNU induced damage.

4. The high-throughput assay was able to capture the cell cycle effects of
temozolomide or MNNG treatment on the cells:

Our flow cytometry plots show that as the doses of drug (whether it be

MNNG or temozolomide) increase, the total number of live cells decreases. The plots

also reveal that for all cell lines, increasing doses of drug lead to a rise in the fraction

of cells in late S and G2/M phase of the first cell cycle. This fraction corresponds to

cells that did not divide during their time in BrdU, and instead stayed arrested in

G2/M or late S (figure 13).
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2. Sister chromatid exchange assay

Introduction:

We used a high-throughput FACS based assay to measure the relative

amounts of growth inhibition of the Coriell panel of cell lines after treatment with

temozolomide. However, growth inhibition is only one of many DNA damage

endpoints. Indeed, while this assay gives us a good idea of which cell lines die or

arrest most after alkylation damage, it does not tell us how the other damage coping

mechanisms are being solicited in each cell line.

One way cells can bypass DNA damage is through homologous

recombination4 9. Temozolomide induced damage can lead to a futile repair cycle

that is unable to remove the damaged 06-methylguanine in 06-methylguanine-

Thymine mismatches. This eventually leads to double strand breaks. Furthermore,

the close accumulation of DNA nicks and abasic sites due to base excision repair and

nucleotide excision repair can also eventually lead to double strand breaks (DSBs)

in the DNA. Homologous recombination (HR) is one of the most common ways a cell

can repair these DSBs.

We wanted to measure the amounts of homologous recombination in the

Coriell set of cell line in order to determine whether or not amounts of HR always

correlated with amount of growth inhibition post temozolomide induced damage.

One would expect that a sensitive cell line would have very strong growth inhibition

post treatment, while having high amounts of homologous recombination. However,

a particular cell line could be very sensitive to the damage as far as growth

inhibition goes, and have very low amount of HR, indicating that the cell death

process is the more solicited response. For the resistant cell lines, some could have

low growth inhibition post damage and low amounts of homologous

recombination-indicating that the cells repair the damaged bases very efficiently



before they lead to DSBs or signal for cell death. However, other resistant cell lines

could have low growth inhibition post damage with high amounts of HR. These cell

lines would be strongly soliciting HR in order to avoid cellular death or senescence.

Distinctive homologous recombination (HR) pathways exist, such as

synthesis-dependent strand annealing (SDSA) and double-strand break repair

(DSBR). After DSB formation, the DNA ends are resected to form 3 single-strand

DNA (ssDNA) overhangs. The HR protein machinery then executes strand invasion

of a partner chromosome. After a successful homology search, strand invasion

occurs to form a D-loop structure. DNA synthesis then ensues. In the SDSA pathway,

the D loop is unwound and the freed ssDNA strand anneals with the complementary

ssDNA strand that is associated with the other DSB end. The reaction is completed

by gap-filling DNA synthesis and ligation. Only noncrossover products are formed.

Alternatively, the second DSB end can be captured to form an intermediate that

harbors two Holliday junctions (HJs), accompanied by gap-filling DNA synthesis and

ligation (figure 14). The resolution of HJs can result in either noncrossover or

crossover products 1.

The sister chromatid exchange assay uses the fact that BrdU can incorporate

into the DNA of actively replicating cells to measure the amounts of crossover

products induced by homologous recombination. The number of these crossover

products is considered to be a surrogate marker for the overall amount of

homologous recombination5-s 1. In the SCE assay, cells-treated or not with

different doses of temozolomide-are left to proliferates with BrdU in their media

for the duration of two cell doubling times. As the cells replicate, BrdU is

incorporated into the newly synthesized DNA, instead of thymine. Therefore, after a

first round of replication, the cells contain DNA that has one strand that contains

BrdU and another that does not. The cells then replicate their DNA a second time.

Right before dividing again, they have paired sister chromatids in which one

chromatid has BrdU incorporated into both strands, and the other has BrdU



incorporated into only one of two strands (figure 15). For our experiments, it is at

that moment that we arrested our cells in metaphase, and made metaphase spreads

to visualize the sister chromatids.

Hoechst dye preferentially binds AT-rich regions in the DNA, and is quenched

by BrdU; we therefore used Hoechst dye to stain our cells' chromosomes. As a result,

the sister chromatids were differentially stained, with the sister chromatid that had

BrdU incorporated into both strands being lighter5 2. This allowed us to visualize all

the crossover events that happened during the second round of DNA replication.

Indeed, such crossover events result in "harlequin" stained chromosomes, as shown

in figure 16.
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Figure 16: Representative picture of a metaphase spread obtained with our
SCE assay

This black and white picture shows one of the metaphase spreads that were found
for cell line #8 at a dose of 120pM. The read arrows indicate sites where a sister
chromatid exchange occurred.
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Results and Discussion:

1. Results with the TK6 and TK6 + MGMT cell lines

We treated our cells with temozolomide. We used a dose range of 0 to 120ptM

for the Coriell panel of cell lines, and a range of 0 to 30 [M for the TK6 cell line

(figure 17).

Temozolomide's main cytotoxic lesions are 0 6MeG and 3MeA. A frontline

repair pathway used by cells to repair the induced damage is direct removal of the

methyl adducts with the enzyme 06-methylguanine-DNA methyltransferase. MGMT.

It has previously been reported that cells lacking MGMT are particularly sensitive to

such alkylating agents. It is therefore not surprising that the B lymphoblastoid cell

line TK6, which lacks MGMT, has very high amounts of temozolomide-induced SCE's.

In fact, in was not possible to obtain a sufficient amount of metaphase spreads to

reliably measure SCEs for doses higher that 30pM. We also performed the assay on

the TK6 + MGMT cell line. This is a TK6 cell line in which MGMT has been

reconstituted and is overexpressed. Not surprisingly, the TK6 + MGMT cell line is

very resistant to SCE induction through temozolomide treatment. The levels of

induced SCE's are baseline for doses up to 120pM.

2. Broad range of sensitivity for the Coriell panel of cell lines

The Coriell panel of cell lines displayed a broad range of sensitivity to

temozolomide for the growth inhibition assay. Similarly, the cell lines display a

broad range of sensitivity for the SCE assay. The TK6 cell line had the highest

induction of SCEs. For the Coriell cell lines, the number of SCEs at the 120 pM dose of

temozolomide ranged from 0.006 SCE's per chromosome (cell line #22) to 0.65

SCE's per chromosome (cell line #4). This represents a 100 fold range.



3. Number of induced SCEs generally correlates with the cell lines' growth inhibition
profiles

Most of the cell lines' growth inhibition dose response profiles correlated

strongly to their SCE induction results. Cell lines #4 and #5 were the two most

sensitive cell lines in the growth inhibition assay, with #4 being more sensitive than

#5. This was also observed for the SCE endpoint: #4, then #5, are the two cell lines

with the highest amounts of induced SCE's per chromosome at any dose.

Furthermore, cell lines #22 and #8 were among the most resistant in the growth

inhibition assay, and they were also among the most resistant in the SCE assay. In

general, most of the cell lines' sensitivities for the growth inhibition endpoint

correlated with their sensitivities for the SCE endpoint.

From these observations we can infer that, for the cell lines tested, sensitivity

to temozolomide, as far as growth inhibition in concerned, correlates to high

amounts of induced SCE's, while resistance correlates with low amounts of induced

SCE's.
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Materials and Methods:

1. Tissue Culture

The 24 lymphoblastoid cell lines, established using EBV transformation, were

obtained from the Coriell Institute and were designated 1-24 as follows: #1

(GM15029), #2 (GM15036), #3 (GM15215), #4 (GM15223), #5 (GM15245), #6

(15,224), #7 (GM15236), #8 (GM15510), #9 (GM15213), #10 (GM15221), #11

(GM15227), #12 (GM15385), #13 (GM15590), #14 (GM15038), #15 (GM15056),

#16 (GM15072), #17 (GM15144), #18 (GM15216), #19 (GM15226), #20

(GM15242), #21 (GM15268), #22 (GM15324), #23 (GM15386), and #24

(GM15061).

These cell lines, as well as the lymphoblastoid cell line TK6, were grown in

suspension in RPMI medium supplemented with 15% fetal bovine serum, 1%

glutamine, and 1 % penicillin-streptomycin. All assay were set up using

logarithmically growing cells.

The 24 cell lines were ordered based on their normal doubling time, then

partitioned into four groups, as detailed in table 1 Cell lines in each group were

assayed based on the approximate doubling time for the group.



20 20
16 21
24 21
6 22

14 22
1 22

17 22
3 23
5 24

15 24
23 24

18 35
10

22

37
40

Table 1: Doubling times for all 24 cell lines, and approximated doubling times

The cell lines were divided into four groups of lines with similar doubling times. The
assays were conducted using their approximated doubling times. This allowed us to
handle several cell lines at a time.

,

21 20



2. Flow cytometry based growth inhibition assay

Temozolomide treatment:

Cells were grown to mid-log phase. Cells were spun and resuspended in

serum-free media. 270 [d of cells at a density of 4.5x10 5 cells/ml were plated in

each well of one row of a V-bottom 96-well plate. If multiple cell lines were assayed,

each cell line was plated in one row of a 96-well plate.

The drug was diluted to loX of the final dose concentrations in serum-free

media in another 96-well plate. 30 d of the IOX drug was transferred to each well in

the 96-well plate containing cells, after which the cells were incubated at 37 0C for lh.

After lh, cells were spun down at 1500rpm for 5min. Drug-containing media was

removed and the cells were washed with 200[d warm 1XPBS per well. The cells

were then resuspended in 280uL of warm media containing serum, transferred to a

flat-bottom 96-well plate and incubated at 370C for the duration of two doubling

times.

MNNG treatment:

Cells were grown to mid-log phase. 270 tl of cells at a density of 2.5x10 5

cells/ml were plated in each well of one row of a flat-bottom 96-well plate. If

multiple cell lines were assayed, each cell line was plated in one row of a 96-well

plate.

The drug was diluted to lOOX of the final dose concentrations in serum-free

media in another 96-well plate. 3 1d of the IOOX drug was transferred to each well in

the 96-well plate containing cells. The cells were then incubated at 370C for the

duration of two doubling times.



BrdU addtion

After allowing cells to respond for two doubling times after drug treatment,

the cells are incubated in the presence of BrdU for another two doubling times. The

optimal BrdU concentration was determined to be 45pM for the Coriell cell lines as

well as for TK6.

A the first two doubling times, BrdU was added to the treated cells at a

concentration of 45 M (from a 10mM stock). BrdU was replenished every 12 hours

after this start, by adding an extra 45 tm to each well. This was done for the

duration of two more cell cycles.

Sample preparation for FACS

At the end of four doubling times after drug treatment, cells were transferred

to a V-bottom 96- well plate using a multi-channel pipette. The plate was spun down

at 1500rpm for 5min. The media was removed and cells were washed with 200 tL of

cold 1XPBS.

The cells were then resuspended in 280uL of lX lysis buffer (0.1M Tris HCI pH

7.5, 0.1% Igepal CA-60, 1mM CaCl2, 5mM MgC12, 0.2%BSA (w/v), 1.2 tg/ml Hoechst

33258 and lx104 chicken erythrocyte nuclei (CEN)/ml) and incubated on icefor 15

minutes. Two wells containing only the lysis/staining buffer and propidium iodide

are also prepared as blanks

Before running each sample, it was transferred to a flow cytometry tube, and

12 1 of 100 g/ml propidium iodide was added. Each sample was then briefly

vortexed, and analyzed on a BD LSR II flow cytometer.



Data Collection

Events were visualized on the side scatter vs. forward scatter plot to gate out

debris, and on the PI-height vs. PI-area plot to exclude doublets that fall below the

diagonal. The voltages for PI and Hoechst were adjusted to position the chicken

erythrocyte nuclei at the (30K, 30K) point to facilitate subsequent data analysis.

15 000 events that passed the two selection criteria were collected and viewed on a

PI- Area vs. Hoechst-Area plot.

Data Analysis

All data were analyzed using FlowJo software (TreeStar Inc). For each cell line

and drug dose, the debris and doublets were gated out. The remaining events were

observed on a PI-Area vs. Hoechst-Area plot. The regions corresponding to cells in

the 1st, 2nd or 3rd cell cycle post BrdU addition were gated. Hoechst fluorescence of

cells decreases as they incorporate BrdU during DNA replication. Therefore, as the

cells replicate and divide, they move from the region labeled 1st cell cycle to the

region labeled 2nd cell cycle, to the region labeled 3rd cell cycle. For each sample, the

number of events in each gate was determined. The CEN were also gated (around

30k, 30k) in order to normalize the number of cells in each sample.

The normalized fraction of proliferating cells post treatment is given by the

formula:

1/2 * (# of events in cell cycle 2) / # CEN + 1/3 * (# of events in cell cycle 3) / # CEN

The ratio of proliferated cells in a treated sample to that in an untreated

sample gives the % control growth value that is used to plot a survival curve.



3. Sister Chromatid Exchange assay

Temozolomide treatment

Cells were grown to mid-log phase. Cells were spun and resuspended in

5OmL Falcon tubes in 18mLs of serum-free media at a concentration of 5*10s

cells/mL. Each dose corresponded to one tube. The drug was diluted to 1oX the

final dose concentrations. 2mLs of 1oX drug was added to the corresponding dose

tube.

After lh, cells were spun down at 1500rpm for 5min. Drug-containing media

was removed and the cells were washed with 10mLs of warm 1XPBS. The cells

were then resuspended in 15mLs of serum containing media supplemented with

10M of bromodeoxyuridine (BrdU, 1:100 dilution of 1mM stock). The cells were

transferred to a 25cm3 cell culture flask and returned to the incubator for the

duration of 2 normal doubling times.

Obtaining metaphase spreads

After complete BrdU incubation, 0.1[tg/ml of Colcemid (1:1000 dilution of a

0.1mg/ml stock solution) was added to each flask and then left to incubate for 2

more hours. The contents of each flask were then transferred to a 15mL Falcon tube.

The cells were then spun at 100g for 5min. The supernatant was aspirated, leaving a

small volume of liquid remaining, in which the cells were then resuspended. 5mLs of

hypotonic solution were then added very slowly to each tube, drop by drop, in order

to avoid that the cells burst prematurely. The cells were then incubated in hypotonic

solution at 37C for 15min.

Following hypotonic treatment, the tubes were centrifuges for 5min. The

majority of the supernatant was aspirated, and the cell pellet resuspended in the

remaining volume as done previously. The cells were then slowly resuspended in 5



mLs of Carnoy's fixative (3 MeOH:1 Acetic Acid). The samples were again spun for

5min at 100g, the supernatant almost entirely aspirated and the cells resuspended

in the remaining liquid volume, and the cells slowly resuspended in 5mLs of

Carnoy's fixative. The cells were the spun 5min again, and the supernatant aspirated

leaving approximately 1mL of liquid in the tube to resuspend the cells in.

The cells were then dropped onto microscope slides, from a height of 12-18

inches, using a Pasteur pipette. 4-5 drops were placed on each slide. The slides were

left to dry overnight.

Harlequin staining of chromosomes

Slides were placed in coplin jars and stained for 20min in a 5 ig/ml Hoechst

solution (a 50tg/ml Hoechst stock solution was diluted 1:10 in 1x Sorensen's

phosphate buffer, itself made for a 1oX stock containing: 0.335M of Na2 HPO 4 and

0.335M of KH2 PO 4 ). The slides were then rinsed with water, blotted to remove

excess fluid, and left to air dry.

A few drops of 1X Sorensen's buffer was then dropped onto each slide, and

the slides were mounted with a rectangular coverslip. These slides were placed

onto a 650C slide warmer and exposed to black light for 20min.

After 20min under black light, the slides were taken off of the slide warmer.

The coverslips were removed, the slides rinsed with water, blotted to remove excess

water, and again left to air dry. A large drop of 20X SSC buffer (3M of NaCl and

300mM of sodium citrate in water) was placed onto each slide, the slides mounted

with a rectangular coverslip, and placed back onto a 650C slide warmer for an

additional 20min.



The slides were then taken off of the slide warmer, and rinsed after their

coverslips were removed. The excess water was blotted and the slides were left to

air dry. The slides were incubated for 8min in 5% Giemsa staining solution (1:20

dilution in Sorensen's buffer), then rinsed with water, and left to dry fully.

The slides were dipped in histological grade xylene, then two or three drops of

Permount mounting solution was placed on each slide, and they were mounted with

a rectangular coverslip and left to dry completely.

Microscopy and image analysis

Spreads were scanned with bright field microscopy at a low power (10, 20x)

to first find second division cells. During replication the cells incorporated the BrdU

into their newly synthesized DNA. Therefore at the metaphase of the first cellular

division, sister chromatids both contain one strand that has incorporated BrdU

(figure 15). At the metaphase of the second cell division, one sister chromatid has

only one strand that has incorporated BrdU, while the second has incorporated it

into both strands (figure 15). In second division cells the Hoechst fluorescence of

two sister chromatids will therefore be different. After Giemsa staining this

translates into one chromatid stained dark purple or pink, with the sister chromatid

stained a lighter pink (figure 16).

20 second division metaphase spreads were then photographed at a power

of 100x. For each spread the number of chromosomes, and the number of exchanges

were counted using Imajej software. Then the average number of exchanges per

chromosome across all 20 spreads was calculated.



Conclusions and Future Directions

A few key results were shown in this thesis. We have first and foremost

shown-through the use of a high-throughput highly sensitive growth inhibition

assay with a broad range of sensitivity-that while our Coriell panel of cell lines

display a very broad range of sensitivity to MNNG and temozolomide, their relative

sensitivities to both drugs are very similar. Several conclusions can be drawn from

this observation. First of all, the implicit assumption that temozolomide and MNNG

are so similar in their mode of toxicity that they can be used and referred to

interchangeably is not in contradiction with this study. Since MNNG has for a long

time been a key model alkylating agent for toxicity studies, while temozolomide is

being used in the clinic today, this apparent interchangeability is of great scientific

relevance. Second of all, since these cell lines were derived from different healthy

individuals, we can infer that this similarity in sensitivity ranking would also be

observed in these individuals. We can thus conclude that an approximation of an

individual's sensitivity to MNNG can be determined by examining in a large

population his or her relative sensitivity to temozolomide, as well as the sensitivities

of that population to MNNG (and vice-versa).

In most of the cell lines we tested, there was a positive correlation between

the sensitivity to growth inhibition and the sensitivity to SCE induction. This is

consistent with the idea that if a cell line is sensitive, it is more likely to accumulate

damage that processes such as homologous recombination will mediate. We did

however find one cell line that was quite sensitive to temozolomide as far as growth

inhibition goes, all the while having very low amounts of induced SCEs. We can

conclude that this cell line resorts to cell death and cell cycle arrest but not as much

to homologous recombination.

Some supplementary studies would be needed to strengthen our conclusions.

Testing larger numbers of individuals, or cell lines derived from individuals, would



provide more statistical confidence that a given individual's sensitivities to

temozolomide and MNNG are similar. As for the SCE's induced by temozolomide,

while for the sensitive cell lines it is difficult to obtain second division metaphase

spreads for doses higher than 120tM, it would be of interest to examine the induced

SCEs for doses larger than 120tM in the resistant cell lines. Indeed this would allow

us to further distinguish and rank the SCE resistant individuals among themselves.

While these DNA damage phenotypes reveal important information in

themselves, it is their correlation to systems-wide data that would make it possible

to predict the sensitivity of yet unstudied cell lines to temozolomide and MNNG.

Furthermore, a systems-wide study would also allow us to gain insight into what

makes some cell lines sensitive for one DNA damage endpoint (e.g. growth

inhibition) and not another (e.g. homologous recombination). This systems-wide

data could be proteomic, transcriptomic (mRNAs, miRNAs, etc...), genetic, or

epigenetic. Since DNA damage solicits a very broad response that involves multiple

processes in the cell, one could imagine that several genome wide datasets of

different types, taken separately, could have predictive value. Finally, integrating

these genome-wide datasets could provide even more predictive strength.
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