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Abstract

Photodetecting fibers of arbitrary length with internal metal, semiconductor and insu-
lator domains have recently been demonstrated. These semiconductor devices display
a continuous translational symmetry which presents challenges to the extraction of
spatially resolved information. In this thesis, we overcome this seemingly fundamen-
tal limitation and achieve the detection and spatial localization of a single incident
optical beam at sub-centimeter resolution, along a one-meter fiber section. Using
an approach that breaks the axial symmetry through the constuction of a convex
electrical potential along the fiber axis, we demonstrate the full reconstruction of an
arbitrary rectangular optical wave profile. Finally, the localization of up to three
points of illumination simultaneously incident on a photodetecting fiber is achieved.
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Introduction

Optical fibers rely on translational axial symmetry to enable long distance trans-
mission. Their utility as a distributed sensing medium [1-3] relies on axial symmetry
breaking either through the introduction of an apriori axial perturbation in the form of a
bragg gratings [4], or through the use of optical time (or frequency) domain reflectometry

LI. v v i'i 111. ik-CA~ L ~O~L 0,U L'&1r1, 11 1)1 an k~llc~i~ daxal Iillllltlu y IIULIX Y

the incident excitation. These have enabled the identification and localization of small
fluctuations of various stimuli such as temperature [7-9] and stress [10-11] along the fiber
axis. Due to the inert properties of the silica material, most excitations that could be de-
tected were the ones that led to structural changes, importantly excluding the detection
of radiation at optical frequencies. Recently, a variety of approaches have been employed,
aimed at incorporating a broader range of materials into fibers. [12-20]. In particular,
multimaterial fibers with metallic and semiconductor domains have presented the possi-
bility of increasing the number of detectable excitations to photons and phonons [19-25],
over unprecedented length and surface area. Several applications have been proposed for
these fiber devices in imaging [23,24], industrial monitoring [26,27], remote sensing and
functional fabrics [20,21].

So far however, the challenges associated with resolving the intensity distribution of
optical excitations along the fiber axis have not been addressed. Here we propose an
approach that allows extraction of axially resolved information in a fiber that is uniform
along its length without necessitating fast electronics or complex detection architectures.
We initially establish the axial detection principle by fabricating the simplest geometry
that supports a convex potential profile designed to break the fiber's axial symmetry.
We demonstrate that under conditions that we specify, that simplest geometry can be
used for the localization of a single beam of light. Then, an optimal structure which
involves a hybrid solid-core/thin-film cross-sectional design is introduced that allows to
impose and vary convex electrical potential along a thin-film photodetecting fiber. We
demonstrate the localization of a point of illumination along a one-meter photodetecting
fiber axis with a sub-centimeter resolution. Moreover, we show how the width of the
incoming beam and the generated photoconductivity can also be extracted. Finally, we
demonstrate the spatial resolution of three simultaneously incident beams under given
constraints.



1 Convex electrical potential along the fiber

1.1 Traditional fiber design

1.1.1 -Principle of photodetection with fibers

Photodetecting fibers typically comprise a semiconducting chalcogenide glass con-
tacted by metallic electrodes and surrounded by a polymer matrix [19-21]. These mate-
rials are assembled at the preform level and subsequently thermally drawn into uniform
functional fibers of potentially hundreds of meters in length, as illustrated in Fig 1(A1).
An electric potential V(z) across the semiconductor can be imposed along the fiber length
by applying a potential drop V at one end as depicted in Fig 1(A2). As a result, a linear
current density jdark is generated in the semiconductor in the dark, between the elec-
trodes. When an incoming optical wave front with an arbitrary photon flux distribution
<bo(z) is incident on a fiber of total length L, the conductivity is locally changed and a
photo-current (total current measured minus the dark current) is generated due to the
photoconducting effect in semiconductors, as illustrated in Fig 1(A2). The measured
photo-current in the external circuitry is the sum of the generated current density jph(z)
along the entire fiber length and has the general form:

L

iph=C j V(z)ph(z)dz (1

where C depends on the materials and geometry and is uniform along the fiber axis, and

9ph is the locally generated film photo-conductivity that depends linearly on <Do(z) in
the linear regime considered [22-24,30-32. A more detailed calculation is carried further
down this thesis. Note that we neglect the diffusion of generated free carriers along the
fiber axis since it occurs over the order of a micrometer, several orders of magnitude lower
than the expected resolution (millimeter range).

1.1.2 Limitations and proposed solution

For the photodetecting fibers considered so far, the conductivity of the semiconductor
in the dark and under illumination has been orders of magnitude lower than the one of
the metallic electrodes. These electrodes could hence be considered equipotential, and
V(z) = V along the fiber axis over extend lengths. As a result, jdark is also uniform as
depicted on the graph in Fig 1 (A2). Moreover, the photo-current measured in the external
circuitry integrates the photo-conductivity distribution uph(z) along the fiber length.
This single, global current measurement does not contain any local information about
the incident optical intensity distribution along the fiber axis. In particular, even the
axial position of a single incoming optical beam could not be reconstructed. To alleviate
this limitation, we propose an approach that breaks the axial symmetry of this fiber
system and enables to impose various non-uniform electric potential distributions along
the fiber axis. By doing so, we can generate and measure several global photo-currents
iph where the fixed and unknown distribution cYph(z) is modulated by different known
voltage distributions V(z). We will then be able to access several independent photo-



(A) Preform-to-Fiber approach (B) Fiber Cross Section
(Al) Thermal Drawing
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Figure 1: (Al): 3D Schematic of the multimaterial fiber thermal drawing fabrication ap-
proach. (A2): Schematic of a connected photodetecting fiber with an illumination event.
The graph represents the linear current density in the dark and under the represented
illumination. B: Scanning Electron Microscope micrograph of the fiber cross-section (in-
set: zoom-in on the contact between the core and the CPC electrode); C: Schematic of
the fiber system's equivalent circuit.

current measurements from which information about the intensity distribution along the
fiber axis will be extracted, as we will see.

1.2 Establishing a non-uniform electric potential

1.2.1 Conductive Polycarbonate

To controllably impose a non-uniform electrical potential profile V(z), we propose
to replace one (or both) metallic conducts by a composite material that has a higher
electrical resistivity. This electrode, or resistive channel, can no longer be considered
equipotential and the potential drop across the semiconductor will vary along the fiber
axis. An ideal material for this resistive channel was found to be a composite poly-
mer recently successfully drawn inside multimaterial fibers [27], that embeds Carbon



black nanoparticles inside a Polycarbonate matrix (hereafter: conducting polycarbon-
ate or CPC) [28]. The CPC resistivity, pc, (1-10 Q.m as measured post-drawing), lies
in-between the low resistivity of metallic elements (typically 10-- Q.m) and the high re-
sistivity of chalcogenide glasses (typically 106 - 1012 Q.m) used in multimaterial fibers. It
is very weakly dependant on the optical radiations considered so that it will not interfere
with the detection process.

1.2.2 Convex potential

To validate this approach we first demonstrate the drawing compatibility of these
materials. We fabricated a photodetecting fiber with a semiconducting chalcogenide
glass core (of composition As 4oSe5oTeio) contacted by one metallic electrode (Sn6 3Pb37)
and by another conduct made out of the proposed CPC composite. A Scanning Electron
Microscope (SEM) micrograph of the resulting fiber cross-section is shown in Fig 1B that
demonstrate the excellent cross-sectional features obtained. To first theoretically analyse
this new system, we depict its equivalent circuit in Fig 1C. The semiconducting core
can be modelled as multiple resistors in parallel, while the CPC channel is comprised
of resistors in series. To find the voltage distribution V(z) in this circuit, we can apply
Kirchoff's laws at point A:

V(z) -V(z - dz)

or simply:

V(z + dz) - V(z) V(z) (2V
or

RecP R9 ' (z2

D2V V(z)
5z 2 6(z) 2

with:

6(z) 
9 Z) Scc

Ppc

dz
where Rcpc = Ppc is the resistance of the CPC channel over an infinitesimal distance

dz, Scpc being the surface area of the CPC electrode in the fiber cross-section. Similarly,
Rg is the resistance of a slab of cylindrical semiconducting core of length dz whose value
depends on the glass geometry and is calculated for both a thin cylindrical film and
a solid-core of glass in Appendix A. The new parameter 6 has the dimensionality of a
length and is referred to as the characteristic length of the fiber system. It can be tuned
by engineering the glass composition (hence changing pg), as well as the structure and
geometry of the fiber.

Two sets of boundary conditions depicted in Fig 2 can be defined for this system:
BC(1) where one fiber end (z = 0 or L) is brought to a potential VBc(i) (0) = Vo while

the other (z = L or 0) is left floating, locally resulting in = 0 since no accu-
Bz

mulation of charges is expected; and BC(2) where we apply a voltage at both fiber ends,
VBC( 2)(O) V0 and VBC( 2)(L) = VL. The two potential profiles can then be derived when
6 is independent of z, and are given by two convex functions:

RgdV(z)
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Figure 2: (A) Schematic of the fiber contact for boundary conditions (1) and graph
representing the experimental results (dots) and the fitted theoretical model (lines) of the
voltage profile between the CPC electrode and the metallic conduct at different points
along the fiber axis, when the fiber is under BC(1) and for different fibers: in black,
AST 10thin-film; in blue, ASTio core and in red, AST 18 . (B) Same as (A) but when the
fiber is under BC(2).
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1.2.3 Experimental results

To assess our model, we fabricated three fibers with different materials and structures.
All fibers have one metallic electrode (Sn63Pb37 alloy) and one CPC electrode of same
size. Two fibers have a solid-core structure like the one shown in Fig 1B, with two different
glass compositions from the chalcogenide system As-Se-Te, As 40Se5 oTeio (referred to as
AST 1o) and As 40Se42Te1 s (referred to as AST 18 ). The third fiber has a thin-film structure
with a 500 nm layer of As4 Se5oTeio [22,24]. This thin film structure is expected to have
a very large characteristic length since its conductance is many orders-of-magnitude lower
than the one of both metallic and CPC electrodes. In solid-core fibers however, 6 should
be of the order of the fiber length, inducing a significant variation in the potential profile.
Separate measurement of the CPC electrode resistivity (ppcc = 1.4Q.m and ppc, = 1.2Q.m
in pieces from the ASTio and AST 18 fibers respectively) and the glass conductivities lead
to expected 6 values of 40 cm and 9 cm in the AST 10 and AST 1 fibers respectively, the

higher conductivity of AST 1 being responsible for the lower 6 parameter [33].
We then cut a 60-cm-long piece from each fiber and made several points of contact

on the CPC electrodes while contacting the metallic conduct at a single location. We
applied a 50 V potential difference for both BC(1) and BC(2), and measured the potential
drop between the contact points along the CPC channel and the equipotential metallic
conduct, using a Keithley 6517A multimeter. The experiment was performed in the dark
to ensure the uniformity of 6. The results are presented in Fig 2 where the data points are
the experimental measurements while the curves represent the theoretical model derived
above, fitted over 6. As we expected, the thin-film fiber maintains a uniform potential
along its axis. For solid-core fibers, the fitting values (43 cm and 11 cm for BC(1),
and 44 cm and 11 cm for BC(2) for AST 10 and AST 18fibers respectively) match very
well with the expected S parameters given above. The discrepancy is due to errors in
measuring the different dimensions in the fiber, and potential slight non-uniformity of
the glass conductivity due to local parasitic crystallization during the fabrication process

[34]. Noticeably, the o values obtained for both boundary conditions are in excellent
agreement, which strongly validates our model.



2 Simple device: solid-core or thin-film structure

We present here the first device that we have designed in this project. Using either the
solid core or thin-film fiber structure presented in the previous section with the boundary
conditions set BC(1) we demonstrate how under specific conditions one can locate a single
beam of light.

We consider an uniform beam of light along the x axis localised at x = xo, with a
width of Ax (Fig 3). The beam is entirely contained between x = 0 and x = L (i.e

< xo < L - 4 and Ax < {). The intensity of the beam is independent of the angle
O in cylindrical coordinates. The flux of photon 'T(x) (per unit of surface) at the surface
of the glass is then given by:

Ax
<b(x) = <bO if Ix - o1 < < x

2 (7)
= 0 otherwise

- Photon beam

0 x. L

Figure 3: Profile of the photon beam to be detected

2.1 Presentation of the device

In this device, a photodetecting fiber as described previously is connected to a tension
generator at one end, and is free at the other. The device is shown on the Fig 4 (where
the diameter is exaggerated). The tension Vo can be applied at x = 0 or at x = L,
resulting in a measured current to or itL given by the amperemeter. These two currents
are expected to depend on the properties of the beam (xo, Ax, <bo), and we will show how
the ratio of them leads to the position xo of the beam.

Therefore, we need to establish the expressions of io(xO, Ax, <o) and iL(XO, Ax, 4o).
But before doing so, we will first study the expected behavior of the device under ho-
mogeneous light (in the dark, for instance), and compare the experimental results to the
theory.

In the following, we always give the analytical expressions for physical quantities -
such as the current flowing in the device - for the solid-core as well as for the thin-
film geometries. Thin-film fibers are, as will be shown, expected to display a better
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Figure 4: The photodetecting device, allowing the user to measure either io or iL.

detectivity, but we have seen in the previous section that the length 6 associated with

this structure is much longer than in solid-core fibers and therefore, for practical reasons

(working with devices shorter than one meter) all experiments have been carried on the

solid-core structure.

2.2 Behavior under homogeneous light

2.2.1 Potential

Under homogeneous light, the resistivity of the glass is uniform in the fiber. Thus, 8

does not depend on x and as mentioned above, the voltages in the fiber, Vo(x) and VL(x)

(respectively if V is applied at x=0 or x=L) are given by:

L-x
cosh 6

Vo(x) = Vo L (8a)
cosh L

x
cosh

VL(x)-Vo L (8b)
cosh

2.2.2 Dark current

The glass is an insulator, but as its resistivity is finite it allows a certain current to

flow between the electrodes, under homogeneous light. We call this current 'dark current'

because of its role in the detection of the single beam (see section 2.4) This dark current

can easily be calculated, by using the expressions (53) and (57) found for the resistance

of a glass core or of a glass layer in 3.3.2. Indeed, in both cases, it is given by:



j LV(x) (9)
R g

Depending on the geometry, the dark current is thus given by:

i core =2V tanh L (10a)
Pg7 6

-layer 26Vt Li' = tanh - (10b)
pgarrg 6

We see with these equations that the dark current is much higher in the glass core
than it is in a thin glass layer of the same radius.

2.2.3 Experimental results

The equations (10) show a simple behavior of the dark current with the length of the
fiber: an hyperbolic tangent. This trend can be verified by measuring the dark current
flowing in one device, while cutting bits of the fiber from its free end (Fig 5). This
actually gives us another way of determining the value of 6 by simply fitting the curve
Io tanh L to the data. We did so for two different samples of fiber using AST10 and AST18
solid-cores The results are shown in Fig 6.

L

A

V

Figure 5: The cutback measurement.

For the AST sample, the correlation was R 2 =0.9945 and led to 3 = 15cm. For the
ASTio sample, the correlation was R2 > 0.9999 and led to 6 = 40cm. Besides, as we can
see in (10), we can deduce from the value of Io the value of the resistivity of both glasses.
With this method, we found pis = 8,1x106 Q.m and pio = 7,7x10 7 Q.m.

It is important to compare these results to those that a fiber with two metallic elec-
trodes would have. In such a fiber, the current would be proportional to the length of
the fiber. We would thus observe a straight line on the Fig 6. Besides, these excellent
correlations show that the calculated profile of V(x) is very close to the real profile. This
means that the equations and conditions at the boundaries are the right ones, and also
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Figure 6: The cutback measurement.

that our fibers do not present major defects, and that their diameter is uniform along

the length.

2.3 Behavior under the beam of light

If a beam of light reaches the fiber, photons will be absorbed by the glass between

x - =xo - A and x+ = xo+ A, creating charge carriers. As the conductivity of the glass

is proportionnal to the density of charge carriers, it will locally increase. The profile V(x)

will thus not be the same as under homogeneous light, and will depend on the features

of the beam.
Before calculating the new profile V(x) we first determine the density of charge carriers

photogenerated under the beam of light

2.3.1 Density of carriers

In this project, we have limited our study to distributions of light constant in time.

Thus, we have always neglected the time to establish the potential V(x), as well as

the time for the device to reach a steady state under illumination. This means that the

measurements of io and iL must be made when the current is stable, which can sometimes

take a few minutes.

Along the r direction, the beam is absorbed by the glass with a coefficient of absorption

ag, resulting in a photon flux core(r, x) or GIiyer(r, x) (depending on the geometry) inside

the glass, given by:



Dcore(r, x) = 0e ag(rg-r) if x E [x-; X+] and r < r (11a)

4Ilayer (r, x) = Goe--9(r+t9-r) if x e [x-; x] and rg < r < r + tg (11b)

=0 otherwise (11c)

In those expressions, we neglected the shadow caused be the electrodes, as well as the
absorption by the cladding of the fiber, that in fact slightly modify (o. It thus appears
that as g is usually much smaller than rg, the glass core behaves as a glass layer whosea9

thickness is a few I. From now we will carry on with the glass core geometry, r willa
9g

always be smaller than rg, meaning that we study the behavior of the core of the fiber.
The calculations for the glass layer geometry as well as the final results are similar to
those of the glass core geometry.

As each photon absorbed by the glass creates an electron-hole pair, the rate G(r, x)
of generation of charge carriers in the glass is given by the variation of the photon flux
as it goes deeper in the glass:

B)(r, x) Ax
G(r, x) - ' 2 (12)

0 otherwise

In the glass, the volumic density of electrons (holes) is n (p), and the volumic density
of surplus of electrons (holes) is An (Ap). Those quantities evolve with time as following:

- - +IJ 
(13a)

at 8z T e Or
. p 84 Ap 1 iJ,-- - -O - -- - - - (13b)

at Oz T e Or
where T is the recombination time of the carriers (which has to be the same for the
electrons and the holes). J, (J,) is the density of current for the electrons (for the holes).
This density is given by:

Ja nSDa + npnE (14a)
e ar

=P-- D, a + n yt E (14b)
e Or

where y and D are the mobilities and the scattering coefficients of the carriers.

The glasses we are working with are usually p-type. This way the neutrality of the
material is ensured by the holes (main charge carriers) and the initial number of electrons
is always very small (thus n + An An). After the time te, a steady state is reached
(because ag varies with b0 with a saturation mechanism). The equation for the electrons
is therefore the following:



An a2  a
-- D 2 An -  (n pt E) = ag4oe- 9(r9 -') (15)

In absence of illumination, An is null. In those conditions, 5(n p E) = 0, and so,
by neglecting An pm E, the final equation for An, volumic density of the photogenerated
electrons is, for x E [x~; 4+]

An 8
An- D An = ag4boe-ag(r. r) (16)
T a

The expression of An is thus of the following type, where A and B are to be deter-
mined:

rg - r rg - r

An= Ae Ls +Be L, + g 2 g(rgr) (17)
1 - (agLs)2

where L, is the scattering distance of the electrons in the glass L, = v/DT.

In order to determine A and B we have to write the conditions at the boundaries. In
our case, the first condition is that no electron created by the light can get out of the
glass at r = rg. As the fiber polymer is an insulator this hypothesis is reasonable. The
second condition is that, because of the symmetry, the current is null at the center of the
glass core. Those two conditions mean that J, = Da' = 0 at r = 0 and r = rg, whichFdr

gives:

a2 L,9r4O
A - B = e-2grg (18a)

1 - (aL,)

Ac L8 aBLL8  gAe Ls - Be L = 9  
2  (18b)

1 - (agLs)

Thus, the exact expression of An(r, x), and of n(x), number of photogenerated elec-
trons in the fiber between x and x + dx can be established. However, these expressions
are uselessly complicated, and it should only be underlined that An(r, x) and n(x) are
proportional to T% between x- and x4 and null outside this domain.

2.3.2 Potential

We can now describe the impact that the beam of light has on the profile of the
potential V(x) along the fiber, when a voltage V is applied at one of its ends. Indeed,
as charge carriers are created in the glass under illumination, its resistivity is bound to
decrease. If a significant number of charge carriers are created, then the drop of resistivity
between x- and 4+ short-cuts the part of the fiber where x > 4.

Let p', be the resistivity of the glass under illumination, where pg is its resistivity in
the dark (or under the homogeneous bagkground light). As the conductivity of the glass



follows the law o-9 = 1 = Nep, where N is the total density of free charge carriers in the
glass, then the relation between pg and p' is simply:

Nepn = Nepn + Anepn = + Anepn (19)

where An has been calculated in the section 2.3.1.
We define as well 6' = 6 , which is the characteristical distance of the drop of

potential between x- and 4. The potential V(x) across the glass and along the length
of the fiber is now solution of the problem:

(X
2

V(x)
82v
9X2

If we call V- = V(x-) and V+
then V(x) is given by:

if x E [x-; xo+1 (20a)

(20b)otherwise

V(4'), two voltages that are for now unknown,

+ V sinh ( - x)

if x E [0; x0 ]

V+ sinh

sinh

Jo) + V

sinh ()

cosh ( '
V+

cosh,

sinh (4- X
if x [x ; +]

if x E [XO; L]

(21d)

In order to determine V- and V+ we write that the electric field has to be continuous
at x = x- and x =4 i.e.:

V1 _ Dy2  at x- (22a)
x x

a V2 0 y3
Ox Ox at xO (22b)

(22c)

Finally this lead to a 2x2 system for V

V- sinh

V(x) = Vi(x) =

V(x) = V2(x) =

V(x) = V3 (x) =

(21 a)

(21b)

(21c)

and V+;
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6 tanh + 6'tanhi,)

3'sinh 2x

It is easy to verify that this system has only one solution, that is:

V =V
- 2sinh 0- +

61o2

+ tanh L' ix

- 'tanh" + an
3'ta tah 6

tanh j o'tanh i tan L~

3 tanh L-xo

6' tanh 1

sinh -- sinh
(3 1

tanh --

( + - tanh L i)
tanh 6 a

L x-
tanh L -

tanh J
(24b)

The profile of the potential can thus be deeply changed by a beam of light, if the power
or the width of the beam is important enough. The Fig 7 shows, for a 5mm-wide beam
at a position xo = 10.25cm of a 20.5cm-long fiber, how the profile of V(x) is modified
depending on the resistivity of the glass under illumination.
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3' sinh i
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(23a)
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(24a)

+V+ 1 + - tanh Lx
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For a same width of the beam as well as a same resistivity p' under illumination, the
profile of V(x) can significatively vary with xz, as shown in Fig 8. The beam of light
bend the profile of the tension. The closer the beam is from the connected end of the
fiber, the deeper is this effect. It is thus clear that the measured current depend on the
position xO of the beam, and we will now calculate this current.

Impact of the position of the light beam on the profile of the voltage
Comsol simulation for a glass 50 times more conductive under the ligit
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Figure 8: Profiles of the voltage for different positions of the 5mm-wide beam when

P9 -50

2.3.3 Current

Now that the profile of V(x) is known, there are two ways of calculating the total
current flowing from one electrode to the other through the glass, that are equivalent.
A first approach is simply to integrate the current di flowing through the piece of glass
between x and x + dx. As R9 is the resistance of such a piece of glass given in (53), we
have, for a glass core geometry, the following expression for the total current:

= L + lg22 L 732fLta 2V(x) [xO 2V1 (X) dx+jO2V(x) L2 V3(x) x (5
I1ota = dx 1= P dx-f+ 2 'dx + dx (25)

Pg(X)? P7? x P'T Jx+ Pgr

where V1, V2 and V3 are given in (21).

A second approach is to consider that the current divides itself in two different cur-
rents: a 'dark current' I, resulting from the integration of V(x) given in (21) over the
whole fiber of uniform resistivity pg, and a photocurrent 1 2h, resulting from the movement
of the charge carriers photogenerated under the beam, a movement that is due to the
voltage V2 in that area. We will see in the section 2.4 why this approach is in practice
very useful. With this approach, the 'dark current' I is given by:



S2V(x)d(6
I2 = V( dx (26)

o PgT

In this case, the potential V(x) across the glass and along the fiber is given by
the equation (21). The electrons photogenerated move in the electric field E(r, 0, x) =
-VV(r, 0, x), with V(rg, 0, x) - V(rg, 7r, x) = V(x). This electric field will therefore have
the following shape:

V(x ) DV
E(r, 0, x) - f(r, 0) - ex (27)

where f1 (r, 0) is an adimensional vector field defined in the cross section (er, eo) of the
glass. The variations of the potential along the ex direction have a magnitude of the
order of f where those in the cross section have a magnitude of the order of V. As 3 in3' rg
the final device will be around 50cm where rg should never be more than 0.5mm, we can
neglect the effect of the electric field along the direction ex of the fiber, inside the glass.

The density of photocurrent will thus also be perpendicular to the axis of the fiber,
and its exact expression is:

Jph(r, 0, x) = -An(r, x) e p, E(r, 0, x) (28)

where An(r, x), the volumic density of electrons photogenerated, has been calculated
in the section 2.3.1. We will not give the explicit expression for Jph(r, 0, x) because it
requires a complicated calculation, that is not needed. Indeed, we already know, thanks
to the equations (17), (27) and (28), that the photocurrent per unit of length j*h flowing
through the fiber has the shape:

<DoV 2 (x) J
jh(x) = Kre 1 if x E [xo ; x(29

190 (29)

= 0 otherwise

where K is a number and 1g a length depending of the geometry and of the properties of
the glass. 19 depends on ag, rg, L, and t in the case of the glass layer geometry. Again,
a complicated integration would lead to the exact expression of K and I, but in the
real device, several parameters have unknown values, and that it is the calibration of
the device that allows us to determine the value of complicated objects like Kr 1une fVo
which is the only value we actually need.

Finally, the photocurrent 1 2h, measured when a beam of width Ax, reaches the fiber
at the position xO with a power of <1o photons.m- 2.s when a voltage Vo is applied at
the position x = 0 is:

/ L 
X+g 

72 x

1 ph - jh (x)dx j KTPne <DOV2X)dx (30)
0fx 0 19

As the conductivity of the glass follows the law (19), the first method leads to another
expression of If :ota



itotal 2V(x) 2(x) L 2V3(x)I1 -dx + 1022Wdx + dx (31a)
0 P9 7F x- P' 7 x+ pg4

It ta = L dx + j p 0 nef An r) rdrdO2 ( dx (31b)
g d is9  Tg

where we recognize the sum of I and I2h when integrating An on the cross section of
the glass. The two approaches and thus equivalent. We thus have the choice to carry on
using the unknown parameters K ne or simply o'. Indeed, we have just shown that 6'

contains p' that is directly linked to the absorption mechanism whose parameter is K-rine

We choose to carry on using the parameter 6' that simplifies the following expression of
the current. Indeed, we can integrate (25) to obtain an explicit expression for the total
current:

Itotal 2V V2sih- + tanh X) (32)
7p9 \ Vo sinh X0 6

where we used (23), and where V- is given in (24).

2.3.4 Experimental results

In the previous section, we obtained the expression (32) of the total current flowing
in the device when exposed to a beam of light and when a voltage Vo is applied at the
end x = 0 of the fiber. In the real system, because the temperature as well as the stress
endured by the fiber during the process of drawing can induce variations of the resistivities
p9 and ppcc, 6 is badly known. These variations will be discussed in the section 3.3.2. Of
course, as it depends on the features of the beam, 6' is totally unknown as well.

In order to determine these parameters, as well as to verify that the found expression
for the current is right, we set up a simple experiment: a single beam of light of known
position and width enlightens the device that delivers a tension V either at x = 0 or
at x = L. We measured the current (i0 or iL) for several position x0 of the light and
used Matlab to fit to the experimental data one of the following expressions (obtained by
combining (24) and (32) for the expression of io(xo), and doing a similar calculation for
iL(xO)):

26V 6't + tanh

%o(xo) = _ 6 + tanh (33a)
7rpg

2__V
iL(XO) 2V

7r P9

6
T12 ~ +an - -a -

tan tanh1 tan

K, + tanh Ax\6 tanh a 1-) +
6an 61'tanh A

+ tanh L 0) (33b)



where 6, 3' and pg were the parameters to be determined. We summarize here the results
obtained for several samples of two glass-core fibers (AST1o and ASTs) (the goodness of
fit R 2 is also given) and a few examples are given in Fig 9. In several case, two different
values for these parameters have been found for the same sample, one at the x = 0 end
and another at the x = L end. This is due to the fact that the diameter of the fiber is
not always exactly constant along the length.

~$z]

Figure 9: For different samples, fitted expression (33) to the experimental data.

Glass Sample End Electrodes 6 (cm) 3' (cm) pg (MOhm.m) R 2
AST18 IV x = 0 CPC-CPC 12.62 3.83 4.24 0.9984
AST18 VII x = 0 CPC-CPC 20.73 6.44 5.32 0.9956
AST18 VII x = L CPC-CPC 21.69 6.18 5.28 0.9939
AST18 VIII x = 0 CPC-metal 9.06 2.67 3.19 0.9993
AST18 VIII x = L CPC-metal 10.22 2.45 3.89 0.9958
AST18 IX x = 0 CPC-CPC 16.29 3.38 5.66 0.9995
AST18 IX x = L CPC-CPC 12.16 2.59 3.93 0.9978
AST10 5 x = 0 CPC-CPC 37.35 6.93 48.7 0.9975
AST1O 9 x = 0 CPC-CPC 35.02 6.23 60.5 0.9984
AST1O 14 x = 0 CPC-metal 28.74 4.83 57.5 0.9966
AST1O 21 x = 0 CPC-metal 34.24 5.64 65.5 0.9971

As for the found values of 3', they depend a lot on the width Ax of the beam entered
by the user in the Matlab program. Yet, this width is badly known because scattering



of the light occurs in the cladding of the fiber, leading to a beam of light seen by the
glass whose shape is expected to be quite different from the one described in Fig 3. In
this case, Ax has been estimated at 5 mm. But we could re-fit the expressions (33) to
the data with a different value of Ax, it would change the values found for ('. This is
because Ax and (' are linked by a relation that gives the total quantity of light absorbed
by the fiber. The values of 6' are thus only approximations, that are useful to estimate
the impact of the light on the resistivity of the glass. Here we can see that (' is usually 3
to 6 times shorter than 6, meaning that the resistivity of the glass drops by ten to thirty
times under the light that has been used in this experiment. However, the values found
for 6 and p9 are independent of this estimation of Ax, and we can use them to verify
(Fig 10) that 6 is really proportionnal to the diameter of the fiber, as predicted in (55).
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Figure 10: For a given glass, the proportionnality between ( and the diameter is observed.

2.4 Simplification of the profile expression

The previous results (Fig 9) show that the expressions (33) of iph (xo) and iph(xo) are
accurate. Yet, the complexity of these expressions does not allow the user to retrieve the
position xO of the beam from the values of the currents.

However, it has been witnessed, and verified with Matlab, that for reasonably wide
(Ax < 10mm) and powerful (pg divided by less than 100) beams, the shape of the
function V(xo) is fairly similar to the profile (8) of the tension V(x) under homogeneous
illumination, with a new couple (6eff, Voeff):



cosh L - zo
Vef f 6ef f

VO( XO) 0 cosh LVo~~xo) fef

cosh 
5O

VL(Xo) - Voe eff
cosh L

contact at x 0

contact at x L

The following array shows, for different sets (L, Ax, g) (with Vo = 1OV), how good,

and for which values of (6eff, VJ0") this simplified expression fits the exact expression of
V(xo) that is:

V(Xo) -

V+ sinh 2A' + V- sinh 2A'

sinh Ax

L (cm) 6 (cm) Ax (mm) Voef" (V) R 2

41 20 5 20 1.15 95.55 0.9986
41 20 5 50 1.32 89.08 0.9932
41 20 5 75 1.45 84.53 0.9873
41 20 5 100 1.56 81.65 0.9810

20.5 10 10 20 1.43 78.70 0.9891
20.5 10 10 50 1.86 58.86 0.9658
20.5 10 10 75 2.16 48.83 0.9526
20.5 10 10 100 2.44 41.73 0.9427
20.5 10 2 100 1.47 84.07 0.9858
100 10 5 75 1.59 64.94 0.9862
100 20 5 75 1.38 81.68 0.9900
100 150 5 75 1.28 100.8 0.9949
100 300 5 75 1.30 100.4 0.9908

(35)

We thus see that, for the typical set of values
is much smaller than 6
drop by more than 100

who is itself a few times
times - the simplified exp

with which we are working - where Ax
smaller than L, and where pg does not
ression (34) of V(xo) is accurate.

This observation is extremely important for the practical utilisation of the described
device. Indeed, as we already explained in the section 2.3.3, the total current measured by
the device can be considered as the sum of a 'dark current' and a photocurrent. We saw
that this approach was equivalent to the integration of the potential over the resistivity
along the fiber. We will now make two different approximations:

(34a)

(34b)



" first, we will consider that the 'dark current' is independent of the light beam. This
means that once the device is set, the user has to measure the current sd when
the fiber is in the dark or under the background homogeneous illumination (that
remains when the beam is applied). This approximation can seem quite big when
looking at the Fig 8, as this current is the integral under the curve, but we will see
that the error is mainly corrected by the calibration of the device.

* second, as we work only with thin beams of light, we will consider that V(x) for
x E [x ' ] is equal to V(xo). The photocurrent due to the light is thus given by:

Iph - KT e AX V(o) (36)
19

Therefore, because of the similarity of the function V(xo) with the simplified profile
(34), we can approximate the currents io(xo) and iL(XO) with the following expressions:

cosh L - xo

io(o) = id + CooAXVeff (37a)
cosh L

6ef f

cosh Xf

iL(XO) =d + Co XV eff (37b)
cosh L

3ef f

where Co = KTIne is a capacity times a length, in Farad.m, that depends only on the19
materials and geometry chosen for the fiber.

We show in the next section how these simplified expressions for the currents enable
the device to retrieve the position xO of the beam.

2.5 Position detection: method and results

For a given beam of light, in order to determine 6eff and the value of CoDoAxVoff
we measured the total current 'o or iL flowing through the device. First in the dark, to
obtain sd, then for different positions xO of the beam. We then used Matlab to fit the
simplified formulas (37) to the data. The figure 11 shows the typical quality of the fit.

Then, using a beam of known power (4o), position (xo) and width (Ax) we can
measure the total current io or iL flowing through the device and thus, given the equation
(37a) or (37b), determine the value of Co:

L L
(io - zd) cosh (iL - id) cosh

C osxVOenf cosh L - xo eDAxVj cosh X_ (38)
6ef f (6ff
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where id is the dark current, that has to be measured in absence of light, or under the

background light. In the following we call i -0 - id and i iL - id the two

photocurrents.
Knowing the value of Co is not sufficient to determine the characteristics (<bo, Ax, xo)

of an unknown beam from the measurement io or iL. Indeed, a thin beam localised

near x = 0 can lead to the same value of io than a larger one of the same power, but

localised further on the fiber. It is based on that observation that the idea to measure two

photocurrents (iph and iLh) is born. Indeed, as our first goal is to determine the position

xO of a beam reaching the fiber, we now see that the ratio of those two currents gives us

access to that position:

-ph cosh XO
L_ _eff (39)
ph L - xo

z0 cosh 3ff

Finally, even if its width and power are unknown, the position xo of a beam can be

determined, using the ratio (39):

( ph L
ZL ef f

L ef f i e
X0  + 2In L (40)

2 2 .ph L
1L- L 6eff
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The figure 12 displays the results of position detection for a sample of AST18-glass-

core-fiber.
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Figure 12: Position of the beam detected by an AST18-based
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device. The error made by

These results are very satisfying, as the highest error in detection is 1.54 cm in this
case. The length of the fiber is 42 cm so the highest error is only of 3.7% , where the
average error (0.58 cm) is only of 1.4% of the length of the fiber.

This simple-structure device is therefore capable of detecting the position of a single
beam of light with sufficient precision. However, it has to be kept in mind that, for the
expression (40) to lead to the actual position x0 of the beam, the value of eff has to
be well known by the user. Now, it has been showed in the section 2.4 that this value
depends on the power of the beam (on its impact on the resistivity of the glass). The
device thus has to be calibrated with a beam of power (and width) of the same order of
magnitude than the expected beams to detect. This way, we have verified with Matlab
that the error of detected position should never exceed a few centimeters. Obviously,
the more precisely the power and width of the beam is known, the more accurate is the
detection, especially around the middle of the fiber, where both currents i' and si have
quite important values. Devices for specific applications where the intensity and width of
the beam to be detected would be known can thus be set up with this method. However,
because of the impact of the light on the shape of the profile V(x), the device is not
able to detect anything else than a single beam. In fact, it is limited to the detection
of the average position of the added light (compared to the 'dark' background). We will
now describe a more elaborate structure, this time capable of detecting a more complex
distribution of light <b(x) with less restrictions.



3 Hybrid device: thin-film/solid-core structure

3.1 Establishing a light-independent non-uniform electric po-
tential

(A)Fiber Crom-section

(C) Equivaent Circuit

(B)VUg Profil

30 40 50 60
z (cm)

0 z
I1

Figure 13: A: SEM micrograph of a fiber with the new thin-film/solid-core structure.

B: Experimental results (dots, the lines are added for clarity) of the voltage profile of a

one-meter long fiber piece from panel A in the dark (in blue), and under a spot of white

light (in red) and green light (in green) at the same location, same width and of similar

intensity. C: schematic of the electrical connection to one fiber end.

3.1.1 Convex potential in the hybrid structure

Solid core fibers can hence support convex potential profiles that can be tuned using

different glass compositions or fiber structure. When an optical signal is impingent on the

fiber however, J is no longer uniform as we considered earlier, since the glass resistivity is

locally changed. This will in turn affect V(z) that becomes an unknown function of the

intensity distribution of the optical wave front. Moreover, thin-film structures are a more

attracting system to work with in light of their better sensitivity and other advantages

described in ref. [22]. To address these observations we propose an hybrid structure that

enables to impose convex potential distributions that remain unchanged under illumina-

tion, accross a semiconducting thin-film that is used as the higher sensitivity detector.

The fiber cross-section is shown in Fig 13A, where a CPC electrode contacts both a

solid-core and a thin-film structure.



The equivalent circuit is represented in Fig 13C, where one can see that the two
systems are in parallel. The drop of potential between the CPC channel and the metalic

1 1
electrodes (both at the same potential) expressed in Eq (2) now becomes: V( + )

Re Re
where Rc and Rf are the resistance of a slab of cylindrical semiconducting solid-core and
thin-film respectively, of length dz. This leads to a new differential equation:

82y 1 V
= V -+ (41)

(9z2 o2 o2 o2

since 6c and of , the characteristic parameters for the solid-core and the thin-film
respectively, verify 6c << 6f as can be anticipated from earlier results. The potential
distribution is hence imposed by the solid-core system, while the current flowing through
the photoconducting film can be measured independently, thanks to the different metal-
lic electrodes contacting the solid-core and the thin-film structures. Similar boundary
conditions can be imposed to the solid-core sub-system as before.

3.1.2 Experimental results

To verify our approach we fabricated a fiber integrating a structure with a CPC
electrode in contact with both a solid-core of ASTio and a thin layer of the As 40Se 2Te8
glass. This glass composition was chosen for its better thermal drawing compatibility with
the polysulfone (PSU) cladding used here, which results in a better layer uniformity. Note
that in this fiber, the metallic electrodes were embedded inside a CPC electrode. The
conductivity of this assembly is still dominated by the high conductivity of the metal.
The high viscosity of CPC in contact with the thin-film is however beneficial to maintain
a layer of uniform thickness [35]. The contacts between the CPC electrodes and the
glasses were found to be ohmic.

We reproduced the experiment described in section 1.2.3 to measure the potential drop
between the CPC and the metallic electrodes along a one-meter long fiber piece. This
time however, the experiment was done under three conditions: first in the dark, then
when the fiber was illuminated, at the same location, by a white light source and then by
a green (532 nm) LED, with intensity so that the generated photo-current in the thin-film
by both illumination was almost the same. The results are shown in Fig 13B and illustrate
the proposed concept very well. Indeed, since the green light is almost fully absorbed in
the semiconducting layer [24], a significant change of thin-film resistivity (and hence a
high photo-current) can be obtained while leaving 6c, and thus the potential distribution
across the layer, unchanged. White light on the other hand penetrates much deeper in
the material and will change the conductivity of both the thin-film and the fiber core,
changing oc and the voltage distribution. From these experiments we could extract the
value oc = 143 cm for this fiber system. This value is much larger than previous ones in
solid-core structure because of the increase of Sc, imposed by the new structure design.
Note that we used green versus white light for this proof of concept, but many fiber
parameters such as the glass composition or fiber geometry can be tuned to apply this
approach to a wide range of radiation frequencies.



This new fiber system can now support a fixed potential profile V(z) that can be
varied by changing the applied boundary conditions. Given the Eq (41), one realizes that
all possible profiles are a linear combination of the two functions:

V____ L-- z\

V (z) . ) sinh h L (42)
smnh ( L /Sc)

and

Vil (Z) = . _ sinh h (43)
s Vh (L/6c)

obtained for the boundary conditions V = V and VL = 0, and vice versa. A third
independent voltage profile can also be imposed by applying a voltage between the CPC
electrode and the electrode contacting the thin-film only, resulting in a nearly uniform
potential V(z) = V, since 6f is much larger than the fiber lengths considered. Hence,
we can measure three independent photo-currents that result from the integration of the
stimuli intensity profile modulated by these different voltage distributions, from which
some axial information about aph and hence <bo can be extracted as we show below.

3.2 Resolving a single optical beam

3.2.1 Beam localization

Let us consider the case of an incident uniform light beam, with a rectangular optical
wave front, at a position zo along the fiber axis, and with a width 2Az. It generates a
photo-conductivity profile Jph(Z) -- U-ph if z E Lzo - Az, zo + Az], and 0 otherwise. The
generated current for each configuration can be derived, integrating over the illumination
width and re-arranging the hyperbolic terms:

2 CVnph L-zo Az
ph -- ( sinh h y sinh h (44)

ph sinh (L/Sc) 6c o c

JI 2CVaph zo Az
i CV - h sinh h -- sinh h (45)

sinh (L/6c) 6c 6c

i1Ij = 2CVrPAaz (46)

The first two currents are a function of the beam position which can be simply extracted
-I

by taking the ratio r = p alleviating the dependence on the beam intensity and width.
2ph

Much like we did with the first device after simplifying the potential profile expression in
Eq (40), we can extract zo from the measurement of r through the relation:

zo = " In eL/c+r (47)
2 [e-L/6c r

The main difference is that this time, we do not need a Seff and we therefore do not have
to limit ourselves to narrow, light-powered beams like we had to in section 2.4. This was



experimentally verified by illuminating a one-meter long piece of the fiber shown in Fig 13,
with a 1 cm width beam from a green LED, at different locations along the fiber length.
The results are shown in Fig 14A where the straight line represents the experimental
points of illumination of the fiber while the dots are the reconstructed positions from
measuring the ratio of photo-currents r. The agreement between the experimental and
measured positions is excellent, with errors made on the position smaller than ± 0.4 cm
in the middle of the fiber.
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Figure 14: Schematic of the illuminated fiber by a single optical beam and graph of the
real position (black dashed line) and reconstructed position with error bars(blue dots) of
an optical beam incident on a 1 m-long fiber at different positions. (B) Schematic of the
illuminated fiber by a rectangular optical wave front. And graph of the real profile (black
doted line) and reconstructed profile (blue dots) of a rectangular wave front incident on
the same fiber.

3.2.2 Position error

Error over the beam position depends on a large number of parameters (Fiber length,
6c, beam position and intensity, geometry etc... ). Indeed, fluctuations of the photo-
currents, that come from various sources [30-32], lead to variations on the ratio r, result-
ing in errors in the measured beam's position. To assess the resolution of our system,
we first measured the dark current noise iN, considered in good approximation to be the
only source of noise here. We found it to be around 10 pA in our experimental condi-
tions, using similar techniques as those explained in ref. [221. This noise current is the
same for configurations I and II given the symmetry of the system. Intuitively, when
one measures a photo-current i"i, its mean value lies within the segment defined by



Z ii ± iN. In a simple and conservative approach, we define the resolution of our system
as the difference zo+ - zo_ of the two obtained positions zo+ and zo_ when the maxi-
mum error on the currents are made, i.e when r is given by r± = (Z'h + iN) / (-|- - iN)

and r_ = (iPh - iN) / (4I - iN) respectively. These error bars are represented in the
graph of Fig 14A. The resolution found is sub-centimeter, corresponding to two orders of
magnitude smaller than the fiber length. This is to the best of our knowledge the first
time that a beam of light can be localized over such an extended length and with such
a resolution, using a single one dimensional distributed photodetecting device requiring
only four points of electrical contact.

3.2.3 Other beam characteristics

The beam position is not the only spatial information we can reconstruct with this
system. Indeed, the ratio of i and i... allows us to reconstruct Az as zo is known,

sinh(Az/oc)
by measuring the ratio . This also enables to evaluate Oph, using i111  and

hence reconstruct the associated beam intensity . In Fig 13B we show the experimental
illumination profile of a green LED light (black dashed line, centered at 43 cm, width
18 cm, with a conductivity 9ph = 6Udark) and the reconstructed profile from current
measurements (blue data points, centered at 43.5 cm, width 24 cm and o-ph = 4.79dark).

The positioning is very accurate as expected from the results above, while a slightly
larger width is measured. This error is due to the large value of 6c compared to Az,
which results in a ratio of i to i jI more sensitive to noise than the ratio of i 4 over ill
It is however clear from discussions above that the fiber system can be designed to have
a much better resolution for different beam width ranges, by tuning 6c to smaller values.

Also under study is the integration time required for this system. The speed at which
we can vary the potentials depends on the bandwidth associated with the equivalent
circuit, taking into account transient current effects in amorphous semiconductors. In
this proof-of-concept, measurements were taken under DC voltages applied, varying the
boundary conditions after transient currents are stabilized (typically after a few seconds).
Novel designs, especially fibers where the semiconducting material has been crystallized
through a post-drawing crystallization process [14], and integrating rectifying junctions
that have proven to have several kHz of bandwidth [15], could result in significant im-
provement in device performance and speed.



3.3 Extracting axial information from multiple incoming beams
When more than one beam are incident on the fiber, each one brings a set of three

unknown parameters to be resolved (its axial position, width and power). Since our
detection scheme provides three independent photo-currents, some prior knowledge on
the stimuli is then required to localize each beam along the fiber axis. For example, we
can localize two similar illumination events (with approximately same width and power),
that are incident at different axial positions.

3.3.1 Two identical beams

Let us consider the simpler case where two such beams impinging the fiber have a
width 2Az much smaller than the solid-core characteristic length 6c, so that

Az
sinh( )

Az (48)

6c

They each generate a photo-conductivity a7ph at their positions zi < z2 . The photo-
currents measured are the sum of the measured currents with individual beams. Defining

Zm =z + Z2 and ZD Z2 Z , we can derive:

-1 4CVaph (Az L - ZZ
zph = . sinh h sinh h sinhh ( D) (49)smnh(L/6c) oc 6c ) c

, 4CVO=. sinh h sinh h sinh h (ZD (50)ph sinh (L/6c) 6c 6c )c
i<p= 4CVaph Z (51)

Following the same approach as in the single beam case, we can reconstruct Zm and
ZD, and hence z1 and z 2 . On Fig 15A, we show the experimental illumination of a fiber
with two identical beams of width 6 cm from the same green LED (dashed black curve)
at positions 54 cm and 75 cm. The blue dots represent the reconstructed beam position,
with measured position 51 ± 3 cm and 78 3 cm for the two beams. The error on the
positions were computed in a similar fashion as before.

3.3.2 Three identical, regularly-spaced beams

An optical signal made out of three beams requires even more additional constraints
to be resolved. For example, three similar beams equidistant from one to the next can
be detected and localized with our system. Indeed, here again only two unknowns have
to be found: the central beam position and the distance between two adjacent beams.
The derivation of the algorithm to extract these positions from the different current
measurements is very similar to what has been derived above. In Fig 15B we show
experimental results of the localization of three incoming beams of same width (Az = 6
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Figure 15: (A) Schematic: photodetecting fiber illuminated by two similar optical beams.
Graph: position measurements of the two beams. In black doted line is the conductivity
profile generated by the two incoming beams while the blue dots are the reconstructed
positions with the error bars. (B) Schematic: photodetecting fiber illuminated by three
similar optical beams. Graph: position measurements of the three beams. In black doted
line is the conductivity profile generated by the three incoming beams while the blue dots

are the reconstructed positions with the error bars.

cm) and intensity (generating a photo-conductivity 9ph = 8.59ark) at positions zi = 35.5
cm, z2 = 55.5 cm, and z3 = 75.5 cm. The generated conductivity pattern is represented
by a black doted line on the graph. The reconstructed positions from photo-current
measurements were 30 ±4 cm, 51.5 ± 4 cm and 73 ± 4 cm, in very good agreement with

the real beams locations. Note that in these two multiple beams cases, we could only

extract the position of the beams but not their intensity nor width. If we knew the width

of each beam however, we would be able to extract the position and intensity assuming
that this intensity is the same.



Conclusion

In conclusion, axially resolved optical detection was achieved in an axially symmetric
multimaterial fiber. Two fiber architectures that combine insulating and semiconducting
domains together with conductive metallic and polymeric materials was demonstrated.
Both architectures support a convex electric potential profile along the fiber axis that
can be varied by changing the boundary conditions. The simplest structure can under
restrictive conditions localize a single beam of light but its behavior depends heavily on
the measured light itself which limits it to very specific applications. A more elaborate
hybrid device displays much more stable properties when the materials and the internal
geometry are carefully chosen in regard of the light to be detected. As a result, the
position, width and the intensity of an arbitrary incoming rectangular optical wavefront
can be reconstructed. Under given constraints, two and three simultaneously incident
beams can also be spatially resolved. The ability to localize stimuli along an extended
fiber length using simple electronic measurement approaches and with a small number of
electrical connections, presents intriguing opportunities for distributed sensing.



Appendix A: o calculation

Glass core geometry
We consider a fiber where a glass core is contacted by two opposed electrodes running

along the length of the fiber (Fig 16):

PSU
7 ~ Wcpc

(. ~CPC

CPDC

Glass or
Metal

Figure 16: The glass core geometry for the photodetecting fiber

The radius of the core is rg, while tcPc is the thickness of the CPC electrode and wecP
its width (wecp is exaggerated in Fig 16). Neglecting the curvature of the electrode, the

cross section of one of the electrodes has a surface ScPc = tcPc wcPc.

For the calculation we will approximate the contact between each electrode and the

core as being located on one single point. This is correct as long as wecp remains small
compared to rg. This way, the resistance R9 is given by:

R = r (52)
Rg gPg2 d- rg cos(5

where h and 8 are given by the Fig 17, and p is the resistivity of the glass.

Figure 17: Elements for the calculation

As h = rgsinE, then dh = rgcos hd and so:



2 dE) ,r
Rd= g p _ (53)2 dx 2 dx

2

It is remarkable that the resistance of a cylinder connected at two diametrically op-
posite points does not depend on the radius of this cylinder. This way a smaller glass
core could be used without changing the resistance, but allowing a higher electric field in
the glass for a same voltage applied.

The resistance of a CPC electrode for a length dx of fiber is RcPc = pcc d, where

Pcpc is the resistivity of the CPC. Finally, for a glass core geometry, c is given by:

Pc2dx = (54)

And so, if a is the draw-down ratio, i.e. the ratio between the diameters of the preform
and of the fiber and if So is the initial surface of the cross section of the CPC electrode

in the preform, then we have Scc = SP. This leads us to the final result for J:

score 1 Scyc0  (55)acr 2 Pcpc S-OPC

Glass layer geometry
We consider now a fiber where a glass layer is contacted by two opposed electrodes

running along the length of the fiber (Fig 18):
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Figure 18: The glass layer geometry for the photodetecting fiber

The radius at which the layer is deposited is rg, while t9 is its thickness. tcc is the
thickness of the CPC electrode and wec its width (Wc and t9 are exaggerated in Fig 18).
Neglecting the curvature of the electrode, the cross section of one of the electrodes has a
surface ScPc = tcyc wcP.

For the calculation we will again approximate the contact between each electrode and
the layer as being located on one single point. This is correct as long as wcc remains



small compared to rg. We will also always consider that t9 << rg, which is right, as rg is

100pm minimum, while tg is at most a few micrometers. This way, the resistance Rg is

given by:

1 I r9 d8
Rg = j- p t (56)

9 2 Pg dx to2

where 8 is defined on the figure 19, and the factor 1 takes into account the fact that the

integral on 8 leads only to the resistance of half of the layer.

Figure 19: Elements for the calculation

The resistance of the glass for a length dx is then:

Rg = pg P g (57)
2dxtg

The resistance of a CPC electrode for a length dx of fiber is Rcyc Pcpc Finally,

for a glass layer geometry, J is given by:

= R7r _______c (58)

And so, if a is the draw-down ratio, i.e. the ratio between the diameters of the preform

and of the fiber and if So is the initial surface of the cross section of the CPC electrode

in the preform, then we have Scpc = n Besides, if ro and to are respectively the radius

and the thickness of the glass layer in the preform, then 9 = . This leads us to the

final result for 6:

1 7r Pg Scpc g
61aye, = - e (59)

a 2 pcpc t0a V g



Appendix B: Stress and resistivity of the CPC

In the section 3.3.2, we have obtained, for both studied geometries, the expression
of 6. As 6 is the main parameter of the system, it is important for us to control its
value precisely. We have already shown that 6 is proportionnal to the diameter of the
fiber, and that we can use different glasses, with different resistivities pg (Fig 10). As the
cross-section Sc of the CPC electrode in the preform is more or less always the same,
the last parameter is pc,.

As already mentionned, the Conductive PolyCarbonate has been used as a metal
in different projects of the group over the past few years. However no data on the
hypothetical evolution of its resistivity with the draw parameters (temperature, stress)
was available when we started to use it in our photodetecting fibers. It is only after
having recurrent problem in connecting several fiber samples that we decided to study
the variations of Pcpc. This study is however incomplete and further investigation is
needed, but the first results were very interesting and we give them here.

The electrical conduction inside the CPC is due to the carbon particles: their con-
centration is above the percolation level, and so the CPC is conducting. But during the
draw, if the temperature is low enough, the carbon particles might not flow fast enough
to ensure the electrical conduction in the final fiber.

Resistivity Vs stress for the PC cladding fiber
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Figure 20: For the low temperature draw, as the stress endured by the fiber increases,
Pcpc increases of several orders of magnitude.

In order to verify whether that phenomenon occurs or not, we drew a simple fiber
where a layer of CPC is surrounded by insulating cladding, and studied the resistivity
of different samples, depending on the stress they endured during the draw. We did so
for two different fibers: in the first one, the insulating polymer was PolyCarbonate (PC),
and the temperature during the draw was 235 degrees. In the second one, the cladding
was PolySulfonide (PSU), and the draw temperature was 272 degrees.

For the PSU-cladding fiber, no sensible variation of the resistivity was observed: Pcpc
remained comprised between 0.55 and 1 Ohm.m for fibers that had endured stress ranging



from 100 to 600 g.m-2. However, for the PC-cladding fiber, huge variation of Pcpc are
witnessed as the stress varies (Fig 20)

It thus seems that when the temperature of the draw is low enough, there is a transi-
tion conductive -+ insulating due to the stress applied on the fiber. It has been demon-
strated that this transition was not due to the diminution of diameter of the fiber often
linked with the increase of stress because some of the finest fibers have endured a very
low stress and conduct very well the current. However, in our draws, the increase of stress
is always linked to an increase of the capstan speed. This transition might be due to the
fact that carbon particles do not have enough time to reorganize within the insulating
matrix when the capstan speed is too high or the temperature is too low.

This study, even incomplete, has enabled us to demonstrate a metal - > insulating
transition in the CPC during the draw process. There is no reference to such a transition
in the existing litterature, and an exhaustive study of the variations of Pcpc, is needed to
understand the underlying mechanism occuring within the CPC during the draw.

During this project, as the fibers were all based on PSU cladding, the draw tempera-
ture was always high enough for this transition not to happen. However, if this transition
was well understood and the stress well controled during the draw, we could play on the
value of pc,, via the stress during the draw, to modify the final value of 6.
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