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Abstract

Throughput and per-packet delay can present strong trade-offs that are important in the

cases of delay sensitive applications. In this thesis, we investigate such trade-offs using

a random linear network coding scheme for one or more receivers in single hop wireless

packet erasure broadcast channels. We capture the delay sensitivities across different types

of network applications using a class of delay metrics based on the norms of packet arrival

times. With these delay metrics, we establish a unified framework to characterize the rate

and delay requirements of applications and optimize system parameters. In the single receiver

case, we demonstrate the trade-off between average packet delay, which we view as the inverse

of throughput, and maximum ordered inter-arrival delay for various system parameters. For

a single broadcast channel with multiple receivers having different delay constraints and

feedback delays, we jointly optimize the coding parameters and time-division scheduling

parameters at the transmitters. We formulate the optimization problem as a Generalized

Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the

coding and scheduling parameters for efficient allocation of network resources under varying

delay constraints. In the case where the receivers are served by multiple non-interfering

wireless broadcast channels, the same optimization problem is formulated as a Signomial

Program, which is NP-hard in general. We provide approximation methods using successive

formulation of geometric programs and show the convergence of approximations. Practical

issues of implementing proposed coding and optimization scheme on existing layered network

architecture are also discussed.
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Chapter 1

Introduction

1.1 Background and Motivation

The growing diversity of network applications, protocols and architectures makes it increas-

ingly challenging to understand and to measure the needs of various applications in terms

of delay and rate for desired Quality of User Experience (QoE). One of the typical scenarios

happens in the case of modern home network environment (Figure 1-la), where multiple

networking devices are usually connected with the same wireless broadcast channels associ-

ated with one or more WiFi access points (AP). The network is shared by a wide variety

of applications, such as media streaming to media players, file downloading at PCs, online

gaming traffic on gaming consoles and real time voice or video traffic from VoIP devices (Fig-

ure 1-1b). While there is great heterogeneity of network applications, the service pattern

or the transmission strategies used in today's networking device are largely based on simple

prioritization models that may be inefficient. Fundamental trade-offs between throughput

and delay in most communications systems increases the importance of capturing precisely

the delay-throughput requirements and constraints of applications in order for systems to

allocate resources efficiently and to enhance QoE.

In many of the communication systems, the trade-off between rate and delay is most

evident in the choice of coding methods and coding block sizes. Generally, a large coding
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Figure 1-1: Home network and various networking applications

block does not only make systems more resilient to channel variations and erasures, but also

provides higher throughput. As a trade-off, large coding block size usually introduces longer

decoding delay, as the receivers need to collect longer coding blocks before decoding. They

may also suffer longer computational delay because of the increased decoding complexity as-

sociated with longer coding blocks. The tolerable decoding delay durations vary drastically

depending on a series of factors, such as channel and network statistics. But predominantly,

the tolerable delay is limited by application's QoE requirements. For instance, applications

like file downloading or FTP protocols aim solely to maximize the average transmission rate,

thus minimizing the overall completion time. Since non-integral file parts provide no utility

for users, such downloading protocols are not concerned with the inter-delivery times between

consecutive packets. On the other hand, applications such as real-time video conferencing

are highly sensitive to delay of any consecutive packets. Failure to meet continuous delivery

deadlines in stream of packets quickly deteriorates QoE. However, the two extremes in delay

sensitivities by no means represent all types of networking applications today. Progressive

downloading video, for example, would be more delay sensitive than file downloading, as the

video player has to catch up with certainly playback deadline for sequenced video content

or packets. On the other hand, its delay sensitivity is usually not as high as a live video

conference, since in a non-real time scenario, a receiver is usually allowed to buffer sufficient



content before playback starts or whenever the playback is to be resumed after some inter-

ruptions. Therefore, a range of sensitivity, instead of two extremes, is a better reflection of

common applications. Furthermore, at different stage of a transmission session, variations

of delay sensitivity maybe observed for the same application, as in the case of progressive

video downloading, depending on the amount of sequentially buffered content.

The proliferation of low cost gateways with fast-increasing computation capability does

not only bring more flexibility in packet coding options, but also provides the possibility

to optimize the efficiency of network resource allocation based on coding methods and the

rate-delay requirements of different applications. In this thesis, motivated by the typical

home network scenario, we focus the problems in the scope of single hop wireless broadcast

channel with packet erasures. We explore the possibility of applying linear network coding

between the senders and receivers in such systems, from a perspective of designing and

optimizing coding and scheduling parameters different delay sensitivities in the existence

of delay-rate trade-offs. We investigate how properly designed and optimized coding and

scheduling would allow the system to accommodate better the delay and rate requirements

of various applications.

1.2 Thesis Outline and Main Contributions

The thesis starts by developing a unified framework to study rate and delay trade-off of

packet based linear block coding schemes. We use a class of delay metrics based on the

f,-norms of the packet inter-arrival times to represent delay-rate characteristics and require-

ments of applications. At one extreme of the p values, the class of delay metrics could

capture the average packet delay and therefore the average rate of transmission. At the

other extreme of the p values , the metrics measure the maximum ordered inter-arrival de-

lay. We apply the metrics to linear intra-session network coding in our system and express

the delay cost function in terms of coding parameter and system parameters. With these

delay cost measures, we establish methods to optimize coding and scheduling parameters in

the networking system, where various devices with different delay requirements are served by



single-hop wireless erasure broadcast channels, each associated with an access point (AP).

For the main parts of the thesis, we use a coding scheme that is a variation of the

generation-based random linear network coding, presented in [1] and [2]. Specifically, the

sender maintains a coding bucket for each receiver. When a transmitter is ready to send a

packet to some receiver, it reads the all the packet in the coding bucket for that receiver and

produces an encoded packet by forming a random linear combination of all the packets in

the coding bucket. The encoded packet is then broadcasted to all the receivers. Once the

receiver collects enough packets to decode all packets in the coding bucket through Gaussian

elimination, it uses a separate feedback channel to send an ACK message back to the sender.

The sender always receives the ACK message after a certain delay. It then purges all the

packets in the coding bucket and moves new packets into the bucket. The respective delay

constraints of the receivers are known to the sender, who determines adaptively the number

of packets to put in the coding buckets for each receiver, by solving system-wise optimization

problems. A precise description of the transmission scheme is given in Chapter 2. The coding

buckets act as the Head of Line (HOL) generations in generation based schemes. However,

unlike most generation-based schemes, packets are not partitioned prior to transmission and

the bucket sizes in our scheme may vary over time and across different receivers, depending

on each receiver's changing delay constraints.

Under this coding scheme, for various system configurations, the coding parameters are

optimized jointly with time division resource allocation parameters to exploit optimal trade-

off between rate and delay. We first illustrate such trade-off in the case of point-to-point

erasure channels. Then, in the case of multiple receivers with one AP, we formulate the

delay constrained optimization problem as a Generalized Geometric Program, which can

be very efficiently solved. We compare the solutions with fixed generation size schemes

for specific examples. Finally, in the case of multiple APs with non-interfering erasure

broadcast channels, we formulate the problem as a Signomial Program and provide methods

to approximate this non-convex optimization with successive GPs.

While the emphasis of the work is on the optimization of adaptive intra-session coding



between a centralized sender (the gateway) and the receivers, we also briefly explore the

possibility of using inter-session coding when the feedback delay is insignificantly short com-

pared to a transmission time slot. Such short feedback delay allows the sender to capture

the erasure patterns experienced by all the receivers and perform opportunistic inter-session

coding based on the stochastic erasure patterns. Coded packet generated by coding across

multiple sessions benefits more than one receivers, and thus reduces the total number of

transmissions needed for serving all packets and increases the average rates.

At the end of the thesis, we discuss and address some of the practical issues of imple-

menting the designed coding and scheduling schemes, with minimum changes to the current

network layering architecture.

The main contributions of the thesis can be summarized as follows:

1. We develop a new framework for quantifying the delay sensitivity of a variety of appli-

cations based on fp-norm of packet in-order inter-delivery times. With the variation in

the p value for specific applications, the metrics allow us to capture the optimal trade-

off between average delay per packet and the maximum expected in-order inter-packet

delay. We illustrated these optimal trade-off with various system parameters, such as

feedback delay and erasure probability in single receiver case.

2. For the single wireless packet erasure broadcast channel with multiple receivers, we

construct a geometric optimization program to optimize the coding bucket size and

the service time allocated to each receiver. The optimization problem can be solved

efficiently and we illustrate the benefit of such optimized adaptive scheme against

normal fixed size block coding schemes.

3. When there are multiple non-interfering broadcast channels serving the same set of

receivers, we formulate the optimization problem into non-convex signomial problem

and approximate the local optimal solutions with successive solutions of GPs.

4. We investigate the rate gain of using opportunistic pair-wise inter-session coding in the

case of perfect feedback. We quantify the gain in the single packet erasure broadcast



channel with by solving a Markov chain model.

Parts of the thesis is presented in [3].

1.3 Related Works

There exists a significant amount of related literature and we shall only examine a incomplete

set of relevant ones. Previous work by Walsh et al. [4] considers the rate and delay trade-off

in multipath network coded networks, while [5] studies the related issue of rate-reliability

and delay trade-off by constructing various network utility maximization (NUM) problems.

The concept of network coding is introduced in [6] and linear network coding is extensively

studied in [7] and [8]. Other typical rateless codes that are asymptotically optimal for

erasure channels are seen in [9] [10] [11]. However, unlike linear network codes which allow

intermediate nodes to recode packets, the class of fountain codes are generally only used

for one-hop communication systems, as the packets can not be recoded, owing to stringent

packet degree distribution requirements. In our system, the delay constraints make it difficult

to apply fountain codes efficiently, as the asymptotic optimality is only achieved with coding

over relatively large number of packets. On the other hand, we have feedback which will allow

us to change dynamically the coding parameters. The network coding gain in overall delay of

file downloading with multicast over packet erasure broadcast channel is characterized in [12]

and [13]. With the use of similar linear network codes, broadcast coding schemes based

on perfect immediate feedback are proposed and their delay characteristics are analyzed

in [14] [15] [16]. An analysis of random linear codes with finite block size is given in [17].

The scenario considered in the thesis is the multiple unicasts from a single source to a

group of receivers through several wireless erasure broadcast channels. Such scenario can

arise in typical home networks with a single gateway and multiple access points, in overlap-

ping regions of cellular networks and in satellite networks for example. The channel model

we consider in this thesis is basically a broadcast channel, which is one of the most important

and widely studied wireless channel models [18]. Even though there is no general charac-



terization of the capacity region of the broadcast channel (BC), advances have been made

in many sub-classes of the BC [19]. Among them, Gaussian BC [20] has received the most

attention. In network settings, however, an erasure channel model may provide simpler ab-

stractions to facilitate analysis. In a wireless network, when some mechanism of interference

avoidance is reinforced, every hyper-arc can be treated as independent broadcast erasure

channel, which captures successfully the media sharing and lossy transmission properties of

wireless links. Thus, broadcast erasure channels have been increasingly considered [21,22].

Most the recent works [12,21,23] on the channel focus mainly on the capacity and coding

gains in the case of multicast on the packet erasure broadcast channel. In general, the capac-

ity of broadcast erasure channel without feedback is given by [21]. More importantly, such

capacity can be achieve with network coding with timing sharing among various receivers.

Most recently, Gatzianas et al. [24] and Wang et al. [25] have shown that perfect feedback

does expand the capacity region of single input broadcast erasure channel.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we provide a short overview

of Geometric Programming and Network Coding. We then establish the transmission model,

coding and scheduling schemes considered in the later part of the thesis. We also give the

definition of a class of delay metrics, as well as showing how the metrics apply specifically to

the scheme we consider. Chapter 3 constitutes the main part of the thesis. It focuses on the

optimization of coding and scheduling parameters. The chapter is organized into two parts.

In the first part, we consider a single wireless broadcast channel with packet erasures and

one or more receivers. We construct a joint optimization program for the coding parameters

and scheduling coefficients. The program is converted into a Generalized Geometric Program

and solved efficiently using GP techniques. We illustrate the delay and throughput trade-offs

with different system parameters and compare the solutions with the fixed generation size

schemes. In the second part, the same problem is investigated in the case of multiple non-

interfering wireless packet erasure broadcast channels. The approach extends the methods



used in the first part. We construct a similar optimization problem into a Signomial Program

and we provide approximation algorithm to this non-convex problem. In Chapter 4, we focus

on the scenario where the feedback delay is insignificant and we consider the possibility of

using inter-session network coding, based on the erasure pattern the sender sees from the

feedback. Chapter 5, we investigate the practical side of implementing similar schemes with

the existing protocol architecture and discuss the difficulties and challenges. Finally, Chapter

6 concludes the thesis and highlight some future works.



Chapter 2

Preliminaries, Models and Metrics

Before we proceed to consider the packet erasure broadcast channel with multiple receivers

in Chapter 3, we first establish the delay sensitivity model and the coding scheme in this

chapter. We start with a review of the basics of network coding, especially generation

based practical network coding schemes. We define the delay metrics or cost functions for

measuring the delay performance of coding schemes. A very brief introduction to geometric

programming is also presented, since geometric programming techniques serve as the primary

tool for solving the optimization problem that is constructed in the Chapter 3.

2.1 Network Coding

The introduction of network coding by Ahlswede et al. [6] marks a paradigm shift in how

information is treated over the networks. Traditionally, each node in a network simply

relays information from input links to output links, although from a information theoretic

perspective, there is no reason for restricting nodes to relay function. While unicast capacity

can be readily solved and achieved by Ford-Fulkerson algorithm with routing, the min-

cut capacity of multicast transmission cannot be achieved by routing in general. Network

coding, on the other hand, allows intermediate nodes not only to relay information, but also

to encode received information which is shown to achieve significant throughput advantages



over non-coding solutions in many cases. For single multicast on directed acyclic or cyclic

graphs, it is proven that network coding achieves the min-cut capacity for each receiver [6].

Furthermore, multicast capacity can be achieved with linear network codes [7] [8]. The

preservation of transmission efficiency with linear network codes, allows linear multicast

solutions to be constructed efficiently under algebraic frameworks [8] [26]. In particular, Ho

et al. [1] propose randomly linear network codes (RLNC) and show that, when the finite

field Fq, over which coding is performed, is large enough, the linear coding coefficients can

be randomly chosen from Fq without sacrificing throughput or transmission efficiency.

2.1.1 Butterfly graph

One of the classical examples for illustrating the advantage of network coding over routing is

on the butterfly graph, as shown in Figure 2-1. Each edge on the graph has a unit capacity.

The source at the top aim to multicast two packets A and B, both of one unit size, to two

destinations at the bottom of the figure. Routing solutions result in either Figure 2-la or

2-1b, where the central edge transmits either A or B. For these solutions, it is impossible

for both destinations to receive both packets in one time slot and the average throughput

to each destination is 1.5 packets. Figure 2-1c gives a network coding solution to the same

problem. Instead of transmitting the original packets, the central edge now carries the coded

packet A D B. Each destination in this case will receive one original packet and the packet

A e B, which allow the receivers to recover both original packet by solving a simple linear

system. Hence, a network coding solution gives each receiver a rate of 2, which is the min-

cut capacity for each of the node. It is shown that the throughput gap between routing

and network coding solutions can be arbitrarily large [26], for multicast on certain directed

acyclic graphs.

2.1.2 Intra-session vs inter-session coding

In the butterfly example shown in Figure 2-1, we have a multicast scenario, in which all

destinations requesting all the packets (or source processes) A and B. Therefore, all packets
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Figure 2-1: Comparison between routing and network coding for multicast on the butterfly
graph. The source looks to transmit A and B to both destinations: Routing in (a) and (b)
forces central edge to transmit original packet, resulting 1.5 average throughput. Network
coding in (c) achieves min-cut capacity of 2 for both destinations.

are said to be in the same session. Coding among these packets are therefore referred to

as intra-session coding. However, in a slightly modified version of the butterfly, shown in

Figure 2-2, we have two source-sink pairs. Source node si look to transmit A to ti, while

source node S2 aim to deliver B to t2 . The same coding A E B on the central edge is then

referred to as inter-session coding, since A and B belong to different transmission sessions

in this case. For a more detailed treatment of intra-session and inter-session coding, we

refer the reader to [27]. In most of the thesis, we have a multiple unicast scenario, where

each receiver requests a independent flow of packets. The choice of inter and intra session

codings becomes important, especially regarding the decodability of the received packets, as

covered in later chapters. In Chapter 3, we focus on intra-session coding, i.e. coding packet

within the same flow, while in Chapter 4 we consider inter-session coding for rate gain. The

capacity of non-multicast transmission over general network remains unsolved even for very

simple cases. In this thesis, we shall not attempt to answer the problem regarding the rate

region and achievability. Rather, we examine the existing generation based coding scheme on

a particular network and investigate the possibility of improving coding performance under

certain delay constraints characterized in our delay-rate trade-off framework.



t 2  ti

Figure 2-2: A inter-session coding example of the butterfly graph: Source si transmits A to
sink ti, while s2 transmit B to t2.

2.2 Coding Schemes and Delay Metrics

We start with the simplest transmission model. Consider a point-to-point communication

system illustrated in Figure 2-3. The sender, denoted by Tx, is to communicate with the

receiver, denoted by Rx, through a wireless erasure channel with packet erasure probability

of e. In addition, a perfect feedback channel with delay D allows the receiver to send delayed

feedback to the transmitter. The system is assumed to be time-slotted. At any time slot,

the wireless packet erasure channel delivers at most one packet successfully, in the case when

the packet is not erased. Otherwise, no packet is received at the receiver. A packet flow

f, arrives at the sender and is to be delivered to the receiver. The packets in this flow are

denoted as {Pf, Pf, ... , Pj, .. }. Each of them is treated as a length m vector in the space

F" over some finite field Fq, i.e. Pf = [P1P/2 - ]T where P E Fq. For simplicity,

we consider only the delivery of the first N packets of the flow and assume that all N data

packets are assumed to be available at the sender prior to any transmissions. The results

can be generalized to infinite packet flows. Furthermore, we assume that N is sufficient large

such that N >> Kmax, where Kma,, is the maximum linear code block size, in terms of number

of packets. Next, we consider the typical fixed size generation-based network coding scheme

and the adaptive scheme we propose.
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bucket are decoded

Tx Rx

D
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Figure 2-3: Adaptive linear network coding based transmission model: For the packet flow
f, the transmitter (Tx) maintains a coding bucket G, whose size is adaptively determined
based on the delay constraints at the receivers.

2.2.1 Fixed generation-based Coding Scheme

In a fixed generation-based linear network coding scheme, the sender first chooses an integer

K > 1. It sequentially partitions the N packets into F] generations {Gf,- , Gf}. Each

generation G consists of K consecutive packets, i.e. G = {Pf +12'... ,in((i+1)KN)} The

generations of packets are transmitted sequentially according their generation indices. We

use G(= {P, f - , PK } to denote the Head of the Line (HOL) generation for transmission,

in which h = 1, - - is the generation index, and hk, k = 1,--- , K are the indices of

packets within the generation. In a time-slotted communication system, it is assumed that

the sender has read all the packets in the HOL generation once the previous HOL generation

is delivered. At every time slot t, the transmitter generates a coded packet P[t] that is a

Flow f son



linear combination of all packets in the HOL generation Gh (shown in Figure 2-5), i.e.

K

P[t ] = (yak [t ] Pf (2.1)
k=1

where a t] = (aI[t], - , K[t]) is referred to as the coding coefficient vector for packet PIt].

Each coding coefficient vector is uniformly and independently chosen at random from FK [1].

The coded packet, with the coefficient vector appended in the header, is then sent to the

receiver over the erasure channel.

The receiver collects coded packets over time, until it obtains K linearly independent

packets to construct a full rank linear system of the K packets. For example, if the

HOL generations contains P1 ,. .. , PK, and the K linearly independent packets collected

are Y1,..., YK, with coding coefficient vector ai = [aii ... aiK] for Y. We have the linear

system,

Y al a 1 2  - - alK P11 P 12  ... P1K a1 1  a 1 2  ... alK P 1

Y2 a 2 1  a 2 2  --- a2K P2 1  P22  ... P2K a 21  a 2 2  a2K P2

yK aKl aK2 ... aKK PK1 PK2 ... PKK aKl aK2 ... aKK PK

(2.2)

With all Y and a* known to the receiver, the full rank linear system can be solved by

Gaussian elimination to recover all Pij and thus all packets P. Moreover, given a large

enough field Fq, it is shown that with high probability [1], any K received packets are

linearly independent. Therefore, in this thesis, we assume that a receiver is always able to

decode whenever it receives K packets.

Once the receiver decodes the HOL generation successfully, it sends an ACK message

through the feedback channel to the sender. The sender, who receives the ACK after a delay

of D time slots, will purge the old HOL generation and move on to the next generation in

the line. The process repeats until all the packets are delivered to the receiver.



2.2.2 Adaptive Linear Coding Scheme

Tx

Sending Coded
Packets for the
coding bucket

Shrink coding DI
bucket size to 2
and empty
bucket

Put new packets
to the coding
bucket and send
coded packets

Collecting Coded
Packets

Rx Decode
Packets in the
current bucket

-- Send ACK

Collecting Coded
Packets

Figure 2-4: A session with varying coding bucket size. The initial coding bucket size is

3, containing packets {P 1 , P2, P3}. After finishing the three packets, the receiver decide to

shrink the bucket size to 2, containing packets {P 5 , P6}.

Our scheme modifies such generation-based network coding in the following ways. The

packets in the flow are not partitioned into generations prior to the transmissions. Instead, a

coding bucket is created and acts like the HOL generation. We use the term bucket to avoid

confusion with normal generation-based schemes. The size of the bucket in term of number

of packets is denoted as K, like in the case of fix generation schemes. The sender collects

information about user-end delay constraints and chooses the bucket size K dynamically.

Therefore, the coding bucket size may change over time for the same packet transmission

session. Figure 2-4 gives a simple example of the timing diagram of our adaptive scheme. At

the beginning, the coding bucket has a size of 3 and contains three packets {P1 , P2, P3}. The

sender keeps transmitting encoded packets, i.e. P[1] to P[5], of these three packets. Some

Rx
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Figure 2-5: An illustration of encoding: the encoded packet P[t] is the linear combination of
all packet in the coding bucket with coefficients ak [t] chosen randomly from some finite field.

of the coded packets, such as P[3] in this case, may be erased during the transmission. The

receiver collects these coded packets until it has enough coded packets to decode all packets

currently in the coding bucket, i.e. {P 1 , P2, P3}. This is done when it receives P[4] in this

case. At this time, the receiver sends a ACK message back to the transmitter, and informs

the latter to move on to new packets. Upon receiving the ACK feedback, the transmitter

empties the bucket. We define all the transmissions between two bucket emptying actions to

be a round of transmissions. A round of transmissions therefore includes all the transmissions

taken place for all the packets in the current coding bucket to be delivered. In this example,

the sender further decides to shrink bucket size to 2 for the next round of transmissions,

possibly because of the tighter delay constraint experienced at the receiver. Therefore, only

two packets {P 4, P5 } go into the bucket for the new round of transmissions. The process

repeats all packets are decoded at the receiver. We leave the details of adaptively determining

coding bucket size to Chapter 3.

There are a few remarks regarding the adaptive coding scheme:

0 0 0



1. Packets stay in the coding bucket for the entire round of transmission. They are moved

into the coding bucket at the beginning of the round and purged from the bucket at

the end of the round. This is to guarantee the random linearly coded packets are

generated from the same group of original data packets and thus the correct decoding

of the original data packets at the receiver. All the packets delivered in the same round

of transmission are decoded together, as in the case of generation based schemes.

2. The size of the coding bucket remains the same throughput each round of transmission.

In principle, the coding bucket size can be change within a round of transmission. For

example, if the size increases, new packets can be introduced into the bucket. However,

it is then more complicated to guarantee the correct decoding at the receiver. For

simplicity, the change of bucket size within a round of transmission is not considered

in the thesis.

3. The availability of feedback is important and is seen in may practical systems at dif-

ferent communication layer as discussed in Chapter 5. Feedback is only used when

the receiver collects enough linearly independent coded packets. The transmitter is

informed about the delay constraints at the receiver through some feedback channel or

from the ACK message.

2.2.3 4,-Norm Delay Metrics

Now we define the delay metrics used in the paper. Following the notations used in the

previous part, let T be the time slot in which the packet P is decoded at the receiver,

and is delivered to upper layer. It is important that we require the delivery of original data

packets {P, ... , Pf } to be in order. In the case when the sequence of packets decoded is

out-of-order, we assume that they are buffered at the receiver first, to ensure in-order final

delivery. Let T represent the final in-order delivery times of packets PJ. Because of the

in-order delivery, we have Ti T2 < ... TN. Consequently, it allows us to define the



ordered inter-arrival times AT of the original packets to as follows,

AzT1  Ti + D (2.3)

AT Ti - Ti_1, i = 2, -.-. , N, (2.4)

where D is the feedback delay from the receiver to the sender. Note that a feedback message

ACK is always assumed to be received correctly after D time slots. However, in the case

when there is more than one receiver, we assume that, in general, receivers experience differ-

ent feedback delays across the system owing to its location and channel variations. Let the

size of each data packet be L. We define the delay cost function as a metric of the following

form,

1 (EN (E[ATi])P 1/p
d(p) L - -1 N, p E [1, oo), (2.5)

where E[AT] is the expected value of AT. The expectation is taken over the distribution

of packet erasures over the system and all the randomness associated with the coding and

scheduling scheme, which are discussed in more detail in the next Chapter.

Mathematically, the delay metric is the fp-norm of the vector of expected inter-delivery

times, i.e. [E[AT] . . . E[ATN] T , normalized by the total packet number and individual

packet size. Physically, however, p measures the sensitivity of the receiver toward the inter-

packet delays. As discussed before, such delay sensitivity and is predominantly dependent

on the type of applications running on the receiver. As the value of p varies from 1 to 00,

the delay function becomes increasingly biased towards the large components in the vector

because of the f,-norm, hence indicating increasing user sensitivity toward large inter-packet

delay. In particular, the two extreme values of p give two interesting interpretations of the

delay metrics. First, consider the case when p = 1. Since EN E[AT] = E[TN] + D, the

delay in (2.5) simplifies to,
_E [TN] +±

d(1) = N (2.6)
LN

That is, d(1) is the average delay per packet, normalized by the size of a packet. Minimizing



d(1), therefore, is equivalent to maximizing the average rate the receiver. On the other hand,

consider the case when p = o. Because of the infinity norm, the delay function in (2.5)

reduces to,

d(oo) -maxi E[AT] (2.7)
L

Effectively, minimizing d(oo) translates into minimizing the maximum expected inter-arrival

time between any two successive packets. We call this the per-packet delay.

The flexibility in choosing various p-value for delay metrics provides a unified way of

looking at the delay sensitivity at the user side. If a user is downloading a file, he is certainly

more concerned about shortening the overall completion time or average delay per packet.

Consequently, d(1) is the appropriate delay cost function to be measured and optimized.

On the other hand, if the user is running a real-time video applications that is extremely

delay sensitive, then d(oo) is more likely to be the right cost function to be minimized as it

allows sequence of packets to catch up quickly with respective delivery deadlines. Moreover,

in between the two extremes, we can choose appropriate sensitivity value p for applications

like progressive video downloading and even dynamically adjust the value according to the

changing delay requirements.

2.2.4 Delay In Adaptive Coding Scheme

Next, we consider how these delay metrics can be applied in the coding scheme we discussed

previously. We only need to examine the adaptive scheme, as the fixed generation scheme

can be viewed as a special case when coding bucket size is a constant. In the adaptive

coding scheme, a receiver will decode all packets in the current bucket before informing the

sender to empty the bucket and move in new packets. Assume that the rate at which the

coded packets are transmitted is r. Consider a round of transmissions of a bucket of K

packets {Pi, -... P }. Once the receiver collects K linearly independent coded packets

of the bucket, it decodes all K packets together. Hence, the ordered inter-arrival times of

original packets will satisfy, E[ATi] = y + D and ATi, =-- ATiK = 0. In general, consider

the case when the bucket size remains the same for a sequence of N packets, {Pi,--- PiN *



N is divisible by K, as the bucket size may only change when the bucket is emptied. The

packets will sequentially enter the bucket in groups of K packets. Then, for the inter-arrival

time of the j-th packet, we have,

[ + D, if j=1 (mod K),
E[A Ti] = r (2.8)

0, otherwise.

Therefore, if the adaptive scheme chooses bucket size of K of a sequence of N packets, we

can simplify (2.5) to measure the delay cost function for the transmission of the N packets,

resulting in:

1_ j=(E[A Tjj])P1/
d(p) = K j (2.9)

L (N

1L (L + D )P ) /
= - (2.10)

L N

K + D
r (2.11)
LK1/P

In particular, under this coding scheme, the delay d(p) seen by the receiver over the period

is independent of N as long as the coding bucket size remains to be K. Hence, we drop N

and only consider the bucket size K for rest of the paper. Furthermore, in practice, K takes

only positive integer values in [1, Kmax], where Kmax is the maximum bucket size, limited

by the maximum tolerable computation complexity of the target system. In this work, for

simplicity, we assume that the coding bucket size K are real value in [1, Kmax]-



2.3 Geometric Programming

We give a concise primer of Geometric Programming (GP) techniques and terminology before

looking specifically into the optimization problems associated with our system, as GP serves

as the primary tool for the next chapter. For more comprehensive coverage of the topic, we

refer the reader to [281, [29].

GP is a class of mathematical optimization problems characterized by some special forms

of objective functions and constraints. A typical GP is nonlinear and non-convex, but can

be converted into a convex program so that a local optimum is also a global optimum. The

theory of GP has been well studied since the 60s [30]. The convexity and duality of the these

problems are very well understood. Well developed solution techniques, such as interior

point methods are capable of solving GPs efficiently even for large scale problems. Many

high-quality GP solvers are available (e.g. MOSEK package and CVX [31]) for providing

robust numerical solutions for generalized GPs (GGP). GP or GGP see many applications

in engineering design and analysis, as they can be used to model or approximate a wide

variety of practical problems, especially in areas such as digital circuit design. In wireless

communication, GP is often used to solve transmission power control problems [29].

Consider a vector of decision variables x = [x1 ... xn]T. A real function g : Rn -+ R is

said to be a monomial if it can be written in the form,

n

g(x) = cJxy , (2.12)
i=1

where the coefficient c is positive, and the exponents a,. . . , an are arbitrary real numbers.

A function f : R -+ R in the form

K n

f(x) = ck1 Fxik, (2.13)
k=1 i=1

with all ck being positive real numbers, is called a posynomial. A posynomial is the sum of

arbitrary number of monomials. On top of this, any function f, which can be constructed



with posynomials using addition, multiplication, positive power and maximum operations is

called a generalized posynomial.

A standard form geometric program is presented as follows,

minimize fo(x)

subject to fi(x) 1, i 1, ... , m, (2.14)

gj(x) = 1, j = 1 - -- P,

where fi(x) are posynomials and gi(x) are monomials, and x are the decision variables,

which are also implicitly assumed to be positive, i.e. xi > 0, i = 1,..., n. In particular,

the objective of the optimization has to be minimizing some posynomial. That says, for

solving maximization problems with GP, the objective function has to be in the form of

some monomial g(x), so that instead of maximizing g(x), we can minimize 1, which is

itself a monomial. In the case where any fi(x) is a generalized posynomial, the optimization

program is said to be a generalized geometric program (GGP). All generalized geometric

programs can be converted into standard geometric programs and solved efficiently.

Note that GP in its standard form is non-convex, because posynomials in general are non-

convex functions. In order to apply general convex optimization methods, a GP is usually

transformed into its convex form through logarithmic change of variables and multiplica-

tive constants as follows. Let y, = log x so that xi =ey, the standard form GP can be

transformed into its equivalent convex form,

minimize log fo (es)

subject to log fi(ey) < 1, i 1,... ,m, (2.15)

loggj(ey) = 1, j 1,... ,p.

In particular, a monomial constraints

n

gj (x) = dj 1 x'ik -1 (2.16)
k=1



is converted to
n

log gj (ey) = log d + EZaik yk = 0, (2.17)
k=1

which is affine and convex, while a posynomial constraint

Ki (1) (2) (n)

f(X) = cikX ik Xaik ... Xnik < 1 (2.18)

k=1

is converted to
Ki

p(y) = log exp(a'y + log cik) 0, (2.19)
k=1

where aik= [a~ia (~2 ) . (n) -u-x ucin

ik ik ... ak] is the vector of exponents. Since pi(y) is a log-sum-exp function,

which is shown to be convex, all the constraints turn out to be convex after the transfor-

mation. Therefore, although the original standard formulations of GPs are nonlinear and

non-convex, they can be converted into convex form as in (2.15) and solved efficiently with

standard convex program solution techniques.
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Chapter 3

Joint Coding and Scheduling

Optimization with Varying Metrics

Now we are ready to investigate the coding and scheduling optimization in our motivating

scenario of typical home network settings. The home network we consider is generally con-

figured as follows. Multiple user networking devices, such as computers, media players and

gaming consoles, are wirelessly connected to one or more WiFi access points (AP). These

access points are then linked with a home gateway to the Internet. All the flow of packets

from the Internet to the user devices goes through the gateway and the access points. The

applications running on different devices may have very different delay sensitivities and con-

straints, as discussed before. The gateway and the access points look for the optimal coding

and scheduling parameters to ensure the QoE of all the users devices within the network.

3.1 Single Broadcast Channel With Packet Erasures

First, we consider the case where is only a single WiFi access point and a single broadcast

channel connecting all user devices. This is the typical scenario with most of the existing

small home networks.



3.1.1 System Model

Conceptually, we represent the system using the following model. We assume that the

link between the AP and gateway has a high capacity and is lossless. It is reasonable as

the bottleneck of such system is usually the wireless connection between AP and the user

devices. Furthermore, in many cases, the gateway and the access point is one integrated

device itself. Consequently, we represent both the gateway and the AP together as a single

node s. We denote the set of receivers by T = {ti, -- - , tM}. Each receiver needs to obtain a

flow of packets from some source over the Internet. Let F = {fi, - - - , fM} be the set of flows,

where fj is the packet flow requested by receiver ti. Note that all fi enter the system from

node s, which in turn acts as a source node in our model. The flows for different receivers

are assumed to be independent. Hence, we have a single source multiple unicast session in

the network. The original data packets in each flow are numbered, with Pf representing

the j-th packet in flow fi. We assume that there are always enough packets to be served

for each flow, since that is the case when there is a heavy traffic condition. Furthermore,

all packets are assumed to have the same size L in the system and the system is time

slotted. As in the previous chapter, at every time slot, the node s is able to broadcast a size

L packet to all receivers, through the packet erasure broadcast channel. Erasures happen

independently across all receivers and all time slots, i.e. the channel is memoryless. We

denote the erasure vector by e = [E M --E], where Es represents the erasure probability seen

by receiver tj. Figure 3-1 gives an illustration of the system model in the discussion. Note

that the transmission is wireless broadcast, which means that receivers are able to overheard

packets destined to other receivers.

Scheduling Strategies

Most of the works we discussed in Chapter 1 focus on linear network codes for multicast,

in which all the receivers request the same content from the sources and any coding is done

within the same session. In the system we consider here, however, we have a multiple unicast

scenario, as each sink looks to receive its own flow, independently from others. Unlike the
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Figure 3-1: System model with single transmitter s and M receivers {ti,... , tM}. Flow fi
is requested by ti, while Gf, represents the coding bucket for flow fi.

simple scenario described in the previous chapter, the resource at node s has to be shared

among all the receivers. In this chapter, only intra-session coding is considered. As a result,

for every time slot, the sender s has to make a decision on which receiver to transmit to. It

will then broadcast the encoded packet for that particular receiver. Moreover, if no inter-

session coding is present, a receiver will discard any overheard packets which are targeted to

some other receiver, since these packets are not useful for him. In this case, some scheduling

algorithm is necessary to determine which receiver to serve for each time slot. While many

sophisticated scheduling algorithms are available, for simplicity, we use a simple stochastic

scheduling algorithm as follows. At every time slot, the source node s serves receiver tj or

flow fj with probability a3 , independently from of any other time slots. In the long run,

equivalently, the transmitter node s is spending a, portion of time serving receiver tj. We

call the vector a = (ai, - , am) the vector of scheduling coefficients.

1i



Intra-session Coding

We use intra-session or intra-flow coding in this case with multiple receivers, i.e. each unicast

flow is coded independently and separately from others. Within each flow, the adaptive

coding scheme described in Section 2.2 is used. That means, the transmitter maintains a

coding bucket for each of the flows in F. The coding bucket sizes and scheduling coefficients,

however, are determined by solving system-wise optimizations. That means that each packet

flow will have a different bucket size in general, depending on the flow delay characteristics.

Under this scheme, for a given time slot, if the transmitter scheduling algorithm decides to

serve receiver tj, it looks for packets in the coding bucket of flow fj, and encodes these packets

using random linear network codes. The coded packet is broadcast to all the receivers. With

probability 1 - ej, the targeted receiver tj will receive it correctly. We are only concerned

with whether the targeted receiver successfully receives the packet, since overheard packets

are discarded. Note that we assume the coding coefficients are embedded in the header of

the packet and the size is negligible compared to the size of the packet L. The coding bucket

size for flow fj is denoted as Kj. In general, Ki #J Kj for i z j. Furthermore, Kj, Vj may

vary over time as the delay requirements at the receivers changes. Let K = (K 1, - - - , Km).

We aim to optimize both a and K, based on the varying delay constraints at the receivers.

There constraints are expressed in terms of the f, norm delay cost function, introduced in

Chapter 2.

3.1.2 Delay Optimization

We first consider the special case where there is only a single receiver, i.e. M = 1. Since

there is no scheduling issue or system-wise fairness consideration in the case, it makes sense

to minimize the delay cost function associated with the receiver. As there is no ambiguity of

notation, we drop all the subscripts. It is easy to conclude that the packet transmission rate

in this case is 1 - E for the receiver and therefore the expected time for receiving K coded

packets is -. Subsequently, the f,-norm delay cost function minimization problem is given



as follows,

K + D
minimize d(p) = (3.1)

L(3.1)

subject to 1 < K < Kmax, (3.2)

where Kmax is the maximum possible coding bucket size because of system or computation

complexity constraints. The optimal block size K* can be obtained by setting zero the

gradient of the Lagrangian of objective function, i.e.,

(1 - E)D
K* = ( -I [ ,Km 0 < e< 1, (3.3)

where the subscript denotes the projection,

(X)g[a, A min(max(a, x), b).

Because of the obvious practical interpretation of d(1) and d(oo), one of important aspect

to understand may be the region of achievable pairs of (d(1), d(oo)) in a two dimensional

space, for optimizing d(p) with different p values. First, let us consider lower bounds on

the two delay metrics individually. For the average packet delay or expected completion, let

d(1) A inf d(1). This infimum can be obtained when K -+ Kmax = oc, and is given by,

1

On the other hand, as K -+ 1, a theoretical lower bound for the per-packet delay d(oo) is

obtained as follows,
1 D

d(oo) = + -. (3.5)
(1 - E)L L

Therefore, the achievable region on a two-dimensional space of (d(1), d(oo)) is lower bounded

by the lines d(1) = d(1) and d(oo) = d(oo). Furthermore, consider the relation between every



achievable pairs of d(1) and d(oo). From (2.5), we have,

K = D(1 - 6) (3.6)
(1 - E)Ld(1) - 1

Since d(1) - d(, the trade-off between d(1) and d(oo) can be expressed as follows,
KD

d(oo) = D . (3.7)
d(1)(1-e)

Therefore, d(1) and d(oo) have a inverse relationship. Ignoring the bucket size constraints

for simplicity, given D, we can also vary K from 1 to oc, and plot the values of d(oo) against

d(1) for the trade-off curve. Each point on the curve corresponds to a choice of K, which is

equivalent to a choice of optimizing d(p) for some p, because of (3.3). Therefore, the choice

of p at the receiver indicates a point on the trade-off curve of d(1) and d(oo) that is desired

by the receiver.

The E,-norm delay optimization can be also view from the perspective of geometric pro-

gramming. With the zero duality gap in GP, we can obtain the optimal d(p) of the uncon-

strained problem (3.1) directly from the dual function by solving linear equations.

In general consider any posynomial u(t) of variable t = [tt2 . .. tm],

n n m

U(t) = EUi(t) = Ec r Qt'.
i=1 i=1 j=1

Let ui(t) = ivj(t), such that E i = 1. Then, from the inequality of Arithmetic and

Geometric Mean, we have,

n n

u(t) = ZU(t) > f v (t)i (3.8)
i=1 i=1

u (t)(3.9)

Ci t 
(.0



= (c)( (c .. ( ) tt 2. . .tm (3.11)

- V() - tft2.. .tm, (3.12)

where Dj = E ai -#i ;> 0, V(,3) is called the dual function while the last line gives the pre-

dual function of the posynomial. By setting the partial derivatives of the pre-dual function

to zero, it is easy to show that the maximum value the lower bound (i.e. the maximum value

of the pre-dual function) is achieved when the #i satisfies both normality constraints and

orthogonality constraints, i.e.

1 + 2 + -+ #=1 (3.13)

ai .f #1 + a2j ' #2 + - -- + anj - 3 = 0, j = 1,2, ... m. (3.14)

Moreover, the greatest lower bound is always tight, if there are #j that satisfy these condi-

tions. In this case, the minimum value of the original posynomial is given by

V1*) = - (3.15)
0 * 2 #on \* '

where 0* = [#* ... , O*] is the value of # = [#1 .. . ,#n] that satisfies both conditions in (3.14)

and gives the maximum value to V(#).

Now, recall the delay minimization by (3.1), its dual function is given as,

V(#)_ ( I ) 3'(D) 32 (3.16)
(1 - E)L#1 L#2

The maximum of the dual function, according to the (3.14), can be obtained at /3* = , *),

which is the solution to the simple linear system,

(1 - 1 -P)01 + (--/P)#2 = 0, (normality condition)
1 +(3.17){1 ± /#2l/=/3 1, (orthogonality condition)



Note that this system always has a unique solution. The approach can be easily generalized

to the case where K is constrained [30].

3.1.3 Delay Constrained Optimization with GP

GP Formulation

For M > 1, in general, the delay cost functions of multiple receivers cannot be optimized at

the same time. On the other hand, optimizing the delay function for some specific receiver

may not be a fair objective. Therefore, instead of delay optimization, we are interested in

optimizing certain system-wise utility function under the constraints that the f,-norm delay

requirements must be satisfied at each receiver. We assume that each receiver ti monitors

the delay constraints for targeted QoE of its applications and sets a maximum acceptable

delay d(pj), corresponding to some delay sensitivity pj for its performance requirements. For

the objective function, we choose to maximize the min rate of all receivers for simplicity and

fairness considerations.

First, consider the packet transmission rate from the sender s to a receiver ti. If the

transmission rate is rj packet per slot, then the actual average data rate received by tj is
LK3

, where Dj is the feedback delay from tj to s. Moreover, since the portion of time s

serving tj is a1 and the maximum transmission rate for tj, when s serves tj only, is 1 - Ej,
rj must be upper bounded by a1 (1 - ej). Let r = (ri,.- - ,rM). The list of variables and

constants and their definitions in this case are summarized in Table 3.1. The optimization

can be formulated as follows:

max K,r,a minK' (3.18)
3 + Dj

K3+ D.
subject to rj dj (pj) Vj = 1, ... ,M (3.19)

L3K.

rj < aj (1 -- j) Vj = 1, ... , M (3.20)

aj 1 (3.21)
.1



1 K 5 Kmax

In this formulation, constraints (3.19) and (3.20) represent the delay and rate constraints

respectively for receiver tj, while (3.21) is the scheduling probability constraint at the sender

node s. The solution of the problem, if exists, will provides the coding bucket sizes of all flows,

K as well as the scheduling coefficients, a. These allow the transmitter s to dynamically

adapt its coding and scheduling strategy based on the variations of d(p) at the receivers, and

therefore accommodate delay sensitive application better, as illustrated later this chapter.

Variables/Constants [Definition

M Number of receivers
L Packet size: all packets are assume to have the same size

Kj, K Coding bucket size for receiver t,, K = [K 1 ... ,KM]

Kmax Maximum possible coding bucket size for the system

a3 , a Portion of time for serving receiver tj, a = [ai . . . am]

ej Erasure probability between s and tj

r, r Packet transmission rate for receiver tj. r =[i ... TM]

Table 3.1: Summary of variables, constants and terms for the single broadcast channel case

For the solution techniques of the optimization program, it is straightforward to verify

that the problem is a generalized geometric program. All constraints can be converted

into upper bound of posynomials of K, r and a in the standard form shown in (2.14). For

constraints (3.19) and (3.21), we have the standard form as,

(dj(pj))-rlL-K P3- + D- L-lK 1 ' < 1

a - 1.

That leaves with only one non-posynomial part, the objective function. In the case of

min rate maximization, the objective can be transformed into upper bounding posynomial

(3.22)Vj = 11 - - -, M.



constraints and monomial objective by adding auxiliary variable x, such that,

max x (3.23)
K,r,a,x

subject to L < - 1, Vj. (3.24)
LA? 3

Combing this with (3.19) to (3.22), we have a GP that can be efficiently solved. Many

alternative objective function are also possible with this formulation. For example, the rate

product maximiztion,
K+ D

min Lrymm 'LKj

or the weight sum of delay functions,

max wjd(pj),

K+D

for some assigned weight W = [w1 ... w,]. The maximization of the sum rate, >j T

however, is a posynomial maximization, which cannot be converted to GGP and belongs to

a class of more general problem called signomial programming. We defer the discussion to

the next section.

3.1.4 Illustrations of trade-offs and advantages

Trade-off: average delay versus per-packet delay

First, consider the delay optimization for a single receiver system. Figure 3-2 demonstrate

the trade-off between d(1) and d(oo) following Equation (3.7) with various values of D

and erasure probability e = 0.4 in the single receiver case. As discussed previously, if we

parameterize d(1) and d(oo) on the optimal bucket size K*, as p varies from 1 to 00, we

obtain the same curves. The shaded area bounded by each curve is the area of all achievable

pairs (d(1), d(oo)) for the specific feedback delay. With small D, both low delay in d(1) and



-D=1
-D0=5

S30 -~ees

~20 - --

50 .... ....t ... .................... ....... ....... ................... ....... ...... D 2

Averge--ckt--layD=1
10 - -. ... . .. .

Figure 3-2: Tradeoff of d(1) vs d(oo) with varying feedback delay D. The shaded region
represents all the achievable delay pair (d(1), d(oo)). Moving from left to right on the op-
timal trade-off curve for fixed D, we are decreasing bucket size K and increasing the delay
sensitivity p.

d(oo) can be achieved, as shown be the blue curve. However, when feedback delay increases,

the trade-off becomes increasingly stronger. This is evident from Equation (3.7), where D

appears in the numerator. It is expected, since for average delay, coding over larger bucket

sizes amortizes the feedback delay over more packets. On the contrary, to obtain small per-

packet delay d(o), increased feedback delay must be compensated by even smaller generation

size or coding bucket size for more frequent decoding. This is also consistent with Equation

(3.3) where K* increases with feedback delay D and decreases as delay sensitivity p.

Adaptive Scheme vs Fixed Generation Coding

Next, consider the delay constrained min rate maximization for multiple receiver systems.

Figure 3-3 to 3-5 shows some comparisons between adaptive coding schemes with fixed

generation size coding schemes, as the delay sensitivity Pi of the first receiver increases. In

this example, we have 5 receivers, with erasure e = [0.4, 0.1, 0.15,0.2,0.25], the same D = 5,
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Figure 3-3: Min rate vs delay sensitivity pi of different coding methods for an example
system with 5 receivers, D = 5, L = 1 and erasures e = [0.4, 0.1, 0.15, 0.2, 0.25]. In the case
of K = 100 and K = 25, the min rate drops considerably beyond certain threshold pi, and
the optimization is infeasible before pi = 2.9, while with the adaptive scheme, the min rate
drops much less as pi increases.

L = 1 and d = 50/L. Except for receiver 1, whose pi value varies, we have p, = 1 for all

other receivers. For the fixed generation size schemes, we choose K = 25 and K = 100 for

representing small and large generation respectively. In these cases, scheduling coefficients

are the only decision variables in the optimization for min rate.

From Figures 3-3 and 3-4, we can see that, initially at low values of p, the min rates for

different schemes are relatively close. Because of the low delay sensitivity level, the adaptive

scheme is able to choose a large coding bucket size to obtain some rate gain with respect

to the K = 25 case. As pi increases, the fixed coding generation schemes are unable to

reduce generation size. In order to meet the growingly stringent delay constraint at the first

receiver, the sender has to devote increasingly more time to receiver ti, as seen in Figure

3-5. Inevitably, the portion of time for serving other receivers is greatly reduced and the min
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Figure 3-4: Coding bucket size vs delay Sensitivity pi of different coding methods for an
example system with 5 receivers. D = 5, L = 1 and erasures e = [0.4,0.1,0.15, 0.2,0.25]. The
adaptive scheme reduces the coding bucket size accordingly, as delay sensitivity increases,
to meet the delay constraints.

rate of the system decreases sharply. In the case of K = 100, the delay requirements cannot

be satisfied for pi > 2.9, and the optimization becomes infeasible. On the contrary, for the

adaptive scheme, which optimizes bucket size and scheduling jointly, there is little decrease

in min rate. For low delay sensitive receivers t 2 to t, the scheme will assign them large

coding bucket sizes to allow rate gain. As a result, the sender is able to meet their delay-rate

constraints with less serving time and save time for higher receivers. On the other hand, as

p values for some receiver increase, coding bucket size is reduced to quickly decreases the

per-packet delay. Hence, the scheme is able to accommodate high delay sensitive receivers

much better than the fix generation size schemes.
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Figure 3-5: ai vs Delay Sensitivity pi of different coding methods for an example system
with 5 receivers. D = 5, L = 1 and erasures e = [0.4, 0.1, 0.15, 0.2, 0.25]. In fixed generation
size schemes, the service time a1 has to rapid increase in compensation for large generation
size to meet the increasing tight delay constraints, while service time ai remains relatively
constant for the adaptive scheme.

3.2 Multiple Non-interfering Wireless Packet Erasure

Channels

With the proliferation of low cost gateway and access points, many devices may be covered by

more than one access points in wireless home, campus or enterprise networks. This motivates

us to extend of the approach in the previous section to the case of multiple broadcast

erasure channels covering the same set of receivers. As in the previous section, we still

have the same set of receivers, T = {ti, ... , tM}. However, there are now W access points,

denoted by the set S = {si, - -- , sw}, each transmitting packets to the receiver through a

separate broadcast channel. For simplicity, we assume that these broadcast channels are

orthogonal or non-interfering. The assumption is justified if the WiFi access points use
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Figure 3-6: An example system with 2 senders and 4 receivers. The broadcast channels
associated with si and s2 do not interfere, while all receivers are connected to both channels
simultaneously.

different frequency bands in their respective downlink broadcast channels. In this system,

instead of an erasure probability vector, we have an erasure probability matrix e = [eij],

where e&j is the erasure probability between node si and tj. Furthermore, we also assume

that each device is simultaneously connected to and receive packets from all W access points,

i.e. has Multi-Packet Reception (MPR) capability. An example of the system is illustrated

in Figure 3-6. Note that the access points may be associated with different heterogeneous

networks, such as WiFi and cellular networks, with different link characteristics.

The same coding and scheduling scheme is used for the new system. We use a = [aij] to

represent the probability of transmitter si serving the flow f3 at any time slot. The scheduling

and coding optimization is done at the gateway node G, who coordinates all senders who

perform encoding. Furthermore, for each flow fj in F, all senders in S have the same coding

I f12 1f3 14



bucket size K, dictated by node G. This ensures that, for each flow, every sender sends

coded packets in the coding buckets consisting of the same data packets and guarantees

the decodability. An important feature of the randomly linear coding is that all coded

packets from the same bucket are exchangeable. That avoids complicated scheduling based

on sequence numbers of the uncoded packets and helps to reduce transmission redundancy

in erasure channels.

3.2.1 Signomial Program Formulation

Similarly to the single sender case, we can formulate an optimization program for determining

K, a and r. For example, the rate product maximization is given as,

min 7 R7 (3.25)
K,r,a,R

3
3+ D

subject to 5 . Vj 1, ... ,M (3.26)

rj Zaij (1 - Ei) V z1.,M(3.27)LKK

R. < K3 Vj =1, ... ,M (3.28)
+ D

1 <- Kj Kmax Vj = 1 . M (3.29)

ai :51 Vi =1, ... W, (3.30)

where the delay constraint (3.26) and complexity constraint (3.29) remain the same as in

(3.19) and (3.22). Auxiliary variables Rj and (3.28) are used to represent the average packet

transmission rates for the receiver. Maximizing rate product is equivalent to minimizing the

product of average delays R71, hence the objective H 3 R71 .

The packet transmission rate for each receiver in this case is bounded by >_' asj (1 - Eij)

However, owing to the existence of this new transmission rate constraint (3.27), the problem



becomes truly non-convex. In particular, the constraint can be written as

rj + (-a)(1 - Ei) < 0 (3.31)

which is an upper bound constraint on a signomial. A signomial is a sum of monomials

whose multiplicative coefficients can be either positive or negative. The problem therefore

belongs to a more general class of problem called Signomial Program, which is truly non-

convex and NP-hard in general. Only local optimal solutions can be efficiently computed.

Based on the most widely used monomial condensation methods, we provide an efficient way

to approximate the solution with successive GP solutions.

3.2.2 Successive GP Approximation

Consider an arbitrary signomial h(x). It can always be written as the difference between

two posynomials, i.e. h(x) = f+ (x) - f -(x), where f+ (x) contains the terms with positive

coefficients, and -f -(x) contains the therms with negative coefficients in h(x). As a results,

the inequality h(x) < 0 is then equivalent to

f+(x) <
fX < 1. (3.32)
f -(X) --

We can approximate the left hand side of this inequality with a posynomial using common

condensation methods [29].

In the single condensation method, the posynomial denominator f-(x) is approximated

using a monomial g~(x), which in turn allows f (x) to be approximated by , which

is a posynomial itself, since it is generated from dividing a posynomial by a monomial. In

the double condensation method, both f+ and f- are approximated using monomials, which

creates a monomial approximation of f+('. In our case, both methods are equivalent, since

we have f+(x) = rj, which is itself a monomial. One of the commonly used monomial

approximation of posynomial is based on the following Lemma [29].

Lemma 1 Given a posynomial f(x) = EZ ui(x), choose #i > 0, such that Ej f = 1, then



the following bound holds,

f(x) > g(x) = .x (3.33)

Furthermore, equality holds when x = xO and #3 = x.

Proof: The results can be easily proved using the Inequality of Arithmetic and Geometric

Mean, similarly to (3.12). Let ui(x) = #2 - vi(x), such that E 0i = 1, 3j > 0. From the

AM-GM inequality, we have,

S ui(x) = ,3jvj(x) > JJ (vi(x)),3.
i ii

Therefore, f(x) 5 g(x), Vx. The equality part can be easily verified by setting #3 =(XO.

Using Lemma 1, we can approximate constraint (3.27) in the signomial program with the

following,

rj 5 r (aij (1 - egy) ) e (-4

In particular, when we substitute constraints (3.27) with (3.34), the resulting optimization

program is a geometric program. Furthermore, given the monomial approximation in (3.34),

we can construct successive GP based on refined approximations of constraint (3.27) to

approach local optimal solutions of the original signomial problem.

Let t be the iteration index of the successive approximations and (Kt, at, rt, Rt) be the

solution obtained by solving the GP approximation of the SP program at the t-th iteration.

Assume that some feasible solution (K0 , a0 , r0 , RO) is known initially. At iteration t + 1, the

algorithm computes 0j, such that the constraint (3.34) is tight at the solution obtained in

the previous iteration, i.e. the new /i obtained allow (3.34) to be satisfied with equality.

This is achieved because #3 are computed based on the equality condition given in Lemma

1. The constraints (3.34) is then reconstructed with the new 3 values. The resulting GP is

solved again to obtain an approximated solution at iteration t + 1. The process iterates until

some convergence criterion is reached. The detailed algorithm is summarized in Algorithm

1 and it will output a local minimum solution that fulfills the Karush-Kuhn-Tucker (KKT)



Algorithm 1: Successive GP Approximation of SP

Begin: A feasible solution (K 0 , a0 , r0 , RO), t = 0;
repeat

Compute f(at) = E a .(1 - Eij);

Compute ij = ;at )

Construct the t-th approximation and replace constraint (3.27) with the monomial
constraint,

ri < g(a t ) - j J(Aja1 )fu

t = t + I;
Solve the resulting GP to get (Kt, at, rt, Rt);

until Convergence;

Condition.

The condensation methods and successive GP approximation also provide the possibility

of choosing a wider variety of optimizable objective functions, for finding local optimums,

including the sum rate maximization, for both single and multiple broadcast packet erasure

channel cases. In sum rate maximization, the objective function is given as,

K+ D
max LS '

By introducing auxiliary variables R = [R1 R 2 ... RM] representing the average rate of each

receiver, and variable x for the sum rate, we can convert the original maximization objective

into the following,

max x (3.35)
K,r,a,x,R

subject to Rj < x (3.36)

Kj+ Dj

R LK 3  Vj. (3.37)

In particular, the new objective function and the sum rate constraints (3.36) are both gen-



eralized GP constraints. We can apply exactly the same condensation and approximation

method to the remaining constraint (3.37) to converted the sum rate optimization program

into a series of standard GPs. Similar methods applies to a variety of objective functions,

such as weighted sum rate.

3.2.3 Convergence
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Figure 3-7: Convergence of maximum min rate in the example system, as the number of
iterations increases. p = [1.6 1.7 1.8], D = 5, L = 1,e = [0.2 0.1 0.15; 0.15; 0.2 0.25]

Next, we show that the proposed Algorithm 1 always converges to some local optimum

that meets the KKT condition, based on the results of Lemma 1:

1. First, according to Lemma 1, the values 3ij are chosen such that, for the local approx-



imation at at in the t-th iteration, we have,

g(at ) = f (at ) ;> f (a t-1 ). (3.38)

The equality is from the fact that the local approximation at at is tight, while the

inequality part follows from the rate constraint of the previous GP iteration.

2. Let the optimal objective for iteration t be Z*,t. Then we have Z*,t < Z*,t'1.

3. Finally, at local optimal a*, it can be verified, that f(a*) = g(a*) and Vf(a*) = Vg(a*).

These shows that the algorithm will indeed converge to an optimal that satisfies the KKT

condition [32]. In fact, in many cases, it may converge to the global optimum.

Figure 3-7 and 3-8 shows the convergence of min rate and bucket sizes for a example

system with 3 receivers and 2 transmitters, D = 5 for all receiver, delay sensitivities p =

[1.6 1.7 1.8], while erasure probabilities e = [0.2 0.1 0.15; 0.15;0.2 0.25]. Figure 3-9 shows

the convergence of the scheduling coefficients to the local optimums, for the same system.
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Chapter 4

Inter-Session Coding in Short

Feedback Delay Settings

4.1 Model and Assumptions

In this chapter, we consider again the single broadcast channel with packet erasures, as

described in Section 3.1 and Figure 3-1. In the discussion of the previous chapter, we

show that the trade-off between d(1) and d(oc) is increasing strong, as the feedback delay D

increases. When the D is very small, the rate gain from having long coding blocks is minimal.

In this chapter, we consider the case when the feedback delay is insignificant compared to

time slot length. In this case, the transmitter has the knowledge of the erasure pattern seen

by all the receivers shortly after each transmission. Accordingly, the transmitter can be

perform inter-session coding to reduce the total number of transmissions needed to deliver

all the packets, or equivalently, to increase the average transmission rate for the receivers.

Perfect Immediate Feedback

Consider the same system described in Figure 3-1. A single source node s is looking to

transmit independent packet flows fi for receiver t1 through a broadcast channel with packet

erasures. In this chapter, we make the following assumptions that are different from Chapter



1. There is perfect immediate feedback available from any receiver tj to the source node

s. Equivalently, prior to a new transmission, the transmitter s has the knowledge of

erasures happening at all receivers for all previous transmissions. While the perfect im-

mediate feedback assumption may not be very practical, it is usually used for studying

upper bounds of the performance of coding and scheduling algorithms. Furthermore,

many wireless systems use the Stop-and-Wait medium access control (MAC) protocol,

which essentially provides the transmitter with the knowledge of packet erasures before

new transmissions.

2. The transmitter maintains the record of erasure information about all past transmis-

sions for all receivers for making its inter-session coding decision at future transmis-

sions.

3. A receiver does not discard overheard packets that are targeted to other receivers,

until it receives all its requested packets. The overheard packets are used to decode

inter-session coded packets. We start with assuming the buffer size at each receiver is

the same and is finite. This assumption is relaxed later.

a 
ti

f 2 
P , a 1

11

f2

Figure 4-1: A packet erasure broadcast channel with 2 receivers



4.1.1 An Example

A simple example may give a clear illustration of the benefit of inter-session coding based on

previous erasure. Figure 4-1 shows a packet erasure broadcast channel with only 2 receivers.

Suppose the source node s intends to transmit packet A to ti, and packet B to t2 . The

transmitter broadcasts A and B respectively for the first 2 time slot. The results of the

transmissions are shown in Table 4.1. The packet A targeted to ti at the first time slot is

overheard at t2 but erased at ti, while B, targeted to t2, is erased at t2 but received at ti.

The overheard packets are buffered in the receivers. The transmitter is assumed to have

the knowledge of erasures happen in the first two time slots. Therefore, in the third time

slot, instead of transmitting A or B, the best strategy is to transmit A ( B, which will

benefit both receivers and possibly reduce the total number of transmission if both receive

it correctly, since A e B allows the decoding of A at receiver ti with the knowledge of B and

similarly for receiver t2.

Time slot 1 2
Transmitted packet A B

Receiver ti x /
Receiver t2  / x

Table 4.1: Transmission of packets in the first few time
received or overheard, "x" indicates erased.

3
A ED B

/
/

slots: "/" indicates successfully

4.2 Outer bound on the capacity of packet erasure

broadcast channels

Recent works show that feedback indeed expands the capacity region of broadcast channel

with packet erasures, in contrast to AWGN point-to-point channels, where feedback does

not increase capacity [33]. However, the capacity region of the erasure broadcast channel

with feedback is in general unknown, except for certain special cases.



Rate Regions

No Feedback

Dana et al. [34] shows that, without feedback, the rate region of any multiple input broadcast

erasure channel is achieved by time-sharing among the receivers at each available transmitter.

Hence, a rate tuple for M receivers R = {R 1, R2, .. , RM} is achievable if and only if there

exist a matrix [aij], satisfying:

m

0 Rj Zoij(1 - 6ij) Vj (4.1)
i= 1

Z = 1 V i (4.2)

a > 0 Vi,j. (4.3)

From capacity region specified by (4.3), we conclude that, given a large enough field size

q, a intra-session coding over Fq, together with a time-sharing packet scheduling suffices to

asymptotically achieve all rate tuples at the boundary capacity region of the multiple input

broadcast packet erasure network with increasing block size.

With Perfect Immediate Feedback

When perfect immediate feedback is available, the problem becomes much more complicated,

even for linear coding capacity, because of the combinatorial hardness of finding the optimal

inter-session codes. There is little work on multiple input broadcast erasure channel with

feedback. However, there is some very recent works, providing sets of outer and inner bounds

on the capacity region of single input broadcast erasure channels under perfect feedback, as

well as some suboptimal coding algorithms to achieve rate-tuples close to capacity region.

One outer bound for the capacity region of the single input broadcast erasure channel is

shown [24].

Let 7r = {7ri,..., 7rM} be some permutation of the index set {1, 2,... , M}. Recall that



{ Ei,... , eM} are the erasure probabilities to all the receivers. Let e, = Eu , then,

Crf {R ;> 0 | }(4.4)

is the capacity region of a physically degraded broadcast erasure channel with erasure prob-

ability ei for receiver 7ri. As shown in [35], feedback on a physically degraded broadcast

channel do not expand the capacity region. Hence, it is also the capacity region of the same

degraded broadcast erasure channel with feedback, which serves as an outer bound for the

original single input broadcast erasure channel. Furthermore, let P be the set of all per-

mutations, the capacity region Cf of the original channel with feedback, is outer bounded

by,

Cf c n. EpCf. (4.5)

References [24] and [25] show that the bound is tight for symmetric channels as well as for n <

3 cases. Reference [25] further shows that the bound is also tight for spatially independent

packet erasure broadcast channel with one-sided fairness constraints with arbitrary number

of receivers.

Coding Algorithms

For the no feedback case, intra-session coding within each flow, combined with time-sharing

packet scheduling achieves the capacity region of the channel with sufficiently large gen-

eration size. When perfect immediately feedback is available, intra-session coding is not

sufficient to achieve the whole capacity region. Furthermore, it is unknown whether linear

inter-session network codes suffice to achieve all points in the capacity region. Reference [24]

provides some exhaustive book keeping strategies for coding packets to achieve the capacity

outer bound for symmetric channel conditions and for n < 3 case. The Packet Evolution

scheme proposed in [25] provides a inner bound for the capacity region, as shown in Propo-

sition 3 of [25]. Some more practical schemes are provided in [36], [37] and [38].



4.3 Pair-wise Opportunistic Coding

4.3.1 Coding Method

We consider a suboptimal pair-wise opportunistic coding scheme. In general, the scheme does

not achieve capacity with perfect immediate feedback. However, it is simple to implement

and analyse. Furthermore, it is compatible with the time-division scheduling among the

receivers in a single packet erasure broadcast channel case. The scheme can be readily

extended to multiple non-interfering broadcast channels. First, we consider how this scheme

works in the case of two receivers, ti and t2.

When the transmitter sends a packet from fi to ti, if the packet is erased at ti but

overheard at t2, we call the packet a Type A packet. Similarly, we define Type B packets to

be the packets that are intended to t2 , but missed by ti and overheard by ti. Let the set of

type A packets be Si and the set of Type B packets be S2. The algorithm works as follows

At any time slot, the transmitter s randomly picks a receiver to serve based on a stochastic

vector (ai, a2), similarly to that in Chapter 3, where ai is the probability that the transmitter

broadcast a packet from fi at any time slot. The decision is made independently for each

time slot. Let jSjl be the cardinality of the set Si. At some time slot, assume that receiver

t2 is chosen,

" If ISil > 0,| S21 > 0, then randomly pick X1 E Si and X2 E S2 , send Y = X1 E X 2 .
Furthermore, if Y is received at ti, then remove Xi from Si, i = 1, 2.

" Otherwise, ISil = 0 or |S21 = 0. Simply send an new packet from fi for the target

receiver ti. If the packet is erased at t, and received at at the other receiver, update Si

to include this packet. Otherwise, Si stays the same.

4.3.2 Markov Model For Two Receivers

Next, we use a Markov chain to analyze the gain of using inter-session coding method in

the case of two receivers. Notice that inter-session coding opportunity only occur when



both Si and S2 are nonempty sets. Consider the system states denoted by the tuple of the

cardinalities of the two sets (|S2|, IS,1). The Markov chain presenting the evolution of the

states is drawn in Figure 4-2.

Figure 4-2: Markov chain for pair-wise inter-session coding based on erasure patterns

Note that there are two layers of states. When the system is at the upper layer states,

there is no inter-session coding is done. The transmitter chooses a receiver to serve, based

on the scheduling probability vector (ai, a2). On the other hand, at the lower layer states,

coding can always be done and the coded packet can benefit both receivers. The state

transition probability is defined as follows,

1. At any upper layer state, let Event A (or B) be the event that a packet is sent to ti

(or t 2), but erased at ti (or t2) and overheard at t2 (ti), i.e. a Type A (or B) packet is

generated. We have,

P(Event A) = pa = a1 , 1 (1 - E2)

P(Event B) = Pb = a2 2 (1 - 61).

(4.6)

(4.7)

Starting at state 00, if none of the receiver receives the transmitted packet or none of



Event A or B happens, the chain stays in the same state with probability

Px = a1(1 - Ei) + a 2 (1 - E2) + 182. (4.8)

If Event A happens, Si is increased by 1. Therefore, the chain moves to state 01 with

probability Pa. Similarly, Event B causes the transition from 00 and 10 with probability

Pb.

In some upper layer state other than 00, the occurrence of Event A or B may transit

the state into lower layer state, depending on the current state. For example, at 01 if

Event B happens, S2 increases by 1 and 11 state is reached. A similar approach applies

to the states on the left of 00.

2. Now, consider the lower layer states. The fact that ISI and |S2| are both greater than

zero, means that the sender always transmits inter-session coded packets when it is in

lower layer states. Consider the case when a inter-session coded packet is transmitted,

" If both receivers receive the packet successfully, the packets X1 and X2 are re-

moved from Si and S2 respectively, and the chain moves to the non-coding state

directly above. This happens with probability,

qc = (1 - Ei) (1 - E2). (4.9)

Note that this is when the coded transmission generates rate gain, as the delivery

of the coded packet benefit both receivers.

" If only one of the receiver receives the packet, then the rate gain is not observed

for this particular transmission. For example, if only ti receives X1 e X 2, it is

equivalent to it receiving X1 individually, and X1 is removed from S1. Therefore,

in state transition, |Sil is reduced by 1. Furthermore, if IS1| is reduced to 0, the

chain will jump to a upper layer state, depending on the current state. That



happens with probability,

qa (1 - 61)62, or (4.10)

q (1 - 62)61. (4.11)

e Finally, it none of the receiver receives the coded packet, the state remains the

same, with probability,

qy = Ei12. (4.12)

4.3.3 Steady-state Distribution

In order to obtain the steady distribution of the Markov chain shown in Figure 4-2, we

first examine the same problem when the buffer size for overheard packet at each receiver is

limited to B. This results in a finite Markov chain is similar to the original infinite chain,

except that edge states. Specifically, the edge states are, OB, BO, 1B and B1. Assume that

there is a stable distribution and -jr is the steady state probability of state ij in the finite

state Markov chain. We can solve the chain by applying balance equations for various cuts.

We use the right side of the chain in the following explanation, but it is understood that the

same applies to the left side of the chain by symmetry.

Edge Cuts

First consider the C1 and C2 cuts at the right edge of the chain, as shown in Figure 4-3.

For the balance equation cross the cuts, we have

(qc + qa)7r1B = ParOB-1 (Cl) (4.13)

PbWOB = Pa?TOB-1 + qbw1B (02). (4.14)



Figure 4-3: Cuts at the right part of the finite state Markov chain. A = B - 1, C = B - 2,
where B is the buffer size.

Combining the two equations, and performing the same cuts on the left edges of the chain

(or simply use symmetry), we have

qa + qb + qc
WOB = " 1B rre 71rB

Pb
-a +~ qb + qc

lUB0 lB1 rlelrB1,
Pa

(4.15)

(4.16)

where we use

qa + qb + qc
rre

Pb

qa + qb + qc
re -=.

Pa
(4.17)

to represent the ratio between the steady state probabilities of two edge states on each side

of the chain. Furthermore, we can cut the chain in the middle in the same way as C1, i.e.

for the cut between state Oj, lj on one side and Oj + 1 and lj + 1 on the other side, we have

(qc + qa)1rlj+1 = Palroj

(qc + qb)irj+1 = Pbrjl.

(4.18)

(4.19)



alternatively,

7ro - qa+c "rij 1j+1 = rr7 lj+1 (4.20)
Pa

7ro- b T 1 = r,±7rj+1, (4.21)

in which, the steady state probabilities of upper layer states are expressed with those of the

lower layer states, and the ratios are denoted as rr = qa+gc and r, =g*+C respectively.
Pa Pb

Vertical Cuts

Next, consider any vertical cut in the middle portion of the chain, such as C3, shown in

Figure 4-3. The states on the left side of the cut are Oj - 1 and lj, the balance equation can

be written as,

Pa7TOj-1 + qb7rlj = PbTOj + qar 1j+1. (4.22)

Combining this with (4.21), we can express 7rij+ 1 in terms of 7rij, for j > 2, and similarly for

irij+1 and 7rji. These are given as,

7rij+1 = Paqa + paqb - paqc 7Tij r17rij (.
Paqa + Pbqa - Pbqc

= Pbqa + Pbqb + Pbqc
pbrb~nq=- 7rjp = r2wri. (4.24)Pbqb + Paqb + Paqc

where the ratios are denoted by constants r1 and r 2. Now, putting together Equations (4.24)

(4.21) and (4.16), we can express any steady state probability rij, (i, j) -/ (1, 2) on the right

(or left) side of the chain in terms of r12 (or 721). That is,

9 On the left side of the chain,

3 .-27rlj =ri 212, 2 < j < B (4.25)

iroj = rrlrij+1 = r rr 712 1 < j < B (4.26)

7OB = rre7 lB = rrer 2 7r12 (4.27)



* On the right side of the chain,

j-21
7rji1 = r2721,

j-1
7ro = ri7rj+i = r, rr 721

B-2
7TBO =rlelrBl rieri i 2 1

2 < j < B

1 < j < B

(4.28)

(4.29)

(4.30)

Following these equation, we only need to solve ro0 , 71, 712 and 7r21 for all the steady state

probabilities, which requires four equations.

Linear Equations

The four equations can be found in the following ways.

1. Using cut El, shown in Figure 4-3, we have,

Pa7rOO + qb7rll - Pbrr7r12 + qar12 ,

Pa7rOO + qb7F11 - (Pbrr + qa)7F12 = 0 (4.31)

2. Similarly, we can cut on the left side of the chain, in the same way as E1, in which we

obtain,

Pb7roo + qa7r11 - (par + qb)7r21 = 0 (4.32)

3. Consider the horizontal cut E2 which separates the upper and lower layers. All the

transition probability from upper to lower layer is given by,

P(upper to lower) = p Er7 3 + Pa E 7rjo
j=1 j=1

B-1

(4.33)

B-1

Pb(Y3 rrr - + rrerB2 )71 2 + Pa( rl? + ri2B 2 )r 2 1 (4.34)



1 B~1 1-rB 1

= Pb(rr r +rrer- 2 )7r12 +parI 1-r 2  + rrer2 2 ) 7r21

(4.35)

= PbC127r12 +PaC217r21, (4.36)

B-1 B- B-
where we use c12 and c21 to denote constants r, r +rrerB- 2 and r 1  r +rrer 2

respectively for convenience. On the other hand, for the transition from lower to upper

layer, we have,

B B

P(lower to upper) = (qc + q) E 7rij + (qc + qa) E 7ri + (q + qb + qc)7r11 (4.37)
j=2 j=2

B-1 B-1

(qc + qb) 1 7 12 + (qc + qa) 2 721 + + -)7r1

(4.38)

(qc + qb)dl27r12 + (qc - qa)d 21 7r21 + (qa - qb + qc)7ri, (4-39)

where d12  1-r and d21 = 2 are constants. Equating (4.36) and (4.39), we
1-rl -r

have the third linear equation in terms of r00 , 7r1, r12 and 7r21.

4. Finally, all the steady state probabilities must sum up to 1, which gives us the fourth

equation,

7oo + r11 + (c12 + d1 2)r 12 + (c2 1 + d21 )7r21 1 (4.40)

where, c12, c21 and d12, d21 are defined as constants in (4.36) and (4.39) respectively.

Solving this linear system, we can recover the four variables previously states. But more

importantly, we can compute the probability that the system is in a coding state, i.e. in a

lower layer state. This probability 7re is given by the sum of all steady state probabilities of

lower layer states, parametrized by ai, a2, E, E2 and the buffer size B, i.e.

B = d1 27ri 2 + d2 17 21 + 71. (4.41)



Furthermore, sum rate gain can be obtained by computing the frequency at which the red

edges are traversed in Figure 4-2. That is simply,

Gsum = qc 7rt, (4.42)

while the rate gain for each individual receiver is given as,

Gtl = ai Gsum , Gt 2 = a 2 Gsum (4.43)

Note that, the solution gives the steady state probably for coding states and coding gain

when the buffer size at each receiver is limited to B. When infinite buffer is allowed, simply

take the limit of 7rB as B -+ 00.

The detailed solution procedure, which uses standard algebraic techniques, is omitted.

Let
ae(-- ey)(1 - e)

(1 - ej)e (aj(1 - Ej) + aE(1 -E))

where j E 1, 2, j f i. After some tedious algebra (Appendix A), we can obtain that, as

B -+ 00, if y1 < y2, then

B* (1 a1e(1 - E2)
-r --+ 7r =ai( 2 (4.44)~ ( - Ei) + ais1 (1 - E2)

Intuitively, in this case, the probability of t2 overhearing ti is lower, in the long run, the

probability of of getting into a coding state is dominated by the probability of t2 overhearing

missed packet by ti, while ti always overhear more than enough t2 packets in the long run.

4.3.4 M Receivers

When there are more than two receivers, the coding becomes much more complicated. Cod-

ing opportunities may happen between any pair of receivers. In this thesis, we keep the

inter-session coding limited to packets belong to two sessions. While the optimal inter-

session coding for such channel is unknown, it is easy to see that the method is not optimal.



However, on the other hand, the code design is much tractable with minimal amount of

erasure bookkeeping needed.

When the number of receivers is even, one method is to pair up the receivers statically

and perform the pair-wise coding only within the pair. In this case, the previous results

still apply. We just have to perform the same analysis for each pair of receivers individually.

Hence, if ti is paired with tj, we just have to replace a1, a2, El, E2 with ai, aEi, E in the

above Markov chain to obtain the rate gain from (4.43).

However, such rigidly pairing up is obviously not a good option and restricts the coding

to pre-defined pairs or pairwise codings. An alternative is to keep track the global erasure

pattern and determine online, packets from which two sessions can be coded together. In

this method, at any time slot, the transmitter picks a receiver ti. The algorithm check

all possible receivers tj, j / i, to see if there exist a receiver j, such that ti and tj both

overheard each other's missing packet in previous transmission. If there exist such a tj, the

code the two packets together, otherwise we send the original packet for ti. However, the

analysis is more difficult, since the steady state probability of coding states for any two pairs

of receivers are not independent. It is, on the other hand, more straightforward to simulate

the coding algorithms to understand the coding gains numerically, which is our current work

in progress. Most importantly, with better understanding of pair-wise inter-session coding

schemes, we look to investigate more general practical inter-session codes in our future works

to exploit the benefits of increased capacity from feedbacks.
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Chapter 5

Architecture and Protocols

In this chapter, we briefly discuss the practical aspects of implementing the scheme proposed

in Chapter 3 using existing protocol architectures with possible modifications. Specifically,

we consider the modification of network layers in home networking devices, especially the

gateway, access points and possible user devices to efficiently leverage the benefits of network

coding and the proposed optimization schemes from previous chapters.

5.1 Session Definition

We start with the definition of a session (or a flow) on the network layers from a network

coding perspective. The coding method we propose is essentially an End-to-End coding

between the gateway and the user devices. In the layered architecture within a home network,

there are multiple possible ways of defining a transmission session or flow. For example, a

session defined in the application or transport layer means that some user devices, such as

a PC, may be identified as multiple receivers, when running multiple application or opening

multiple connections at the application level. On the other hand, a session may be defined

at a much lower level, for example, at the MAC layer. Such a session will contain all packets

destined to the same MAC address regardless higher layer entities.

For the purpose of our scheme, we define a session to be all the data packets destined



to the same receiver. That is, a session is defined on a receiver basis. We believe that the

definition is most suitable for our model for several reasons.

" Firstly, instead of having any coding operations at the access points, encoding and

decoding of packets happen at the home gateway and at the receivers, respectively.

That is because, compared to what is possible at the gateway, the computation power

at access points is usually much more limited in today's home network. It may be

desired to keep dumb devices like access points unaware of network coding related

operation as far as possible. The gateway is a network layer entity, while the access

points sit at the link layer. Hence it is more reasonable to group packets to the same

receiver into a session at the network layer.

" Secondly, such session definition may help to avoid starvation of encoding buffers. A

session defined on a receiver basis may include one or more upper layers (TCP or UDP)

connections. Therefore, packets from multiple upper layer connections are buffered in

the same queue for encoding, which allows more packets to be coded together.

" The optimization complexity is reduced because of reduced number of sessions at the

per receiver level, compared to session defined at connection level.

As an alternative, it may be beneficial to define a user session at the upper level, so

that the algorithm may be able to optimize the coding and scheduling parameters more

specifically with respect to the QoE requirements of individual applications. That means

defining a session to correspond to one or more transport layer connections associated with

a specific application running on a particular receiver.

However, that may come with significant difficulties and challenges, such as the layering

issue and possible starvation of encoding buffers. The number of such connections may be

too large to be managed efficiently for coding operations, especially when there are multiple

access points whose scheduling operations are to be optimized. Furthermore, setting up the

network coding sublayer and coding within a TCP session requires the gateway to intercept

the TCP level connection, which may introduce extra complexity to the existing protocol
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Figure 5-1: Network Coding sublayer design: the sublayer is inserted directly above network
layer and a session at this sublayer includes all IP packets from the gateway, destined to the
same receiver.

stack and bring the common problems encountered by many TCP proxy solutions.

For the rest of the discussion, we follow the definition of a session on a receiver basis. We

consider placing a network coding sublayer within the network layer at the gateway as well

as at the end receivers. Figure 5-1 illustrates the layer design of our system. Notice that the

protocol requires modifications at the gateway as well as at the receivers. Moreover, as we

will mention later, some modifications at the access points may be also necessary and come

with more challenges.

Briefly, the basic functionalities and operations of the network coding sublayer can be

summarized as follows.

(a) Buffering Packets. The network coding sublayer queues packet according to their

sessions. Packets from multiple TCP or UDP sessions are placed in the same queue as

long as they are destined to the same user. Thus, in the case of multiple access points,

where each receiver may have multiple IP addresses associated with the access points, the

network coding sublayer at the gateway needs to keep track of the IP address belonging

to the same receiver in order to queue packets accordingly. Moreover, the sublayer needs

to collect information from multiple interfaces in the corresponding sublayer on the user



device side.

(b) Encoding and Decoding. The adaptive intra-session network coding discussed in

Chapter 3 is implemented in the network coding sublayer. Note that the source in the

original model is the NC sublayer at the gateway in the layering structure. The details

of the encoded transmission are covered in the next section.

(c) Block Acknowledgement. When the end receiver has collected sufficient number of

packets from multiple access points, the NC sublayer at the receiver is responsible for

sending feedback to the gateway NC sublayer, indicating that the packets in the current

coding bucket are correctly received, so that the gateway is able to empty its buffer and

start to arrange the next round of transmission for new packets in the coding bucket.

(d) Optimization. Finally, the coding bucket size and scheduling coefficient optimizations

need to be carried out at the gateway NC sublayer and some results of the optimization,

such as scheduling coefficients need to be communicated to the access points.

5.2 Packet Transmissions and Acknowledgements

5.2.1 Encoded Transmissions

We consider a typical round of transmission for some receiver tj in the layered system. All the

packets in current coding bucket are buffered at the sublayer at the gateway. Suppose that

there are two access points which are connected to the gateway by lossless high bandwidth

wireline links. It is straightforward to generalize to systems with only one or more than two

access points.

Let time t = 0 be the start of the round of transmission for receiver tj. At t = 0, the NC

sublayer at the gateway produces T + T2 coded packets, which are linear combinations of the

K, packets in the coding bucket, with coefficients randomly chosen from some sufficiently

large field Fq. The network layer then forwards the first T coded packets to access point si

and the last T2 packets to access point S2. We assume that the transmission between the



gateway and the access points are costless because of the high capacity links. Therefore, for

simplicity we set T = (1+ a) *_ , for some small positive o. That is to ensure that, with

high probability, the receiver can obtain all packets from a single access point if necessary.

We later discuss the case when the receiver fails to receive enough coded packets.

At the next stage, each access point, whenever it is ready to serve receiver ti, picks a

coded packet to transmit to receiver ti. At the receiver side, the NC sublayer will collect all

packets received for the current coding block and place them in a buffer. When the receiver

collects Ki packets, it tries to decode the block. With high probability, the decoding will

be successful with Ki coded packets. If it fails, then there are linearly dependent packets,

and it waits for one more packet before attempting to decode again. Eventually, all packets

in the coding bucket are recovered and the decoded packets are delivered to their respective

connections at the upper layer.

The link layer retransmission does not guarantee reliable communications. The WiFi

link layer makes a maximum number of attempts (usually 3 to 5) for every packet, before

the packet is dropped. Hence, the probability of a packet erasure is the probability that the

packet fail to be delivered after several attempts. On the other hand, with the coding scheme,

there is no incentive to attempt the same packet multiple times. Hence, the maximum

number of attempts should be set as low as possible to avoid unwanted retransmissions,

whose need is eliminated by the use of coding. As soon as the decoding succeeds, the

receiver transmits a feedback message to the gateway at the NC sublayer to acknowledge

the current coding bucket. The receiver also sends extra acknowledgements to the gateway

if more packets of the same coding bucket are received after successful decoding, generating

repeated ACK for the same round of transmission. Note that the ACK happens at the NC

sublayer.

As the gateway sees the acknowledgement from receiver tj about the current round of

transmission, it empties the coding bucket and starts a new round of transmissions by moving

in new packets from flow fj. This process repeats until receiver i finishes its session.

However, there are still some challenges to be addressed in the layering framework.



1. Firstly, the scheme may not work well with TCP at the upper layer. Specifically, the

TCP congestion control mechanism is largely built on the Round-Trip Time (RTT)

and acknowledgements of individual TCP packets. Coding bucket or generations at

lower layer means End-to-End TCP sessions observe delayed feedback and larger round

trip time, which may largely reduce the efficiency of TCP control and retransmission

mechanism.

Two possible solution may be used. The first one requires larger TCP packet sizes, so

that the lower layer can segment TCP packet into smaller frames, each as a unit for

coding at the NC sublayer level. At the same time, the timeout value for TCP session

can be adjusted carefully to match the corresponding choices of packet and frame

sizes. These will mask the lower layer coding from the higher level TCP connections.

However, the effectiveness is not tested.

Alternatively, one could created a per packet ACK messages at NC sublayer to ac-

knowledge the delivery of each packet, or essentially the delivery of each degree of

freedom in the linear system. This is first introduced with the seen packet concept by

Sundararajan et al. [39]. With each "seen packet" ACK forwarded to its corresponding

TCP connection, the problem can be solved efficiently. For the detail of the NC/TCP

ACK, we refer the reader to [39].

2. At the start of each round of transmission, the gateway will empty the coding bucket.

However, with high probability, there are still some remaining coded packets at the

access points, waiting to be transmitted to the receivers. Given that the receiver

already decode the round of transmission, it is very inefficient to allow these packets

to be transmitted by access points. A mechanism need to be presented to allow access

point to purge these packets. In particular, such feature is usually not observed in

today's access point devices. Therefore, the scheme may require slight modification in

access points.

A possible mechanism can function as follows. Each access points are required to check

a round of transmission ID associated with the packets that the gateway pushes to the



access points. At soon as the access points see a packet with a new ID that is pushed

to it, it will purge all the packets associated with any older round of transmission IDs

to prevent transmission redundancy.

5.2.2 Acknowledgement and Retransmission

When the channel status is very poor, it may happen that after an access point si finish its

attempts on the T packets of current coding bucket, receiver tj has not collected enough

coded packets for decoding. Therefore, we need a mechanism to allow more coded packets

to be supplied to access points for transmission. We propose two solutions to the problem:

A. Timeout At The Gateway. An appropriate timeout value can be chosen at the

gateway for the delivery of round of transmission. If no acknowledgement from the NC

sublayer at the receiver side is received by the gateway before timeout, the gateway

starts to send more coded packets to each access point. With this solution, the timeout

value and the number of coded packets sent have to be carefully tuned to prevent buffer

overflow at the access points.

B. Requests By APs. Alternatively, each access point can send messages back to the

gateway as soon as it finishes the current Ki coded packets. The gateway responds by

feeding the particular access point with more coded packets of the current coding bucket.

However, that requires further modifications at the access points and adding cross layer

control message, which- may not be desired.
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Chapter 6

Conclusions and Future Work

In this thesis, we study the coding and scheduling optimization in typical home networks,

between the gateway and user devices. The home network is modelled as a single source,

multiple input broadcast channels with packet erasures. Each access point acts as an input

to a non-interfering broadcast channel.

In Chapter 2, we establish a unified framework for characterize the delay and rate require-

ments of various user applications or devices. The delay metrics or cost functions compute

the normalized f,-norms of the in-order inter packet arrivals times of the original data pack-

ets, independent from coding algorithms. The exponent p functions as a single parameter

characterization of delay sensitivity. When p is close to 1, the delay metrics measure some

delay cost function whose value is close to the average delay incurred per packet, d(1), which

is also viewed as the inverse of the average rate. On the other hand, as p grows large, the

normalized e,-norm grows increasingly biased toward larger inter-packet delays, which is the

critical parameter that affects the QoE of delay sensitive applications. Such a characteri-

zation allows user devices to choose a targeted delay value corresponding to a spectrum of

delay sensitivity. Compared to the common characterization of delay sensitivity into two

extremes (extreme sensitive or not sensitive at all), such delay metrics give much greater

flexibility for user device to optimize the right objective and for network system to explore

the various trade-off between delay and throughput for different applications.



Under this delay-rate framework, we study the performance of the common fixed gener-

ation based coding scheme and propose an adaptive coding scheme that allows the change

of coding bucket size based on delay constraints. The delay cost functions for these coding

schemes are derived and expressed in terms of sensitivity p, system parameters like erasure

probability and coding parameters such as coding bucket sizes. These expressions give us

some clear insight to design system and tune codes to match the QoE requirements of het-

erogeneous user application and devices. In Chapter 3, we derive and illustrate the trade-off

of d(1) and d(oo) when d(p) is optimized for different values of p in a point-to-point commu-

nication system. For multiple receivers systems, it is not possible to optimize the fp-norm

delay cost function for all receivers at the same time. In this case, an optimization program is

set up to obtain the optimal coding bucket sizes and time-division scheduling coefficients for

each receivers for some system wise utility objective, provided that the delay requirements of

various user applications are met. We show that the optimization program can be converted

into generalized geometric program and solved efficiently.

The adaptive coding scheme demonstrate clear advantages over the commonly used fixed

generation schemes. Our experiments show that as the delay sensitivity of certain receivers

increases, the adaptive coding scheme is able to reduce the coding bucket size of the more

delay sensitive receivers and shorten its inter-packet delivery times. On top of that, the

optimization of the coding and scheduling parameters allows large coding bucket sizes to be

assigned to relatively delay insensitive users to increases they average rate. This helps the

system to save some time and more aggressively serve the delay sensitive users to meet their

delay requirements for desired QoE.

The same coding and optimization procedures can be carried out in the case of multiple

receivers. However, the optimization difficulty increases sharply, as the problem is a signomial

optimization problem, which is no longer convex. Nevertheless, we can approximate the

signomial constraints using simple posynomial condensation methods, and use a series of GP

optimizations to find a local optimal solution. We show the convergence of the algorithm

and illustrate it with examples.



In Chapter 4, we change some assumptions on the system model and investigate the case

when the feedback delay is negligible. In this case, inter-session coding needs to be performed

for coding gains. The problem of inter-session coding capacity on broadcast erasure channels

is largely unknown. We examine recent literature on outer bound and coding methods for

the single transmitter cases. We propose a pair-wise opportunistic inter-coding methods for

such systems. A Markov chain model is established for the 2 receivers case which provides

the full solution to the coding gain in this case. Furthermore, we extend the algorithm for

the case with an arbitrary number of receivers.

The final part of the thesis is devoted to discuss practical issues associated with the

adaptive coding scheme between gateway and receivers. We propose to add a network

coding sublayer directly on top of the network layer to perform the intended functions.

Various challenges and difficulties are discussed and some solutions are proposed.

There are several directions for possible future work. Firstly, the link between E,-norm

delay metrics or cost functions and the performance of a variety of different networking

applications can be explored and tested. The optimization or the fulfillment of f,-norm

itself solely may not guarantee desirable QoE for many application categories. In this case,

it is valuable to understand further the needs of specific applications in terms of various

possible metrics and network resource allocations. In the case of inter-session coding based

on erasure patterns, neither the capacity nor the optimal coding scheme for arbitrary number

of receivers are known. Even for suboptimal coding schemes, for obtaining sufficient gains,

exhaustive book-keeping and computations are needed, such as that in [24]. Any further

exploration along this direction, especially towards practically implementable coding scheme

will be very helpful for todays networks, since broadcast channels with packet erasures are

widely present in many typical networking systems.

In summary, instead of the widely assumed two extreme delay sensitivities model for

network application today, it is worthwhile to devise better delay sensitivity models given the

enormous heterogeneity of modern networking applications. Network resource allocation may

be conducted in a much more efficient manner with appropriate models of applications delay



requirements. Subsequently, many networking needs may be accommodated better with

slight modification of the protocol structure. This approach is even more promising, with

the proliferation of low cost networking device with ever-increasing computation capabilities.



Appendix A

Steady State Distribution

As discussed in Chapter 4, for a fixed buffer size B, we can consider only variables 7 12, r2 1, 7TOO

and ir1 , and formulate four equations based on different cuts and sum of probabilities. These

equations are given by,

ParOO + qb711 - (Pbrr - qa)712 = 0

PbrOO + aTI11 - (ParI - qb)7r21 = 0

(qa + go -1- qc)7r11 - ((qc -- qb)d12 - PbCl2)7F12 -+ ((qc + qa)d 21 - PaC2 1)721 = 0

7 00 + r1 1 + (c 1 2 + d12)7r1 2 + (c 2 1 + d 21 )7r21 = 1,

(A.1)

(A.2)

(A.3)

(A.4)

where the constants are given by,

qa - q + qe

Pb = a 2 E2 (1 - E1),

qb = (1 - 82)EI,

e

q a + qc

Pa

Paqa - Paqb -- Pagc

Paqa + Pbqa -+ Pbc
B-1

= 1 1  B-2
C12 rr 1- rrerlI

qa + qb - qe
Pa

q_ + qc

Pbqa - Pbqb -- Pblc

Pbqb - Pagb H Pac
B-1

c2=r1-r2 B-2C2 1 ,- r2+rd r

Pa = a1e 1(1 - C2),

ga = (1 - EI)E2,

rre -

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

qc = (I - 61) (1 - E2),



1 _ B-1

d12 = 1-ri ,

Solving the equations, we obtain,

7r d127 12 + d2 17r21 + r11

1 B-
21- 1r 2

aia 2Ei(1 - EI)E2(1 - 6 2 )(7B )

ai(1 - Ei)2E2 + aisi(1 - E2) (-y' - 62 (-7 B - a 2 (1 -

where 7j is defined as,

ajEj(1 - E6)(1 - E6sy)

(1 - Ei)E6(aj(1 - E6) + ajej(1 - 6)'

for j C 1, 2, j f i. Now, take the limit of 7rB as B -+ oc, assume 71 > 72, we have,

r* = lim 7r =
B- oo

aisi(1 - E2)
(1 - EI) + aiEi(1 - E2)

The case of 71j > y2 can be solved by symmetry. These gives the probability of generating

inter-session coding packet at any time slot.

(A.11)

61)(y? -- 7/)))

(A.12)

(A.13)

(A.14)

(A.15)
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