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Abstract

The 3G wireless interface is a significant contributor to battery drain on mobile devices.
This paper describes the design, implementation, and experimental evaluation of methods
to reduce the energy consumption of the 3G radio interface. The idea is to put the radio in its
"Low-power idle" state when no application is likely to need the network for some duration
of time in the future. We present two techniques, one to determine when to change the
radio's state from "Active" to "Low-power idle", and the other to change the radio's state
from "Low-power idle" to "Active". The technique for switching to Low-power idle mode
is well-suited for the emerging "fast dormancy" [3, 4] primitive that will soon be common
on smartphones. We demonstrate using an implementation and a trace-driven evaluation
based on the measurement and trace collected from HTC GI and Samsung Nexus S phones
over various combinations of seven different background applications that our methods
reduce the energy consumption of the 3G interface by 36% on average compared to the
currently deployed scheme on the T-mobile network. In addition, if applications are able to
tolerate a delay of a few seconds when they initiate a session, our methods reduce energy
consumption by 52% on average, with a mean increase in delay of 6.46 seconds.
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Chapter 1

Introduction

20% of the 5 billion active mobile phones today have "broadband" data service enabled

on them, and this fraction is growing rapidly. Smartphones and tablets with wide-area 3G

cellular connectivity have become a significant, and in many cases, dominant, mode of

network access. Improvements in the quality of such network connectivity suggest that

mobile Internet access will soon overtake desktop access, especially with the continued

proliferation of 3G networks and the emergence of LTE and 4G.

Wide-area cellular wireless protocols need to balance a number of conflicting goals:

high throughput, low latency, low signaling overhead (signaling is caused by mobility and

changes in the mobile device's state), and mobile energy consumption. The 3GPP and

3GPP2 standards (used in 3G and LTE) provide some mechanisms for the cellular network

operator and the mobile device to optimize these metrics[21, 2], but to date, deployed

methods to minimize energy consumption have left a lot to be desired.

The 3G radio consumes significant amounts of energy; on the iPhone 4, for example,

the stated talk time is "up to 7 hours on 3G" (i.e., when the 3G radio is on and in "typical"

use) and "up to 14 hours on 2G". 1 On the Samsung Nexus S, the equivalent numbers are

"up to 6 hours 40 minutes on 3G" and "up to 14 hours on 2G".2 On these platforms, as well

as other such smartphones, using the 3G radio halves the lifetime compared to using 2G; in

addition, 3G roughly halves the lifetime compared to WiFi when used for Internet access.

1http://www.apple.com/iphone/specs.html
2http://www.gsmarena.com/samsung-google-nexus-s- 3 6 2 0.php



That 3G is a battery hog is well-known to most users anecdotally and from experience, and

much advice on the web and on blogs is available on how to extend the battery life of your

mobile device. 3 Unfortunately, essentially all such advice says to "disable your 3G data

radio" and "change your fetch data settings to reduce network usage". Such advice largely

defeats the purpose of having an "always on" broadband-speed wireless device, but appears

to be the best one can do in current deployments.

Previous research [5], as well as our measurements, show that in general about 60% of

the energy consumed by the 3G interface is "wasted energy", spent when the radio is not

transmitting or receiving data. We show the measured values of 3G energy consumption

for multiple Android applications in Figure 1-1. This bar graph shows the percentage of

energy consumed by different 3G states. For most of these applications (which are all

background applications operating without user input, except for Facebook), less than 30%

of the energy consumed was due to the actual transmission or reception of data.

In principle, one might imagine that simply turning the radio off or switching it to a

low-power idle state is all it takes to reduce energy consumption. This approach does not

work for three challenging reasons. First, switching between the active and the different

idle states takes time (a few seconds), so it should be done only if there is good reason to

believe that making the transition is useful for a reasonable duration of time in the future.

Second, switching states consumes energy, which means that if done without care, overall

energy consumption may increase compared to not doing anything sophisticated. Third,

there switching incurs signaling overhead on the wireless network, which means that it

should be done only if the benefits are substantial relative to the cost on the network.

This thesis tackles these challenges and develops a solution to reduce 3G energy con-

sumption without adversely affecting application performance or introducing a significant

amount of extra signaling overhead on the network. Unlike currently deployed methods

that simply switch between radio states after fixed time intervals-an approach known to

be sub-optimal [20, 5, 10, 15]), our approach is to observe network traffic activity from/to

the mobile device to switch between the different radio states based on the workload.

The key insight in our work is that by observing network traffic activity, a control

3http://www.intomobile.com/2008/07/23/extend-your-iphone-3gs-battery-life/
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Figure 1-1: Energy consumed by the 3G interface. "Data" corresponds to a data transmis-
sion; "DCH Timer" and "FACH Timer" are each the energy consumed with the radio in
the idle states specified by the two timers, and "State Switch" is the energy consumed in
switching states. These timers and state switches are described in @2.

module on the mobile device can adapt the 3G radio state transitions to the workload. Our

approach is to use statistical machine learning techniques to predict network activity based

on past observations and make transitions that are suggested by the statistical models. We

show that our approach is well-suited to the emerging fast dormancy mechanism [3, 4]

that allows a radio to rapidly move between the "Active" and "Low-power idle" states and

vice versa. Our goal is to support background applications on mobile devices, such as the

applications measured above.

This thesis makes the following contributions:

1. A traffic-aware design to control the state transitions of a 3G radio taking energy

consumption, latency, and signaling overhead into consideration. The design incor-

porates two algorithms:

(a) MakeIdle, which uses aggregate traffic activity to build a conditional probability

distribution of activity that predicts the end of active sessions.



(b) MakeActive, which applies machine learning to delay the start of a new session

by a few seconds to allow multiple sessions to all become active at the same

time and therefore save energy.

2. An Android implementation done by replacing a part of the relevant Java library

at the socket layer to enable devices running unmodified applications to increase

their battery life while using the 3G service. To our knowledge, ours is the first

implementation of such an energy-saving mechanism on smartphones.

3. Experimental results from our implementation and using trace analysis (on HTC G1

and Samsung Nexus S smartphones in T-mobile's 3G network), showing that our

methods save 36% more energy of the 3G interface compared to the currently de-

ployed scheme on the T-mobile network without incurring additional session delays

(using MakeIdle alone). These results are from various combinations of seven dif-

ferent "background" applications, including email, news updates, instant messaging

updates, etc. The background applications for which our system is well-suited are

generally tolerant of some delay in session initiation; we find that by combining

MakeIdle and MakeActive, our system consumes 52% less 3G energy on average

for this mix of applications compared to the status quo, while increasing the aver-

age delay by (only) 6.46 seconds. Of course, these experimental results depend on

the application mix. If the user mostly uses foreground and interactive applications,

MakeIdle is applicable, but probably not MakeActive. Moreover, some background

applications may send/receive data often (e.g., every second or two); for these, no

scheme can provide significant gains (in our evaluation, one application has such a

property and our scheme correctly infers that it cannot be optimized). Of the seven

applications we examined, we found gains for five of them, and present the extent of

the gains for various combinations: with delays allowed, the mean saving is 52% and

the median is 59%.

The rest of the thesis is organized as follows: Chapter 2 explains the background and

the basics of 3G network energy modeling. Chapter 3 discusses previous works on 3G

network energy management and other wireless network energy saving techniques. Chap-

ter 4 shows the design of our system. Chapter 5 and Chapter 6 explains our two algorithm,



MakeIdle and MakeActive separately. Chapter 7 and Chapter 8 focuses on the implementa-

tion, simulation and evaluation of our system. Chapter 9 concludes the thesis and discusses

the possible directions of future work.
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Chapter 2

Background

The Radio Resource Control (RRC) protocol, which is part of the 3GPP standard, incorpo-

rates the state machine for energy management shown in Figure 2-1.

In 3GPP networks, the base station maintains two inactivity timers, ti and t2, for each

mobile device. For a device maintaining a dedicated channel in the "Active" (CellDCH)

state with the base station, if the base station sees no data activity to or from the device

for ti seconds, it will switch the device from dedicated channel to a shared low-speed

channel, and the device is now turned to the "High-power idle" (CellFACH) state. This

state consumes less power than "Active", but still consumes a non-negligible amount of

power. If there is no further data activity between the device and base station for another

t2 seconds, the base station will turn the device to either the CellPCH or IDLE state (T-

mobile turns the device to IDLE). We refer to the CellPCH and IDLE states together

as "Low-power idle", because the device consumes essentially no power in either state.

Figure 2-1 summarizes the state transitions; not shown is the "OFF" state in which the

radio is turned off.

The inactivity timers tj and t2 are useful because a state transition from Idle to "Active"

(CellDCH) incurs significant delays (~ 3.62 seconds on the T-mobile network in our mea-

surements). Each state transition also consumes energy on the device and incurs signaling

overhead for the base station to allocate a dedicated channel to the device. The inactivity

timers also prevent the base station from frequently releasing and re-allocating channels

to devices which causes per-packet delay for the device to be high. Another popular 3G
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Figure 2-1: 3GPP Radio Resource Control (RRC) State Machine.

standard is 3GPP2 [2]. Although 3GPP2 networks use different techniques, from the per-

spective of energy consumption, they are essentially identical to 3GPP [20]; like 3GPP,

3GPP2 networks also have different power levels for different states on the device side,

and use similar inactivity timers for state transitions. For concreteness, in this thesis, we

focus on 3GPP networks.



Chapter 3

Related Work

The problem of understanding how energy is consumed by wireless network interfaces and

strategies for reducing energy consumption have been studied for over a decade. We divide

related work into measurement studies of 3G energy consumption and approaches to reduce

that energy, 3G usage profiling, and WiFi power saving methods.

3.1 3G Energy Mitigation Strategies

Past work aimed at eliminating the tail energy (energy consumed in High-Power Idle and

Low-Power Idle) falls into three categories: inactivity timer reconfiguration, tail cutting,

and tail sharing.

3.1.1 Inactivity timer reconfiguration

Lee et al. [10] developed analytic models for energy consumption in WCDMA and CDMA2000

and showed that the inactivity timer should be dynamically configured based on user be-

haviors and battery restriction. Falaki et al. [6] proposed an empirical method by plotting

the CDF of packet inter-arrival times for traces collected on smartphones communicating

over 3G radio. They found that 95% of the packet inter-arrival time values are smaller than

4.5 seconds, and proposed setting the inactivity timer to a fixed value, ti + t 2 = 4.5 sec-

onds. This value is much shorter than the current 20-second tail. It consumes less energy,



but does incur higher signaling overhead. However, the channel re-allocation will happen

so often that the mobile device wastes a lot of energy to turn the radio from Low-power

idle to active state. We refer this scheme as the 4.5-second tail in this thesis.

Note that the 4.5-second tail scheme can be also implemented without base station

side reconfiguration. The mobile device can also monitor its radio activity and initiate fast

dormancy when the radio has been inactive for 4.5 seconds. In this thesis, we will compare

our system, which adapts to network activity, against this scheme.

3.1.2 Tail cutting

Qian et al. [15] gave an algorithm, TOP, to help the device decide when to trigger fast

dormancy based on the information provided by applications running on the device. Their

algorithm requires the application to predict when the next packet will come and report to

the OS. This approach requires modifications to the applications, and it is not clear how

each application should make these predictions. Our work requires no modification to the

application code and does not require the application to predict the traffic. All the predic-

tion is done using a statistical learning model that works with unmodified applications by

intercepting on socket calls.

3.1.3 Tail sharing

Balasubramanian et al. [5] propose an application-layer protocol, TailEnder, which aims

to coalesce separate data transfers by delaying some of them. For delay-tolerant appli-

cations such as email, TailEnder allows applications to set a deadline for the incoming

transfer requests; they suggest and evaluate a relatively long delay of 10 minutes for such

applications. For applications that can benefit from prefetching, TailEnder prefetches 10

web documents for each user query. TailEnder handles specific classes of applications,

but cannot handle streaming traffic, for example, music or video streaming, and does not

seem well-suited for instant messaging applications that might be able to tolerate a delay

of 0-20 seconds, but not 10 minutes. Liu et al. [11] proposed TailTheft, a traffic queuing

and scheduling mechanism to batch traffic among different applications and share the tail



energy among them. The idea is to setup a timeout value for those delay-tolerant transfers,

and transfers data when timeouts or other delay-sensitive transfer has already triggered the

radio to active mode. The timer in their approach is on the order of 200 to 2000 seconds.

Our MakeActive algorithm does not set a fixed timer; instead, we learn the proper time-

out value automatically, and the delay is bounded by 20 seconds; and for most of the time

the delay is much less than 20 seconds. Another tail sharing idea is prefetching. Instead

of delaying traffic transfer, there are some applications that transfers predictable contents

and can be prefetched before user actually send request for the data. Such applications

include Search, which can prefech the first several searching results; Youtube, which split

a video file into several pieces and transfer one piece at a time. Qian et al. [17] proposed a

prefetching algorithm for Youtube that erases the tail between transfers of video pieces.

3.2 3G Resource Usage Profiling

Another related research topic is 3G network resource usage profiling on mobile devices.

Qian et al. [16] designed a profiling system that collects TCP traces on mobile devices and

analyzes them on the server. In their system, they designed an algorithm to infer RRC

state machine states from the traces collected for each mobile device. Then they analyzed

the energy consumption of particular applications using the traces, the RRC inference, and

the energy model. Their analysis shows that some popular mobile applications do have

traffic patterns that are not energy-efficient, due to low bit-rate transmission, inefficient

prefetching, and aggressive refreshes. This work shows that mobile applications need to

be carefully designed to take 3G network utilization/energy consumption into account. But

this task can be hard for application programmers, who usually lack of knowledge of the

details of 3G networks.

Our approach requires no coordination from applications, which can benefit legacy

applications, and free developers from having to worry about the details of the cellular

network protocols. Also, our approach not only focuses on a per-application based solution,

but also tries to optimize the energy consumption when multiple applications are running

together.



Xu et al. [19] analyze usage patterns of smartphone applications using the data collected

from a carrier in US. The data shows that smartphone applications and web browsing gen-

erate a large portion of the network traffic. Our approach provides considerable energy

savings for those applications. This work also shows that "streaming data is only account-

able for a small fraction of the total network access time of all smartphone apps". In our

work, we show that there is not much room for energy saving for streaming traffic patterns.

3.3 WiFi Power-saving Algorithms

Much prior work has focused on WiFi power-saving algorithms [8, 9, 18]. The problem in

WiFi networks is qualitatively different from 3G; in WiFi, the time and energy consumed

to transition between states is negligible; what is important is to dynamically determine the

best sleep duration when the WiFi radio is off. In this state, no packets can be delivered,

but the access point will be able to buffer them; the problem is finding the longest sleep

time that ensures that no packets are delayed (say, by a specified maximum delay). In the

3G context, changing the state of the radio consumes time, energy, and network signaling

overhead, but there is no risk of receiving packets with excessive delay because the base

station is able to notify a mobile device that packets are waiting for it even if the device is

in the Low-power idle (PCH or IDLE) state. Thus, we cannot simply apply existing WiFi

Power-saving algorithms to 3G networks.



Chapter 4

Design

The key insight in our approach to reduce 3G energy consumption is that by observing and

adapting to network activity, a control module can predict when to put the radio into its

Low-power idle state, and when to move from the idle to active state. These state transi-

tions take time (multiple seconds) and also add signaling overhead because each transition

is accompanied by a few messages between the device and the base station. Hence, the

intuition in our approach is to predict the occurrence of bursts of network activity, so that

the control module can put the radio into the idle mode when it believes a burst has ended,

which means there will not be any more traffic in the future for a relatively long period of

time, and conversely, put the radio in active mode when another burst is starting.

To achieve the prediction, our approach needs to observe network activity. To make our

approach work with existing applications, we should not require any change to the applica-

tion code, so we cannot get notified about network activities from the application directly.

To address this issue, we considered two approaches to monitor the network activity. The

first is to make the control module observe all the packets going in and out of the device.

The second is to intercept all socket calls such as "connect", "close", "read" and "write". In

our design, we use the second approach for the following reasons: first, monitoring socket

call brings much less overhead than monitoring each packets, since each socket call gener-

ates tens of packets. Second, our goal is to monitor the starts/ends of bursts of traffic, and

socket calls such as "connect" and "close" can work as good indication. Also, each "read"

or "write" call corresponds to several packet transmissions, which can give us enough in-
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Figure 4-1: System design.

formation on when packets are sent/received. Thus there is no need to look into the packet

inside a burst, so monitoring each packet is not necessary.

Our system involves two software modules: one that modifies the library used by ap-

plications to communicate with the socket layer, and the other that implements the control

module, as shown in Figure 4-1. The first module informs the control module of all socket

calls; in response, the control module configures the state of the radio. The fast dormancy

interface is presented as a dashed module because our system uses it if it is available. When

fast dormancy becomes available in the hardware, our implementation will be able to use

the facility.

The control module implements two different algorithms. The first algorithm, Makel-

dle, runs when the radio is in the active state (CellDCH) and determines when the radio

should be put into the Low-power idle (IDLE or CelLPCH) state.

The second algorithm, MakeActive, runs when the radio is in the Low-power idle

(CellPCH or CellIDLE) state. In this state, it cannot send any packets without first mov-



ing to the Active (CellDCH) state; MakeActive determines how long the radio should be

idle before moving to active state.

We note that although the main goal of the two algorithms, MakeIdle and MakeActive,

is to reduce the energy consumed, it is important not to incur excessive signaling overhead,

which occurs every time the radio changes its state. We evaluate this overhead in our

experiments.
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Chapter 5

MakeIdle Algorithm

3GPP Release 7 [3] proposed a feature called fast dormancy, which allows the device to

actively release the channel by itself before the inactivity timer times out on the base station

side when it decides not to use the data connection any more. One of the problems with

Release 7 is that the base station loses control over the connection when mobile devices are

able to disconnect by itself. In 3GPP Release 8 [4], the fast dormancy mechanism has been

changed now, the mobile device first sends a fast dormancy request, and the base station

will decide whether to release the channel or not. This way the base station gets more

control over the connection. In Europe, Nokia Siemens Networks has deployed Network

Controlled Fast Dormancy based on 3GPP Release 8. An iPhone running iOS4.2 in the

network supports fast dormancy. Since it is not clear what policy the base station will use

to decide whether to release the channel or not upon receiving the request, in our simplified

model, we assume that whenever the phone sends a fast dormancy request to the base

station, the base station will accept and release the channel.

Currently, there is no accepted method governing when a device should initiate fast dor-

mancy, and the standard committee suggests that the "device should utilize the application-

layer knowledge" [7] for this purpose. The reason is that traffic patterns on smartphones

change with time, and wrongly invoking fast dormancy can add extra overhead and result

in small savings or even higher energy consumption. The MakeIdle method runs when

the radio is in the Active state and determines when to turn the radio to the Low-power

idle state (either by fast dormancy or by the inactivity timer's timeout). Its main goal is to



minimize energy consumption.

We start by giving a simple example to illustrate the problem and explain why a constant

timer value (for any choice of constant) does not work well (@5.1). We then show what

the optimal decision is given complete knowledge of a packet trace; the result is that the

radio should be turned to Low-power idle if there is a gap of more than a certain threshold

amount of time in the trace. The value of this threshold depends on the time it takes to move

the radio between different states and on the energy consumed in making state transitions

(@5.2). Then, we develop an online method to predict idle durations that will exceed this

threshold by modeling the idle time using a conditional probability distribution (@5.3).

5.1 A Simple Example

To explain why the problem of determining when to turn the radio from Active to Low-

power idle is non-trivial, we consider a simple traffic workload as an example. Figure ??

shows the simplified power consumption model. (the actual power consumption activity

can be refered to Figure 8-1. In Figure 8-1, the non-zero power value in the Low-power

idle mode comes from the screen and CPU. We substract that part in our model and assume

that the Low-power idle mode consumes no energy. In reality, the energy consumed by 3G

IDLE mode is negligible [21])

In Figure 5-1, the areas of the two triangles on the left and right sides are the energy

consumed by switching from Low-power idle to Active and from Active to Low-power

idle. These values cannot be changed. The area of the dark rectangular block is the energy

consumed by transmitting data. The areas of the dashed rectangular blocks are the energy

consumed in the Active state (but not while sending or receiving data), which lasts for time

t1 , and the High-power idle state (FACH), which lasts for time t2.

From Figure 5-1 we see that if the amount of data transmitted is small, the energy con-

sumed by inactivity timers contributes a large portion of the total energy consumed. Hence,

if the time interval between packets (or packet bursts) is large, reducing the inactivity timer

would make sense. This is the intuition in the proposal in [6], which suggests using T = 4.5

seconds.
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Figure 5-1: The simplified model for 3G energy consumption.

The question, even for this simple workload, is what the right value of T should be. The

middle chart in Figure 5-2 shows that a fixed value may not save much energy compared

to the status quo, while adding a lot more load on the base station because of the increased

number of state switches. The bottom chart shows that what we would want for this simple

workload is to turn the radio to Low-power idle after T seconds, where T is just a little

larger than the longest inter-arrival time between packets within a single burst, but much

smaller than the time between bursts. The reason for the "much" is that we don't want to

turn the radio to Low-power idle and then find ourselves turning it back on soon after, for

that wouldn't save much energy and also entail extra base station load.

If the traffic pattern were to change a little at this time and the bursts start occurring a

bit closer together, as shown in Figure 5-3, a choice of T seconds will now no longer work,

causing extra load and not saving energy. In this case, the right solution may well be to

keep the radio in Active or High-power Idle mode and not move to Low-power idle at all

(top chart).

Hence, changing the value of the inactivity timers not only changes the energy con-

sumed, but may also change the number of state switches and traffic delays. Using a fixed

value of inactivity timer does not always reduce the energy consumption. In the Makeldle
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Figure 5-2: Reducing ti + t2 to 4.5 seconds brings more state switches while saving little
energy. Further reducing ti + t2 to a smaller value that brings the same number of state
switches can save more energy.

algorithm we dynamically choose the value of the inactivity timers to trigger fast dormancy

optimally (we define what "optimally" means, below).

5.2 Optimal Decision From Offline Trace Analysis

Suppose we are given a packet trace containing the time-stamps of packets sent and re-

ceived on a mobile device. Our goal is to determine offline when to turn the radio to the

Low-power idle state using fast dormancy so that the total energy consumed is minimized.

To simplify the problem, we will assume here that we do not want to allow any sessions to

be delayed: i.e., we will assume that the radio should be turned to Low-power idle only if

the time it takes to turn the radio to Low-power idle and back to Active is smaller than the

inter-arrival time between packets. Since every packet eventually gets transmitted, we do

not need to worry about the energy consumed by packets.
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Figure 5-3: When the gap between traffic bursts is small, reducing ti + t2 to a small value
may consume more energy, while also adding delays for each burst.

If the inter-arrival time between two adjacent packets is t seconds, then the energy

consumed by not triggering fast dormancy is given by

EnoFD(t) -

t -PActive

t1 -PActive + (t -t 1) PHighldle

t1 -PActive + t2 -PHighdle

0 < t < t1

t1 < t K t2 (5.1)

t > t2

In Equation (5.1), EnoFD(t) is the energy consumed, ti and t2 are the inactivity timers

from the state machine described in 53 and Figure 2-1. PActive and PHigh idle are the power

consumption numbers for the active state and High-power idle state; the power consumed

by Low-power idle is negligible.

The energy consumed by triggering fast dormancy is:

EFD - EMakeIdle + EMakeActive (5.2)

Here, EMakeIdle and EMakeActive are the energy consumed by turning the radio from

Active to Low-power idle and from Low-power idle to Active, respectively. These numbers

Time (seconds)

--Mo.

NNN

k



are fixed for a given type of mobile device and are easy to obtain from an offline experiment.

After calculating these two energy values, we should trigger fast dormancy if and only

if EFD < EnoFD (t). For any given configuration of the RRC state machine, ti and t 2 are

fixed numbers (as implemented in networks today), so t is the only variable in EnoFD(t).

Notice that because EnoFD(t) is a monotonically non-decreasing function of t, there exists

a value for t, which we call te.erg.y, for which EFD < EnoFD(t) if and only if t > tenergy-

This expression quantifies the intuitive idea that after each packet, we should trigger fast

dormancy only if we know that next packet will not arrive in the following tenergy seconds.

In addition, for now, we need to make sure not to delay any packets by keeping the radio

in Idle state when a packet is ready to be sent or received. Let tMakeldle and tMakeActive be the

time taken for turning the radio from Active to Low-power idle state and from Low-power

idle to Active respectively. These numbers are also fixed for a given mobile device and

network, so we need to ensure that:

t > tMakeldle - tMakeActive (5.3)

Let

tFD = max(tenergy, tMakeldle + tMakeActive) (5.4)

We should trigger fast dormancy if and only if t ;> tFD to minimize the energy consumption,

assuming perfect future knowledge and no packet or session delays. We have measured the

underlying parameters for the Android HTC GI and the T-mobile network as deployed in

the Boston area, finding that tFD = 3.98 seconds. Other networks and devices are likely to

have roughly similar (though not identical) values.

5.3 Online Prediction

To minimize energy consumption in practice, we need to predict future network activity;

we need to know whether the next packet will come within tFD seconds. In reality, we do

this prediction by waiting for a short period of time and seeing whether any activity occurs.



If activity occurs, we reset and wait, but if not, we use the intuition that the longer the

network is idle, the longer it may remain idle to trigger the transition to Low-power idle

state. Here we call the short period of time used by waiting t,,ait. We estimate the value of

twait by a statistical method.

Suppose the current time at which we're making a decision is 0. Then, we choose a

value for twait to make the following conditional probability "high enough":

Ptwait = P(no packet in twait + tFD no function call in twait)

To decide how much is "high enough", we take energy into consideration: pt.a,, is "high

enough" if the expected energy consumption from fast dormancy is less than the expected

consumption of not using fast dormancy in the following twait + tFD seconds.

The expected energy consumption for fast dormancy is:

IE [E D ] = EMakeldle + EMakeActive

The expected energy when not using fast dormancy in the following twait + tFD seconds

can be calculated as:

E[Eno FD ] Ptwait EnoFD (twait + tFD)

+(1 - Ptirt) -E [FEinterarriva<twait+tFD

Here, the E[Einter_arrival<twait+tFD] is the expected energy consumed before the next

packet comes when the inter-arrival time between the current packet and next packet is

less than twait + tFD. This quantity can be calculated by observing that:

twait +tFD
E [Einter _arriva1<twai,+tFD1 ,= p(t' )E'(t' jdt'

where

p(t') IP(next packet at t' + twaitIno packet in twait).



We choose twait = Twait to maximize the following expression:

E [EnoFD] - E [EFDI - EnoFD(twait) (5.5)

Maximizing (5.5) is equivalent to maximizing the expected energy we can save by using

fast dormancy. The factor EnoFD(twait) is the penalty paid for waiting for time Twait to get

to the point that we are confident enough that using fast dormancy can save energy.



Chapter 6

MakeActive Algorithm

The MakeIdle algorithm reduces the 3G wireless energy consumption by putting the radio

in the Low-power idle state as soon as the radio is inactive, which may bring signaling and

energy overhead when the radio is made active for next session's transmission.

Figure 5-3 shows that when we reduce the value of inactivity timers, we may bring

more state switching from Low-power idle to Active and From Active to Low-power idle.

This switching brings signaling overhead to the link between the device and base station.

One idea to reduce the signaling overhead is to "shift" the traffic bursts in order to combine

several traffic bursts together [15, 5], as shown in Figure 6-1.

Figure 6-1 shows that we can reduce the number of state switches by delaying earlier

traffic bursts to buffer traffic together and send it out all at once. It is clear that the longer

earlier bursts are delayed, the more bursts we can accumulate and the fewer state switches

occur. This buffering not only reduces the number of state switches, but also eliminates

the energy consumed by state switching. Theoretically, we get the minimum number of

state switches when we delay sessions by an infinite amount of time. But this way the

transmission can never proceed, so there is another tradeoff between the traffic delay and

number of state switches. Our MakeActive algorithm is able to balance the tradeoff.

For many applications, one can save energy by delaying the start of the session or packet

burst and waiting for additional data (from other sessions) to amortize the cost of making

the radio active, without appreciably degrading the user's experience. This idea of delaying

the activation of the radio has been explored before [5], but rather than waiting ten minutes,
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Figure 6-1: "Shift" traffic to reduce number of state switches.

our approach is to reduce this time to several seconds. Our goal here is background appli-

cations that can tolerate a small delay at the start of a session, not interactive applications

like web browsing where delaying by a few seconds is unacceptable.

We first consider the relatively straightforward scheme in which the start of a session

(i.e., a burst of packets) can be delayed by at most a certain maximum delay bound, Tdelay,

and evaluate the resulting energy consumption, which should be lower because multiple

sessions may end up getting batched together. We then apply a machine learning algorithm

to reduce the average delay experienced by a session while consuming the same amount

of energy as when we use a constant maximum delay bound. Our contribution lies in

the application of this algorithm to learn idle durations for the radio, balancing energy

consumption with the cost of signaling overhead and increased session latency.



6.1 Fixed Delay Bound

A simple straw-man is to set a fixed delay bound, Tdelay; we pick 20 seconds. When the

radio is in Low-power idle state and a socket tries to start a new session at current time t,

the control module decides to delay turning the radio to Active mode until t + Tdelay, so that

other new sessions which might come between time t and t + Tdelay will all get buffered

and will start together at time t + Tdelay. There is a trade-off between the delay bound and

the number of sessions that can be buffered. Note that once a session begins, its packets

do not get further delayed, which means that TCP dynamics should not be affected by this

method.

The problem with fixed delay bound is that it is not adaptive to the traffic pattern. Every

time the delay is triggered, the first traffic bursts will incur a delay of Tdelay. We show in the

evaluation that a large portion of the traffic bursts get delayed by Tdelay. However, waiting

as long as Tdelay may be overkill; as data accumulates (especially from different sessions),

there comes a point when the radio should be switched to Active and data sent before this

delay elapses, which will reduce the expected session delay while still saving energy. We

now describe a method that decides when we should start sending using a machine learning

algorithm.

6.2 Learning Algorithm

We apply the bank of experts machine learning algorithm based on Hidden Markov Model

(HMM). The hidden variable is the identity of the best expert, which corresponds to the best

delay time in our case. Each iteration (each time the radio is in Low-power idle mode and

a socket call is trying to use the 3G network), there should be one expert who proposes the

optimal value for the delay. This algorithm has been applied to the 802.11 power saving

mode configuration problem [13], but the problem setup is different for the 3G energy

environment.



6.2.1 Bank of Experts

We bound the maximum delay to 20 seconds. Each expert "proposes" a fixed number of

delay value Ti:

Ti=i, ic l ... 20

The output of the algorithm is the weighted average over all the experts:

20

T = L PtwfiTi
i=1

For each iteration of the updates, the HMM calculates the probability of each possible

hidden state (in our case, the identity of the expert) based on some observation yt. Here, we

can define the probability of predicting observation yt as P(yI T|) = e-L(it) (The observation

is the number of sessions we batched at time t, and L(i, t) is the loss function which we will

discuss in detail later). Then we can apply the following equation to get the weight Pt (i):

Pt(i) = E Pt-1()e j,)

Here, Zt is a normalization factor. The last part of the equation shows the probability of

switching between experts. There are different versions of this algorithm for HMMs. The

one we chose [? ] supports switching between the experts and is suitable for cases where

the observation may change rapidly, which matches the bursty character of network traffic.

P(ilj, a) is defined as:

P(ilj, a) = (1-a) i=j

0 < a < 1 is a parameter that determines how quickly the algorithm changes the best

experts. a close to 1 means the network condition changes rapidly and the best expert

always changes. One problem with this algorithm is that it is hard to choose a gooda. In

reality, a should not be a fixed value since the network traffic pattern may change rapidly

or remain stationary. We use a more adaptive algorithm, Learn-a [12, 14], to dynamically

choose a.



The basic idea is to first assign m a-experts and use the algorithm above to learn the

proper value of a in each iteration, and then use the up-to-date a to learn T [12, 14]. The

final equation for this "two-layer learning" is:

m n

T= _ E E ptj(iT (6.1)
j=1 i=1

Here, p (j) is the weight for the jrh a-expert, which is given by:

p'(j)= t -'1 (j)eL(aj,t- 1)(6.2)

This equation shows that p (j) is updated from the previous value p; (j); the initial values

are: p' (j) = 1/m. -L(aj, t - 1) is the a loss function, defined as:

L(aj,t) = -logE ptj,(i)eL(i,t) (6.3)
i=1

L(i, t) is the loss function, discussed in §6.2.2.

6.2.2 Loss Function

The loss function, L(i, t), is a crucial component of the scheme and depends on the details

of the problem to which the learning is applied. Because our goal is to reduce the delay

as well as save energy and reduce signaling overhead by batching, L(i, t) should express

the trade-off between the total time delayed for all the buffered sessions and the number

of session buffered, which is proportional to both the energy and the signaling overhead

reduced by batching.

L(t) =yDelay(Tt)+ y>0

Here, y is for scaling between the two parts of the loss function In our implementation,

we choose y = 0.008. Delay(T) is the summation of time delayed over b sessions. b is

the number of sessions currently buffered, which is proportional to the energy saved by

combining b sessions into one session and sending them together. 1/b means that as the

number of buffered sessions increases, the value of this part of the loss function reduces,



while the other part yDelay(T) may increase. This formula balances the tradeoff between

delay and energy saving. Let tk be the arrival time of the k'nh session, and t the time the

algorithm takes to make a decision. Then we have:

b

Delay(T) =E t + T -t
k= 1

In our weight updates, we apply this loss function to each expert i, indicating the loss

that would have accrued had the algorithm used T instead of T as its blocking time. The

equivalent loss per expert i is:

L(i,t) = yDelay(Ti) -b



Chapter 7

Implementation

We have implemented the MakeIdle algorithm on the Android platform. The implementa-

tion has two parts: the modification of the socket layer and the control module.

We modified the org. apache. harmony. luni . net . P1ainSocket Impl library,

which provides the interface from the Android platform code to the Linux kernel. The li-

brary maintains a FileDescriptor (f d in Figure 7-1) bound to a local port for each socket,

and inside the connect, read, wr it e, close socket calls are operations to that FileDescrip-

tor. In our modification, we create an extra FileDescriptor called e f d for each socket dur-

ing construction and bind it to a special local port. Inside each socket call the name of the

function call and other useful information is written to e f d and then the function call con-

tinues with its normal operations. Our socket layer modifications are shown in Figure 7-1.

The control module runs at the application layer as a server listening on the special

local port mentioned above. When there is an e f d created by any application trying to

bind to this port, the control module will build a local socket connection between itself and

the e f d. The control module can therefore receive the function call information written

to the e f d. In this way, the control module records all socket function calls and runs the

MakeIdle algorithm.



Socket Implementation

PlainSocketlmpl.Java

fd:FileDescriptor
netlmpl: NetworkSystem

connecto{
netlmpl.connect(fd,..);
I

reado{
netlmpl.read(fd,..);
}

writeo{
netlmpl.write(fd,..);
}

closeo{
netImpl.close(fd,..);

Modified
Socket Implementation

PlainSocketim pl.Java

fd: FileDescriptor
efd: FileDescriptor
netimpl: NetworkSystem

connecto{
netlmpl.write(efd,..);
netimpl.connect(fd,..);
}

reado{
netlmpl.write(efd,..);
netlmpl.read(fd,..);
}

writeo{
netlmpL.write(efd,..);
netlmpl.write(fd,..);
}

closeo{
netlmpL.write(efd,..);
netlmpl.close(fd,..);
}

Figure 7-1: Socket-layer modifications.



Chapter 8

Evaluation

We measured the power consumption and inactivity timer values using the Monsoon Power

Monitor [1]. Figure 8-1 shows graphs of our measurements during a radio state switches

cycle on HTC GI (running Android 2.2) and Samsung Nexus S (running Android 2.3)

smartphones in T-Mobile 3G network. During the High-power idle (CellFACH) and part

of Active (CellDCH) states, there is no data transmission. The RRC state machine keep

the radio on here in case a new transmission or reception may occur in the near future.

Consistent with previous work, we use the term tail to refer to this duration when the radio

is on but there is no data transmission [5] The two graphs show similar energy consumption

characteristics for the two phones, so we use the HTC GI in our evaluation.

We measured the inactivity timer values in the T-mobile 3G network in a the Boston

area to be ti ~ 3.22 seconds and t2 ~ 16.22 seconds. Here, t1 + t2 is about 20 seconds;

we refer to this configuration of RRC state machine as the "20-second tail". The energy

consumed at the end of a data transfer when the radio is in one of the two Idle states before

turning off is termed the tail energy [5]; this energy can be 60% or more of the total energy

consumption of 3G, as explained in @1.

We collected t cp dump traces on an HTC GI phone running Android 2.2 Platform with

the modified socket layer library to obtain all the socket function call records with times-

tamps. We ran the following popular applications. These applications have the "always

on" property in that they usually send or receive data over the network whenever they run,

without necessarily requiring user prompting or input.
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Figure 8-1: The measured power consumption of the different 3GPP RRC states for the
HTC (top) and Nexus S (bottom) smartphones. The screenshot from the monitor shows
the current drawn; the voltage is 3.7 volts. The average power consumed while "Ac-
tive" (CellJDCH) is 1028 mW for HTC and 1804 mW for Nexus S. In "High-power idle"
(CelLFACH), the power consumed is 445 mW for HTC and 450 mW for Nexus S. "Low-
power idle" (IDLE) is 0 watts for both devices. In this figure the power level is non-zero
because of the CPU and LED screen power consumption. We did not measure the power
consumed in CelLPCH state because our measured network/phones do not support that
state. The GSM specification suggests that the CellPCH state is just slightly higher than
IDLE compared to CellFACH.



Email: This application is run mostly in the background, synchronizing with an email

server every five minutes.

Ebuddy: An IM application that sends heartbeat packets to the server periodically,

typically every 5 to 20 seconds.

CNN News: A news reader that has a background process running to fetch breaking

news.

Twidroyd: An Android Twitter application, which automatically fetches new tweets

without user input.

Game with ad bar: A game that can run offline, but with an advertisement bar that

changes the content roughly once a minute.

Scottrade: An application for monitoring the stock market, which updates roughly

once per second when running in the foreground.

Facebook: A user logs into her Facebook account, read the news feeds, clicks to see

pictures, and posts comments. When running in background, this application updates only

every 30 minutes. We did not collect much background traffic from it. We use the fore-

ground traffic trace as a comparison trace.

For each application, we collected a trace that was 30 minutes long. We also collected

twenty 30-minute traces with at least two applications running at the same time. All the

traces are collected in a same indoor location.

One caveat in our experimental results is that because fast dormancy is not yet supported

on US 3G networks, we were unable to accurately measure the delay to turn the radio from

Active to Idle and the energy consumed. We believe, however, that one can approximate

this value by measuring the delay and energy consumed in turning the data connection off

on the phone. In practice, we expect the delay and energy of fast dormancy switching to

be lower, so we model the turn-off energy and delay for fast dormancy to be 50% of the

values measured while turning the radio off. We evaluated our methods for other reasonable

fractions than 50% and found that the results did not change appreciably; hence, we believe

that our conclusions are likely to hold if one were to implement the methods on a device

that supports fast dormancy.



8.1 MakeIdle Evaluation

First, we evaluate the MakeIdle algorithm without the MakeActive algorithm enabled.

When new packets arrive from applications, we will not delay them, but just turn the radio

to Active mode (if it is not already Active), and transmit data. We compare three different

algorithms on each trace: the offline optimal algorithm (which we refer as "Oracle"), the

4.5-second tail, and MakeIdle. In each run of MakeIdle, we first run the applications for a

short period of time to obtain an estimate of twait, and then run the experiment for a much

longer time using the fixed tw4ait. It would, of course, be better to estimate twait in real-time,

but the results for a static twait are still good. The Oracle method is the one described in

Section 5.2, where we can "see the future" and make optimal decisions. We calculate the

percentage of energy saved by each algorithm over the currently deployed 20-second tail

scheme.
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Figure 8-2: Energy saved for different applications.
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Figure 8-2 shows the energy saved by the individual applications, while Figure 8-3

shows the CDF of the percentage of energy saved over 27 traces. The mean and median

values corresponding to the CDFs in Figure 8-3 are listed in Table 8.1.
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Figure 8-3: CDFs of the percentage of energy saved over 27 traces, running various com-
binations of the seven applications.

Algorithm Median (%) Mean (%)
4.5-second tail 31 27
MakeIdle 35 36
Oracle 55 53

Table 8.1: Median and mean amounts of energy saved by the different methods relative to
the 20-second tail scheme.

The reason MakeIdle saves more energy than the 4.5-second tail scheme is that Makel-

dle makes decisions more quickly, turning the radio idle sooner in many cases. Both meth-

..........

...........



ods wait for some period of time, twait, after the last packet/function call activity has oc-

curred, before changing the state of the radio to idle. We find that for MakeIdle, the typical

value of twait is between 0.5 seconds and 1 second, rather than the higher value of 4.5 sec-

onds. The combination of picking tait by calculating the expected energy savings, and

being aware of network traffic, enables MakeIdle to make more aggressive decisions in

many cases.

We conclude the evaluation of MakeIdle with two findings: one demonstrating the

strength of the approach, and the other highlighting a limitation.

MakeIdle is able to correctly predict a good value of twait using a relatively modest

amount of training, and the optimization yields values of twait that are close to the best

possible. We demonstrate that here for one application, Ebuddy (the other applications and

application mixes provided similar results). We first train the MakeIdle method on 10% of

the trace data (3 minutes worth), then apply the energy optimization method described in

Section 5 to find the value of twait that minimizes the expected energy consumption. The top

curve in Figure 8-4 shows the results; the optimal value found by MakeIdle and shown in

Figure 8-4(top) is 0.57 seconds. We then take the entire trace data and simulate a variety of

different possible twait values between 0 and 7 seconds. In this offline full-trace simulation,

we find the optimal for this trace to be 0.5 seconds, shown in Figure 8-4 (bottom) , which

is very close to the value estimated by MakeIdle. This result suggests that MakeIdle works

as intended.

However, MakeIdle will not always save energy. For some applications, we find that

we should not trigger fast dormancy because the traffic is dense and there is little room

for energy saving. Fortunately, MakeIdle is able to detect such cases during the course of

its optimization. When computing the expected energy saving, MakeIdle returns negative

values for the energy savings for all values of twait, as shown in one example in Figure 8-5.

In this case, the radio should always remain active. Figure 8-5 (top) shows the expected en-

ergy saving for Scottrade. The value is always negative. The reason is that this application

updates data roughly every second and continuously generates packets, so it does not make

sense to trigger fast dormancy. Figure 8-5 (bottom) verifies this point using an exhaustive

simulation across many possible values of twait, finding that there is no local maximum.
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8.2 MakeActive Evaluation

Although shortening twait with the MakeIdle algorithm saves considerable amounts of en-

ergy, it may bring more state switches between the Low-power Idle and Active states. We

can reduce the number of state switches by introducing a little delay. Figure 8-6 shows

the CDFs of the number of state switches for the "4.5 second tail" scheme, MakeActive,

and "Oracle" schemes running on different single applications. Figure 8-7 shows the cor-

responding CDFs of the number of switches for different algorithms over 27 traces. For

each CDF curve, the mean and median are given in Table 8.2.

Table 8.2 shows that using MakeIdle only, we introduce more state switches compared

to the 4.5-second Tail method: 18% for the mean and 27% for the median. But when we

also use MakeActive, the number of state switches reduces by 26% (mean) and 44%(me-

dian). For the fixed delay-bound method, which does not learn or adapt the delay to turn
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the radio to the active mode, the number of state switches reduces by an even greater 49%

(mean) and 44% (median). Of course, the fixed-delay scheme incurs higher latency.

Another contribution of the MakeActive algorithm is to reduce the energy consumed

by state switching since it prevents state switching from happening frequently. Figure 8-

8 shows the energy saved for individual applications, and Figure 8-9 shows the CDF of

energy saved when we use MakeActive together with MakeIdle. There are fewer radio

Algorithm Median Mean
4.5-second tail 74 80
MakeIdle 97 95
MakeIdle with learning delay 41 59
Makeldle with fixed delay bound 41 41

Table 8.2: Median and mean of number of state switches over 27 traces.
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state switches from Low-power idle to Active and from Active to Low-power idle, so more

energy is saved. The mean and median energy savings for the different methods are listed

in Table 8.3.

Algorithm Median (%) Mean (%)
4.5-second tail 31 27
MakeIdle 35 36
MakeIdle with learning delay 47 53
MakeIdle with fixed delay bound 52 59

Table 8.3: Median and mean energy savings over the 20-second tail.

In Section 6, we introduced two algorithms: the fixed delay bound, and the "bank of

experts" learning algorithm. Figure 8-10 shows the CDF of delays incurred by traffic bursts

over a half-hour trace. The maximum possible delay for each algorithm is 20 seconds.

When using the fixed delay bound, there are a number of traffic bursts incurring 20-second

delays, while with the learning algorithm, the delay value changes dynamically with the
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Figure 8-9: CDFs of energy savings using the 4.5-second tail, MakeIdle alone, MakeIdle
with MakeActive using learning, and MakeIdle with MakeActive using a fixed delay bound.

number of buffered traffic bursts. For the learning algorithm, the median and mean delays

are 6.72 s and 6.46 s, compared to 17.18 s (median) and 16.02 s (mean) for the fixed delay

bound scheme.

Figure 8-11 shows how the learning algorithm works. The initial value of tdelay is 10

seconds, which is the average of all the experts. It decreases rapidly when the number of

buffered bursts increases. When tdelay times out, the number of buffered bursts reverts to

zero, and tdelay also increases a little, meaning the learning algorithm produces a longer

delay when the number of buffered bursts decreases.
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8.3 CPU and Energy overhead of running algorithms

Because our algorithms aim to reduce the energy consumption, it is important that they be

lightweight. The measured CPU usage while running the two methods is less than 3%.

We compared the power consumption in the following two cases: first, running only the

application that generates background traffic, and second, running both the control module

and the application. We run each case on the phone for 10 minutes. The average power

level for the first case is 869 mW, and for the second case is 890mW. When running the

applications, the main energy consumers are the 3G interface and the screen. The power

level with the phone doing nothing and the screen on is 360 mW. If we deduct this part from

869 mW, we conclude that the power consumed by the application running is 509 mW. The

energy overhead introduced by our control module is 4%. If we assume most of this 509

mW is consumed by 3G interface, then the energy overhead is negligible compared to the

savings it brings.



Chapter 9

Conclusion and Future Work

3G energy consumption is widely recognized to be a significant problem [15, 5, 11]. We

developed a system to reduce the energy consumption by triggering fast dormancy using

knowledge of the network workload. Our design reduced packet delays and signaling over-

head by batching sessions, learning from network activity. We implemented the MakeIdle

method on commodity phones running Android and evaluated our methods using traces

collected on an HTC Gi phone running over the T-mobile 3G network (the results evalu-

ated on a Nexus S phone were similar). Our results show that the MakeIdle and MakeActive

methods can reduce the 3G energy by 36% on average over the status quo (20-second tail)

with no session delays, and by 52% on average with a session delay of (only) 6.46 seconds.

The key idea in this thesis is to adapt the state of the radio to network traffic. To

put the 36% saving (without any delays) or 52% saving (with delay) in perspective, we

note that according to the Nexus S specifications, the reduction in lifetime from using the

3G radio instead of 2G is 7.3 hours; while it is not clear what application mix produces

these numbers, one might speculate that saving 36% of the energy might correspond to an

increase in lifetime by about 36% of 7.3 hours, or about 2.6 hours.

There are several areas for future work. First, we are planning to make our algorithm

more configurable. In particular, when an interactive application is running in the fore-

ground, the system should disable MakeActive and only run MakeIdle. Second, studying

the effects of triggering fast dormancy on the base station side would be useful, considering

issues such as handling multiple phones triggering the feature, and whether the base station



can actively help the phone to make decisions on fast dormancy by buffering incoming

traffic for the phone. And last but not least, one could extend the system to include server

or base station functions to coordinate with the mobile device to further reduce energy

consumption.
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