
Efficient Flooding for Wireless Mesh Networks

by

Jayashree Subramanian

B.E., Computer Science and Engineering, Madurai Kamaraj University (2001)

M.S., Computer Science and Engineering, Indian Institute of Technology Madras (2005)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2012

© Massachusetts Institute of Technology 2012. All rights reserved.

MASSACHUSETTS INST[TUTEOF TEC-NOLOGY

LUBRARIES

ARCHIVES

r

Department of Electrical Engineering and Computer Science

December 28, 2011

Certified by .
Robert T. Morris

Professor
Thesis Supervisor

A c

Accepted by

Author .. .

Pro~ess6 Le~lie A. Kolodziejski
Chairman, Department Committee on Graduate Theses

2

Efficient Flooding for Wireless Mesh Networks

by

Jayashree Subramanian

Submitted to the Department of Electrical Engineering and Computer Science
on December 28, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Flooding in wireless mesh networks involves distributing some data from one node to rest
of the nodes in the network. This dissertation proposes UFlood, a flooding protocol for
wireless mesh networks that targets large file transfers, such as software updates, where
achieving high throughput (minimizing the time to complete the flood to all nodes) and
low airtime (lower the time each node spends in transmitting packets, and thus lower the
impact on other wireless traffic) are both important. The central challenge in good flooding
performance is the choice of senders for each transmission opportunity. At each time during
a flood, some parts of the network will have received more data than others. The set of best
sending nodes lies along the boundaries between these regions, and evolves with time in
ways that are difficult to predict.

UFlood's key new idea is a distributed heuristic to dynamically choose the senders
likely to lead to all nodes receiving the flooded data in the least time. The mechanism takes
into account which data nearby receivers already have as well as inter-node channel qual-
ity. The mechanism includes a novel bit-rate selection algorithm that trades off the speed of
high bit-rates against the larger number of nodes likely to receive low bit-rates. Unusually,
UFlood uses both random network coding to increase the usefulness of each transmission
and detailed feedback about what data each receiver already has; the feedback is critical in
deciding which node's coded transmission will have the most benefit to receivers. The re-
quired feedback is potentially voluminous, but UFlood includes novel techniques to reduce
its cost.

The dissertation concludes that careful choice of senders allows UFlood to achieve
150% higher throughput than MORE, a known high-throughput flooding protocol, using
65% less time transmitting. UFlood uses 54% lower airtime than MNP, an existing flooding
protocol to minimize airtime, and achieves 300% higher throughput.

Thesis Supervisor: Robert T. Morris
Title: Professor

4

Prior Publication

Much of this thesis was previously published in a conference paper 1531, and represents the

joint work of the coauthors of that paper.

6

Efficient Flooding for Wireless Mesh Networks

by

Jayashree Subramanian

Submitted to the Department of Electrical Engineering and Computer Science
on December 28, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Flooding in wireless mesh networks involves distributing some data from one node to rest
of the nodes in the network. This dissertation proposes UFlood, a flooding protocol for
wireless mesh networks that targets large file transfers, such as software updates, where
achieving high throughput (minimizing the time to complete the flood to all nodes) and
low airtime (lower the time each node spends in transmitting packets, and thus lower the
impact on other wireless traffic) are both important. The central challenge in good flooding
performance is the choice of senders for each transmission opportunity. At each time during
a flood, some parts of the network will have received more data than others. The set of best
sending nodes lies along the boundaries between these regions, and evolves with time in
ways that are difficult to predict.

UFlood's key new idea is a distributed heuristic to dynamically choose the senders
likely to lead to all nodes receiving the flooded data in the least time. The mechanism takes
into account which data nearby receivers already have as well as inter-node channel qual-
ity. The mechanism includes a novel bit-rate selection algorithm that trades off the speed of
high bit-rates against the larger number of nodes likely to receive low bit-rates. Unusually,
UFlood uses both random network coding to increase the usefulness of each transmission
and detailed feedback about what data each receiver already has; the feedback is critical in
deciding which node's coded transmission will have the most benefit to receivers. The re-
quired feedback is potentially voluminous, but UFlood includes novel techniques to reduce
its cost.

The dissertation concludes that careful choice of senders allows UFlood to achieve
150% higher throughput than MORE, a known high-throughput flooding protocol, using
65% less time transmitting. UFlood uses 54% lower airtime than MNP, an existing flooding
protocol to minimize airtime, and achieves 300% higher throughput.

Thesis Supervisor: Robert T. Morris
Title: Professor

8

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Robert Morris, without whom

this dissertation would not have been possible. The discussions with Prof. Morris over the

past six years and his constructive criticisms both in my research and dissertation writing

have transformed me as a better thinker. I cannot fittingly acknowledge my indebtedness

to Prof. Morris, but I hope this thesis will show to some extent that his hard work has not

been entirely in vein.

I am greatly indebted to Prof. Hari Balakrishnan for generously contributing his ideas,

suggestions, criticisms, and support throughout every phase of my research. His guidance

in both research and in matters beyond were always very helpful. I am very grateful to

Prof. John Guttag for providing insightful comments on my dissertation. I thank Prof.

Frans Kaashoek and Prof. Nickolai Zeldovich for providing a good research environment

at PDOS and valuable comments during the group meetings.

I owe sincere thanks to all the staffs of The Infrastructure Group (TIG), who provided

timely help and support when I built the wireless test-bed for my experiments. The test-

bed deployment would have been very difficult with out the immense help of Shuo Deng.

I am very thankful to Szymon Jakubczak, Mythili Vutukuru, Shuo Deng, Ramakrishna

Gummadi, Katrina LaCurts, Lenin R. Sivalingam, Arvind Thiagarajan, Micah Brodsky,

John Bicket, Sanjit Biswas, Daniel Aguayo and many others for patiently answering all my

questions and the discussions there after. A special thanks to Athicha, Alex Yip, Chris Laas,

Ramesh, Keith, and Haogang for sharing the office space and some great laughs together.

I also thank all the PDOS and NMS students for their friendship and comments during my

practice talks.

I cannot find words to express my gratitude to my friends, who made my stay in grad

school, a beautiful experience. I will always cherish the time I spent with Mythili during our

long walks around Charles river, with Anusha and Ravikanth during the evening coffees,

with Lavanya, Mani, Srini during the lunch and dinner parties, and with all of my Tang

Hall roommates and friends. Prathima, Sudha and their family were very helpful to keep

me feel at home (Chennai) in Boston.

My family has been always supportive throughout my life. Many interesting ideas in my

research emerged out of several "long" discussions I had with my husband, Arunkumar. He

has always been there to support, both technically and non-technically, during the difficult

times in my grad school and I dedicate this thesis to him.

Contents

1 Introduction 19

1.1 Flooding in Wireless Networks . 20

1.2 U Flood . 2 1

1.3 Contributions . 23

1.4 Organization . 24

2 Sender Selection: Contributing Factors and Challenges 25

2.1 Factor 1: Delivery probabilities . 25

2.2 Factor 2: Numbers of receivers . 26

2.3 Factor 3: Dynamic Sender Selection . 27

2.4 Factor 4: Correlated Reception . 28

2.5 Factor 5: Bit-rate Selection . 29

2.6 Chapter Summary . 31

3 Related work 33

3.1 Flooding in Ad Hoc Routing . 33

3.2 Tree-based Flooding . 34

3.3 Gossip-based Flooding . 36

3.4 Flooding using Network Coding . 39

3.5 Flooding using Cooperative Coding and Diversity 42

3.6 Bit-rate Selection in Wireless Networks 43

3.7 Chapter Summary . 43

4 Design of UFlood 45

4.1 Goals and Assumptions . 45

4.2 Design Overview . 46

4.3 Design Challenges . 47

4.4 Bit-rate Selection . 48

4.5 Coding . 49

4.6 Utility . 50

4.7 Feedback . 52

4.8 Mechanisms to efficiently reduce Idle-time 57

4.9 Hidden Terminals . 59

4.10 Limitations of UFlood . 60

4.11 Chapter Summary . 63

5 Implementation 65

5.1 Data Structures . 65

5.2 Packet Formats . 66

5.3 Bit-rate Selection . 68

5.4 Coding and Decoding . 70

5.5 Main Loop . 70

5.6 Batch Termination . 73

5.7 Feedback Interpolation . 74

5.8 Chapter Summary . 75

6 Results and Discussion 77

6.1 Experimental Setup . 77

6.2 Main Results . 81

6.3 W hy Does UFlood Win? . 83

6.4 Feedback . 87

6.5 Factors Influencing the Performance of UFlood 90

6.6 Summary of Findings . 96

7 Application: WiFi Multicasting using Client Cooperation 97

7.1 Related Work . 98

7.2 Goals and Assumptions . 100

7.3 Key Ideas of UCast . 100

7.4 Design and Implementation . 101

7.5 Evaluation . 102

8 Conclusion 109

8.1 Summary 109

8.2 Future Work.111

14

List of Figures

2-1 Illustration of the importance of packet delivery probabilities. 25

2-2 Illustration of the need to consider the number of potential receivers. 26

2-3 Illustration of the best sender changing as nodes receive packets. 27

2-4 Example topology to illustrate the effect of correlation in packet reception.

The numbers indicate link-level packet reception probabilities. 28

2-5 Example topology to Illustrate bit-rate selection. 30

3-1 Example topology to illustrate MNP (See Figure 1 of 1351). 38

3-2 Example topology to illustrate the benefits of RNC. 39

4-1 Illustration of utility calculation in UFlood. Red and blue colored texts

indicate packets that are transmitted and received, respectively, by the node. 51

4-2 Illustration of feedback in UFlood. F and Si are first and non-first-generation

packets, respectively. 53

4-3 Illustration of the importance of look-ahead. 62

5-1 Flowchart of UFlood's main loop for packet transmission 71

5-2 Flowchart of UFlood's main loop for packet reception. 72

5-3 (a) A typical feedback packet in UFlood and (b) Illustration of feedback

interpolation in UFlood . 74

6-1 Physical layout of the 25-node testbed. 78

6-2 CDF of pair-wise 1024-byte packet delivery probabilities at 5.5 Mbps for

the testbed showing a wide range of link qualities. 79

6-3 CDF over choices of source of the total throughput achieved while flooding

a 2MB file. On average, UFlood's throughput is 63% higher than that of

UFlood-R, 150% higher than MORE's and 300% higher than MNP's. . . . 81

6-4 CDF over choices of source of the total airtime used in flooding a 2MB

file. On average, UFlood uses 30% lower airtime than UFlood-R, 65%

lower than MORE and 54% lower than MNP. 82

6-5 CDF over the data transmissions in a single batch of the number of nodes

that received each transmission. UFlood-R's transmissions reaches 50%

and 20% more nodes than MORE and MNP. 84

6-6 CDF over the data transmissions in a single batch of the number of nodes

that benefited from each transmission. Typical UFlood-R transmissions

benefit twice as many nodes as MORE and 20% more than MNP. 84

6-7 Use of low-probability links improves throughput by 88% for the median

case.. 86

6-8 Packet receptions are highly correlated in our testbed. The x-axis shows

Ps(r) for every link with non-zero delivery in the network. For each such

point, there are multiple points on the y-axis, one for every other link from

s. If all links were independent (from s), we would expect the points in this

scatter-plot to all lie along the 45-degree y = x line...... 87

6-9 CDF over different choices of source of the total bytes of data packets

transmitted, compared to total bytes of both data and feedback packets.

The totals include all headers up to and including the 802.11 header. On an

average, the feedback overhead is 3%. 89

6-10 Detailed Vs. UFlood's compact feedback representation. Compact feed-

back looses only I1% throughput due to conciseness. 90

6-11 CDF over different choices of source of total airtime, comparing UFlood-R

with a simpler version that includes only rank in feedback packets. 91

6-12 Mean throughput improvement on a 5-node dense network is 16% 92

6-13 Mean throughput improvement on a 5-node sparse network is 38% 92

6-14 Throughput of UFlood-R, MORE and MNP for various batch sizes 93

6-15 Airtime of UFlood-R, MORE and MNP, for flooding a 2MB file, as batch

size varies . 94

6-16 CDF of asymmetricity of the links in the testbed. 95

7-1 Illustration of the benefits of clients forwarding data and overhearing pack-

ets from m ultiple APs. 101

7-2 Throughput achieved as a function of the minimum allowed delivery prob-

ability on client/AP links. 103

7-3 Airtime as a function of the minimum allowed delivery probability on

client/A P links. 104

7-4 Effect on throughput of varying the fraction of clients that cooperate in

flooding. 106

7-5 Throughput of UCast/UFLOOD-R is 400%, 50%, and 180% higher than

DirCast, UCast/MORE and UCast/MNP, respectively. 107

7-6 UCast/UFLOOD-R consumes 66%, 44% and 37.5% lower airtime than

DirCast, UCast/MORE, and UCast/MNP, respectively. 107

18

Chapter 1

Introduction

Flooding in wireless mesh networks involves distributing data from a source node to rest of

the nodes in the network. It benefits applications such as software updates and information

dissemination 122, 391. Recent explosive growth in wireless mesh network deployments

has motivated companies such as Motorola, Nortel, and Firetide to release products that

flood video data in mesh networks, with applications to both entertainment and surveil-

lance 17, 171. Despite being an active research topic for over a decade, existing flooding

schemes 18, 35, 39, 541 leave room for improvement because they neither fully exploit

wireless properties nor fully consider the limitations posed by wireless networks. For ex-

ample, no existing flooding schemes for wireless mesh networks exploit the ability of the

wireless nodes to transmit at different bit-rates. This dissertation describes the important

factors that should be considered in the design of a flooding scheme for wireless networks

and proposes a new flooding protocol, UFlood, which overcomes the drawbacks of the

existing schemes.

UFlood is useful for flooding large files in wireless mesh networks. Its goal is to achieve

high throughput and using low airtime. This dissertation defines throughput as the file size

divided by the total time it takes for all the nodes to receive the whole file. It defines

airtime as the sum over all nodes of the time each node spends in transmitting. UFlood

aims to lower the airtime 1 in order to limit the effect on other traffic. These definitions

Lowering airtime might also help in lowering the total energy spent in the network. However, energy is
not a concern in these networks and all the nodes are assumed to be always connected to an electrical power
source. Thus, the energy spent in transmission, reception and computation is not a concern.

assumes that all nodes need the file and there is no advantage to some nodes getting the file

before the last node gets it. Chapter 8 discusses how UFlood can be modified for flooding

applications that use other metrics, for example, maximizing throughput to a subset of the

nodes.

The rest of this chapter introduces flooding in wireless networks and outlines the work-

ing of UFlood. This chapter also describes the major contributions of this dissertation and

its organization.

1.1 Flooding in Wireless Networks

The fundamental problem to be solved in flooding for wireless mesh networks is as fol-

lows. The source has some data to flood to the rest of the nodes in the network. The nodes

are equipped with broadcast radios and assumed to be spread out enough that forward-

ing through intermediate nodes often provides better performance than direct transmission

from the source. Flooding begins with the source transmitting data that is heard by a sub-

set of the nodes. At any given time during the flood, each node possesses a subset of the

data to be transferred. Only some nodes can transmit at any given time because of inter-

ference and carrier sense. That is, if a node transmits, neighboring nodes usually cannot

transmit simultaneously in the same channel. A protocol must choose senders for every

transmission in a way that maximize its throughput and minimize airtime 2. For example,

if node X can be heard by a superset of the nodes that can hear node Y, then (all else being

equal) X should send in preference to Y. Similarly, X should send in preference to Y if

X has data that other nodes need, but Y does not. However, the efficient choice of sender

changes from transmission to transmission as nodes accumulate data, in ways that cannot

be predicted practically because receptions are not deterministic. In other words, a flood-

ing protocol may need to determine dynamically how useful a sender's transmission would

be, which means that the nodes should some how learn the states of the other nodes in the

network. The global knowledge of the status of the nodes is intractable and a local heuristic

2This dissertation uses "efficient" and "best" sender to denote the sender for a transmission opportunity,
which maximizes throughput and minimizes airtime of the flooding protocol.

for sender selection requires neighbor nodes to agree on the sender for each transmission

and achieving this with a low overhead is a key challenge in the design of such flooding

schemes.

In addition, a good sender selection mechanism should ensure both high throughput

and low airtime. One way to reduce airtime is to avoid sending until the sender is certain

that receivers will benefit, which might require delaying until all potential receivers have

indicated whether they need the transmission. This approach causes transmissions to be

spaced out in time, reducing throughput. Conversely, throughput can be increased at the

expense of airtime by arranging for nodes to send whenever they notice the channel is idle,

on the theory that it is better to make a potentially redundant transmission than to waste

a transmission opportunity. Nevertheless, it is also true that excessive redundant packet

transmissions affect both throughput and airtime.

Finally, every transmission must be sent at some bit-rate and the choice of bit-rate

affects the performance of the flooding protocol. Simply using high bit-rates for transmis-

sions might not aid in completing the flooding faster, because increasing the bit-rate for a

transmission, despite increasing the speed of the individual packet transfer, decreases the

inter-node delivery probabilities from the sender to the potential receivers.

A flooding protocol should thus repeatedly make three decisions: which nodes should

transmit, what data they should transmit, and what physical-layer bit-rates they should

use. The best answers depend on the radio channel quality between nodes, the number of

receivers near each potential sender, and what data potential receivers already hold.

1.2 UFlood

UFlood aims to achieve high throughput using low airtime by carefully selecting senders

for each transmission and by using an efficient feedback mechanism that helps it to adapt

rapidly to actual reception patterns with minimal communication overhead. UFlood com-

bines the opportunistic reception of gossip protocols with a precise calculation of which

nodes should transmit at any given time and at what bit-rate, using probabilities and knowl-

edge of what data neighboring nodes already have.

The key to UFlood's design is its notion of utility. Utility is a local heuristic intended

to capture the value of a given node transmitting, in terms of the expected rate at which

receivers would receive new information from such a transmission. A UFlood node com-

putes its utility in the following way. First, it uses a novel bit-rate selection mechanism

to calculate the efficient bit-rate for its transmissions. Second, the node uses previously-

measured delivery probabilities to compute the likely number of receptions at that bit-rate

among its neighbors, counting only neighbors for whom the transmission would be useful.

Finally, the node's utility is the likely number of useful reception times the bit-rate.

A transmission is useful at a receiver if it conveys information that the receiver does not

already know. UFlood implements this notion combining it with randomized network cod-

ing (RNC). RNC is well-known to increase the usefulness of individual data transmissions.

In RNC-based flooding [8, 34, 411, a sender transmits coded packets, which are linear com-

binations of its existing coded packets. A sender decides whether a transmission would be

useful for a receiver based on whether the transmission would be linearly independent of

the packets the receiver already has. This requires the senders to know the coded packets

already received by the potential receivers of its transmissions, either using feedback from

the receivers or through some form of predictions. The recent research 1521 shows that

flooding protocols that rely completely on predictions about the packets the receivers hold

perform poorly. The performance gets much worse, if the predictions do not account for

correlated receptions (Refer to Chapter 3.4 for details). Some form of feedback from re-

ceivers indicating what packets are with each of them helps to handle correlated receptions.

UFlood uses a novel feedback mechanism that encodes compactly the identities of coded

information a node has received, as well as techniques to reduce the feedback traffic.

UFlood's bit-rate selection mechanism works as follows: A UFlood sender may have

many neighbors, each with a different optimum bit-rate from that sender. In choosing a

bit-rate, a sender essentially chooses the receivers of its transmission, since the receivers

with optimum rates much below the chosen rate will receive mostly corrupted frames. The

choice of bit-rate depends on whether each low-bit-rate receiver depends on the sender: if

the sender is the receiver's quickest source of data, the sender should reduce its bit-rate. For

this reason, the core of UFlood's bit-rate selection algorithm is a decision about whether a

sender is included in the minimum cost path from the source to the receiver. Thus, UFlood's

design reflects the observation that bit-rate selection in a flooding protocol requires global

information.

UFlood's utility heuristic strives to ensure that, among each set of neighbors, only the

node with the highest utility sends; this avoids interference, reduces the chances of needless

duplicated data, and ensures that transmissions with few potential receivers do not steal

channel capacity from transmissions of higher value. This is done by each node calculating

the utility of neighbors as well as its own, and only transmitting if it has the highest local

utility.

1.3 Contributions

The key contributions of this dissertation are as follows.

" First, it describes the main underlying properties of wireless networks influencing

sender selection in a flooding protocol and the challenges in considering these prop-

erties.

* Second, it proposes UFlood, a flooding protocol for wireless networks that uses util-

ity heuristic to select sender(s) for each transmission opportunity in order to achieve

high throughput using low airtime.

" Third, it demonstrates that detailed feedback about the data each receiver possesses

is useful even with RNC.

" Fourth, it describes a novel feedback mechanism to compactly represent the coded

information the nodes possess and mechanisms to send feedback only when required.

" Finally, it proposes the first bit-rate selection algorithm for flooding in wireless net-

works.

The main result from experiments on an 802.11 test-bed is that UFlood, on average,

achieves 150% higher throughput than MORE, a high-throughput flooding protocol, us-

ing 65% lower airtime. UFlood uses 54% lower airtime than MNP, an existing flooding

protocol to minimize airtime and achieves 300% higher throughput.

This dissertation finally proposes UCast, a system that uses cooperative client flooding

to improve the delivery of multicast streams in WiFi networks. The flooding scheme used in

UCast is UFlood. Evaluation on a WiFi network demonstrates that use of client cooperation

improves multicasting throughput by 300-600% compared to DirCast, an existing WiFi

multicasting protocol that does not use client cooperation.

1.4 Organization

The remainder of this dissertation is organized as follows: Chapter 2 describes the factors

to be considered in deciding the senders and their bit-rates for every transmission of UFlood

and the challenges involved in making these decisions. Chapter 4 uses these observations

to design UFlood. Chapter 5 describes the implementation of UFlood and Chapter 6 dis-

cusses its performance using real-time experiments. Chapter 7 describes UCast and finally,

Chapter 8 concludes and provides some thoughts about future work.

Chapter 2

Sender Selection: Contributing Factors

and Challenges

Performance of a flooding protocol depends on selecting senders for each transmission op-

portunity that help to disseminate data quickly across the network. This chapter explains

the main factors that sender selection should account for and the challenges in considering

them. The identification of these factors is one of the contributions of this dissertation. Pre-

vious flooding protocols have not considered all of the factors discussed in this dissertation

(refer to Chapter 3 for details).

2.1 Factor 1: Delivery probabilities

A

0.9

C

B

0.2

D

Figure 2-1: Illustration of the importance of packet delivery probabilities.

In wireless networks, receptions are probabilistic, which means transmission from a

sender may or may not be received by a node. This makes calculation of the usefulness

of a sender's transmission difficult. Sender selection in such networks should consider the

probabilities of packet deliveries to the receivers.

Figure 2-1 shows an example in which one sender is more effective than another due to

delivery probabilities. Nodes A and B have each received a particular data packet from S.

Only one can send at a given time, because of interference or carrier sense. The numbers

in the figure indicate the link-layer broadcast packet delivery probabilities from A and B to

each of C and D. The flooding protocol must decide whether it is better for A or for B to

transmit the packet.

If A transmits, the expected number of useful receptions (at C and D) is 1.7. If B trans-

mits, the expected number of useful receptions is 0.5. If A transmits first, in all likelihood,

B will not have to transmit at all, but the converse is unlikely to be true. Thus A is the bet-

ter sender. This example illustrates why flooding protocols must pay attention to delivery

probabilities when selecting the sender.

2.2 Factor 2: Numbers of receivers

S

A B

0.5
0. 0.4 0. 0.4

C D E F G

Figure 2-2: Illustration of the need to consider the number of potential receivers.

Most often, wireless nodes are equipped with omni-directional antenna. Therefore,

wireless receptions are broadcast, which means each sender's transmission may be received

by more than one receiver. However, some sender's transmissions can be heard by more

receivers than other receivers do and with different delivery probabilities. A flooding pro-

tocol should exploit this wireless property effectively to select senders whose transmissions

are likely to reach many receivers that help spread data quickly in the network.

Figure 2-2 shows an example of a difficult trade-off between a sender with low proba-

bilities to many nodes and a sender with fewer high-probability receivers. If A transmits,

the expected number of useful receptions is 0.5 (just node C). If B transmits, the expected

number is 2.0. B will likely have to repeat the transmission a few times; C is likely to

hear one of those transmissions, in which case A will not have to send at all. Thus, B is the

better sender. This example illustrates why flooding protocols must incorporate the number

of likely receivers in its choice of sender.

2.3 Factor 3: Dynamic Sender Selection

S

0.2 0.1

0.91 0.8

C D

Figure 2-3: Illustration of the best sender changing as nodes receive packets.

In addition to selecting senders with good connectivity to receivers, it is also important

to select senders whose transmissions are useful to the receivers. Probabilistic receptions

in wireless networks demand dynamic sender selection based on the changing states of the

nodes in the network. This is because the usefulness of a sender's transmission varies as

the potential receivers of the transmission receive new data.

Figure 2-3 shows a situation in which sender selection benefits from information about

what data each receiver has received. A and B have a particular packet, but C and D do not.

At that point, A is the best sender. A transmits the packet, and C receives it but D does not.

Now B is the best sender: the expected number of useful receptions for A and B are now

A(source)

B C

D

Figure 2-4: Example topology to illustrate the effect of correlation in packet reception. The
numbers indicate link-level packet reception probabilities.

0.2 and 0.8, respectively. This example illustrates why flooding protocols must re-evaluate

the choice of best sender as a flood progresses. However, delaying sender selection until

all the receivers send feedback, indicating what packets are with each of them, delays each

transmission. This decreases the overall throughput of the flooding protocol. Designing a

feedback mechanism addressing this issue is a challenge.

2.4 Factor 4: Correlated Reception

Many existing flooding protocols 18, 191 assume that the probabilistic reception would

ensure a degree of randomness in what information each node receives. However, wireless

receptions often are correlated. Figure 2-4 shows an example where the usefulness of a

sender's transmission depends on whether the sender has information that is distinct from

that received by neighboring potential senders. Suppose, nodes A and B in Figure 2-4 have

both received half of the source's transmissions, and that C can hear A and B perfectly but

cannot hear the source. At one extreme, A and B may have received disjoint halves, in

which case each of A and B should forward all the packets they hold. At the other extreme,

A and B may have received exactly the same set of packets. In that case, they have the same

underlying information to offer, even with coding, so that only one should send. Models

to accurately predict correlation among neighbors do not exist. Thus, this example shows

another reason why flooding protocols in wireless networks should have some form of

feedback exchange among neighboring senders. Designing feedback mechanism for coded

packets is challenging and Chapter 4 explains this in detail.

2.5 Factor 5: Bit-rate Selection

Throughput of a flooding protocol depends on the delivery probabilities of the sender's

transmission to its potential receivers, which in turn depend on the sender's bit-rate. There-

fore, a flooding protocol should select a bit-rate for each transmission to maximize its

throughput.

Increasing a sender's bit-rate increases the speed of packet delivery and at the same time

decreases the delivery probabilities to the receivers. Thus, each sender-receiver link in the

network has a best bit-rate that maximizes throughput on that link. The bit-rate selection

becomes complicated when a sender has to choose a bit-rate that maximizes throughput to

many links (i.e., to more than one receiver). Thus, the choice of bit-rate can have a large

effect on flooding performance, given the large difference between the slowest and fastest

bit-rates in, for example, 802.1 lb/g radios. Using low bit-rates, allows transmissions to

be received by a large number of receivers, which reduces the number of transmissions

required to complete flooding. Alternatively, high bit-rates, due to high error rates [441may

cause packets to be delivered to only few receivers and thus require more transmissions

than low bit-rates. A good bit-rate selection algorithm for flooding protocols should thus

trade off the speed of high bit-rates against the larger number of nodes likely to receive at

low bit-rates.

Figure 2-5 illustrates the effect of this trade-off. Each of the links is marked with the

bit-rate at which the receiver of the link receives the highest throughput from the sender's

transmission. In this example, S is the source, and sender X must choose the bit-rate for its

next transmission.

Bit-rate 54 would maximize the throughput among X's neighbors: C would receive at

rate 54, and B and A would receive very little, but the average would be high. Then again,

the overall goal is to minimize the time taken to complete flooding, which maximizes the

overall flooding throughput. One might expect a sender to choose the best bit-rate that

Y
54 5.5 11

11 5.5
B

A

Figure 2-5: Example topology to Illustrate bit-rate selection.

has good delivery probabilities to all its potential receivers. That is, a sender chooses the

lowest of the best bit-rates to all its potential receivers to ensure that even its most poorly

connected receiver receives its transmissions. So X should perhaps use a bit-rate that will

reach its slowest receiver, which is 5.5. However, node B has a better path from S via Y,

bottlenecked at rate 11. It is best for node X to ignore B, letting Y deliver to it, and choose

the rate that is best for the slowest neighbor whose best path from S is via X. That neighbor

is A, and X's best bit-rate is 11. Thus, a sender should not unnecessarily reduce its bit-

rate to reach a receiver, which has an alternative faster path from the source that does not

involve the sender. This example shows that global information is required in selecting the

best bit-rate for the senders.

In addition, suppose, in figure 2-5, node A already has the data that node X would

transmit. Then, X should ignore A in choosing its bit-rate. In that case, X's best bit-rate

would be 54Mbps.

Thus, a sender should consider the following three factors in choosing its bit-rate: (i)

the best bit-rate for each link, (ii) the best path from the source to every node, and (iii) the

coded information held by receivers that rely on sender's transmission for data.

2.6 Chapter Summary

This chapter explained that a flooding protocol should select the best sender for each trans-

mission by favoring senders (i) with high delivery probability to receivers at the sender's

best bit-rate, (ii) connected to large numbers of receivers, (iii) with information useful to

many receivers, and (iv) accounting for correlated receptions. This chapter also discussed

the challenges involved in considering each of these factors. Chapter 4 illustrates how

UFlood accounts for these factors in its sender selection mechanism.

32

Chapter 3

Related work

Flooding in wireless mesh networks is a well-researched topic that has received exten-

sive attention. As mentioned in Chapter 1, the main goal of flooding protocols is to se-

lect senders whose transmissions will spread data quickly across the network. Traditional

flooding approaches use one of the following two mechanisms for sender selection: (i)

construction of structured topologies like routing trees, or (ii) use of gossiping through

probabilistic or randomized broadcast of small messages.

This chapter discusses existing flooding protocols in two main contexts: (i) as protocols

to discover routes in ad hoc routing and (ii) as broadcast services for applications such as

multimedia and reliable multicast. This chapter also describes the existing approaches for

bit-rate selection in wireless networks.

3.1 Flooding in Ad Hoc Routing

Many routing protocols for ad hoc wireless networks use flooding to find routes or dis-

seminate routing information. For example, AODV 1451 is an on-demand routing protocol

that uses a simple expanding search for route discovery. That is, when a source node does

not have a route to a destination, it broadcasts a route request packet. Any node that is

not the destination rebroadcasts the request packet, if not already done. The destination,

on receiving the request packet, sends a route reply packet back to the source node either

through a known path or using the reverse of the path through which it received the route

request. DSR 1251 uses a flooding mechanism similar to AODV for route discovery, except

that it combines flooding with filtering using packet sequence numbers to restrict the band-

width consumed by route discovery control packets. FLR (Feasible Label Routing) 1471

uses scoped flooding and SHORT (Self-Healing and Optimizing Routing Techniques) 1181

uses scoped flooding as a route discovery technique of last resort. In scoped flooding, the

route discovery happens within a subset of the nodes. For example, FLR uses a hop-limit to

restrict the number of hops traveled by the route request packets. Such mechanisms reduce

the broadcast traffic generated by route discovery packets. Williams et al. 1561 provide a

good comparison of flooding techniques used in both stationary and mobile ad hoc routing

protocols.

Flooding mechanisms used for ad hoc routing do not consider all of the wireless proper-

ties discussed in Chapter 2. For example, none of them considers the delivery probabilities

between node-pairs in selecting the best senders for transmissions. While there are power-

aware routing protocols such as Minimum Drain Rate 1321 that exclude nodes with low

battery in selecting routes, ad hoc routing protocols focus on decreasing route discovery

latency and do not strive to minimize airtime. UFlood focuses on disseminating bulk data

rather than small low-latency messages. Thus, UFlood is not suitable for flooding in ad hoc

routing.

3.2 Tree-based Flooding

Tree-based flooding protocols use routing trees to pre-select senders statically for trans-

missions. This reduces redundant transmissions and helps ensure that only certain nodes

transmit. Typically, these protocols factor in packet reception probabilities during topol-

ogy construction. They account for delivery probabilities by augmenting theoretical re-

sults on constructing optimal sub-graphs, such as the Minimum Connected Dominating

Set (MCDS) 1421, which determines a minimum connected vertex cover of the network,

or a Minimum Spanning Tree (MST) that maximizes network lifetime 1281, or the Largest

Expanding Sweep Search (LESS) heuristic 1271 that minimizes energy.

MCDS 1421, for example, tries to select the minimum number of senders so that all the

nodes are likely to receive the flooded data from at least one of these senders. The authors

prove that MCDS is an NP-hard problem and provide simple heuristics with provable guar-

antees to reach approxiamate solutions. Alternatively, in LESS 1271, the aim is to modify

the transmission power level of the senders to adjust their transmission coverage to reduce

the number of transmissions required to complete flooding. LESS picks senders such that

the time between the beginning of flooding and the first node failure (i.e., the first node runs

out of battery) is extended. Though these tree-based protocols are valuable for theoretical

reasons, their practicality is limited. Most of them require central coordination or make

several unrealistic assumptions about the behavior of wireless networks. For example, all

of these pyotocols assume link invariance and independent packet receptions. However,

these assumptions fail in reality. Srinivasan et al. 1521 discusses the extent to which real-

world wireless networks violate these assumptions. UFlood does use predictions, but also

use feedback from neighbors, which helps to correct the errors made in the predictions.

Wieselthier et al. 1551 and Banerjee et al. 131 study several broadcast tree construction

algorithms that take transmission costs into account, while Karenos et al. 1291 and Banerjee

et al. 141 study power control algorithms for optimizing transmission energy. ODMRP 112,

381 uses a mesh-based topology and forwarding groups for scoped flooding, while ST-

WIM [111 uses a cluster-based shared-tree topology to improve multicast performance for

mobile ad hoc networks. Similarly, MCEDAR 1501 is a multicast extension of CEDAR 1511

routing protocol, in which, a subset of nodes that approximate the minimum connected

dominating set is chosen as the core. These solutions are based on the experimental studies

and thus do not make many unrealistic assumptions about wireless networks. However,

the tree-based protocols do not use the information about the total number of receivers that

can hear a sender's transmission. In fact, they only consider the dominant links from a

sender, thereby missing a significant source of opportunism. Similarly, trees do not use

the full receiver state across all receivers in determining a useful sender because in tree-

based flooding, a receiver only tries to recover packets from its parent, even if it is likely

to overhear transmissions from other senders that are not its parent. UFlood, on the other

hand, is a distributed scheme that picks best senders judiciously for every transmission,

considering the underlying wireless behavior. It avoids static tree constructions so that it

can exploit opportunistic receptions and select senders by considering the changing states

of the neighboring nodes (both potential senders and receivers).

3.3 Gossip-based Flooding

Gossip-based flooding protocols use unstructured communication. Nodes in gossip-based

flooding usually exchange small messages, which are used in selecting the senders for

transmissions. For example, flooding schemes where nodes poll neighboring nodes ran-

domly for data and broadcast their own data probabilistically to other nodes, all fall into

this category. While gossip was originally proposed in the context of wired networks for

database replication, recent wireless protocols for sensor networks, such as Trickle 1391

and Deluge 1221 have adopted it as a mechanism for providing services such as software

updates.

Trickle 1391 is an energy-efficient but high-latency protocol for disseminating data in

sensor networks. The goal of the Trickle protocol is to propagate and maintain code (i.e.,

software) updates across nodes in the network. Trickle uses a polite gossip policy to sup-

press redundant transmissions. The key idea used in Trickle is learning what and when

to transmit using periodic transmissions of small messages (also called meta-data) from

neighbors about what version of code they possess.

The main properties of Trickle are as follows.

" Low maintenance: meta-data is sent infrequently; just enough to ensure that all the

nodes in the network possess the latest version of the code.

" Rapid propagation: data propagation happen rapidly to all the sensor nodes

" Scalability: the protocol maintains its properties in wide ranges of network densities

and sizes, such as from a few tens to a few hundred neighbors per node.

Nodes in Trickle set a timer randomly to fire within each epoch. Every so often, a

node transmits meta-data only if it does not hear the same transmission from some other

node. This causes suppression of the same requests being transmitted and allows Trickle

to scale to dense wireless networks with thousands of nodes. Code propagation happen

continuously, not in batches as in UFlood and at any point in time, each node may have

different versions of the code. Whenever meta-data is transmitted, two things happen:

some nodes learn that sender of the meta-data has a new version of the code and a few

others learn that the sender has a old version. This causes some of the nodes to transmit

their code. This is called an update in Trickle. Again, whenever a node hears a data

transmission that is the same as its own, the node suppresses its transmission. Thus there

are very few redundant updates.

Deluge 1221 builds on Trickle to implement a reliable high throughput protocol for soft-

ware updates in sensor networks. It is used for reprogramming sensor motes over the air.

In both Trickle and Deluge, when many nodes learn that a neighbor has a older version

of the code, one of the nodes (decided by underlying MAC protocol) transmits the new

code. Sender selection considers neither the delivery probabilities of the node-pairs nor

the number of receivers benefited by the transmission. Gossip-style protocols that pick a

random node independent of link quality would achieve lower throughput than UFlood.

Deluge, as in Trickle, suppresses duplicates by deferring transmissions whenever it hears

the same transmission from some other node. However, some transmissions may not be

heard because of loss of packets, which causes lack of suppression, thereby allowing du-

plicate transmissions to occur. UFlood selects senders based on the inter-node delivery

probabilities: these transmissions are useful to many receivers. This ensures better sender

selection and fewer duplicate transmissions.

MNP 1351 is a gossip-based flooding protocol for sensor networks, in which potential

receivers invite nodes with data to send, and only the nodes with the most invitations actu-

ally transmit. Figure 3-1 illustrates the working of MNP. The figure shows a set of nodes

in a typical sensor network. Suppose node A sends some data, which is received by nodes

B, C, D, E, and G. If all of them transmit next, it leads to collision and/or contention.

In addition, G is a better sender than D, if the receivers of D's transmission already have

the data that they received from A. In each epoch, MNP nodes alternate between sending

advertisements (i.e., requests to neighbors for data) and sending the actual data in response

A B C

D E F

G H I

Figure 3-1: Example topology to illustrate MNP (See Figure 1 of 1351).

to the requests. First, the source, here A, sends the data, which is received by nodes B, C,

D, E, and G. Potential senders for the next transmission A, B, C, D, E, and G send adver-

tisements, announcing that they possess the data. Each of the rest of the nodes (i.e., F, H,

and I) sends a request packet to the sender from which it first received the advertisement

packet. The potential sender with the maximum number of requests in the epoch transmits

next. This continues until all nodes receive the data.

MNP's sender selection reduces collisions and redundant transmissions. It incorporates

one of the considerations used by UFlood's sender selection (number of receivers), but does

not consider delivery probabilities. For example, in Figure 3-1, if node I receives adver-

tisement from both nodes D and E, it sends a request packet to one of them from which

I first received the advertisement. However, this does not take into account the delivery

probability from D and E to node I. In contrast, UFlood selects senders considering the

delivery probabilities, which helps to quickly complete flooding.

Wireless networks often suffer from asymmetric links; this means a sender may not

receive the requests from the receiver to which it has higher probability to deliver data.

This might make MNP select senders connected to few poorly connected receivers. For

example, in Figure 3-1, suppose node E has good connectivity to nodes F, H, and I, and

node G has poor connectivity only to nodes F and H. Due to link asymmetricity, if G

hears requests from F, H, and I, and E receives request only from F, MNP will select

sender G to transmit the next packet instead of the good sender E, which increases the

P, '... P 10

0 0 0

Figure 3-2: Example topology to illustrate the benefits of RNC.

number of transmissions required to complete flooding. UFlood performs well even in the

presence of asymmetric links because each UFlood node transmits feedback not only about

itself but also about its neighbors. Thus, UFlood nodes learn about their one and two-hop

neighbors through both direct and multi-hop links from other nodes. This allows UFlood

to out-perform MNP that do not leverage sender selection fully. Chapter 6 compares MNP

to UFlood.

3.4 Flooding using Network Coding

Network coding is a technique where nodes, instead of simply forwarding the packets they

receive, mix several packets already received using algebraic operations and transmit. Al-

swhede et al. I1 pioneered the use of network coding in wired networks. Multiple pa-

pers have shown that various forms of network coding achieve capacity for wired multi-

cast 120, 23, 40 1.

RNC 18, 201 is a distributed method for combining data at the nodes. It is well suited

to multi-hop wireless multicasting and flooding. The basic idea used in RNC is that each

node in the network generates random coefficient and uses them to linearly combine the

packets they have to form new packets. RNC helps flooding in two ways: a single coded

transmission can provide different missing information at different receivers thereby reduc-

ing the time taken to complete flooding, and allows intermediate nodes to create new coded

packets, despite not having complete copies of the original data.

Figure 3-2 illustrates the benefits of RNC using a simple topology. Source S has 10

packets P1,...,Pio to flood to 10 nodes N,...,Nio. Assume, at some point, each node is

missing a different packet. In the absence of coded transmissions, the source has to send all

10 packets at least once to complete flooding successfully. On the other hand, if the flooding

mechanism uses RNC, node S constructs new coded packets, which are linear combinations

of PI,..., P10 using randomly generated coefficients for every transmission. Thus, if each

node Ni,... ,No is missing a different coded packet, the source might fill the gap in all of

them by broadcasting a single coded packet. This example shows that use of RNC increases

drastically the usefulness of the individual transmissions and thereby reduces the number

of transmissions required to complete flooding, compared to non-coded flooding schemes.

On larger networks, benefits of RNC over non-coded schemes are amplified.

The most relevant protocols in the area of network coding to UFlood are Rateless

Deluge 1191 and MORE 181.

Rateless Deluge 1191, an extension of Deluge 1221, uses RNC to reduce the number

of transmissions required to complete flooding and scales better than Deluge. In addition

to the rateless coded transmissions, the strategic idea used in Rateless Deluge is that the

nodes exchange the count of missing packets, instead of the set of missing packets, as

in Deluge. This reduces significantly the feedback traffic. The authors of 1191 used ex-

periments on a single-hop network to demonstrate the performance of Rateless Deluge.

However, Chapter 2.4 illustrates that in the presence of correlated receptions, the number

of missing packets alone is not enough information for selecting the best senders and use

of detailed information about what coded information are with each node is necessary to

improve the performance of RNC-based flooding protocols.

The current best RNC-based protocol for wireless routing and multicasting is MORE 181.

Multicast MORE works as follows. The source divides the data it wants to flood into

batches of K-native packets, and sends one batch at a time. Each transmission of the source

is a broadcast, and consists of a coded packet. The source generates each coded packet p

as p cIpi + c2p2 + ... + cKpg, where pi are the K native packets in the batch, and ci are

'A coding scheme is rateless if limitless number of coded message packets can be generated from, say, k
source packets, such that all of the source packets can be recovered from any of the k coded packets. RNC is
an example of a rateless code.

K coefficients chosen randomly for each coded packet. The source continues broadcasting

coded packets from a batch until all nodes tell it that they can decode the batch; then the

source moves on to the next batch. Each coded packet includes the coefficients ci with

which it was generated.

Each node stores the coded packets it receives for the current batch. A node can decode

a batch once it has received K linearly independent coded packets. Each forwarding broad-

cast by non-source nodes is generated as ciqi +c2q2 + ... , where qi are the coded packets

the node has stored. The forwarding node calculates a set of coefficients relative to the

original native packets at the source and sends them with the forwarded packet; it can do

this even though it may not be able to decode the batch 181.

Nodes, including the source, need a way to decide how many coded packets to send,

in order to propagate data to nodes that cannot hear the source. Multiple nodes receive the

transmissions of the source. Therefore, it is usually enough for just a subset of them to

transmit coded packets. In addition, some potential senders are better placed than others to

move packets quickly across the network. MORE accounts for these effects by computing a

credit counter, TXcredit, for each node. The credit counter sets the ratio between packets

a node receives and packets it sends. MORE calculates the credit counter of a node by

inspecting the loss rates along the best route from the source to each node. For the routes

a node is on, its credit counter is set so that it generates enough packets to counteract the

predicted losses along those paths.

The only feedback traffic in MORE is an indication from each final destination back

to the source that the destination has decoded the batch; nodes do not exchange any more

detailed feedback information. MORE is a success in the sense that it attains significantly

higher throughput than previous protocols that do not use coding but do exchange feedback

detailing which packets each node has received.

Decisions of MORE about which nodes should send and how many packets each node

should send are pre-computed statically based on prior measurements of inter-node deliv-

ery probabilities. If the predictions are not correct or if losses in the links are bursty on

time scales comparable to a batch size, MORE nodes will forward inappropriate numbers

of packets. In addition, MORE, similar to Rateless Deluge 1191, does not account for cor-

related receptions in its TX-credit calculations, which affects its performance. Chapter 6

compares UFlood with MORE.

Srinivasan et al. 1521 proved the existence of correlation in wireless networks by using

a new metric Kty, which denotes the correlation of reception at nodes x and y for packets

from node t. They showed that the same link pair x and y can have different K's depending

on the channel, power levels, data-rate. Their main conclusion is that a no-network-coding

protocol, such as Deluge performs better than network coding and opportunistic protocols

such as Rateless Deluge, if the network has correlated receptions. Since UFlood nodes

exchange detailed feedback about what packets are with each of them, sender selection

considers the states of both neighboring contending senders and the potential receivers.

This means, UFlood's sender selection is aware of both correlated packet receptions and

link invariance.

Zhu et al. [581 described a feedback mechanism that exploits the existence of correlated

receptions in wireless networks. They show that the Conditional Packet Reception Prob-

ability, CPRP (i.e., the probability that a node receives a packet, given the condition that

its neighbor has received the same packet) of two neighbors is always high. Thus, every

node predicts whether one of its neighbors has received a packet purely on overhearing

and CPRP calculation, without exchange of any feedback with its neighbors. Therefore,

the nodes need only to send periodic probe packets to maintain an accurate CPRP value.

The authors claim that this reduces the feedback traffic but did not demonstrate the traffic

overhead introduced by periodic probes for large networks. On the other hand, feedback

in UFlood scales for large networks as only the neighbors exchange their feedback infor-

mation and UFlood uses its own prediction mechanism to suppress the feedback traffic.

Chapter 4.7.3 explains this in detail.

3.5 Flooding using Cooperative Coding and Diversity

By using RNC, UFlood (like MORE) has a built in form of error correction. An alterna-

tive might be to use source coding to improve flooding efficiency, as in MISTRAL 1461.

One could also implement cooperative diversity techniques for combining errored pack-

ets received from multiple sources, similar to those proposed in Jakllari et al. 1241 and

MIXIT 1301. UFlood can take advantage of cooperative coding and transmission strate-

gies to improve its performance further. All of these techniques are complementary and

exploring these ideas is an area for future work.

3.6 Bit-rate Selection in Wireless Networks

Many wireless nodes are capable of using various bit-rates for transmissions. The main

challenge is to determine what bit-rate to use to increase throughput. Much is known

about wireless bit-rate selection for point-to-point links 15, 14, 21, 26, 371 and for WiFi

multicasting 131, 571, where all the receivers are within the radio range of the sender.

To the best of our knowledge, there are no existing bit-rate selection mechanisms for

flooding or multicast protocols in multi-hop mesh networks.

3.7 Chapter Summary

This chapter discussed the existing tree and gossip-based flooding protocols used for (i)

route discovery in ad hoc routing protocols and (ii) disseminating large-scale data such

as multimedia. This chapter also included a discussion of the flooding protocols that use

coding techniques. Finally, this chapter contained an explanation of the bit-rate selection

mechanisms used in wireless networks. The rest of this dissertation is a discussion of how

UFlood overcomes the drawbacks of the existing flooding protocols.

44

Chapter 4

Design of UFlood

The central task of UFlood is to select senders in a distributed manner considering the

factors described in Chapter 2. The design of UFlood's sender selection involves three

main sub tasks: (i) utility formulation, (ii) bit-rate selection, and (iii) feedback mechanism.

This chapter discusses the design of each of these tasks. It begins with a description on

the environment in which UFlood is expected to be used. The chapter also describes the

limitations of UFlood.

4.1 Goals and Assumptions

The goal of UFlood is to distribute a large file from a single source to the rest of the nodes

in a wireless mesh network. The main performance goals are high throughput and low

airtime. Throughput is defined as the file size divided by the total time it takes for all the

nodes to successfully receive the entire file. This definition assumes that all nodes need the

file and there is no advantage to some nodes getting the file before the last node gets it.

Airtime is defined as the sum over all nodes of the time each node spends in transmit-

ting data, feedback, and acknowledgment packets. The definition reflects impact on other

users of a shared channel: the less time spent transmitting during flooding, the more of the

channel is available for other users.

The design of the UFlood protocol relies on the following assumptions. Many real-

world wireless mesh networks that use flooding have all of these properties.

* A large quantity of data is to be flooded reliably.

" Each node operates at a fixed power level, on a single channel, with an omni-directional

antenna. Thus, all the packet transmissions are broadcast. Few of the nodes can

communicate directly, but UFlood must flood over multiple hops to cope with more

distant nodes.

* Nodes are stationary and are willing to forward data for each other.

" The network size is on the order of dozens of nodes and there is a multi-hop path

with non-zero delivery probability from the source to every other node.

" The radios have a carrier sense mechanism that works reasonably well to avoid col-

lisions and allow spatial re-use.

4.2 Design Overview

In outline, UFlood works as follows. Each node measures the delivery probabilities of the

links to its one-hop neighbors I and distributes this information to rest of the nodes (refer to

Chapter 5.1). All the nodes run the bit-rate selection algorithm using the measured delivery

probabilities to calculate the best bit-rate for each node. Section 4.4 explains UFlood's

bit-rate selection algorithm. All these are done before the actual flooding begins.

A UFlood transfer begins at the source node, which has the data to be flooded. The

source node divides the data into equal-sized packets called native packets, and floods one

batch of K native packets at a time. The source begins by transmitting coded packets, each

constructed by linearly combining the K native packets in the batch. Section 4.5 describes

how each coded packet is constructed and how many such packets the source transmits.

All the nodes then go through the following cycle until every node indicates to the source

that it has received K linearly independent coded packets, which is enough to decode the

entire batch. Each node calculates its own utility and the utility of its neighbors. Nodes

with utilities higher than their neighbors transmit a burst of data packets, coded over the

(One-hop) neighbors refer to those nodes that can communicate directly with each other with a delivery
probability greater than 0.1.

packets they have received in the batch. All the transmissions of a node are carried out

at its best bit-rate. A subset of the nodes then transmits feedback packets. The feedback

contains information required for neighbors to calculate utilities. Section 4.7 illustrates

UFlood's feedback mechanism in detail. This process continues until all nodes signal the

source node that they are able to decode the batch at which time the source proceeds to the

next batch.

4.3 Design Challenges

Design of UFlood should solve the following sub-problems.

" UFlood should select the best bit-rate for each node such that the overall throughput

is maximized.

" Each UFlood node should calculate the utility of its transmission at its best bit-rate

and those of its one-hop neighbors.

" Each UFlood node should learn the state of its neighbors. The state of a node repre-

sents the number of coded packets it possesses and a summary of coefficients of those

coded packets. UFlood should decide what information the neighbors exchange to

learn each other's states. It should also decide which of the neighbors' states are

necessary to guarantee unanimous sender selection in the neighborhood. That is

the probabilities that two neighbors decide they are both the best senders or that no

sender decides it is the best, must be low.

* Each UFlood node should send feedback only when necessary. It should cope with

delayed or dropped feedback from neighbors

" The flooding protocol should handle hidden terminals in the network.

" All of these must be achieved with low communication overhead.

The solutions to the above-mentioned problems dominate much of the design of UFlood.

4.4 Bit-rate Selection

Chapter 2.5 explained the need for bit-rate selection in flooding protocols and the basic

qualities that a bit-rate selection scheme should possess. The main goal of UFlood's bit-rate

selection scheme is to select the best bit-rate for each node such that the overall flooding

throughput is maximized. The crucial idea used is as follows. Each node constructs a

unicast multi-hop path from the source through which it can receive the source's data in

least time. The node's neighbor that is on the last hop in the unicast path is the best sender

for delivering the source's data to the node. This means, each sender has a set of neighbors

for which it is responsible for delivering source's data. The sender chooses the highest

bit-rate that has good delivery probability to all the neighbors for whom it is likely to be

the best sender. This mechanism helps UFlood attain a high overall throughput because

the sender's bit-rate is selected, based on global information, to minimize the time taken

to transfer the source's data to its worst-connected neighbor that depends on the sender for

data. In addition, this mechanism ensures that the sender does not unnecessarily reduce its

bit-rate to reach a neighbor which has a faster source of data from elsewhere.

Each node runs the bit-rate selection algorithm to calculate the best bit-rate for itself

and for every other node. The best bit-rate for a sender X is calculated as follows. First, the

sender uses a standard routing protocol to compute unicast routes from the source to each

of its neighbors that minimizes the expected transmission time (ETT) metric 1141 2. Since

the sender already has a copy of the data it will send, it calculates the paths as if it had an

infinitely fast link to the source.

The sender then determines the set of its neighbors for which it is the last hop on the

shortest ETT path. The node uses the bit-rate that will achieve the maximum throughput

on the worst of the links to those neighbors. This causes the sender to choose a rate low

enough to provide the best throughput for the worst-connected neighbor that depends on

the sender for forwarding, but does not reduce the sender's rate needlessly to help nodes

that have a faster path (not through the sender) by which they can receive.

2ETT of a link is defined as the expected amount of time it would take to successfully transmit a packet
of fixed size on that link; the time depends on the delivery probability of the link and the bit-rate of the
transmission.

Finally, whenever a sender finds, based on the feedback from neighbors, that its trans-

missions are not useful to its worst-connected neighbor, it re-computes its best bit-rate by

ignoring the worst-connected neighbor.

Chapter 5.3 explains the implementation of the bit-rate selection algorithm.

4.5 Coding

The source uses randomized network coding over each batch to help make each transmis-

sion useful to multiple nodes even if they are missing different parts of the batch. Each

transmission of the source is coded over all the native packets in a batch, as in MORE 181.

If the K native packets are nl ... 1 K and C ... CK are K randomly chosen integers, then a
k

data packet transmission is p cini. The arithmetic is byte-wise, so that the first byte
i1

of p is ci times the first byte of ni plus c2 times the first byte of n2 and so on until Ck times

the first byte of nI. All the arithmetic is carried out in the finite Galois field GF(28) 18,401.

Each coded broadcast also includes the K coefficients (Cl ... CK) used to construct p. A

packet coded over the native data is called a first-generation packet.

A non-source sender broadcasts packets recoded over all the first generation coded

packets it has received in the current batch using new random coefficients. For example, if

a node possesses two first-generation coded packets pi and P2, then the packet transmitted

by this node is a linear combination of these packets of the form c .pI + c2 .p2. Different

coefficient vectors (K randomly generated numbers) C' are chosen for constructing each

coded packet.

All nodes include, in each transmission, coefficients relative to the original native pack-

ets (refer to Section 4.7). Once a node has received K linearly independent packets in the

current batch, it decodes them to obtain the native packets. At that point the node starts to

act as a source-like node sending first-generation packets, coded from the native data.

4.6 Utility

Once the source has sent a full set of coded packets for a batch, multiple other nodes will

be in a position to send further recoded packets to help spread the flood. The decision of

a UFlood node to transmit depends on whether it thinks its transmission has higher utility

than those of its neighbors. The objective of the utility heuristic is to choose the best senders

based on the considerations explained in Chapter 2.

The utility of a node is the expected rate (in Mbps) of useful data receptions that would

ensue if it were to transmit. Node X estimates the utility of any node Y (possibly itself) as

follows:

Ux (Y) -b(Y) -ly,z (4.1)

Ny is the set of neighbors of Y. b(Y) is the best bit-rate for node Y. PY.Z,b(Y) is the delivery

probability from Y to Z when Y transmits at the bit-rate b(Y). Iy.z is 1 if a coded packet from

Y would be linearly independent of the packets Z already has and 0 otherwise. X computes

Iy,z using the feedback it receives from Y and Z (and also interpolates, as described in

Section 4.7.3).

Figure 4-1 explains how utility works in UFlood using a simple example. Assume for

simplicity that all the nodes transmit using a bit-rate of 1Mbps. The number on each link

indicates its delivery probability. Source S wants to flood two native packets n] and n2 to

the nodes A,B,C, and D. It constructs two coded packets, indicated by red colored text in

the figure, using the random coefficients c. The source transmits the two coded packets,

which are then received by the nodes A and B, indicated by blue colored text. Either S, A, or

B can transmit the next packet. The utility of source S is zero since nodes A and B, the only

potential receivers of the transmissions of S (Pscb(s) = 0 and PS,D,b(S) = 0), already have

enough coded packets to decode the native packets; transmissions from S are no longer

useful to them (Is,A = 0 and IS,B = 0). The utility of node A is 1 (PA,cb(A) = I and IA,c = 1)

and that of node B is 0.5 (PB,D,b(B) = 0.5 and IB,D = 1.0). Thus A, with the highest utility

compared to those of its neighbors (i.e., S, B and C), wins and sends coded packets until

Native Packets: n,n 2 Coefficients: c

Coded Packets: c. n +c2.n2
C3- , 1+C4.n 2

S

1 1

n. n c+c2.n2
c. nc

3. +c4.n 2
c3 . n+c 4.n 2 A B c9.n +c 101n
c5 . n 1+c6.n 2 e I IIn +c 12.n 2
c7. n I+c8.n 2 0.5 c13 .n +c 1 4 .n2

C 15 n 1+c 16'n2

C D

c5 . n +c6 .n2 cg.n I+c 101n
c7 . n +c8 .n 2 c13 .n +c 14.n2

Figure 4-1: Illustration of utility calculation in UFlood. Red and blue colored texts indicate
packets that are transmitted and received, respectively, by the node.

C receives two linearly independent coded packets. B, now the most useful node in the

network with utility 0.5, transmits next until D gets 2 linearly independent coded packets

of the batch and can decode the batch.

Why does this definition of utility improve the overall flooding throughput? The reason

is that the utility equation (Equation 4.1) captures all the considerations for sender selec-

tion mentioned in Chapter 2. Multiplying by delivery probability favors nodes with good

links to receivers. Summing over neighbor nodes' delivery probabilities favors senders

with many potential receivers. The Iy,z factor favors transmissions likely to be linearly

independent of data already held by receivers. Additionally, Iy,z favors senders that could

send multiple useful packets in a row without needing to wait for feedback. Multiplying by

transmit bit-rate favors senders with faster links to receivers.

UFlood's utility is a locally greedy heuristic. For example, it does not account for the

possibility that a sender with only a few low-quality links might deliver packets to nodes

that would then be able to transmit to many receivers on high-quality links. Nevertheless,

chapter 6 shows that this local utility heuristic leads to efficient flooding with high overall

throughput in the network.

4.7 Feedback

One of the main challenges in the design of UFlood is to decide the best sender for every

transmission in a distributed manner. A unanimous decision in a neighborhood is possible

only if every node knows the states of those nodes, which all nodes in a neighborhood use

in their utility calculation. That is, each node should know the states of both its one and

two-hop neighbors. This is used in calculating ly,z in the utility equation indicating if a

transmission by Y would be useful to Z. A node obtains this information through feedback

packets. This section explains how UFlood nodes construct and transmit feedback packets.

4.7.1 Compact feedback representation

Coded packets do not have a simple unique identification, such a packet number. A straight-

forward method to summarize the coded information a node holds is by using the coeffi-

cients that were used in the construction of the coded packets. Each coded packet has a

distinctive set of coefficients. The feedback that a node X sends can include these coef-

ficients for each packet it has received in the current batch. This information is enough

for the neighboring senders of node X to decide whether X would benefit from a particu-

lar coded transmission (i.e., whether a transmission would be linearly independent of the

packets X already has).

Though this is a simple mechanism, full description of the packets a node holds might

require K coefficients for each of up to K packets; for K = 64 this is almost 4096 bytes.

Exchange of such a vast amount of information is expensive. Therefore, UFlood uses a

novel compact form of feedback to summarize the coded packets held by a node. UFlood

ensures that this compact feedback is less expensive than sending coefficients.

The underlying idea is that all transmissions ultimately are derived from first-generation

packets (Fi) coded by the source and that whether a transmission is useful at a receiver has

to do with whether it adds to the receiver's total information about those first-generation

packets. Any non-first-generation packet (Si) can be expressed in terms of a linear combi-

nation of first-generation packets. For example, assume a forwarder received a set of coded

packets pi in the form I ci.ni, where ni are the native packets. Any packet transmitted by

the forwarder would be a linear combination of these coded packets in the form Icj.pi,

which can be expressed in the form of first-generation packets Y(ci.c 1).ni. Since the mul-

tiplicative group in a Galois field is cyclic, ci.cj is again a random number in the finite

Galois field GF(28).

Suppose the first-generation packets are numbered F1, F2 , ... , Fl. Feedback of a node

consists of a count of the linearly independent packets that it holds (the "rank" of the node)

and a bitmap with one bit for each Fi. The node sets bit i if it has received Fi or has

received a non-first-generation packet that was recoded over Fi. UFlood limits the source

to generating 256 distinct coded packets per batch of native packets; this means a feedback

packet is just 33 bytes (an 8-bit rank and 256 bits).

T
FJ,F 2, F4

Rank=3
F5 X Bitmap=1,2,4

W S1

Rank=2
Bitmap=1,2,4,5

Figure 4-2: Illustration of feedback in UFlood. Fi and Si are first and non-first-generation
packets, respectively.

Figure 4-2 uses an example to illustrate UFlood's feedback mechanism. Suppose node

W has received first-generation packet F5 directly from the source S and received a non-

first-generation packet Si sent by node X, which X generated by coding packets F1 , F2 , and

F4 from S. Then feedback of W will indicate a rank of two, and its bitmap will have entries

1, 2,4, and 5 set. Whereas feedback from X will indicate a rank of three, and a bitmap with

entries set at 1, 2, and 4.

This feedback is sufficient to estimate Iy,z conservatively, without needing to know the

actual coefficients as follows:

Irz= 1 if Ly,z > 0
0 otherwise

0 if rank(Z) > K, or

bi if rank(Y) > rank(Z) (I1), or

Ly,z b2 if rank(Y) < rank(Z) and Y has more bits (4.2)

set in its bitmap than Z (12), or

0 otherwise

where Lyz is the maximum number of coded packets that Z can receive from Y that would

be linearly independent of packets Z already has, bi is rank(Y) - rank(Z) and b2 is the

number of bits that are set in the bitmap of Y but not set in the bitmap of Z. This calculation

is a conservative estimate: if Ly,z is greater than zero, then a transmission from Y is likely

to benefit Z, while if zero, there is still some chance that a transmission would be beneficial.

Section 4.10.3 is a detailed discussion of this limitation of UFlood.

As an example of condition I, consider Figure 4-2. Suppose node W has two packets,

and its bitmap has bits set at positions 1,2, 4, and 5. A transmission from node X with

a rank three is likely useful at W. The only way this could fail to be true is through an

unlucky choice by W of its recoding coefficients.

As an example of 12, consider Figure 4-2. Suppose node X has three packets, but

none is coded over F5 . Then a transmission from W, which has only two packets will be

linearly independent of the packets X already has since it is coded over F5 . This is the

reason why sending the rank of nodes alone as feedback is not enough information to know

whether a sender's transmission is useful to its receiver. One of the main contributions of

this dissertation is to illustrate the need for detailed feedback even in the presence of coded

transmissions.

Once a node receives K linearly independent coded packets, the receivers of its trans-

missions will end up setting many bits in its feedback bitmap, which will make 12 rarely

true. For example, suppose node X has received F1 ...FK. X then transmits twice; Y receives

only its first packet and Z receives only its second packet. Now Y and Z have the same

rank (one) and the same set of bits set in their feedback bitmaps (1,2,... ,K), so neither

condition II nor 12 is true. However, they could benefit from each other's transmissions,

because they each have at least one linearly independent packet for the other. To address

this situation, UFlood nodes that have received enough packets to decode the whole batch,

begin to transmit first-generation packets, coded from the native data. Such nodes are

called "source-like" nodes. Each feedback packet contains 256 bits for each source-like

node from which the feedback sender has received packets. Condition 12 applies to the

entire set of bits.

UFlood strives to select best sender(s) in every neighborhood. A unanimous sender

selection in a neighborhood is possible only if nodes have an accurate state information of

not just its one-hop neighbors, but also its two-hop neighbors whose states also contribute

to the utility of the neighbors. However, including the complete states of two-hop neigh-

borhood is inefficient since it drastically increases the network traffic. Achieving this is a

challenge and the current feedback implementation of UFlood includes only the ranks of a

node's two-hop neighbors and not the summary of the coded packets. This still improves

the agreement among neighbors in sender selection and helps avoid hidden-terminals. Sec-

tion 4.9 explains this in detail.

To summarize, a feedback packet from node Y contains (see Chapter 5.7 for details):

1. The rank of Y.

2. A bitmap identifying each distinct first-generation packet that contributed (via cod-

ing) to any of the packets held by Y.

3. The rank of each of the neighbors of Y.

A typical packet with the above contents has approximately 80 bytes of payload, far

less than would be required for a full set of coefficients.

4.7.2 Feedback Timing

There is a tension between feedback timeliness and overhead. On the one hand, it is im-

portant for senders to have up-to-date knowledge of what coded packets receivers have, to

suppress senders whose transmissions would not be linearly independent at many receivers

and to avoid disagreement over who has the highest utility, which may cause idle-time in

the network. Idle-time refers to the state of the network where no node in a neighborhood

transmits because no node in the neighborhood thinks it has the highest utility in the neigh-

borhood. On the other hand, frequent feedback is necessary to calculate utility accurately

after every new transmission. However, in a network with dozens of nodes, each node send-

ing a feedback packet after every data transmission is capacity consuming and increases the

airtime. In addition, an increase in the number of feedback packets also contributes to the

network traffic apart from its size due to packet collisions and retransmissions. Thus, it is

important to space the feedback packet appropriately and to reduce the size to reduce both

traffic and idle-time.

At any point in time, there are two kinds of nodes in the network. First, there are nodes

that do not have enough information to decode the batch. Feedback packets from such

nodes help neighboring senders transmit the missing information. Second, there are nodes

that have already decoded the batch, and which must have sent acknowledgment packets to

inform the source of this. All the neighbors that heard these packets update the state of the

nodes sending the acknowledgments. Since these states do not change until the end of the

current batch, further feedback packets from such nodes are unnecessary.

Therefore, in order to reduce idle-time and at the same time maintain consistent state

information across neighbors, a node sends feedback only if the following two conditions

are satisfied.

" Condition 1: The node does not have all the packets of the batch.

* Condition 2: The node senses the channel idle for the duration of three data packets,

which is enough duration to detect an idle-time.

4.7.3 Feedback Interpolation

UFlood nodes send feedback infrequently and feedback packets may be lost, which means

nodes must operate with stale feedback. This may cause neighbors to fail to agree which

is the best sender. For example, in Equation 4.1, if node X can hear node Y and all of

Y's neighbors, then it is easy to see that the equation correctly calculates Y's utility at

X. If feedback from some neighbors of Y cannot be heard or is delayed, then X will

underestimate Y's utility and may send data even though Y is actually the better sender. It

is far worse if X were to over-estimate Y's utility and not send data as a result because that

would introduce idle-time and slow down flooding.

UFlood nodes attempt to correct stale feedback by interpolating. For every data trans-

mission that X knows of since Y's last feedback, X predicts the effect of that transmission

on Y's feedback using the probability equal to the delivery probability between the packet's

sender and Y. If X predicts that Y received the packet and decides that the packet would

have been linearly independent of the packets Y's feedback indicates it already has, X in-

crements rank(Y) and sets the bits in Y's feedback bitmap corresponding to the source's

packets that contributed to the data transmission.

Each node does this interpolation whenever it sends or receives a data packet and over-

writes its interpolated feedback for a neighbor whenever feedback arrives from that neigh-

bor. Any node X may not know about all the potential senders from which a receiver Y can

get its packets, so this interpolation is approximate.

4.8 Mechanisms to efficiently reduce Idle-time

In spite of UFlood's effort to reduce idle-time through feedback interpolation, it is not

completely eliminated because of inaccuracies in the interpolation, and spacing of feed-

back packets to minimize airtime. Reducing idle-time without sending more feedback is

challenging. UFlood has the following mechanisms that help it avoid idle-time from occur-

ring.

4.8.1 Bursty packet transmission

To reduce idle-time, nodes that calculate that their utilities are higher than their neighbors'

transmit a burst of packets. Sender selection occurs only at the end of each, reducing

opportunities for disagreement in the neighborhood and resulting idle-time. When a node

X decides it has the highest utility, it sends a burst of

min LAC (4.3)
CCNA

packets. This, calculated using Equation 4.2, is the most packets that X can send with-

out causing any neighbor to have higher utility than X.

The overall burst sequence is as follows. The current sender sends a burst of packets.

Other nodes calculate the sender's burst length (or observe it in the sender's packet headers)

and wait long enough for the burst to have ended. Then all the nodes recalculate utilities

and the best node sends a new burst. This process can proceed for a while without feedback

packets with all nodes using interpolation instead. At some point, interpolation will predict

that all nodes have enough packets to decode the whole batch and no node will send. Nodes

that have not in fact received enough packets will observe an idle channel. Therefore, they

will send feedback, which will cause one of its neighbors to become a sender. If all nodes

can decode the batch, they will send acknowledgments to the source, which will start a new

batch.

The source also transmits a burst of packets at the beginning of the batch equal to

LSD/P,D,b(S) (4.4)

packets, where S is the source node and D is the neighbor of S that has the best delivery

probability from the source node.

4.8.2 Next-best node

Idle-time may occur despite the above mechanism. UFlood copes with this by having any

node that thinks it has the second-highest utility begin transmitting if it hears no packet

from the best node for a duration of three packets. The nodes with the third-highest utility

begin transmitting if they hear no packet from both the first and second best nodes for four-

packet duration and so on. In addition, the current highest utility node is never reconsidered

as the best node by its neighbors, until the neighbors receive further feedback that changes

the states of the nodes.

4.8.3 Parent-child entity

A final idle-time situation can occur when most nodes are able to decode a batch, but

those nodes' interpolation mechanism has caused them to guess incorrectly that all other

nodes also have enough packets to decode the batch, and the rules for sending feedback

do not trigger feedback from the few nodes that do not have enough packets. UFlood

handles this by giving each node a parent node (determined by the unicast route back to the

source), and having the parent reset its interpolated state for any child that does not send an

acknowledgment to the source soon after it has decoded the whole batch. This causes the

parent to become a sender, and thus drive the child toward completion.

Whenever a parent node interpolates the reception of the last packet of the batch for any

of its child node, it sets a timer for the duration of three packets. If the parent node does

not receive the unicast acknowledgment from that child node in this duration, it resets the

timer and sets the number of packets the child received to K - 1. Thus each parent keeps

sending until its children acknowledge the batch.

4.9 Hidden Terminals

Two nodes that cannot hear each other might both decide to become senders and collide at

common receivers. UFlood reduces the chance of this in the following way. As described

in the previous discussion, feedback packets contain the ranks of two-hop neighbors. Thus,

feedback from common receivers will cause two-hop neighbors, and potential hidden ter-

minals to be aware of each other. When a node decides if it has the highest utility, it com-

pares not just against neighbors but also against two-hop neighbors with which it shares

receivers that could benefit from both senders. In many cases this suppresses potential

hidden terminals.

4.10 Limitations of UFlood

This section is a discussion of some of the limitations of UFlood.

4.10.1 Spatial Reuse

A good flooding protocol should maximize spatial reuse by allowing nodes to send concur-

rently when their transmissions do not interfere. In UFlood, distant nodes will likely not

hear each other's feedback, and thus not consider each other as potential best senders. As a

result, distant nodes that consider themselves to be local best senders will send concurrently

allowing spatial reuse of wireless channel. However, an ideal protocol would choose the

set of senders with the highest total amount of useful receptions over the whole network,

accounting for interference. Therefore, UFlood deals with spatial reuse weakly.

4.10.2 Delivery Probabilities

Selecting the best sender requires knowledge of the delivery probabilities between every

node-pair in the network, which is represented by PY,Z,b(Y) at all possible bit-rates b(Y) in

the utility equation. Each node periodically measures and floods this information to the

rest of the nodes. Both the probing and distribution are done at a low rate, so the delivery

probability matrices are usually out of date. However, UFlood does not rely only on the

delivery probabilities alone for its operation. Feedback helps in fixing the mistakes that

occur because of out-of-date values.

4.10.3 Conservative Estimate of Lyz

Section 4.7.1 mentioned that Equation 4.2 is a conservative estimate of Lyz. That is, if Lyyz

is greater than zero, then a transmission from Y is likely to benefit Z, while if zero, there

is still some chance that a transmission would be beneficial. For example, in Figure 4-2,

since nodes X and W together received four of the source's first-generation packets, they

both can exchange packets to ensure that they receive four linearly independent packets

each. Thus two transmissions from X should be useful to W. However, as soon as node

W receives another coded packet from node X, both X and W will have a rank of three

and all the bits set in W will also be set in that of X, thus Lwx = 0 even though one more

transmission from W will still be useful to X. This is an example where Equation 4.2

incorrectly estimates a transmission from a node to be useless. However, this happens only

when both the sender and the receiver have the same rank and the receiver has all those bits

set that are set in the sender's bitmap. In addition, UFlood nodes transmit a burst of packets

and do not calculate the utility for each transmission, which reduces the opportunity for

miscalculating the utility of the senders.

4.10.4 Reliability

UFlood attempts to ensure that every node eventually receives enough coded packets to de-

code the current batch. Any node that does not receive batch-sized coded packets will even-

tually be handled by the parent-child entity explained in Section 4.8.3. However, UFlood

faces a tension between achieving high throughput for the majority of nodes and delivering

entire file to nodes with very unreliable links. UFlood sacrifices the latter in some cases: in

particular, if a node's feedback packets go unheard for long enough, its neighbors will stop

trying to retransmit data to it.

4.10.5 Look-ahead

Utility is a locally greedy heuristic: it does not account for the possibility that a sender

with only a few low-quality links might deliver packets to nodes that would then be able

to transmit to many receivers on high-quality links. In other words, one of the limitations

Figure 4-3: Illustration of the importance of look-ahead.

of the utility equation is that it has no look-ahead. Suppose potential senders S1 and S2

in Figure 4-3 each have one node that can hear them (RI and R2). All else being equal,

Equation 4.1 will compute the same utility of 0.2 for the two senders. However, it could be

the case that R, is the only path to a large number of other nodes while R2 is not. In that

case, S1 should send first to start data flowing to those other nodes. In fact, in this example,

R2 has a better path from Ri and should receive packets from it and not from S2 , which

also is not considered by the utility equation. A better utility function should include look

ahead.

4.10.6 Pipelining of batches

A UFlood source floods one batch at a time. In a large mesh network with hundreds to

thousands of wireless nodes (as in many sensor applications), as it is UFlood is not the

best flooding scheme. This is because a large part of the network (close to the source) that

received all the packets of the current batch remains idle most of the time waiting for the

flooding to complete in the rest of the network. Pipelining batches would enable several

batches to coexist. Pipelining in UFlood should face several challenges. For example,

UFlood's utility calculation should account for the coexistence of packets from different

batches. The current implementation of UFlood does not include pipelining of batches.

4.11 Chapter Summary

The design of UFlood made two major contributions. First, it described the notion of

utility as a local heuristic for selecting the best senders to achieve high throughput using

low airtime. Second, the design demonstrated how to reduce feedback overhead with a

compact representation and mechanisms to send feedback only when required. This chapter

also describes the limitations of UFlood, which are avenues for future work.

64

Chapter 5

Implementation

The UFlood implementation uses the Click 1431 software router toolkit running as a user-

space daemon on Linux. The daemon sends and receives raw Ethernet frames from the

wireless device using a libpcap-like interface. This chapter explains various components

used in the implementation.

5.1 Data Structures

All the nodes maintain the following information.

Packet table

Each node stores the coded packets it has received in the current batch along with the

coefficients used in the construction of each of those packets in a table. It discards any

newly arrived packet that is not linearly independent of the packets it already holds.

Node table

Each node maintains a node table that holds the list of nodes in the network. This list is

distributed by the source to rest of the nodes using a link state protocol.

Bitmap table

Each node maintains a bitmap that contains 256 bits for the source and and for each source-

like node whose first-generation packets have contributed to any coded packet it holds.

It also maintains a recent copy of the bitmap for each of its neighbors derived from the

feedback packet it received from them. This information is used to calculate IB,C in Equa-

tion 4.1.

Rank table

Every node stores its rank and the rank of its one and two-hop neighbor nodes. It also

maintains an indicator bit for each of its neighbors; the bit is set if the status information it

has about the neighbor is predicted (interpolated) rather than true.

Delivery probability matrix

Each node maintains a matrix [Plb(x) for every bit-rate b(X) containing an estimate of

the link-layer delivery probability measured at bit-rate b(X) for every node-pair. Delivery

probabilities are measured offline using the traditional probing method: each node sends

back-to-back probe packets with 1024-bytes of random data for 30 seconds while other

nodes record what fraction of probes they receive. This fraction provides the delivery

probability between the corresponding node pairs, which is then flooded using a link state

protocol, as in MORE 181 to the rest of the nodes.

5.2 Packet Formats

The nodes transmit three types of packets (data, feedback, and acknowledgment). The

remainder of the discussion uses K = 64.

Data Packet

A data packet from node X has the following contents:

e A link layer broadcast header that includes X's address.

e A type field indicating a data packet.

" Current batch number.

" Rank of X.

" Bitmap of X.

* The 64 (K) coding coefficients for this packet, relative to the original native data.

" 1024 bytes of coded data, constructed by a linear combination of all the data packets

held by X.

" The total number of packets X will send in the current burst.

" The number of remaining packets in the current burst.

" The ranks of X's neighbors, their IDs ,and a bit for each neighbor indicating whether

the neighbor's rank is interpolated.

Feedback Packet

A feedback packet from node X contains:

* A link layer broadcast header that includes X's address.

" A type field indicating a feedback packet.

* Current batch number.

" Rank of X.

" Bitmap of X.

" The ranks of X's neighbors, their IDs, and a bit for each neighbor indicating whether

the neighbor's rank is interpolated.

'A 1-byte node ID refers to the position of the node in the node table.

A feedback packet's length is dominated by the bitmaps, and increases by 32 bytes for

each source-like node that has been generating first-generation packets during the current

batch. In the test-bed considered in this dissertation, each coded packet is constructed using

the native packets of three source-like nodes at most.

Acknowledgment packet

A node X sends an acknowledgment packet via unicast routing to the source when it is able

to decode a batch, containing:

" X's address.

" Address of X's parent in the unicast path to the source.

" A type field indicating an acknowledgment packet.

" Current batch number.

" Cumulative acknowledgment: a bitmap with one bit for each node; the bit corre-

sponding to a node's position in the node table is set if the node has decoded the

current batch.

" The ranks of X's neighbors, their IDs, and a bit for each neighbor indicating whether

the neighbor's rank is interpolated.

5.3 Bit-rate Selection

The delivery probabilities are used to select the best bit-rates. Each node uses its best bit-

rate to transmit all its data and feedback packets. Bit-rate selection for a sender X involves

three main steps, as described below:

1. Choose best bit-rate for individual links

The expected transmission time (ETT) to send a packet from X to its neighbor Y is

given by,

E 1T Y,b(X) = (5.1)ETTyb~) x~vb(x))*b(X)

where b(X) is the bit-rate of node X and Pxy,b(x) is the delivery probability of the

link from X to Y, when X transmits at bit-rate b(X).

The cost metric of the link between nodes X and Y is given by

Cx.y = min (ETTxYb(x)) (5.2)
b(X)=1,...,54

The minimum bit-rate that gives the lowest ETT corresponds to the best bit-rate for

the link from X to Y. UFlood calculates this best bit-rate for all possible links.

2. Construct ETT-path from source to every neighbor node of the sender

Dijkstra's algorithm 1141 is used to construct minimum cost paths from source to

every neighbor of X using the cost metric (Cij) as link weights and assuming the cost

to transmit packets from source to X as zero.

3. Select the best bit-rate for X

Each path from the source node that passes through sender X, uses an outgoing link

from X to one of its neighbors. These nodes rely on X for receiving source's data.

The best bit-rate for sender X is the minimum of bit-rates from X to all its neighbors

that rely on X for forwarding.

Whenever X finds that its transmissions are linearly dependent to the packets of its

worst-connected neighbor that relies on it for source's data, X re-selects the best bit-rate by

ignoring the worst-connected neighbor.

5.4 Coding and Decoding

UFlood's implementation of coding and decoding are similar to MORE 181. The native

packets ni to nK are linearly combined using random coefficients cij to form coded packets
K

pt. For example, the first coded packet pi = I ci 1 .n1 . The arithmetic is byte-wise, so that
j=1

the first byte of pi is c1I times the first byte of ni plus C12 times the first byte of n2 and so

on until CIK times first byte of nK- All the arithmetic is carried out in the finite Galois field

GF(2 8) 181. When a node receives K linearly independent coded packets, it decodes the

native packets by using matrix inversion as follows:

n1 C11 ... clK p
= x(5.3)

nK CK1 ... CKK PK

5.5 Main Loop

Figure 5-1 and 5-2 summarizes the set of actions executed when a packet is transmitted and

received, respectively. The following discussion expands on various aspects.

The sequence of steps that occurs during the execution of UFlood is as follows.

* At the beginning of each batch, the source prepares the batch. The source starts by

sending a burst of coded transmissions; burst size calculated from Equation 4.4. The

rest of the nodes are silent during the source's initial set of transmissions (or until

they estimate the source must have finished based on elapsed time). After that point,

the source acts much like any other node, only sending if it has the highest utility.

The source's packets are received by some of its neighbors.

" All nodes calculate their utilities and the utilities of the nodes around them roughly

once per burst. If a node is sending, the sequence is that it sends a burst of data

packet, allows time for any feedback, then re-calculates utility, and perhaps sends

again. If a node receives a data packet and the data packet indicates end of burst,

Data Packet
Transmission
Start of a batch

Feedback packet
Transmission

No New
batch9

Yes

end of batch

Figure 5-1: Flowchart of UFlood's main loop for packet transmission.

Packet
Reception

Received packet

return

Figure 5-2: Flowchart of UFlood's main loop for packet reception.

it also pauses for tfeedback, re-calculates utilities, and perhaps sends. If a node does

not hear a packet, it waits a duration approximating the time necessary to send three

data packets (tdata), perhaps sends a feedback, and re-calculates utilities. This is a

necessary but not sufficient condition for feedback transmission (refer to Section 5.7).

The pause time tfeedback is the duration of a feedback packet transmission. For exam-

ple, for 1 Mbit/s 802.11 b, a 1024-byte data packet lasts approximately 8 milliseconds

(tdata), and usually in UFlood, a feedback packet lasts less than one millisecond.

A node uses the lowest bit-rate among all its neighbors to calculate tdata. On the

other hand, tfeedback of a node is calculated using the lowest bit-rate among all the

neighbors that have not decoded the current batch. The utility computation uses the

feedback interpolation described in Chapter 4.7.3.

* If the node has the highest utility among its neighbors at that point, it transmits a

burst of packets; the burst size is calculated using Equation 4.3.

" When a node receives a coded data packet, the node interpolates the states of its

neighbors as explained in Chapter 4.7.3. If a node receives enough packets that

it can decode the batch, it sends an acknowledgment to the source as explained in

Section 5.6.

" When a node X receives a feedback packet from node Y, it updates information about

node Y and the ranks of Y's neighbors as explained in Section 5.7

" If the packet is an acknowledgment packet, node X forwards the packet to its parent

node, only if X is on the unicast path from Y to the source node.

* When the source receives acknowledgments from all nodes, it starts a new batch.

" This process continues until the source successfully floods all the batches.

5.6 Batch Termination

Each node constructs a minimum cost unicast path back to the source node using the cost

metric Cij (derived from ETT) as the link weights. A node, when required to transmit an

acknowledgment, uses the bit-rate that provides minimum ETT to its parent in the unicast

path to the source. When a node accumulates a batch-sized number of linearly independent

coded packets, it decodes the batch. It then sends a message to its parent and persists until

its parent node acknowledges or until the node sees the start of a new batch. To reduce

the acknowledgment traffic in the network, nodes send cumulative acknowledgments when

they hear completion messages from more than one child.

5.7 Feedback Interpolation

Rank of A Bit is set, if rank(B) is
interpolated Rank of B

Bitmap of A_

Headers 1111110- - - P(B) 1 6 P(C) 1 8 - - -

(a)

Bitmap (A): 1,2,3,4,5,6,7,8
Rank(A): 8

A

0.4

0.8 C
B _

Bitmap(B): 1,3,4,5,6 Bitmap(C): 1,2,3,4,5,6,7,8
Rank(B): 5 Rank(C): 8

B accepts A's prediction about C since P C,A > PC,B
C rejects A's prediction about B since P BC> PBA

(b)

Figure 5-3: (a) A typical feedback packet in UFlood and (b) Illustration of feedback inter-
polation in UFlood.

Figure 5-3 shows a typical feedback packet and how feedback interpolation is imple-

mented in UFlood. The number on each link indicates its two-way delivery probabilities.

For simplicity, assume K = 8 and nodes A, B, and C are part of a big network. At some

point in time, node A has all the 8 packets of the batch.

Suppose A transmits packets in burst, some of which are received by nodes B and C.

The receivers of A 's transmission interpolate the states of their neighbors as mentioned in

Chapter 4.7.3. For example, in Figure 5-3(b), when node B receives one of the A's packets,

it learns that A transmits 8 packets in the burst. For each of A's transmission, B assumes

C received the packet with a probability 1. Thus B interpolates C's state (i.e., rank and

bitmap) at the end of A's burst of transmission.

Suppose A sends a feedback packet. Figure 5-3(a) shows the feedback packet of node

A. When node B receives this packet, it accepts the rank information A provides about its

neighbors (i,e., C) only if either of the following conditions hold.

1. If both A and B have the uninterpolated (or true) rank of C and A's feedback has

higher rank for C than what B holds in its rank table.

2. If C has higher delivery probability to A than B.

In the example, B accepts rank information supplied by A about node C because of

condition 2 (Pc,Ab(C) PC,B,b(C)). On the other hand, node C on receiving A's feedback,

rejects the information about B because both the conditions fail. This is because a feedback

transmission from node B is more probable to be heard by C than A. Therefore, Node A

might have interpolated B's state information based on stale feedback information.

5.8 Chapter Summary

This chapter discussed the implementation of UFlood protocol. It illustrated how UFlood

handles transmissions, receptions, bit-rate selection, and feedback transmission and inter-

polation. The next chapter evaluates the performance of UFlood.

76

Chapter 6

Results and Discussion

This chapter evaluates the performance of UFlood using flooding experiments on a 25-

node wireless testbed, comparing it with MORE and MNP. The main result is that UFlood

achieves 150% higher throughput than MORE using 65% lower airtime. UFlood also

uses 54% lower airtime than MNP, an existing flooding protocol to minimize airtime and

achieves 300% higher throughput.

6.1 Experimental Setup

All the experiments, unless otherwise specified, run on a 25-node testbed deployed across

3 floors of an office building. Figure 6-1 shows the layout of the testbed. Each node

has a 500 MHz AMD Geode LX800 CPU and a radio based on the Atheros 5212 chip-

set that operates in monitor mode. The nodes use a transmit power level of 12 mW. The

testbed is large enough that many nodes cannot communicate directly with each other at

this transmission power level. The transmissions are carried out at the 802.1 lb/g physical

layer bit-rates ranging between I and 54Mbps. Some node pairs in this test-bed are about

4-hops away even at a bit-rate of IMbps. Since sender selection in UFlood relies only on

two-hop information, the UFlood results on this test-bed can scale well for larger networks.

Figure 6-2 shows the distribution of inter-node delivery probabilities at 5.5Mbps. These

probabilities were measured as described in Chapter 5.1. The curve has one point per

directed pair of nodes indicating the fraction of 1024-byte broadcast packets delivered from

* Floor 1

* Floor 2

A Floor 3

Figure 6-1: Physical layout of the 25-node testbed.

0

u5 0 .3 -

E
0.2 -

0.1

0
0 0.2 0.4 0.6 0.8 1

Pair-wise Delivery Probability

Figure 6-2: CDF of pair-wise 1024-byte packet delivery probabilities at 5.5 Mbps for the

testbed showing a wide range of link qualities.

one node to the other. The graph shows that even at a low bit-rate of 5.5Mbps, the testbed

has a wide range of link qualities including many links with zero probability.

6.1.1 Evaluation Metrics

The two performance metrics throughput and airtime are computed as follows.

F
Throughput(packets per second) = (6.1)

P* (te-ts)

N

Airtime(seconds) Ti (6.2)
i=1

Here F is the size (in bytes) of the file that the source floods, P is the number of bytes

of data in the data packet (refer Chapter 5.2), t, is the time (in seconds) at which the source

starts transmitting its first packet of the first batch, te is the time (in seconds) at which the

source receives the last acknowledgment of the last batch, N is the total number of nodes in

the network, and T is the total time (in seconds) node i spends in transmitting packets (i.e.,

data, feedback, and acknowledgment). Both the metrics include the overhead of UFlood's

feedback packets. Increase in the feedback traffic reduces throughput and increases airtime.

6.1.2 Protocols used for comparison

The experiments compare UFlood with two existing flooding protocols: MORE 181 and

MNP 1351. Chapter 3 explained the design of these protocols in detail. MORE is used for

comparison with UFlood because MORE is a well-known high-throughput protocol. MNP

is used for comparison because its objective is to minimize airtime by operating cautiously

to reduce bandwidth consumption. This chapter will show that UFlood achieves higher

throughput than MORE and lower airtime than MNP.

We tested MORE and MNP using the same experimental setup as UFlood. The MORE

software is the multicast implementation used in the MORE paper 181. We used the same

code used by the authors of MORE. MNP is implemented as described in 1351, except that

the nodes in MNP transmit coded packets as in UFlood. This helps to compare the sender

selection of MNP and UFlood in a similar setting. This is required because it would be un-

fair to compare UFlood with non-RNC version of MNP, if most of the benefits that UFlood

sees is due to use of RNC and not due to its sender selection or feedback mechanisms.

MORE and MNP are designed to use a fixed bit-rate for all their transmissions. Thus,

they are also compared with a version of UFlood called UFlood-R that operates at fixed

bit-rate. All the transmissions of MORE, MNP, and UFlood-R are carried out at 5.5Mbps,

which provides maximum flooding throughput on the testbed considered in this disserta-

tion. The implementations of all the flooding protocols discussed in this chapter use the

Click software router toolkit 1431 running as a user-space process on Linux.

6.1.3 Method

The flooding experiment involves the source distributing a 2MB file to the rest of the nodes.

The default batch size (K) is 64 packets and 32 such batches are flooded. A data packet

contains 1024 bytes of coded data plus protocol overhead (e.g., coding coefficients). Most

of the results in this chapter report distributions of results over all choices of source node

L0.8 -

0.7-

L: 0.6 -
0. -- * MORE

-- UFLOOD-R
0.5 - - - MNP

-0-- UFLOOD
5 0.4 -

0.3 -- - -.

E
0 0.2 - --- - -

0.1

01
0 50 100 150 200 250

Throughput(Packets per second)

Figure 6-3: CDF over choices of source of the total throughput achieved while flooding a

2MB file. On average, UFlood's throughput is 63% higher than that of UFlood-R, 150%

higher than MORE's and 300% higher than MNP's.

to emulate the effect that different topologies might have. Each point in each distribution

represents the average of seven runs with a given source.

6.2 Main Results

This section presents measurements comparing the throughput and airtime of UFlood with

those of UFlood-R, MORE, and MNP.

6.2.1 Throughput

Figure 6-3 shows the CDF of the total throughput achieved while flooding a 2MB file,

comparing UFlood with UFlood-R, MORE and MNP over all possible sources. On average,

UFlood's throughput is 150% higher than that of MORE and 300% higher than that of

MNP.

The graph also shows that UFlood's average throughput is 63% higher than UFlood-

R's, which demonstrates the effectiveness of UFlood's bit-rate selection algorithm. The

E ' O.8 - --. .. -...-.

0.7 - - -

UFLOOD-R
S 0.6 -.

- - - -- MNP

- 0. -- UFLOOD
nS 0.5 - - - - -- - - -- -
.2

6 0 .4 -
a)

16 0 .3 -

E r
0 0.2r --

0.1

0
0 20 40 60 80 100 120 140 160

Airtime (Seconds)

Figure 6-4: CDF over choices of source of the total airtime used in flooding a 2MB file.
On average, UFlood uses 30% lower airtime than UFiood-R, 65% lower than MORE and
54% lower than MNP.

graph shows that UFlood-R's average throughput is 57% and 179% higher than that of

MORE and MNP, which demonstrates that UFlood's higher throughput is due to sender

selection as well as bit-rate selection.

6.2.2 Airtime

Figure 6-4 shows the airtime used by UFlood, UFlood-R, MORE, and MNP protocols

during the flood. UFlood uses 54% lower airtime than MNP, and 65% lower than MORE.

Low airtime helps UFlood achieve high throughput, and also reduce its impact on other

network users. However, a low airtime alone is not enough to attain high throughput. For

example, Figure 6-4 shows that MNP uses lower airtime than MORE but achieves far less

throughput than MORE because MNP's feedback mechanism introduces high idle-time

(refer to Chapter 3.3). UFlood achieves higher throughput and lower airtime than MORE

and MNP because it simultaneously reduces both airtime and idle-time.

6.3 Why Does UFlood Win?

One of the main reasons behind UFlood's good performance is its sender selection. UFlood

aims to select good senders by considering the factors mentioned in Chapter 2. UFlood's

performance improvement over UFlood-R in terms of both throughput and airtime already

illustrated the power of UFlood senders to choose good bit-rates. This section explores

how well UFlood exploits the factors mentioned in Chapter 2.

6.3.1 Number of receivers

UFlood aims to select senders with many likely receivers. Figure 6-5 shows the CDF

of the number of nodes that receive each data packet transmission during the flood of a

single batch. On average, UFlood-R transmissions reach 50% and 20% more receivers

than MORE and MNP transmissions, respectively.

MNP's transmissions reach fewer receivers than UFlood-R's because MNP does not ac-

count directly for sender-to-receiver delivery probabilities. It is true that MNP dynamically

chooses senders that hear requests from many receivers, which makes its transmissions use-

ful to many more receivers than MORE's. However, in MNP, link asymmetry, collisions

of the requests, and accidents of delivery easily can cause poor senders to receive more re-

quests than good senders. UFlood-R, in contrast, uses measured forward link probabilities

from sender to receivers in calculating utility, which allows UFlood-R's transmissions to

reach many receivers.

The difference between MORE and UFlood is not very huge because MORE considers

the delivery probabilities of the node pairs in calculating the TX-credits of the nodes,

which decides the sender for each transmission.

6.3.2 Number of useful receptions

In addition to choosing senders connected to many receivers, it is also to important to ensure

that the transmissions of such senders benefit many receivers. UFlood aims to choose

senders whose transmissions will convey new information to the most receivers. Figure 6-

6 shows the CDF of the number of nodes that benefit from each data packet transmission

U-
0O 5 -

S05

0.4

0.3 -

0 .2 - -.-.-.-.-.-.- .-

0.1 - - -

0
0 1 2 3 4 5 6 7 8 9

Number of nodes that receive each data transmission

Figure 6-5: CDF over the data transmissions in a single batch of the number of nodes that
received each transmission. UFlood-R's transmissions reaches 50% and 20% more nodes
than MORE and MNP.

1

0.9 - - -

MORE

0.8 - UFLOOD-R
- MNP

0.7-

0.6

0 .5 - - -.-.-.- -.-.-

0.4 - - - --

0.3-

0 .2 - - - - - - - - --

0.1

0 1 2 3 4 5 6 7
Number of nodes that get benefitted by each data transmission

Figure 6-6: CDF over the data transmissions in a single batch of the number of nodes that
benefited from each transmission. Typical UFlood-R transmissions benefit twice as many
nodes as MORE and 20% more than MNP.

during the flood of a single batch. The average UFlood-R transmission is useful to twice

as many receivers as the average MORE transmission and to 20% more receivers than the

average MNP transmission. That is, UFlood-R transmissions are more likely to be linearly

independent of data that receivers already hold, and are thus more likely to be useful in

decoding the batch. This helps UFlood-R use fewer transmissions and complete flooding

more quickly than MORE and MNP.

UFlood's dynamic choice of senders is superior to MORE's static TX-credit-based

sender selection because UFlood chooses the best sender for each transmission exploiting

both delivery probabilities and feedback from the neighbors. Chapter 2.3 explained the

need to reconsider the choice of senders as receivers accumulate data. MORE's TX-credit

calculations do not take in to account the current state of the receiver. That is, the proba-

bility of each MORE node transmitting is fixed during a transfer-the TXcredit values

do not adapt to the actual pattern of receptions as a batch progresses. This causes prob-

lems toward the end of each batch, when a few nodes will likely be missing packets, but

which nodes they are is hard to predict statistically; thus the best sender to satisfy those

nodes often is not the one with the highest TX-credit. Another reason why the fixed

TX-credit may perform poorly is that reception probabilities may change as a transfer

progresses. In contrast, UFlood-R uses feedback to adjust its choice of sender as a batch

progresses, reflecting actual receptions. It establishes priority among senders, rather than

using per-sender rates as in MORE. In some cases, one sender is strictly more useful than

another sender is (can be heard by a superset of receivers). UFlood-R's utility mechanism

will cause the former sender to take priority over the latter, while MORE's TX-credit

may cause either of them to send, which is left to the underlying CSMA MAC protocol to

decide.

Finally, UFlood-R has an edge over MNP because MNP effectively bases sender choice

on coarse information: whether or not senders and receivers hear single query and response

packets.

u-

0.4

0.-

0.1

0
0 5 10 15 20 25 30 35 40

Throughput (Packets per second)

Figure 6-7: Use of low-probability links improves throughput by 88% for the median case.

6.3.3 Use of low probability links

One reason why UFlood's sender selection is good is because it accounts for low proba-

bility links. To evaluate this, UFlood-R is compared against a slightly modified version of

UFlood-R, labeled UFlood-R(High Prob), which only includes links with delivery proba-

bility greater than 50% in all utility calculations. 20 of the 25 nodes in the test-bed are used

to create a sparse network with many low-probability links. This is because, in a dense net-

work, the real benefits provided by the use of low-probability links is usually low. Hence,

the flooding experiments are carried out only on the chosen 20 nodes.

Many wireless protocols attempt to avoid low quality links. In contrast, UFlood-R,

like opportunistic unicast routing (e.g., ExOR [6]) considers even the weakest links of the

network to exploit the potentially high aggregate delivery probability of large numbers

of weak links. Figure 6-7 shows that such use of low probability links provides a 88%

higher throughput over UFlood-R(High Prob). Removing all the sub-50% links reduces

the opportunity for senders to consider many potential receivers.

UFlood-R(High Prob) chooses the best senders to satisfy only their well-connected re-

ceivers. Although this approach marginally increases throughput for some well-connected

nodes because the best sender choice is favorable for them, it degrades the throughput of

1 O O O "%R(OR(FMII9
.0 0 00 0 0

09 00 00 @ % O0 O 8
00 7 0

0 6 O

0 5 O O1O
O

O

00

0 1

0 0 1 02 0.3 04 05 06 07 0. 09 1
Delivery probabilities of node pairs

Figure 6-8: Packet receptions are highly correlated in our testbed. The x-axis shows P5(r)
for every link with non-zero delivery in the network. For each such point, there are multiple
points on the y-axis, one for every other link from s. If all links were independent (from s),
we would expect the points in this scatter-plot to all lie along the 45-degree y - x line.

the rest of the nodes in the network that have lower quality links to many of their neighbors.

The conclusion is that when marginal links are available, UFlood-R uses them profitably.

6.4 Feedback

UFlood's feedback is another important reason that helps it achieve good performance.

Apart from aiding dynamic sender selection based on the current state of the receivers,

feedback from receivers makes senders aware of correlated reception. That is when mul-

tiple potential senders have received a similar set of packets, feedback helps them realize

that it not be worthwhile for all of them to forward coded packets derived from that set. The

value of a given node transmitting depends on the degree to which its previous receptions

overlap receptions of the neighboring senders. MORE effectively assumes that receptions

will be independent, whereas UFlood-R's feedback allows it to perform well even in the

face of correlated reception.

Chapter 3.4 discussed several research findings that illustrated the existence of correla-

tion in wireless networks and its effect on the performance of wireless flooding. To explore

the degree of correlation in the testbed, packet reception data are gathered in the following

way. For each link (directed pair of nodes) (s, r), the long-term packet delivery probability,

P(r) are measured. For every other link (s,r') from the same sender, Ps(rlr') is measured.

If packet receptions are independent, then this quantity should be equal to Ps(r); the larger

the difference, the greater the correlation.

Figure 6-8 shows the results as a scatter-plot. The x-axis shows P (r) for every link

with non-zero delivery in the network. For each such point, there are multiple points on the

y-axis, one for every other link from s. If all links were independent (from s), we would

expect the points in this scatter-plot to all lie along the 45-degree y = x line. A large number

of these points are above the 45-degree line, and in some cases, the majority of the points

are well above it, suggesting that very few receptions in those cases are independent. There

are almost no points below the 45-degree line; this makes sense because there is no physical

reason to expect receptions to be anti-correlated (we have not investigated whether the one

anomaly has any significance). The conclusion is that the spatial independence assumption

does not hold well in the testbed.

This dissertation does not demonstrate how much UFlood gains by making its nodes

aware of correlated receptions over flooding protocols that assume independent receptions.

6.4.1 Analysis of Feedback Overhead

This section discusses how much traffic UFlood's detailed feedback packets introduce in

the network and how good its compact feedback is.

Figure 6-9 shows the overhead imposed by feedback, comparing total bytes of data

packets alone with total bytes of both data and feedback packets transmitted by all the

nodes. The experimental finding is that the feedback overhead is only 3%. This is mainly

because UFlood-R sends compact feedback only when needed, which reduces both the size

and frequency of feedback packets.

Compact feedback representation helps to suppress feedback traffic in UFlood. How-

ever, as mentioned in Chapter 4.10.3, a compact feedback from a receiver helps potential

senders to only conservatively estimate whether the sender's transmission would be useful

to the receiver. Thus, it is important to evaluate how much the conciseness of UFlood's

0 6 - - ---~dIS -r - - -

12 0.8-
U

. 2 0.7 - - - - - - - --- - -

l 0.6 -

S0.5-

01

0
0 2 4 6 8 1 12

Amount of data transmitted to flood a 2MB file (MB)

Figure 6-9: CDF over different choices of source of the total bytes of data packets trans-
mitted, compared to total bytes of both data and feedback packets. The totals include all
headers up to and including the 802.11 header. On an average, the feedback overhead is
3%.

feedback compromises its performance in comparison to a detailed feedback mechanism

(DETAILED), where a node's feedback includes coefficients used in the construction of

each of its coded packets. As mentioned in Section 4.7, such a feedback packet might be

huge and often require multiple transmissions. Thus, this experiment transmits the feed-

back for both UFlood and DETAILED schemes using ethernet to detach the overhead due

to multiple transmissions for a fair comparison.

In DETAILED feedback, each node broadcasts the coefficients of all of its coded pack-

ets after each data transmission in the network. Nodes calculate utility for every transmis-

sion based on the up-to-date feedback from all of the nodes in the network, which means

there is no need for either bursty transmission or feedback interpolation. Figure 6-10 shows

that the combination of techniques (i.e., compact feedback representation, feedback timing,

feedback interpolation, and bursty transmissions) used by UFlood to reduce feedback traffic

leads to an 1 I% reduction in throughput compared to DETAILED. Considering the practi-

cal difficulties in using frequent large amounts of feedback in wireless networks, this loss

is acceptable.

0.7-

0.5

0 0.4 2 40 60 80 10 10 .4 . 6
LL

~0.3-I

0 .2 -

0.1_

01
0 20 40 60 80 100 120 140 160

Throughput (Mbps)

Figure 6-10: Detailed Vs. UFlood's compact feedback representation. Compact feedback
looses only II % throughput due to conciseness.

A further reduction in UFlood's feedback traffic is possible if nodes include only their

ranks in the feedback packets as in Rateless Deluge. The subsequent discussion will show

that such a reduction has adverse effects on the performance of a flooding protocol. Fig-

ure 6-11 compares UFlood with a scheme similar to UFlood, except that the feedback

includes only the rank of the nodes. This scheme is named UFlood-rank. In such a scheme,

IB,C (in Equation 4.1) is I if, and only if, rank(B) > rank(C), so that the utility calcula-

tion will assume that B benefits C only in cases where B has more packets than C. This

simplification eliminates most of the complexity and communication overhead of the feed-

back scheme, but at the same time compromises on accuracy because it always assumes

IB,C to be 0 when rank(B) < rank(C), while it is not always the case. Figure 6-11 shows

that UFlood-R's feedback, in spite of increasing feedback traffic, results in significantly

lower airtime of 23% than the simpler rank-only scheme, justifying UFlood-R's compact

feedback representation.

6.5 Factors Influencing the Performance of UFlood

This section discusses the factors influencing the performance of a flooding protocol.

0.8-

.2 07-

0.6

0.5-

0.4

-~0.3-

U 0.2 -

0.1

00 5 10 15 20 25 30

Airtime(Seconds)

Figure 6-11: CDF over different choices of source of total airtime, comparing UFlood-R

with a simpler version that includes only rank in feedback packets.

6.5.1 Network density

The density of nodes per radio range affects the performance of a flooding protocol, even

if the number of nodes in the network remains the same. This section studies the effect of

density on the performance of UFlood-R using two five-node networks: a dense network

where all nodes can communicate directly with each other and a sparse network where each

node has a link to at most two other nodes. Figures 6-12 and 6-13 show the performance of

UFlood-R and MORE in the two networks. The throughput advantage of UFlood-R more

than doubles in the sparse network compared to the dense network. This is because low de-

livery probabilities in the sparse network cause different nodes to receive different packets,

which increases the importance of sender selection. In addition, in sparse networks, only

a few nodes possess packets useful for others, and MORE's static sender selection does a

good job. Whereas, in dense networks, there are many potential senders for every trans-

mission with hard-to-predict states of neighbors that result from probabilistic reception, and

choosing the best sender in such scenarios is challenging. UFlood-R's feedback-based dy-

namic sender selection does better than MORE's static selection for the reasons mentioned

in Section 6.3.

Mean Improvement of UFlood-R over MORE = 16%

0 50 100 150 200 250 300 350
Overall throughput per node (PPS)

Figure 6-12: Mean throughput improvement on a 5-node dense network is 16%

Mean Improvementof UFLOOD-R over MORE = 38%

60 80 100 120 140 160
Overall throughput per node (PPS)

Figure 6-13: Mean throughput improvement on a 5-node sparse network is 38%

0
@a 100-

C)

60 --4

0~

C.)
CU
S~ 60-
:3

:3 40-
0

-c

20

8 16 32 64
Batchsize

Figure 6-14: Throughput of UFlood-R, MORE and MNP for various batch sizes

6.5.2 Batch size

Another factor that affects the performance of UFlood-R is the batch size, the number of

native packets used in the construction of a coded packet. Figures 6-14 and 6-15 show

the performance of UFlood-R, MORE, and MNP on the 25-node testbed, as the batch size

increases. Each bar represents the performance averaged over all the sources. A larger

batch size means the source should wait longer for each batch to complete since every node

in the network should receive a large number of coded packets before decoding each batch.

In a large network, this is disadvantageous because nodes, especially those closer to the

source, remain idle most of the time waiting for the rest of the nodes to receive the packets

of the current batch.

On the other hand, smaller batch size increases the number of batches, which means the

per-batch overhead increases during a period toward the end of the batch when progress is

slow while satisfying the last few nodes. Thus, the nodes wait a longer time between

completion of each batch. Figure 6-14 shows that throughput decreases with decrease in

batch size. This effect is more prominent in sparse networks with poor links, where each

batch takes more time to complete than a dense network.

*0
0
CD)
U) 15
CD
E

10

0 8 16 32 64
Batchsize

Figure 6-15: Airtime of UFlood-R, MORE and MNP, for flooding a 2MB file, as batch size

varies.

6.5.3 Asymmetric Links

Wireless networks often suffer from asymmetric links. A node X might be able to hear all

the transmissions of node Y perfectly, while Y might not hear any of X's transmissions.

This is an example of a node-pair with fully asymmetric links. In real wireless networks,

however, most of the node pairs often suffer from partial asymmetricity. Asymmetricity

between a node pair XY is defined as follows.

Pxy
Asymmetricity - , if Py'x > Pxy (6.3)

Here Px'y denotes the delivery probability of the transmissions from node X to Y. As

Px,y reaches Py,x, F{ reaches one and the links between X and Y becomes more symmet-
rlC.X

ric.

Figure 6-16 plots the CDF of asymmetricity values between node pairs in the 25-node

network. The figure clearly indicates that 25% of the node pairs have asymmetricity of

more than 0.5. Why this matters is because it leads to incorrect sender selection caused

by loss of feedback on highly asymmetric links. UFlood copes with asymmetry by includ-

0.9 -. . . .

0.8-

0.7

0.6-

0.5 - . . .
0

0 .4 - -

0.3 ---

0.2- -

0.1-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1
Asymmetricity

Figure 6-16: CDF of asymmetricity of the links in the testbed.

ing two-hop information in the feedback packets. In addition, a node in UFlood-R knows

about a neighbor not only through the direct feedback it hears from it but also through

the feedback from its other neighbors, which reduces the loss of feedback due to asym-

metricity. This dissertation notes that increase in asymmetricity has adverse affects on the

performance of UFlood but does not evaluate it, since it is difficult to create test-beds with

desired level of asymmetricities.

6.5.4 Hidden Terminals

This section evaluates how UFlood performs in the presence of hidden terminals in the

network. A few of the nodes in the test-bed were carefully placed to create hidden-terminals

in the network. The flooding experiment is conducted considering each node as the source

node. In many situations, MORE stops working because of persistent collisions caused by

hidden terminals, whereas UFlood and MNP works to completion. This is because UFlood

reduces the effect of hidden terminals by including the two-hop neighbors' rank in feedback

packets.

In MNP, the receivers of the hidden nodes send a request (advertisement) only to one of

the senders. Since, the two hidden senders more often receive different number of requests

only the sender with highest number of requests sends at any time. Thus, MNP also runs

to completion in the presence of hidden terminals.

6.6 Summary of Findings

A brief summary of the experimental findings from this section is as follows:

" UFlood, on average, achieves 150% higher throughput than MORE using 65% lower

airtime. UFlood also uses 54% lower airtime than MNP, an existing flooding protocol

to minimize airtime and achieves 300% higher throughput.

" UFlood achieves 63% higher throughput with 30% lower airtime than UFlood-R,

which demonstrates the power of UFlood's bit-rate selection.

" The main factors that contribute to the high performance of UFlood are its sender

selection and feedback mechanisms.

" Maximizing number of receivers that benefit from each transmission, opportunistic

use of low-probability links, and dynamic sender selection are vital in improving the

performance of UFlood.

Chapter 7

Application: WiFi Multicasting using

Client Cooperation

Traditionally, flooding in wireless mesh networks has been mainly used for disseminating

route updates in routing protocols. The real potential of flooding has remained largely

unexplored due to the limited use of mesh networks. Recent trends indicate an enormous

growth in wireless mesh network deployments and a need for good flooding protocols

for new applications on mesh networks, such as real-time video broadcasting and disaster

management (refer to Chapter 8.2). UFlood can be of use to some of these applications that

require both high throughput and low airtime. This dissertation proposes one such potential

application of UFlood in WiFi multicasting.

This chapter describes the design of UCast, a WiFi multicasting protocol that uses mesh

flooding to improve its performance. Multicast is a method to distribute live streams such

as seminars and lectures inside campuses and companies. With the rapid rise in WiFi-

connected clients, the delivery of such multicast streams over infrastructure 802.11 net-

works is becoming important. Unfortunately, multicast over such networks often is ineffi-

cient, suffering from low throughput and significantly reducing the capacity available for

other traffic. Section 7.1 discusses the reason behind this inefficiency.

UCast is a system that uses cooperative client flooding to improve the delivery of WiFi

multicast streams. UCast clients subscribed to a given multicast group along with the WiFi

access points (APs) form a cooperative mesh network over which the multicast data is dis-

tributed from APs to the clients. The key to making this idea work is to use an efficient and

robust flooding of data over the cooperative mesh. The main aim of this chapter is to show

how much client cooperation using flooding can help UCast. The performance of UCast

is analyzed using different flooding schemes for underlying client cooperation. The rest

of the text represents these variations in the form UCast/X, where X is the corresponding

flooding protocol used in UCast.

Experiments on an indoor WiFi test-bed show that UCast/UFLOOD can achieve 300-

600% improvement in throughput compared to a scheme that is similar to it except that only

APs send data. UCast/UFLOOD also improves throughput compared to DirCast+, an exist-

ing WiFi multicast protocol. For both throughput and airtime, we find that UCast/UFLOOD

is superior to all others.

7.1 Related Work

Over the past few years, two big trends in networking have been the rise of video, par-

ticularly live streaming content 19, 131, and the growth in the number of WiFi (802.11)

devices and networks. For example, the citywide network in Chaska, Minnesota has pro-

vided WLAN coverage in a 15 square miles area since October 2004. A similar network is

operational in Taipei consisting of 2300 APs and providing coverage to 50% of the city's

population, and is planned to be extended to provide coverage to 90% of the city's popula-

tion in the near future [101. A study by Cisco 1131 projects that mobile video will generate

66% of all mobile traffic by 2015.

One might expect WiFi, which is broadcast at the physical layer to be a natural fit for

multicast traffic. Yet WiFi multicast performs poorly 12, 9, 151. First, in many networks,

multicast runs at a low rate such as 6 Mbps or 11 Mbps in order to be heard even by poorly

connected clients. This makes multicast slow and slows down other traffic by occupying

an inordinate amount of airtime. Second, multicast frames do not use 802.11 link-layer

ACKs and retransmission because the standard strategy would lead to the ACK implo-

sion/collision problem. That is reliable multicast requires each client to send acknowledg-

ment packets back to its AP, which is difficult to scale to a large number of clients. Hence,

the application-visible loss rate for multicast can be much higher than for unicast. The

problem is so severe that one currently popular commercial approach converts multicast

data to unicast before transmission over the air 1331. The problems with infrastructure

WiFi multicast have been documented well (e.g., 1491), and the problem has received some

attention recently, but no previous scheme exploits client forwarding.

DirCast 191 decreases the airtime and increases the reliability of WiFi multicast using

two techniques: (i) each AP sends packets as unicast to the worst-connected client, which

sends acknowledgments, while other nodes receive in promiscuous mode and gain reliabil-

ity with Forward Error Correction (FEC) and (ii) the clients associate with APs in a way

that maximizes the bit-rates at which APs can send multicast frames. The main advantage

UCast has over DirCast is that UCast uses client forwarding to reduce airtime and increase

throughput. Section 7.5 compares the performance of UCast over DirCast.

Sen et al. 1491 show that even modest levels of multicast traffic can result in very poor

performance. Their previous work 1481 suggests use of smart beam-forming antennas to

improve performance of WiFi multicasting. This idea requires special hardware not avail-

able in most APs today. At the physical layer, SMACK 1161 avoids the ACK implosion

problem by encoding N ACKs from different nodes on N OFDM sub-carriers; this idea

requires changes to the physical layer.

Chen et al. 1101 show that optimizing various objectives (minimize the load of APs,

balance the load of APs, maximize the number of users) is NP-hard and propose approx-

imation algorithms to make multicast more efficient, giving simulation results. Another

idea 115, 361 is leader election among receivers to send link-layer ACKs. These ideas are

all complementary to UCast.

For unicast, SoftRepeater 121 addresses the WiFi rate-anomaly problem, in which a

few slow clients cause APs to provide poor throughput to well-connected clients. High-

rate SoftRepeater clients opportunistically transform themselves into repeaters for low rate

clients. UCast exploits such client participation, but the scheme is tailored to multicast and

includes many new techniques to choose the forwarders.

7.2 Goals and Assumptions

The goal of UCast is to distribute data from a server, connected to several APs over ethernet,

to all clients subscribed to a multicast group. UCast enlists clients to forward data when

that helps to improve the performance. The main performance goals are throughput and

airtime, as defined in Equation 6.1 and 6.2, except that the nodes in the mesh refer to APs

and clients. The source in UCast is the set of APs. The design of the protocol relies on the

following assumptions.

" A large quantity of data, typically real-time video, is to be multicast reliably.

* WiFi clients connect to one of the APs: in the experimental implementation, clients

pick the AP from which the packet delivery rate is highest at 5.5 Mbps. The clients

send and receive unicast traffic using the AP they are associated with.

" UCast makes opportunistic use of all multicast transmissions each client overhears,

including transmissions from all APs, not just the client's AP. To use UCast, a client

ideally should be able to associate with an AP while also communicating in monitor

mode with other clients; this capability is available on many commodity cards and

drivers.

* The APs and clients are equipped with a omni-directional antenna and can transmit

packets at adaptive bit-rates.

" It is assumed that clients are willing to cooperate because the reduction in airtime

helps all traffic. This seems reasonable in single-enterprise networks where power is

not limited. In Section 7.5.3, the conditions under which it may be profitable to have

clients not subscribed to a group participate in the flooding of packets is explored.

7.3 Key Ideas of UCast

UCast uses two main ideas: (i) clients cooperatively forward data for each other, and (ii)

clients of one AP may forward data to the clients of another AP, perhaps reducing the

100

number of packets the other AP needs to send. To illustrate, Figure 7-1 shows a network

with two APs A and E. The other nodes are clients, all of which subscribe to the multicast

group; B, D, and C associate with A, and F associates with E. Each number indicates

the delivery probability of the corresponding link. Since the delivery probability between

A and D is 20%, multicasting a packet directly from A to all its clients would require an

expected five link-level broadcast transmissions. If B or C forwards, only an expected two

transmissions will be required. Roughly speaking, the benefits of this technique depend on

how wide a spread of link qualities an AP's clients have.

A(AP) E(AP)

0.2

Figure 7-1: Illustration of the benefits of
from multiple APs.

Figure 7-1 also illustrates the benefit

Client C can hear packets from both APs,

both APs (D and F). In this situation, AP

instead, it is sufficient for C to receive all

airtime.

clients forwarding data and overhearing packets

of opportunistically overhearing transmissions.

and is in a good position to forward to clients of

E need not send all (or perhaps any) of the data;

data from A. The result is a 5 x reduction in the

7.4 Design and Implementation

In UCast, source nodes are the APs and they obtain the data to be flooded over the wired

network from a remote server. A subset of the clients of each AP that are interested in the

multicast data joins the multicast group through subscription. Clients identify the multicast

group using the destination address in the 802.11 link-layer header. The clients along with

101

the sources form a mesh network. UCast uses a mesh flooding scheme to flood the data

from the sources to all the clients in the mesh network. There is more than one source

flooding the same file. Each source considers one batch of K native packets at a time.

They create K coded packets from the current batch's native packets and flood one batch

at a time. The clients, on receiving enough linearly dependent coded packets to decode a

batch, send unicast acknowledgments back to the AP with which they are associated. Since

the wired background connects all the APs, they exchange the acknowledgments with one

another using the wired network. Once all the APs received acknowledgments from all the

clients in the network, either through the clients or through other APs, they simultaneously

start flooding the next batch.

7.5 Evaluation

This section presents measured throughput and airtime of UCast. Experiments are con-

ducted on the same experimental test-bed described in Chapter 6. The UCast measurements

designate some of the nodes of the test-bed as "APs," and others as "clients". Depending on

the experiment, between 3 and 5 of the nodes are designated as APs. Each client associates

with the AP from which it has the highest packet delivery ratio at 5.5Mbps.

7.5.1 Comparative Protocols

UCast is compared with two schemes: a Strawman protocol that does not use client for-

warding, and DirCast+, a variant of DirCast.

Strawman is UCast minus client forwarding (or the mesh flooding among the clients).

Strawman is not the same as any existing WiFi multicasting protocol but shares the general

approach of APs communicating directly to the clients. Each AP broadcasts new coded

packets for a batch until all of its clients indicate they are able to decode the batch. Clients

opportunistically listen for packets from any AP. When a client can decode a batch, it sends

an acknowledgment by unicast multi-hop routing to its AP similar to UCast. When all

clients of the multicast group have decoded the batch, the APs move on to the next batch.

All the Strawman APs use the same fixed bit-rate of 5.5Mbps. The main point of the

102

160-

140-
- 140 - - - Strawman

120 - UCast/UFlood-R
S120 ___

UCast/UFlood
-.-.-.-.-.-.-.DirCast+

100-

80-

0

o 60 -/

20

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Minimum delivery probabilities to clients

Figure 7-2: Throughput achieved as a function of the minimum allowed delivery probabil-

ity on client/AP links.

Strawman protocol is to be similar to UCast/UFLOOD except for client forwarding. It also

is loosely inspired by DirCast, though it lacks DirCast's rate-optimnized association.

DirCast+ is similar to DirCast [91, as described in Section 7.1, except that it uses a

coding scheme and end-of-batch acknowledgments from clients to APs, similar to UCast.

UCast is compared against DirCast+, rather than against DirCast to show that it is not just

UCast's use of coding that gives it higher throughput and airtime.

7.5.2 Throughput and Airtime

The reason one might expect UCast to increase performance is that typically some clients

have significantly worse AP links than others, and clients with bad AP links may well have

good links to other clients. This is likely to vary from one AP network and thus we look at

the performance of UCast as a function of how bad the worst client-AP links are.

Figures 7-2 and 7-3 show the results of a set of experiments in which the minimum al-

lowable delivery probability for a client to associate with an AP is varied. As the minimum

is decreased, fewer APs are required. Nevertheless, there is a fixed population of X clients

and Y APs; some of the APs are not used when the minimum is low. The net effect is that

103

200

180- - - Strawman
- - UCast/UFIood-R

160 ----- UCast/UFlood

\......... DirCast+
140-

120-

0

40--

20-

0 '
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Minimum delivery probabilities to clients

Figure 7-3: Airtime as a function of the minimum allowed delivery probability on client/AP
links.

client forwarding is likely to be more useful in the left-hand part of each graph. Each data

point represents the average of five runs with different choices of APs. The graph x-axes

only go up to 0.6 because it would take a relatively large number of APs to ensure every

client had 0.7 or higher delivery probability.

Figure 7-2 shows that UCast/UFLOOD achieves 100-200% higher throughput than

UCast/UFLOOD-R, which demonstrates the power of UFlood's bit-rate selection algo-

rithm. UCast/UFLOOD can select bit-rates to deliver data faster on better-than-average

links, and with high delivery probability on bad links.

Figure 7-2 also shows that UCast/UFLOOD-R achieves 2-4x higher throughput than

Strawman and DirCast+. The main reason is that UCast/UFLOOD-R's forwarding through

clients often can deliver data in two transmissions that Strawman and DirCast+ must re-

transmit many times. Even when the worst client/AP connection has a delivery probabil-

ity of 0.6, UCast/UFLOOD-R still delivers data 2x faster than Strawman and DirCast+.

One reason is that there is often a client that is better situated than some of the APs.

UCast/UFLOOD-R will arrange for that client to forward, and will not send anything

from ill-suited APs; Strawman and DirCast+, on the other hand, are forced to send from

104

such APs. Another reason is that, even in situations where client forwarding is not useful,

UCast/UFLOOD-R APs coordinate so that the most useful AP sends first, which may result

in other APs not needing to send as much or at all.

Figure 7-2 shows similar performance differences for DirCast+ and Strawman over

UCast/UFLOOD-R, but for different reasons. DirCast+ gains from its rate-aware asso-

ciation scheme while Strawman gains due to the feedback from the clients. However,

UCast/UFLOOD-R beats both the protocols due to client cooperation. Moreover, in the

test-bed, DirCast+ selects either 5.5 or 1 Mbits/s at least for one of the APs limiting the

gain achieved using DirCast+'s association algorithm.

Figure 7-3 supports the claim that UCast/UFLOOD-R derives its throughput advan-

tage largely by consuming low airtime: its careful choice of sender and their bit-rates

makes each UCast/UFLOOD-R transmission more useful than corresponding Strawman

and DirCast+ transmissions.

7.5.3 Client Cooperation

The hypothesis is that UCast derives gains from two factors: first, the cooperative forward-

ing done by APs and clients, and second, the use of feedback that, even in the absence of

any client forwarding, could enable some APs to avoid forwarding as much data. Never-

theless, in some situations, only a subset of multicast subscribers may be willing to forward

cooperatively. Figure 7-4 shows the effect of varying the fraction of cooperating subscribers

in a configuration with 20 clients and 4 APs. The cooperating clients are chosen randomly.

Throughput increases quickly with the cooperation level, so even small amounts of coop-

eration help significantly.

Another noteworthy conclusion from Figure 7-4 relates to the benefits of feedback even

when there is no cooperation (the throughput when the x-axis is 0). UCast/UFLOOD-R

is 25% faster than Strawman in this case; this gain is entirely the result of some APs not

sending all the packets, benefiting instead from other APs and opportunistic receptions of

coded data.

105

1 101 1 1 1 1 11

100- UCast/UFlood-R
- - - Strawman

90-
80d

8 80-

3 70-

60-

50--

C) 30--

20-

10-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#cooperating clients/total #clients

Figure 7-4: Effect on throughput of varying the fraction of clients that cooperate in flood-
ing.

UCast/UFLOOD's client cooperation is powerful because it uses UFlood for mesh

flooding. Figure 7-5 and 7-6 shows the total throughput and airtime for multicasting a 2MB

file on the test-bed, comparing UCast/UFLOOD and UCast/UFLOOD-R with DirCast+,

UCast/MORE, and UCast/MNP for 5 configurations with different choice of APs. All

the variations of UCast win over DirCast+, which demonstrates the power of client co-

operation. UCast/UFLOOD-R wins over UCast/MORE and UCast/MNP due to higher

throughput using lower airtime that UFlood provides to UCast compared to MORE and

MNP flooding protocols.

106

0.7

- 0.6

0.5 -*

D
0.4-

U
0

0.3 -
8 .- I. . . .+

0.2-

0.1 -

0
0 10 20 30 40 50

Throughput(PPS)

Figure 7-5: Throughput of UCast/UFLOOD-R is 400%,
DirCast, UCast/MORE and UCast/MNP, respectively.

1*

0.9-

0.8-

0.7-

0Y)

0.6-
0

~0.5-* 4*-

0.4

0

LL0 .

40 50 60 70 80
Airtime(Seconds)

60 70

50%, and 180% higher than

rCast*
Dast/UFlood-R
Dast/MORE
'ast/MNP

90 100 110

Figure 7-6: UCast/UFLOOD-R consumes 66%, 44% and 37.5% lower airtime than
DirCast, UCast/MORE, and UCast/MNP, respectively.

107

108

Chapter 8

Conclusion

This chapter summarizes the contributions made in this dissertation and directions for fu-

ture work.

8.1 Summary

A protocol that floods data efficiently to all nodes in a wireless mesh network is useful

for applications such as software updates. An ideal flooding protocol should transmit each

packet the smallest total number of times at efficient bit-rates to achieve highest through-

put using lowest airtime. With probabilistic delivery, opportunistic receptions, and spatial

diversity offered by broadcast transmissions in wireless networks, the problem becomes

much more difficult to implement.

This dissertation makes the following significant contributions. First, it proposes UFlood,

a flooding protocol for wireless mesh networks. UFlood is the first protocol to combine the

opportunistic receptions of gossip protocols with a precise calculation of transmission util-

ities using delivery probabilities and knowledge of what packets neighboring nodes have,

to decide which nodes should transmit at any given time and what bit-rates to use. UFlood

also takes advantage of broadcast transmissions to reduce the number of redundant trans-

missions without pre-computing a transmission topology or schedule. It uses RNC to in-

crease the usefulness of transmissions, and knowledge of what coded information receivers

already hold to help it choose the sender that ensures high throughput and low airtime. In

109

particular, UFlood chooses senders whose transmissions are most likely to be linearly in-

dependent of the packets that receivers already hold. A key idea in UFlood is that because

the best sender changes with each reception, the utility calculation tracks these changes to

select best senders dynamically.

Second, the dissertation describes a novel compact feedback mechanism in which nodes

exchange infrequent feedback packets describing the coded information it has received and

interpolate the status of their neighbors when required. UFlood sacrifices some of the

potential reduction in feedback traffic that coding in principle could provide, but uses the

feedback judiciously to pick which nodes should suppress their transmissions. Experiments

on a test-bed show that this sacrifice is worthwhile.

The third contribution of this dissertation is a novel bit-rate selection algorithm to cal-

culate the best bit-rate for each UFlood transmission. UFlood's bit-rate selection trades

off the speed of high bit-rates against the larger number of nodes likely to receive at low

bit-rates.

The fourth contribution of this dissertation is an evaluation which shows that UFlood

achieves 150% higher throughput than MORE using 65% lower airtime consumption in

transmitting the packets. UFlood also achieves 300% higher throughput using 54% lower

airtime than MNP. UFlood's bit-rate selection provides a 63% improvement in throughput

over a version of UFlood without bit-rate selection.

Final contribution of this dissertation is to present UCast, a new system that uses coop-

erative client flooding to improve the delivery of multicast streams. In UCast, clients con-

nect as usual to the best AP, but in addition all clients subscribed to a given group form a

cooperative mesh along with APs over which they forward multicast packets for each other.

The key to making UCast work is UFlood, which is used for efficient flooding of data over

the cooperative mesh. Experimental results over an indoor multicast test-bed show that

UCast improves throughput by 300-600% over both strawman, a protocol similar to UCast

except that only APs send, and DirCast+, which also does not use client cooperation.

110

8.2 Future Work

Chapter 4.10 discusses few limitations of UFlood that needs to be addressed. Apart from

this, the dissertation leaves several interesting directions for future work.

Many applications require flooding for mobile mesh networks such as distributed mo-

bile sensing systems for traffic mitigation, mobile sensor networks for intruder detection,

and mobile flooding in battlefield and disaster relief situations. In its current form, UFlood

may not work well in such situations because the utility equation relies on the delivery

probabilities of the links between the node pairs, which changes often in a mobile environ-

ment.

There are also flooding applications that aim to optimize metrics other than throughput

and airtime as defined in this dissertation. For example, applications like disaster manage-

ment require the source's data to be delivered quickly to as many nodes as possible rather

than to all the nodes in the network. That is, it aims to maximize individual throughput

of the nodes rather than the overall throughput of the network. Real-time video streaming

applications, on the other hand, require only a subset of the source's data to be flooded as

quickly as possible. UFlood, in its current form, may not work well for all these applica-

tions. The sender and bit-rate selections in UFlood may have to be altered to optimize these

other metrics and is left to future study.

In summary, this dissertation presented UFlood, a new protocol for efficiently flooding

data over wireless networks. UFlood achieves high throughput and low airtime by carefully

choosing which nodes send exploiting knowledge of delivery probabilities, bit-rates and of

opportunistic receptions. Looking ahead, this dissertation can be extended to flood a large

quantity of data in mobile multi-hop networks.

III

112

Bibliography

S1I R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network Information Flow. IEEE
Trans. on Infbrmation Theory, July 2000.

121 Paramvir Bahl, Ranveer Chandra, Patrick P. C. Lee, Vishal Misra, Jitendra Padhye,
Dan Rubenstein, and Yan Yu. Opportunistic Use of Client Repeaters to Improve
Performance of WLANs. IEEE/ACM TON, 17, August 2009.

131 S. Banerjee, A. Misra, Jihwang Yeo, and A. Agrawala. Energy-efficient broadcast and
multicast trees for reliable wireless communication. In WCNC 2003.

[41 Suman Banerjee and Archan Misra. Adapting Transmission Power for Optimal En-
ergy Reliable Multi-hop Wireless Communication. In (WiOpt '03).

151 John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris. Architecture and
evaluation of an unplanned 802.11 b mesh network. In ACM MobiCon '05.

161 Sanjit Biswas and Robert Morris. ExOR: Opportunistic multi-hop routing for wireless
networks. In ACM SIGCOMM '05.

171 http: //www.boundlesss.com/wireless-videosurveillance.html.

181 Szymon Chachulski, Michael Jennings, Sachin Katti, and Dina Katabi. Trading Struc-
ture for Randomness in Wireless Opportunistic Routing. In SIGCOMM '07.

191 R. Chandra, S. Karanth, T. Moscibroda, V. Navda, J. Padhye, R. Ramjee, and
L. Ravindranath. DirCast: A Practical and Efficient Wi-Fi Multicast System. In
ICNP, 2009.

1101 Ai Chen, Dongwook Lee, and Prasun Sinha. Efficient multicasting over large-scale
WLANs through controlled association. Comp. Networks, 53(1), January 2009.

1111 Ching-Chuan Chiang, M. Gerla, and Lixia Zhang. Shared tree wireless network mul-
ticast. In Computer Communications and Networks 1997.

1121 Ching-Chuan Chiang and Mario Gerla. On-Demand Multicast in Mobile Wireless
Networks. In ICNP '98.

1131 Optimizing Enterprise Video Over Wireless LAN. Cisco white paper c 1-577721,
2010.

113

1141 Richard Draves, Jitendra Padhye, and Brian Zill. Routing in Multi-radio, Multi-hop
Wireless Mesh Networks. In MobiCom, 2004.

1151 Diego Dujovne and Thierry Turletti. Multicast in 802.11 WLANs: An Experimental
Study. In MSWiM, 2006.

1161 Aveek Dutta, Dola Saha, Dirk Grunwald, and Douglas Sicker. SMACK: a SMart AC-
Knowledgment scheme for broadcast messages in wireless networks. In SIGCOMM,
2009.

1171 http://www.tessco.com/yts/partner/manufacturerlist/vendors/
firetide.

1181 Chao Gui and Prasant Mohapatra. SHORT: Self-healing and optimizing routing tech-
niques for mobile ad hoc networks. In MobiHoc '03.

1191 Andrew Hagedorn, David Starobinski, and Ari Trachtenberg. Rateless Deluge: Over-
the-Air Programming of Wireless Sensor Networks Using Random Linear Codes. In
Proceedings of the 7th international conference on Information processing in sensor
networks, IPSN '08, pages 457-466, Washington, DC, USA, 2008. IEEE Computer
Society.

1201 T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong. A Random
Linear Network Coding Approach to Multicast. IEEE Trans. on Info. Theory, 52(10),
October 2006.

121] Gavin Holland, Nitin H. Vaidya, and Paramvir Bahl. A Rate-Adaptive MAC Protocol
for Multi-Hop Wireless Networks. pages 236-251, 2001.

1221 Jonathan W. Hui and David Culler. The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale. In SenSys 2004.

1231 S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain, and L.M.G.M. Tol-
huizen. Polynomial time algorithms for multicast network code construction. IEEE
Transactions on Information Theory, 51(6), June 2005.

[241 G. Jakllari, S.V. Krishnamurthy, M. Faloutsos, and P.V. Krishnamurthy. Power Effi-
cient Broadcasting with Cooperative Diveristy in Ad hoc Networks. In IEEE WPMC
2005.

1251 D. Johnson, D. Maltz, and J. Broch. DSR: The Dynamic Source Routing Protocol
for Multihop Wireless Ad Hoc Networks, chapter 5, pages 139-172. Addison-Wesley,
2001.

1261 Ad Kamerman and Leo Monteban. WaveLAN-II: a high-performance wireless LAN
for the unlicensed band. Bell Labs Technical Journal, 2:118-133, 1997.

1271 Intae Kang and Radha Poovendran. Iterated Local Optimization for Minimum Energy
Broadcast. In WIOPT '05.

114

1281 Intae Kang and Radha Poovendran. Maximizing network lifetime of broadcasting
over wireless stationary ad hoc networks. Mobile Network Applications, 10(6), 2005.

1291 K. Karenos, A. Khan, S.V. Krishnamurthy, M. Faloutsos, and X. Chen. Local versus
Global Power Adaptive Broadcasting in Ad Hoc Networks. In IEEE WCNC, 2005.

1301 Sachin Katti, Dina Katabi, Hari Balakrishnan, and Muriel Medard. Symbol-Level
Network Coding for Wireless Mesh Networks. In ACM SIGCOMM 2008.

1311 Byung-Seo Kim and Sung Won Kim. Dynamic rate adaptation for wireless multicast.
In Military Communications Conference, 2009. MILCOM 2009. IEEE, 2009.

1321 D. Kim, J. Garcia-Luna-Aceves, K. Obraczka, J. Cano, and P. Manzoni. Power-Aware
Routing Based on The Energy Drain Rate for Mobile Ad Hoc Networks. In Proceed-
ings of the IEEE International Conference on Computer Communication, 2002.

[331 W. Kish, J. Chanak, and C. Gram. Systems and Methods for Improved Data Through-
put in Communications Networks. US Patent 7,505,447, 2009.

1341 R. Koetter and M. Medard. Beyond routing: an algebraic approach to network coding.
In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, volume I , pages 122 - 130 vol. I,
2002.

1351 Sandeep Kulkarni and Limin Wang. MNP: Multihop Network Reprogramming Ser-
vice for Sensor Networks. In ICDCS, 2005.

1361 Joy Kuri and Sneha Kumar Kasera. Reliable Multicast in Multi-Access Wireless
LANs. Wireless Net., 7, September 2001.

1371 Mathieu Lacage, Mohammad Hossein Manshaei, and Thierry Turletti. IEEE 802.11
Rate Adaptation: A Practical Approach.

1381 S.J. Lee, W. Su, and M. Gerla. On-Demand Multicast Routing Protocol in Multihop
Wireless Mobile Networks. Mobile Network Applcations, 2000.

1391 P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A Self-Regulating Algorithm
for Code Propagation and Maintenance in Wireless Sensor Networks. In NSDI 2004.

1401 S. Li, R. Yeung, and N. Cai. Linear Network Coding. IEEE Trans. on Info. Theory,
49(2), February 2006.

1411 S.-Y.R. Li, R.W. Yeung, and Ning Cai. Linear network coding. Information Theory,
IEEE Transactions on, 49(2):371 -38 1, feb. 2003.

1421 Madhav V. Marathe, Heinz Breu, Harry B. Hunt III, S. S. Ravi, and Daniel J.
Rosenkrantz. Simple Heuristics for Unit Disk Graphs. Networks, 25, 1995.

1431 Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The Click mod-
ular router. In SOSP '99.

115

1441 Robert T. Morris, John C. Bicket, and John C. Bicket. Bit-rate selection in wireless
networks. Technical report, Masters thesis, MIT, 2005.

1451 Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand Distance Vector
Routing. In WMCSA 1999.

1461 Stefan Pleisch, Mahesh Balakrishnan, Ken Birman, and Robbert van Renesse. MIS-
TRAL: Efficient flooding in mobile ad-hoc networks. In MobiHoc '06.

[471 Hari Rangarajan and J. J. Garcia-Luna-Aceves. Using labeled paths for loop-free
on-demand routing in ad hoc networks. In MobiHoc '04.

[481 S. Sen, Jie Xiong, R. Ghosh, and R.R. Choudhury. Link layer multicasting with smart
antennas: No client left behind. In ICNP, 2008.

1491 Sayandeep Sen, Neel Kamal Madabhushi, and Suman Banerjee. Scalable WiFi Media
Delivery Through Adaptive Broadcasts. In NSDI, 2010.

1501 P. Sinha, R. Sivakumar, and V. Bharghavan. MCEDAR: Multicast core extraction
distributed ad-hoc routing. In WCNC, 1999.

1511 Prasun Sinha, Raghupathy Sivakumar, and Vaduvur Bharghavan. CEDAR: A Core-
Extraction Distributed Ad Hoc Routing Algorithm. In INFOCOM, 1999.

1521 Kannan Srinivasan, Mayank Jain, Jung Il Choi, Tahir Azim, Edward S. Kim, Philip
Levis, and Bhaskar Krishnamachari. The K factor: inferring protocol performance
using inter-link reception correlation. In Proceedings of the sixteenth annual interna-
tional conference on Mobile computing and networking, MobiCom '10, pages 317-
328, New York, NY, USA, 2010. ACM.

1531 Jayashree Subramanian, Robert Morris, and Hari Balakrishnan. UFlood: High-
Throughput Flooding over Wireless Mesh Networks. In IEEE INFOCOM, 2012.

1541 Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. Journal of Wireless Networks, 8(2/3),
2002.

1551 Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides. Energy-efficient
broadcast and multicast trees in wireless networks. Mob. Netw. Appl., 7(6), 2002.

1561 Brad Williams and Tracy Camp. Comparison of broadcasting techniques for mobile
ad hoc networks. In MobiHoc '02.

1571 Naixue Xiong, Laurence T. Yang, Yuanyuan Zeng, Ma Chao, and Jong Hyuk Park.
Implementation of Rate Control in Distributed Wireless Multicast by Neural Network
Prediction. IEEE Computer Society.

1581 Ting Zhu, Yu Zhong, Tian He, and Zhang. Correlation for Efficient Flooding in
Wireless Sensor Networks. In NSDI, 2010.

116

