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Maximum Likelihood Inference in
Weakly Identi�ed DSGE Models.

By Isaiah Andrews1 and Anna Mikusheva 2 3

Abstract
This paper examines the problem of weak identi�cation in maximum likelihood, motivated

by problems with estimation and inference a multi-dimensional, non-linear DSGE model. We

suggest a test for a simple hypothesis concerning the full parameter vector which is robust to

weak identi�cation. We also suggest a test for a composite hypothesis regarding a sub-vector of

parameters. The suggested test is shown to be asymptotically exact when the nuisance param-

eter is strongly identi�ed, and in some cases when the nuisance parameter is weakly identi�ed.

We pay particular attention to the question of how to estimate Fisher's information, and make

extensive use of martingale theory.

Key words: weak identification, maximum likelihood, score test, C(α)− test

1 Introduction

Recent years have witnessed the rapid growth of the empirical literature on the highly
parameterized micro-founded macro models known as Dynamic Stochastic General Equi-
librium (DSGE) models. A number of papers in this literature have considered estimating
these models by maximum likelihood (see for example Ingram , Kocherlakota and Savin
(1994), Ireland (2004), Lindé (2005), and McGrattan, Rogerson and Wright(1997)). More
recently, Bayesian estimation has become increasing popular, in large part due to the di�-
culty of maximum likelihood estimation in many DSGE models. As Fernéndez-Villaverde
(2010) points out in his survey of DSGE estimation, "likelihoods of DSGE models are
full of local maxima and minima and of nearly �at surfaces... the standard errors of
the estimates are notoriously di�cult to compute and their asymptotic distribution a
poor approximation to the small sample one." The bad behavior of maximum likelihood
estimation has fueled growing concerns about poor identi�cation in many DSGE models
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iandrews@mit.edu. Financial support from the Ford Foundation is gratefully acknowledged.
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(see Canova and Sala (2009), Guerron-Quintana, Inoue and Kilian (2009), and Iskrev
(2009)).

In this paper, we consider the problem of weak identi�cation in dynamic models
estimated by maximum likelihood. Weak identi�cation arises when the amount of in-
formation in the data about some parameter or group of parameters is small, and is
generally modeled in such a way that information about parameters accumulates slowly
along some dimensions. This leads to the breakdown of the usual asymptotics for maxi-
mum likelihood, with the asymptotic distributions for the maximum likelihood estimator
and the standard LR, LM, and Wald statistics providing a poor approximation to their
�nite sample behavior. This is distinct from loss of point identi�cation, and we assume
throughout that the models we consider are point identi�ed, and thus that changing the
value of any parameter changes the distribution of the data, though the e�ect will be
small for some parameters.

We focus on the problem of testing and con�dence set construction in this context.
In our view there are two main approaches to inference in models where identi�cation
may be weak. One is to create a two-step procedure, where one �rst di�erentiates (via
a pre-test) between weakly and strongly identi�ed models and then chooses a procedure
based on the test result. We take the other approach. Rather than looking for a test for
weak identi�cation as such, we instead attempt to construct a test for parameters which
is robust to weak identi�cation. The ideal procedure should satisfy two conditions. First,
it should control size well if identi�cation is weak, and second, it should be asymptotically
equivalent to the classical MLE tests if identi�cation is strong. If such a procedure exists,
it renders pretests unnecessary and, in general, inferior given the size problems endemic
to multiple testing procedures.

We view this approach as analogous to the modern treatment of testing in the presence
of potential heteroskedasticity. While in the past it was common to use pretests for
hetroskedatsicity, current empirical practice is to simply use standard errors (such as
those of White (1980)) which are correct asymptotically regardless of whether or not the
data is heteroskedastic. Likewise, in weak instrumental variable regression (weak IV)
there are tests available which have correct asymptotic size under the weak identi�cation
and (at least for the case of one endogenous variable) at least as much power as classical
procedures under strong identi�cation. Unlike the case of hetereoskedasticity, where
weighted least squares could potentially improve precision, in weak IV the outcome of a
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pretest cannot be used to increase power, so there is even less reason to use a pretest-based
procedure.

We construct a robust test in two steps. First, we suggest a test for a simple hy-
pothesis on the full parameter vector. This test is robust to weak identi�cation and is
asymptotically equivalent to the classical Lagrange Multiplier (LM) test when identi�ca-
tion is strong. The assumptions needed for this result are extremely weak, and cover a
large number of cases, including weak IV and weakly identi�ed exponential family mod-
els, for example VARs with weakly identi�ed structural parameters. The proofs for this
test make extensive use of martingale theory, particularly the fact that the score (i.e.
the gradient of the log likelihood) is a martingale when evaluated at the true parameter
value.

Next, we turn to the problem of testing a subset of parameters without restricting the
remaining parameters. Creation of such tests is critical for the construction of con�dence
sets, given that the common practice in applied work is to report a separate con�dence
interval for each element of the parameter vector. Constructing a test satisfying our �rst
requirement, that is one which controls size well under weak identi�cation, is straightfor-
ward using our test for the full parameter vector and the projection method. However,
simultaneously satisfying the second condition, asymptotic equivalence to classical tests
under strong identi�cation, is a much more challenging problem which (to the best of
our knowledge) has not been fully solved even for many simpler models.

The test which we suggest for a subset of parameters is asymptotically equivalent to
Neyman's C(α) test when identi�cation is strong. We show that the suggested test has
the χ2 asymptotic distribution so long as the nuisance parameter (i.e. the part of the
parameter vector which we are not testing) is strongly identi�ed, without any assumption
about the identi�cation of the tested parameter. We also show that the suggested test has
correct asymptotic size in some cases where the nuisance parameter is weakly identi�ed.
In particular we consider the case of an exponential family model where part of the
nuisance parameter is weakly identi�ed and enters linearly while no assumption is made
on the identi�cation of the tested parameter. As a special case we examine weak IV with
one endogenous variable when the nuisance parameter is weakly identi�ed.

In addition to these theoretical results, we report simulation results showing that our
proposed test maintains size well in a simple nonlinear model and is conservative in weak
IV with more than one endogenous variable. We also show the applicability of our results
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to a basic DSGE model.

Relation to the Literature on Weak Identi�cation The literature on weak iden-
ti�cation is quite large. The most-studied and best-understood case is that of weak
instrumental variables estimation. For a comprehensive survey of the literature on this
topic, see Stock, Wright, and Yogo (2002). The weak identi�cation framework was gen-
eralized to GMM by Stock and Wright (2000), who represented weak identi�cation using
an asymptotic embedding in which the objective function becomes �at along some di-
mensions as the sample grows. While we make use of a similar embedding to demonstrate
the applicability of our assumptions, it is not necessary for our results, and we remain
quite agnostic about the process generating the data. An alternative embedding for weak
identi�cation is introduced in Andrews and Chen (2009).

Making use of their embedding, Stock and Wright (2000) introduce tests for GMM
which are robust to weak identi�cation. They consider two types of test: a test for the
full parameter vector (i.e. for a simple hypothesis) and a test for a sub-parameter for the
case where the nuisance parameter is well-identi�ed. Kleibergen and Mavroeidis (2009)
suggest adaptations of the Stock and Wright (2000) S and Kleibergen (2005) KLM tests
for a sub-parameter for the case when the nuisance parameter is weakly identi�ed, which
yield conservative tests asymptotically. While the statistics we consider are in many
ways similar to those considered by Stock and Wright (2000), Kleibergen (2005), and
Kleibergen and Mavroeidis (2009), their results do not in general apply to the context
we consider as the variance of the moment condition (the score of the log likelihood)
becomes degenerate asymptotically, violating one of their assumptions.

The issue of weak identi�cation in DSGE models was �rst introduced by Canova and
Sala (2009), who pointed out that the objective functions implied by many DSGE models
are nearly �at in some directions. A weak identi�cation-robust inference procedure for
DSGE models based on likelihood analysis was introduced by Guerron-Quintana Inoue
and Killian (2009). Their method makes extensive use of projection for constructing
con�dence sets which, given the high dimension of the parameter space in many DSGE
models, has the potential to introduce a substantial amount of conservativeness in many
applications. Another paper on weak identi�cation in DSGE models is Iskrev (2008),
which attempts to asses the quality of identi�cation in DSGE models by considering the
degeneracy of the Hessian of the log likelihood. There are also a few papers discussing
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point-identi�cation in DSGE models, which are unrelated to our paper as we assume
point-identi�cation. We refer the interested reader to Komunjer and Ng (2009) for an
example of this literature.

Relation to the Classical MLE Literature The other major literature to which
our paper is connected is the classical Statistics literature on maximum likelihood. This
classical literature began in the i.i.d. context and was generalized considerably by Le Cam
(see Le Cam and Yang (2000)), allowing the use of MLE in a wide array of problems,
including with dependent data. The application of ML to dependent data was further
explored by a number of other authors, including Silvey (1961), Crowder (1976), Heijmans
and Magnus (1986) and Jeganathan (1995). Our approach is particularly informed by the
strand of this literature which focuses on the martingale properties of the log likelihood
and their implications for the asymptotics of the MLE, and especially by Bhat (1974)
and Hall and Heyde (1980).

The weakly identi�ed dynamic models which we consider di�er from those in this
classical literature in that the normalized second derivative of the log likelihood may
not converge to a constant (or, if normalized to converge to a constant, may be singular
asymptotically). As a result, these models fall outside of the classes considered by the
previous literature (to take a non-dynamic example, it can be shown that the standard
weak IV model is not Locally Asymptotically Quadratic, and thus is not subject to the
results of Le Cam). Some additional complications in the DSGE context include the fact
that the parameter space is in general quite large and that analytic expressions for the log
likelihood are in general unavailable, though the likelihood can be evaluated numerically.

Structure of the paper Section 2 introduces our notation as well as some results from
martingale theory; it also discusses the di�erence between two alternative measures of
information. Section 3 suggests a test for the full parameter vector. Section 4 discusses
the problem of testing a composite hypothesis about a sub-parameter, and introduces
a statistic for such a test. Section 5 proves that our sub-vector test is valid when the
nuisance parameter is strongly identi�ed without any assumption on the identi�cation
of the tested parameter. Section 6 shows that this result can be extended to some cases
when the nuisance parameter is weakly identi�ed. Simulations supporting our theoretical
results are provided in Section 7.
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Throughout the rest of the paper, Idk is the k×k identity matrix, I{·} is the indicator-
function, [·]T stands for quadratic variation of a martingale and [·, ·]T - for joint quadratic
variation of two martingales, ⇒ denotes weak convergence (convergence in distribution),
while →p stands for convergence in probability.

2 Martingale Methods in Maximum Likelihood The-
ory

2.1 Setup

Let XT be the data available at time T . In general, we assume that XT = (x1, ..., xT ). Let
Ft be a sigma-algebra generated by Xt = (x1, ..., xt). We assume that the log likelihood
of the model,

`(XT ; θ) = log f(XT ; θ) =
T∑

t=1

log f(xt|Ft−1; θ),

is known up to the parameter θ, which has true value θ0. We further assume that `(XT ; θ)

is twice continuously di�erentiable with respect to θ, and that the class of likelihood
gradients

{
∂
∂θ

`(XT ; θ) : θ ∈ Θ
}

and the class of second derivatives
{

∂2

∂θ∂θ′ `(XT ; θ)
}

are
both locally dominated integrable.

Our main object of study will be the score function,

ST (θ) =
∂

∂θ
`(XT , θ) =

T∑
t=1

∂

∂θ
log f(xt|Ft−1; θ),

where st(θ) = St(θ)− St−1(θ) = ∂
∂θ

log f(xt|Ft−1; θ) is the increment of the score. Under
the assumption that we have correctly speci�ed the model, the expectation of st(θ0)

conditional on all information up to t− 1 is equal to zero,

E (st(θ0)|Ft−1) = 0 a.s. (1)

This in turn implies that the score taken at the true parameter value, St(θ0), is a martin-
gale with respect to �ltration Ft. One way to view (1) is as a generalization of the �rst
informational equality, which in i.i.d. models states that E [st(θ0)] = 0, to the dynamic
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context. To derive this equality, note that st(θ0) = 1
f(xt|Ft−1;θ0)

∂
∂θ

f(xt|Ft−1; θ0),

E(st(θ0)|Ft−1) =

∫
st(θ0)f(xt|Ft−1; θ0)dxt =

∫
∂

∂θ
f(xt|Ft−1; θ0)dxt = 0.

This observation is due to Silvey (1961).
Similarly, the second informational equality also generalizes to the dependent case.

In the i.i.d. case, this equality states that we can calculate Fisher's information using
either the Hessian of the log likelihood or the outer product of the score, i.e.

I(θ0) = −E

(
∂2

∂θ∂θ′
log f(xt; θ0)

)
= E

(
∂

∂θ
log f(xt; θ0)

∂

∂θ′
log f(xt; θ0)

)
. (2)

Fisher's information plays a key role in the classical asymptotics for maximum likelihood,
as it is directly related to the asymptotic variance of the MLE, and (2) suggests two di�er-
ent ways of estimating it which are asymptotically equivalent in the classical context. To
generalize (2) to the dynamic context, following Barndor�-Nielsen and Sorensen (1991),
we introduce two measures of information based on observed quantities:

• Observed information: the negative of Hessian of log-likelihood,

IT (θ) = − ∂2

∂θ∂θ′
`(XT ; θ) =

T∑
t=1

it(θ),

where it(θ) = − ∂2

∂θ∂θ′ log f(xt|Xt−1; θ);

• Incremental observed information: the quadratic variation of the score of the log
likelihood,

JT (θ) = [S(θ)]T =
T∑

t=1

st(θ)s
′
t(θ),

where as before st(θ) is the increment of ST (θ).

Using these de�nitions, let AT (θ) = JT (θ) − IT (θ) be the di�erence between the two
measures of observed information. The second informational equality implies that AT (θ0)

is a martingale with respect to Ft. Speci�cally, the increment of AT (θ0) is at(θ0) =

At(θ0)− At−1(θ0),

at(θ0) =
∂2

∂θ∂θ′
log f(xt|Xt−1; θ0) +

∂

∂θ
log f(xt|Xt−1; θ0)

∂

∂θ′
log f(xt|Xt−1; θ0),
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and an argument similar to that for the �rst informational equality gives us that E(at|Ft−1) =

0 a.s.
In the classical context, IT and JT are asymptotically equivalent, which plays a key

role in the asymptotics of maximum likelihood. In the i.i.d. case, for example, the law of
large numbers implies that 1

T
IT (θ0) →p −E

(
∂2

∂θ∂θ′ log f(xt, θ0)
)

= I(θ0) and 1
T
JT (θ0) →p

E
(

∂
∂θ

log f(xt, θ0)
∂

∂θ′ log f(xt, θ0)
)

= I(θ0). As a result of this asymptotic equivalence,
the classical literature in the i.i.d. context uses these two measures of information more
or less interchangeably.

The classical literature in the dependent context makes use of a similar set of con-
ditions to derive the asymptotic properties of the MLE, focusing in particular on the
asymptotic negligibility of AT (θ0) relative to JT (θ0). For example, Hall and Heyde (1980),
show that for θ scalar, if JT (θ0) →∞ a.s. and in addition,

lim sup
T→∞

JT (θ0)
−1|AT (θ0)| < 1 a.s.,

then the MLE for θ is strongly consistent. If moreover, JT (θ0)
−1IT (θ0) → 1 a.s., then

the ML estimator is asymptotically normal and JT (θ0)
1
2 (θ̂ − θ0) ⇒ N(0, 1).

We depart from this classical approach in that we consider weak identi�cation. Weak
identi�cation arises when information is small along some dimension, which we model by
using an embedding such that Fisher's information is degenerate asymptotically. Similar
embeddings have been used to study weak identi�cation in other contexts, including the
Weak Instrument asymptotics introduced by Staiger and Stock (1997), and the Weak
GMM asymptotics of Stock and Wright (2000). In such an embedding the di�erence
between our two measures of information is important, and AT (θ0) is no longer negligible
asymptotically compared to observed incremental information JT as demonstrated in the
weak IV example below.

2.2 Weak IV Example

We assume a reduced form model with normal errors:




yt = βπ′zt + ut

xt = π′zt + vt

,


 ut

vt


 ∼ i.i.d. N(0, Id2), (3)
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We take zt to be a k−dimensional set of instruments, while β is the parameter of interest
and π is a k × 1 vector of nuisance parameters. Our assumption that the errors have
known covariance matrix equal to Id2 is not restrictive, since ut and vt are reduced
form (rather than structural) errors, and thus are well-estimable. The analysis is done
conditional on the instruments zt, and for simplicity we assume that the data generating
process for zt is such that it satis�es a law of large numbers. Following the approach laid
out by Staiger and Stock (1997), we represent weak identi�cation by modeling π as local
to zero, that is π = 1√

T
C, so π is drifting to zero as the sample grows.

Let Y = (y1, ..., yT )′, X = (x1, ..., xT )′ be T × 1 and Z = (z1, ..., zT )′ be T × k. In this
model, we have the following log-likelihood:

`T (β, π) = const− 1

2
(Y − βZπ)′(Y − βZπ)− 1

2
(X − Zπ)′(X − Zπ).

The score is

Sβ(θ) = π′Z ′(Y − β − Zπ); Sπ(θ) = βZ ′(Y − β − Zπ) + Z ′(X − Zπ).

Finally, the two measures of information are:

IT (θ0) = − ∂2

∂θ∂θ′
lT =


 π′Z ′Zπ βπ′Z ′Z − U ′Z

βZ ′Zπ − Z ′U (1 + β2)Z ′Z


 ;

JT (θ0) = [S]T =


 π′

∑
t u

2
t ZtZ

′
tπ π′

∑
t ut(βut + vt)ZtZ

′
t∑

t ut(βut + vt)ZtZ
′
tπ

∑
t(βut + vt)

2ZtZ
′
t


 .

Using the weak instrument embedding π = 1√
T
C, we can use normalizing matrix KT =

diag(1, 1√
T
) to get a non-trivial limit for both information matrices:

KT JT (θ0)KT →p


 C ′QZC βC ′QZ

βQZC (1 + β2)QZ


 ;

KT IT (θ0)KT →p


 C ′QZC βC ′QZ − ξ

βQZC − ξ (1 + β2)QZ


 .

To derive these expressions we have used a law of large numbers, 1
T
ZZ ′ →p QZ , and
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a central limit theorem, 1√
T
Z ′U ⇒ ξ = N(0, QZ). Notice that, under weak instrument

asymptotics, there is a di�erence between the two information matrices (i.e. the addition
of the term −ξ to the o�-diagonal elements of IT ), whereas for the strong IV case (π 6= 0

and �xed) we have that J−1
T IT →p Id2.

The di�erence between the two measures of information can be used to construct a
test to detect weak identi�cation. A potential test should compare the two observed
informations at the true parameter value. As argued in the introduction, however, tests
of identi�cation are less useful than weak identi�cation robust procedures so we do not
pursue such tests here.

White (1982) shows in the context of quasi-MLE that the two measures of information
may be asymptotically di�erent if the likelihood is misspeci�ed. As we point out above,
even if the model is correctly speci�ed the two informations may di�er if identi�cation is
weak. While we are aware of one strand of the classical statistical literature which explores
the di�erence between these di�erent information measures, the literature on so-called
non-ergodic models, these models are usually part of the LAMN (locally asymptotically
mixed-normal) class, whereas the types of models which we consider in this paper are
not in general LAMN.

3 Test for Full Parameter Vector

In this section, we suggest a test for a simple hypothesis on the full parameter vector,
H0 : θ = θ0, which is robust to weak identi�cation. To allow for the possibility of an
embedding such as weak IV, we consider a so-called scheme of series. In a scheme of series
we assume that we have a series of experiments indexed by the sample size: the data XT

of sample size T is generated by distribution fT (XT ; θ0), which may change as T grows.
We assume that in the de�nition of all quantities in the previous section there is a silent
index T . For example, the log-likelihood is `T (θ) =

∑T
t=1 log fT (xT,t|XT,t−1; θ), where

the data is XT = (xT,1, ..., xT,T ) and XT,t = (xT,1, ..., xT,t). All scores and information
matrices also have this implied index T; for each �xed T the score ST,t is a process indexed
by t, ST,t(θ0) = ∂

∂θ
log fT (XT,t; θ0) =

∑t
j=1 sT,j(θ0), and is a martingale with respect to

the sigma-�eld FT,t generated by XT,t. All other statistics are de�ned correspondingly.
In this context, we introduce our �rst assumption:
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Assumption 1 Assume that there exists a sequence of constant matrices KT such that:

(a)
∑T

t=1 E (KT |st,T (θ0)|I{|KT st,T (θ0)| > δ}|Ft−1) → 0

(b)
∑T

t=1 KT st,T (θ0)st,T (θ0)
′KT = KT J(θ0)KT →p Σ, where Σ is constant positive-

de�nite matrix

Discussion of Assumption 1
Assumption 1 (a) is a classical in�nitesimality (or limit negligibility) condition. We

can, if we prefer, replace it with a version of Linderberg's condition:

T∑
t=1

E
(‖KT st,T‖2I{‖KT st,T (θ0)‖ > δ}

∣∣Ft−1

) → 0,

although this condition is stronger than 1 (a). Assumption 1 (b) imposes the ergodicity
of the quadratic variation JT (θ0) of martingale ST (θ0), which rules out some potentially
interesting models including persistent (unit root) processes and non-ergodic models.

Assumption 1 is trivially satis�ed for the weak IV model we consider in section 2.2,
and can also be checked for an exponential family with weak identi�cation. In particular,
consider an exponential family with joint density of the form

fT (Xt|θ) = h(XT ) exp

{
ηT (θ)′

T∑
t=1

H(xt)− TAT (ηT (θ))

}
. (4)

Here, η is a p−dimensional reduced form parameter, while
∑T

t=1 H(xt) is a p−dimensional
su�cient statistic. Model (4) covers VAR models with η being a set of reduced form VAR
coe�cients and xt = (Y ′

t , ..., Y
′
t−p)

′, where Yt is a vector of data observed at time t, and
the su�cient statistics are the sample autocovariances of the Yt. Fernéndez-Villaverde et
al. (2007) discuss the relationship between linearized DGSE models and VARs.

Suppose that we can partition structural coe�cient θ into sub-vectors α and β, θ =

(α, β). We consider an embedding similar to that of Stock and Wright (2000) for weak
GMM, which we use to model β as weakly identi�ed. In particular, we assume that

ηT (θ) = m(α) +
1√
T

m̃(α, β)

where ∂
∂β

m(α0) and ∂
∂θ

m̃(α0, β0) are matrices of full rank (dim(θ) = k = kα + kβ ≤ p).
This means that while θ is identi�ed for any �xed T, the likelihood is close to �at in direc-
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tions corresponding to β. Assumption 1 is trivially satis�ed for KT =




1√
T
Idkα 0

0 Idkβ




so long as the in�nitesimality condition holds for the sequence
{

1√
T
H(xt)

}T

t=1
and a law

of large numbers holds for H(xt)H(xt)
′ (i.e. 1

T

∑T
t=1 H(xt)H(xt)

′ →p E [H(xt)H(xt)
′]).

For example, if xt is i.i.d. a su�cient condition for Assumption 1 in this embedding is
that H(xt) posses at least two �nite moments.

The following theorem is a direct corollary of the multivariate martingale Central
Limit Theorem (see Theorem 8, ch. 5 in Liptser and Shiryayev (1989))

Theorem 1 If Assumption 1 holds, then

KT ST (θ0) ⇒ N(0, Σ)

and

LM(θ0) = ST (θ0)JT (θ0)
−1ST (θ0) ⇒ χ2

k, (5)

where k = dim(θ0).

Remark. A weaker form of Assumption 1 is su�cient for statement (5). In particular,
we may allow Σ in Assumption 1 (b) to be an almost surely positive de�nite random
matrix, rather than being constant. This is the so-called non-ergodic case, statistical
examples of which can be found in Basawa and Koul (1979).

Statement (5) of Theorem 1 suggests a test for simple hypotheses about the whole
parameter vector θ. Unlike the classical ML Wald and LR tests, the derivation of the
asymptotic distribution of this statistic uses no assumptions about the strength of identi-
�cation. The statistic is a special form of the classical LM (score) test, which is formulated
as:

LM =
1

T
ST (θ0)

′Î−1ST (θ0),

where Î is any consistent estimator of Fisher's information. Our suggested statistic
plugs in 1

T
JT (θ0) = 1

T
[S(θ0)]T for this estimator. It is important to note that while

the true Fisher information is asymptotically degenerate under weak identi�cation, the
appropriately de�ned LM statistic (as in (5)) nevertheless achieves a χ2 distribution
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asymptotically. It is likewise important to note that the LM statistic calculated with
other estimators of Fisher's information (for example 1

T
IT (θ0)) is not necessarily robust

to weak identi�cation, as can be seen in the example of weak IV. It is also a bad idea
to estimate the information matrix using an estimator of θ, i.e. to use 1

T
JT (θ̂). All of

these alternative formulations deliver asymptotically equivalent tests in strongly identi�ed
models, but this equivalence fails under weak identi�cation.

4 Test for a Subset of Parameters

4.1 The Problem

In applied economics, it is very common to report con�dence sets for estimates as sep-
arate con�dence intervals for each one-dimensional sub-parameter in the (often quite
multidimensional) parameter vector θ. Current standards require that each such con-
�dence interval be valid, that is, it should have at least 95% coverage asymptotically
(assuming the typical 95% con�dence level). These one-dimensional con�dence sets need
not be valid jointly: if dim(θ) = k, the k-dimensional rectangle formed by the Cartesian
product of the 1-dimensional con�dence intervals need not have 95% asymptotic cover-
age. Going the other direction, if one has a 95% con�dence set for θ and projects it on the
one-dimensional subspaces corresponding to the individual sub-parameters, the resulting
con�dence sets for the one-dimensional parameters will of course be valid. However, con-
�dence sets obtained in such a manner (usually called the projection method) tend to be
conservative.

Using our proposed test of the full parameter vector, which is robust to weak iden-
ti�cation, we have the option to produce robust con�dence sets for sub-parameters via
the projection method. This approach has been used many times in the literature, for
example by Dufour and Taamouti (2005) for weak IV and Guerron-Quintana, Inoue, and
Killian (2009) for DSGE. The typical DSGE model has a large number of parameters to
estimate (often between 20 and 60), which makes projection less attractive as the degree
of conservativeness may be very high, which in turn makes the resulting con�dence sets
less informative.

For some intuition on the source of this conservativeness, imagine for a moment
that we are concerned with a two-dimensional parameter θ = (θ1, θ2), and have a t-
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statistic for each θi. Suppose, moreover, that these two statistics are asymptotically
normal and asymptotically independent of each other. We can construct a con�dence
set for each parameter in two ways: the �rst and most commonly used is to invert
the t-test for the corresponding sub-parameter, which is equivalent to using the the
squared t-statistic and χ2

1 critical values and yields C1,θi
=

{
θi : (θ̂i−θi)

2

σ2
i

≤ χ2
1,.95

}
. As

an alternative, one may construct a joint con�dence set for θ, which in this case will be
an ellipse C2,θ =

{
θ : (θ̂1−θ1)2

σ2
1

+ (θ̂2−θ2)2

σ2
2

≤ χ2
2,.95

}
, and then use the projection method to

obtain C2,θ1 = {θ1 : ∃θ2 s.t. (θ1, θ2) ∈ C2,θ} (and likewise for θ2). One can notice that C2,θi

ultimately uses the same t-statistic as C1,θi
, but compares this statistic to the critical

value of a χ2
2 rather than a χ2

1. As a result, in this example the projection method
produces unnecessarily wide (and conservative) con�dence sets for each sub-parameter.

The projection method, when applied to strongly identi�ed models, produces a less
powerful test than classical MLE. Thus, when using projection it is natural to combine
it with a pre-test procedure which �rst discriminates between weakly and strongly iden-
ti�ed models and then, based on the results of the test, uses either classical MLE or the
projection method. There are two obstacles to such an approach: �rst, we are unaware
of procedures for e�ectively discriminating between weak and strong identi�cation in
maximum likelihood. Second, the size properties of two-step testing procedures are no-
toriously di�cult to asses. Our approach is di�erent, and instead constructs a test which
maintains correct asymptotic size under weak identi�cation, but which is equivalent to
the classical MLE tests under strong identi�cation.

We are aware of a number of papers dealing with this issue in the context of weak
identi�cation. In particular, Stock and Wright (2000) prove that for GMM, under some
assumptions, if θ = (α, β) and α is well-identi�ed then it is possible to test the hypothesis
H0 : β = β0 by comparing the GMM objective function, minimized with respect to α, to
the critical values of a χ2

p−kα
distribution, where p is the number of moment conditions

used and kα = dim(α). Their result shows that it is possible to reduce the degrees
of freedom for projection-based con�dence sets in weak GMM provided the nuisance
parameter is well identi�ed.

Kleibergen and Mavroeidis (2009) prove that it is possible to extend this result to
some models where the nuisance parameter may not be well identi�ed. They consider
a test statistic, called H(θ0) here, for testing the simple hypothesis H0 : θ = θ0 (they
use the Anderson-Rubin and IV-LM tests). Assume again that θ = (α, β), and that the
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hypothesis of interest is H0 : β = β0. Kleibergen and Mavroeidis (2009) demonstrate
that one can again use the quantiles of a χ2

p−kα
as critical values. This test is similar

if identi�cation is strong, and somewhat conservative if identi�cation is weak. In this
paper we consider a class of models which, as discussed above, di�ers from those in the
weak GMM literature in that the variance of the moment conditions may be degenerate
asymptotically and take a di�erent approach.

4.2 Classical LM Tests for Composite Hypotheses

We assume that θ = (α, β). We are interested in testing the composite hypothesis
H0 : β = β0, treating α as a nuisance parameter. The classical theory for maximum
likelihood considers two LM tests for such a setting: Rao's score test and Neyman's
C(α)-test.

Let ST (θ) = (Sα(θ)′, Sβ(θ)′)′, I(θ) =


 Iαα Iαβ

I ′αβ Iββ


 be Fisher's information, and θ̂0

be the restricted ML estimator of θ, under the restriction β̂ = β0. Assume, in addition,
that all martingales introduced in Section 2 are divided into sub-matrices corresponding
to α and β. Rao's score test is based on the statistic

Rao = ST (θ̂0)
′I(θ̂0)

−1ST (θ̂0),

where θ̂0 is the restricted ML estimator of θ under H0.
Neyman's C(α) test was developed as a locally asymptotically most powerful (LAMP)

test for composite hypotheses in the classical ML model (see Akritas (1987)). The statistic
is de�ned as

C(α) =
(
Sβ − I ′αβI−1

ααSα

)′ I−1
ββ,α

(
Sβ − I ′αβI−1

ααSα

)∣∣∣
θ=(α̂,β0)

,

where α̂ is any
√

T consistent estimator of α, and Iββ,α = Iββ − IβαI−1
ααIαβ.

Kocherlakota and Kocherlakota (1991) show that the two statistics are the same if one
takes α̂ in Neyman's C(α) test to be the restricted MLE. If the classical ML assumptions
are satis�ed then both statistics are distributed χ2

kβ
asymptotically. In this paper, we

suggest a statistic which is asymptotically equivalent to both Rao's score and Neyman's
C(α) if the classical ML assumptions are satis�ed. In particular, we consider the same
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LM statistic de�ned in (5) but evaluated at θ = (α̂, β0), where α̂ is the restricted MLE,
that is, the solution to equation

Sα(α̂, β0) = 0. (6)

One can easily see that

L̃M(β0) = LM(α̂, β0) = S ′β
(
Jββ − JβαJ−1

ααJ ′βα

)−1
Sβ

∣∣∣
θ=(α̂,β0)

. (7)

5 Test for a Subset of Parameters- Strong Identi�ca-
tion

In this section, we establish that if α is strongly identi�ed then the statistic de�ned in
(7) has a χ2

kβ
distribution asymptotically, regardless of the strength of identi�cation of

β.

5.1 How We De�ne Strong Identi�cation of α

When we test H0 : β = β0, under the null α is the only unknown parameter. We
call α strongly identi�ed if it satis�es the assumptions below, which guarantee that the
restricted ML estimate of α is consistent and asymptotically normal. We adapt Baht's
(1974) result on the consistency and asymptotic normality of the MLE for time series to
show that this is the case.

Let Aαα,T = Jαα,T−Iαα,T , where the last two quantities are the sub-matrices of JT (θ0)

and IT (θ0) corresponding to α.

Assumption 2 Assume that matrix KT from Assumption 1 is diagonal and Kα,T and
Kβ,T are the sub-matrices of KT corresponding to α and β, respectively.

(a) Kα,T Aαα,T Kα,T →p 0.

(b) for any δ > 0 we have sup|α1−α0|<δKα,T
|(Iαα(α1, β0)− I0

αα)(I0
αα)−1| →p 0

(c) Kα,T → 0 as T →∞.
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Lemma 1 If Assumptions 1 and 2 are satis�ed, then the restricted MLE α̂(β0) is con-
sistent for α and

Kα,T (α̂− α0) = Kα,T J−1
α,α,T Sα,T + op(1) ⇒ N(0, Σ−1

αα) (8)

Discussion of Assumption 2
Assumption 2(a) may be reformulated as

J−1
αα,T Iαα,T →p Idkα ,

which requires that the two information matrices be the same asymptotically. We men-
tioned a condition of this nature in our discussion of weak identi�cation in section 2.
One approach to checking 2(a) in many contexts is to establish a law of large numbers
for Aαα,T . Indeed, Aαα,T is a martingale of the form

Aαα,T =
T∑

t=1

1

f(xt|Xt−1, θ0)

∂2

∂α∂α′
f(xt|Xt−1, θ0).

If the terms 1
f(xt|Xt−1,θ0)

∂2

∂α∂α′f(xt|Xt−1, θ0) are uniformly integrable and Kα,T converges
to zero no slower than 1√

T
, then the martingale law of large numbers gives us Assumption

2(a).
Assumption 2(b) is an assumption on the smoothness of the log-likelihood. We can

reformulate it using a third type of martingale, corresponding to the third derivatives:

Λαααi,T =
T∑

t=1

1

f(xt|Xt−1, θ0)

∂3

∂αi∂α∂α′
f(xt|Xt−1, θ0). (9)

For all i, Λαααi,T is a martingale so long as we can interchange di�erentiation and in-
tegration of the log-likelihood function three times. An alternative to Assumption 2(b)
is

Assumption 2(b') for any i: Kαi,T Kα,T Λαiαα,T Kα,T →p 0

Lemma 2 Assumptions 1, 2(a) and 2(b') imply assumption 2(b).

Finally, Assumption 2(c) implies that information about α accumulates as the sam-
ple size increases. This assumption is critical for consistency, but turns out to be less
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important for asymptotic normality, so long as 2(a) and 2(b) hold. In weak IV, for ex-
ample, if we assume that π is known and local to zero (i.e. π = C/

√
T ), the restricted

MLE for β is asymptotically normal, even though it is not consistent. The corresponding
normalization is Kβ,T = 1.

5.2 Result

As we show in section 3, to test a simple hypothesis about the whole parameter vector
it is enough to have a CLT for the score function. Kleibergen and Mavroeidis (2009)
impose a stronger assumption for the their test of a subset of parameters, namely that
the CLT also hold for the derivative of the moment condition (in fact, they impose a
functional CLT). For our test of a subset of parameters, we likewise need an additional
assumption, speci�cally a CLT on the derivative of the score, which is directly related to
the martingale AT (the di�erence of the two information matrices).

Assumption 3 Consider the sequence of martingales MT = (ST (θ0)
′, vec(Aα,β,T (θ0)))

′ =
∑T

t=1 mt,T . Assume that there exists a sequence of non-stochastic diagonal matrices KM,T

such that:

(a)
∑T

t=1 E (KM,T |mt,T |I{|KM,T mt,T | > δ}|Ft−1) → 0

(b)
∑T

t=1 KM,T mt,T m′
t,T KM,T →p ΣM , where ΣM is a constant matrix whose sub-matrix

Σ corresponding to the martingale ST is positive de�nite.

Let us de�ne the martingales associated with the third derivative of likelihood function

Λαiαjβn =
T∑

t=1

1

f(yt|Yt−1, θ0)
· ∂3f(yt|Yt−1, θ0)

∂αi∂αj∂βn

. (10)

If we can interchange integration and di�erentiation three times then each entry of Λααβ,T

is a martingale. We also use the fourth-order martingales

Γαiαjαmβn =
T∑

t=1

1

f(yt|Yt−1, θ0)
· ∂4f(yt|Yt−1, θ0)

∂αi∂αj∂αm∂βn

For the proof of the theorem below we will also need the following assumptions:

Assumption 4 (a) limT→∞ Kα,T K−1
αβ,T Kβ,T = C where C is some �nite matrix (which

may be zero).
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(b) Kαi,T Kαj ,T Kβn,T

√
[Λαiαjβn ]T →p 0 for any i, j, n.

(c) Kαi,T Kαj ,T Kαm,T Kβn,T

√
[Γαiαjαmβn ]T →p 0 for any i, j,m, n.

Discussion of Assumption 4
Assumptions 4(b) and (c) state that the higher order derivatives with respect to α

are not important for the analysis, and are used primarily in the proofs. For example,
Assumption 4(c) implies that

K2
α,T Kβi,T sup

|α∗−α0|<δKα,T

∣∣I∗ααβi
− I0

ααβi

∣∣ →p 0 for all i.

If α is strongly identi�ed, then Assumptions 4(b) and (c) generally hold, and can be
checked using some law of large numbers, since the normalization K2

α,T or K3
α,T converges

to zero very quickly. Finally, Assumption 4 holds trivially for weak IV, as well as for the
exponential family case discussed in section 3.

Theorem 2 If Assumptions 2, 3 and 4 are satis�ed then under the null H0 : β = β0 we
have

L̃M(β0) ⇒ χ2
kβ

5.3 How Our Result Di�ers from the Previous Literature

As discussed above, Stock and Wright (2000) develop a framework for weakly identi�ed
GMM and construct a test for the hypothesis H0 : β = β0 when the nuisance parameter
α is strongly identi�ed (Theorem 3 in Stock and Wright (2000)). They consider GMM
with moment condition Em(xt, α, β) = 0 and construct a statistic based on

S(θ) = (
1√
T

T∑
t=1

m(xt; θ))
′WT (θ)(

1√
T

T∑
t=1

m(xt; θ)),

where WT (θ) is a consistent estimator of the variance of the moment condition. They
show that, for α̂ = arg minα SW (α, β0), their statistic S(α̂, β0) has an asymptotic χ2

distribution with degrees of freedom equal to p − kα, where p = dim(m(xt, θ)) and
kα = dim(α).

Kleibergen (2005) considers an alternative statistic based on the LM test for GMM
and proves that this statistic, minimized over α, is also the basis of a valid test of
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H0 : β = β0 when α is strongly identi�ed. In our context, however, if we use the score
of the log-likelihood as the GMM moment condition the system is just-identi�ed and
Kleibergen's KLM statistic is equal to Stock and Wright's S statistic.

Our result, though of a similar �avor, is quite di�erent and is not covered by these
previous results. First, the weak ML model does not satisfy the assumptions in the
above mentioned papers. Speci�cally, if we consider ML estimation as GMM using the
moment condition EST (θ0) = 0, the variance matrix of our moment condition (infor-
mation matrix) is directly linked to identi�cation. In particular, the matrix WT (θ) (to
use Stock and Wright's notation) becomes degenerate asymptotically, which is ruled out
by the assumptions of Stock and Wright (2000), Kleibergen (2005), and Kleibergen and
Mavroeidis (2009). Second, we apply a di�erent principle to go from a test of the full
parameter vector to a test for a subset of parameters. In the above mentioned papers
the authors minimize the statistic over the nuisance parameter, while we plug in the
restricted MLE. In fact, in our context minimizing the statistic over the nuisance param-
eter does not necessarily lead to a χ2 distribution, as illustrated in the following weak IV
example.

Weak IV Example (cont.)
Consider the weak IV model (3) and consider the LM statistic for LM(π, β) for testing

the whole parameter vector θ = (π, β), de�ned as in section 2.3. Suppose we wish to test
the composite hypothesis H0 : β = β0 by considering the concentrated statistic:

LM c(β0) = min
π

LM(π, β0) = LM(π̃, β0). (11)

We can show (see proof in the Appendix) that

LM c(β0) =
(QS + QT )−

√
(QS + QT )2 − 4Q2

ST

2
,

where QS, QT , and QST are de�ned as in Andrews, Moreira, and Stock (2006) (again,
see Appendix). If the instruments are weak, that is if π = C/

√
T , then the asymptotic

distribution of LM c(β0) is stochastically dominated by a χ2
1, and the resulting test is

conservative.
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6 Test for a Subset of Parameters- Weak Identi�cation

In the previous section we show that our subset-test statistic L̃M(β0) for the composite
hypothesis H0 : β = β0 is asymptotically χ2 when the nuisance parameter α is strongly
identi�ed, without any assumptions about the identi�cation of β.

This result can be extended somewhat to cases when α is weakly identi�ed. Below
are two such examples.

6.1 Weak IV Case

Here we consider a weak IV model with one endogenous variable, when the hypothesis
tested is one about π, that is, H0 : π = π0, while the weakly identi�ed parameter β is
treated as a nuisance parameter.

As in section 2.2, we consider the model:




Y = β0Zπ0 + U0

X = Zπ0 + V0

;


 ut

vt


 ∼ N (0, Id2)

For simplicity we consider a slightly di�erent version of the quadratic variation of S,
namely expected quadratic variation.

J̃ = 〈S〉 =
T∑

t=1

E (sts
′
t|Ft−1) =


 π′Z ′Zπ βπ′Z ′Z

βZ ′Zπ (1 + β2)Z ′Z


 .

The di�erence between J and J̃ doesn't matter asymptotically as J−1J̃ →p Idk+1 uni-
formly over the strength of instruments.

According equation (7) our statistic of interest is

L̃M(π0) = LM(β̂, π0),

where β̂ is the restricted ML estimator of β, and LM(β, π0) is de�ned as in (5) with the
slight modi�cation that J̃ is used in place of J . A simple formula for LM(β, π0) is given
in (28). Note that Sβ(β̂, π0) = 0, and we can explicitly solve for β̂ as

π′0Z
′
(
Y − β̂Zπ0

)
= 0 ⇔ β̂ =

π′0Z
′Y

π′0Z ′Zπ0

. (12)
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Simple calculations show that

LM
(
β̂, π0

)
=

(
β̂Û + V0

)′
Z

(
(1 + β̂2)Z ′Z − β̂2Z ′Zπ0π

′
0Z

′Z
π′0Z ′Zπ0

)−1

Z ′
(
β̂Û + V0

)
, (13)

where Û = Y − β̂Zπ0.

Lemma 3 If π0 = c/
√

T we have LM(β̂, π0) ⇒ χ2
k

The idea of the proof is the following. Under the weak instruments embedding, β̂ is
not consistent but is asymptotically normal. We can show that (Z ′Z)−1/2Z ′Û , β̂ and
(Z ′Z)−1/2Z ′V0 are asymptotically normal and asymptotically uncorrelated with each
other. If we consider statistic LM(β̂, π0), conditional on β̂ it becomes a correctly nor-
malized quadratic form of an asymptotically normal k−dimensional random variable
and thus conditionally asymptotically χ2

k. As a result, unconditional convergence holds
as well.

6.2 Case Where Score is Linear in α

The case considered in the previous subsection is interesting in that the nuisance param-
eter is weakly identi�ed, but is somewhat trivial since the parameter tested is strongly
identi�ed. We can to a limited extent generalize this result to more interesting contexts.
Below, we consider the problem of testing a hypothesis about a weakly identi�ed pa-
rameter in an exponential family model. The nuisance parameter will be divided into
two subsets, one of which is strongly identi�ed while the other is weakly identi�ed. We
will make the very restrictive assumption that the weakly identi�ed nuisance parameters
enter linearly.

Assume that the experiment at time T is generated by the exponential family (4).
As already discussed, model (4) covers VAR models, and many linearized DGSE models
can be represented as VARs (see Fernéndez-Villaverde et al. (2007)).

Assume that we are interested in structural parameters θ = (α1, α2, β), where the
relation between the structural and reduced form parameters is given by

ηT (θ) = m(α1) +
1√
T

n(α1, β)α2 +
1√
T

r(α1, β). (14)
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We assume that the matrix
(

∂
∂α1

m(α1), n(α1, β), ∂
∂β

n(α1, β)α2 + ∂
∂β

r(α1, β)
)
has full rank

k = dim(θ) ≤ p and call this the rank assumption. That is, we assume that the structural
parameters are identi�ed, though only α1 is strongly identi�ed (parameters α2 and β are
weakly identi�ed).

We are interested in testing a composite hypothesis H0 : β = β0, treating α = (α1, α2)

as a nuisance parameter. We use L̃M(β0) statistic as de�ned in (7).

Theorem 3 Assume that in model (4) and (14) which satis�es the rank assumption the
following convergence holds at the true value of θ0:

(a) AT (η) → A(η), as T → ∞ in a neighborhood of η∞ and the �rst four derivatives
of AT at η∞ converge to those of A(·);

(b) 1
T

∑T
t=1 H(xt) →p Ȧ;

(c) 1
T

∑T
t=1

(
H(xt)− Ȧ

)(
H(xt)− Ȧ

)′
→p − ∂2

∂η∂η′A(η∞) = −Ä, where Ä is a positive-
de�nite matrix;

(d) 1
T

∑
t(H(xt))

3 = Op(1).

Then under the null we have

L̃M(β0) ⇒ χ2
kβ

.

7 Simulation Results

We have a number of simulation results which both support our theoretical results and
suggest directions for further research. We focus on simulation results from three models:
a simple DSGE model based on Clarida, Gali, and Gertler (1999), a nonlinear extension
of the standard weak IV model discussed earlier in this paper, and a weak IV model
with two endogenous variables. In all cases, we simulate the behavior of our proposed
statistics and compare the �nite sample distributions of the statistics in question to their
limiting distributions. In the DSGE example, we argue that estimation in the model
behaves in a manner consistent with weak identi�cation, and that our proposed statistics
o�er a substantial improvement over the usual Wald-based statistics for testing in this
model. For the other two models, we use a standard speci�cation for weak identi�cation
and show that our proposed tests have good properties in simulation.
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7.1 DSGE Model

We consider a simple DSGE model based on Clarida, Gali and Gertler (1999).4 For this
model, we �rst explore the properties of ML (and the usual ML-based test statistics),
then discuss the properties of the information matrix, and �nally explore the behavior
of our proposed test statistics, both for the full parameter vector and for subsets of
parameters.

The (log-linearized) equilibrium conditions for the model are

βEtπt+1 + κxt − πt + εt = 0

−[rt − Etπt+1 − rr∗t ] + Etxt+1 − xt = 0

rt = αrt−1 + (1− α)φππt + (1− α)φxxt + ut

rr∗t = ρ∆at

while the exogenous variables (∆at and ut) evolve according to

∆at = ρ∆at−1 + εa,t

ut = δut−1 + εu,t




εt

εa,t

εu,t


 ∼ iid N







0

0

0


 ,




σ2 0 0

0 σ2
a 0

0 0 σ2
u







The model has ten parameters: the discount rate β, the structural parameters κ, φx, φπ,
and α, and the parameters describing the evolution of the exogenous variables. We cali-
brate the structural parameters at generally accepted values: β = .99, κ = (1−θ)(1+φ)(1−βθ)

θ
≈

.1717, φx = 0, φπ = 1.5 and α = 0. For the parameters describing the exogenous vari-
ables, we choose ρ = .2 and δ = .2, to introduce a degree of persistence while maintaining
stationarity, and set σa = 1, σu = 1, σ = 1. Using this model, we generate samples of size
300 and then discard the �rst 100 observations. We use only the last 200 observations
from each simulation draw for the remainder of the analysis. Given well-documented
problems with estimating β in many models, for this point forward we also calibrate this

4Our model is based on slides from Lawrence Christiano on estimation of the Clarida Gali and Gertler
(1999) model, which we have altered by setting the tax rate equal to zero to simplify the model.
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parameter at its true value, and conduct the analysis using the remaining 9 parameters.5

7.1.1 MLE Monte-Carlo Results

We begin by examining the behavior of the maximum likelihood estimator for the nine
non-calibrated parameters in the model. We report histograms for the resulting estimates
in Figure 1 (based on 500 Monte-Carlo draws), with the true value of each parameter
reported in parentheses at the top of each subplot. As can be seen from the �gure, the
distribution of many of the estimates is quite far from the normal limiting distribution
of the maximum likelihood estimator under the usual assumptions. Moreover, it appears
that this non-normality is not purely the result of bad behavior on the part of one pa-
rameter: after experimenting with calibrating (to their true values) a number of di�erent
parameters, it appears that we need to exclude from the estimation (calibrate) at least
three parameters before the distributions of the remaining parameters begin to appear
well-approximated by normal distributions.

While the results in Figure 1 show that the usual asymptotics for the ML estimator
provide a poor approximation to its �nite-sample distribution in this model, our theo-
retical results focus on questions of inference rather than estimation, so we also look at
the behavior of the usual maximum likelihood tests for this model. We consider each
of the trinity of classical tests (LR, Wald, and LM) in turn, focusing on tests of the
full parameter vector. Speci�cally, we test the hypothesis H0 : θ = θ0, where θ is the
vector consisting of all parameters other than β and θ0 is the true value. Under the usual
assumptions for ML, all of these statistics should have a χ2

9 distribution asymptotically.
In simulations, however, the distribution of these statistics appears quite far from a χ2.
To illustrate this fact, in Table 1 we list the size of a number of classical test statistics
which, under classical assumptions, should have asymptotic size 5% or 10% (for the left
and right columns, respectively, based on 2000 simulations). These sizes were generated
by calculating the appropriate test statistic in simulation and comparing it to the 95th
(or 90th) percentile of a χ2

9 distribution. The LM statistic listed in Table 1 is calcu-
lated as LM(θ0) = S(θ0)

′I−1(θ0)S(θ0) where I(θ0) = −῭(θ0) is the observed information
(rather than with J as our LM statistic, L̃M(θ0) = S(θ0)

′J−1(θ0)S(θ0)). Table 1 also
lists four variations on the Wald statistic, corresponding to di�erent estimators of the

5We conducted extensive simulations, only some of which are presented here. Additional results are
available from the authors by request.
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asymptotic variance used in (θ̂ − θ0)V̂
−1(θ̂ − θ0). In particular, Wald (I(θ̂)) is the usual

Wald statistic which uses the inverse of the observed information, evaluated at θ̂, to esti-
mate the asymptotic variance. Wald (I(θ0)), on the other hand, evaluates the observed
information at the true parameter value. Likewise, Wald (J(θ̂)) and Wald (J(θ0)) use
J−1 as the estimator of the asymptotic variance, calculated at θ̂ and θ0 respectively.

As can be seen in Table 1, the LR statistic is fairly conservative, with type I error
less than half the desired asymptotic size. All versions of the Wald statistic which we
consider severely overreject. Finally, the usual LM statistic (calculated using the negative
hessian) somewhat overrejects at the 5% level and underrejects at the 10% level, and its
CDF is very poorly approximated by a that of a χ2

9. Taken together, these results strongly
suggest that the usual approaches to ML estimation and inference are poorly behaved
when applied to this model.

7.1.2 Behavior of the Information Matrix

Having examined the behavior of the usual ML estimator and tests in this model, we
can also look directly at the properties of the information matrix. The embedding which
we use to describe weak identi�cation in the exponential family case implies a singular
information matrix in the limit. Thus, intuitively, if we think that there are problems
of weak identi�cation in this model, we would expect the information matrix to be in
some sense close to singular. While we have not formalized this idea, examination of the
eigenvalues of Fisher's information matrix E[−῭(θ0)] (which we calculate by simulation)
con�rms, consistent with the intuition of weak identi�cation, that the information is
�small� in this model, with the smallest eigenvalue (.08) far smaller than the largest
(15644.04).

In Section 2 we associated weak identi�cation with the di�erence between two infor-
mation measures AT (θ0) being large compared to JT (θ0). We point out that observed
incremental information JT is almost surely positive-de�nite by construction, while AT

is a mean zero random matrix. If AT is negligible compared to JT , then the observed
information IT (θ0) = JT (θ0) − AT (θ0) is positive de�nite for majority of realizations.
We can check positive-de�niteness of IT (θ0) directly in simulations. Considering the ob-
served information evaluated at the true value (IT (θ0) = −῭(θ0)), we see that it has at
least one negative eigenvalue in over 95% of simulation draws, and at least two negative
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eigenvalues in over 40% of simulation draws (based on 2000 simulations). While this falls
far short of a formal test for weak identi�cation, it is consistent with the idea that weak
identi�cation is the source of the bad behavior of ML estimation in this model.

7.1.3 LM Test for Full Parameter Vector

We now turn to the weak identi�cation-robust statistics discussed earlier in this paper.
We begin by considering the behavior of the the test for the full parameter vector de-
scribed in section 3. As the reader will recall, this statistic is L̃M(θ) = S(θ)′J(θ)−1S(θ),
and under appropriate assumptions we have that L̃M(θ0) →d χ2

k under H0 : θ = θ0. In
Figure 2, we plot the CDF of the simulated distribution of L̃M(θ0), together with a χ2

9.
If we use χ2

9 critical values to construct a test based on this statistic, a 5% test rejects
9.84% of the time, while a 10% test rejects 16.68% of the time: though this shows that
the test based on L̃M and χ2

9 critical values is not exact, the χ2 approximation is far
better for L̃M than for the usual Wald or LM statistics.

7.1.4 Subset Tests

Finally, we simulate tests for subsets of parameters. Speci�cally, as before we consider a
partition of the parameter vector, θ = (a, b), and consider the problem of testing b = b0

without any restrictions on a. In this context, we simulate two tests. One is based on
the L̃M statistic evaluated at (â, b0) for â the ML estimator, which we have discussed
extensively in this paper. The other is based on mina L̃M(a, b0), suggested Stock and
Wright (2000) for GMM when a is strongly identi�ed. As discussed above, Kleibergen
and Mavroeidis (2009) argue that (under under similar assumptions to Stock and Wright)
when a is weakly identi�ed the asymptotic distribution of this statistic is dominated by
that of a χ2

p, where p is the dimension of b. For both approaches, and for several subsets
of parameters, we simulate the distribution of the statistic and then construct tests using
quantiles from the χ2

p distribution as critical values.
We �rst consider testing the six parameters other than α, ρ, and δ, (so we have

a = (α, ρ, δ) and b = (φx, φπ, κ, σa, σu, σ)). The size of 5% and 10% tests based on these
statistics using asymptotic (χ2

6) critical values are given in Table 2. As can be seen, while
the χ2

6 distribution does not provide a perfect approximation to the distribution of either
statistic, it is fairly close. Both statistics tend to over-reject, so since the test based on
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mina L̃M(a, b0) is more conservative by construction it performs somewhat better.
We next consider testing the six parameters other than φx, φπ and κ (so a = (φx, φπ, κ),

while b = (α, ρ, δ, σa, σu, σ)). The results from this simulation are given in Table 3. Again,
the tests over-reject compared to their asymptotic size, and the problem is actually some-
what worse than for the previous subset of parameters considered, although still not too
severe.

Finally, we may be interested in testing only one parameter at a time (for example to
generate con�dence sets). We report results for Taylor Rule parameters φx and φπ. Based
on 1000 simulations, the results for L̃M(α̂, β0) (reported in Table 4) are similar to those
in the other parameter subsets: the test over-rejects, although not severely. Interestingly,
when we consider the minimized statistic, the tests we receive for φx and φπ separately
appear conservative, rather than over-rejecting as they did for larger subsets.

7.2 Nonlinear Weak IV

In section 5 we prove that, provided α is well identi�ed, under appropriate assumptions
L̃M(α̂, β0) converges to a χ2

kβ
distribution asymptotically, where kβ is the dimension of

β. As shown in section 6, for the exponential family model where α is weakly identi�ed
but enters linearly we again have that L̃M(α̂, β0) converges to a χ2

kβ
. To understand the

extent to which the result relies on the fact that α, the nuisance parameter, enters the
expression linearly, we here consider a variation on the usual weak IV model in which β

enters the equation for Y nonlinearly. In particular, the model is:

Y = π
(
β2Z2 + βZ

)
+ U

X = πZ + V

with β, π scalar and


 ut

vt


 ∼ iidN (0, I). As usual with weak IV, we take the �rst-

stage parameter to zero as the sample size grows, π = c√
T
. The log-likelihood for this

model is `(θ) = const − 1
2

∑
(yt − π (β2z2

t + βzt))
2 − 1

2

∑
(xt − πzt). As before, let s

be the increment of the score vector S = ∂
∂θ

` and let J be its quadratic variation,
J = [S] =

∑
sts

′
t. We consider testing H0 : π = π0 using L̃M(π0, β̂ML), and are

interested in whether this statistic has a χ2
1 distribution asymptotically. While we do not

have any theoretical results for this case, we have run a number of simulations, which
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suggest that a χ2
1 is a reasonable approximation to the distribution of this statistic. In

particular, we set β = 1 and, c = .01, and consider T = 100 and T = 10, 000. For each
value of T, we simulate 10,000 Monte-Carlo draws, and calculate the size of asymptotic
5% and 10% tests (using critical values based on a χ2

1) for sample sizes 100 and 10,000,
which we report in Table 5. We also plot the CDF of L̃M(π0, β̂ML), together with that of
a χ2

1, in Figure 3. These simulation results show that the distribution of L̃M(π0, β̂ML) is
close to a χ2

1 in this model, suggesting that it may be possible to extend our theoretical
results to this context.

7.3 Weak IV for Two Endogenous Variables

Another possible application of our proposed statistics is to the case of weak IV with more
than one endogenous variable. Here, we consider the case of IV with two endogenous
variables, using the model

Y = Zπβ + U

X = Zπ + V

where π =


 π11 π12

π21 π22


, β =


 β1

β2


, V =




v11 v12

... ...
vT1 vT2


 and




ut

v1t

v2t


 ∼ N







0

0

0


 , Σ


.

We consider the problem of testing β1 = β0
1 without imposing any restrictions on β2 or

π. To do this, we calculate L̃M(β0
1 , β̂2, π̂), where (β̂2, π̂) is the restricted ML estimator

of (β2, π). As for nonlinear weak IV we have no theoretical results on this model, but

have simulated this statistic for π = 1√
T


 1 1

3

1
3

1


 , Σ =




1 .4 .7

.4 1 .5

.7 .5 1


, and T (total

number of observations) equal to 100 and 10, 000 (in both cases using 10,000 Monte-
Carlo draws).6 In Table 6 we report the size of what would be asymptotic 5% and 10%
tests if the L̃M statistic converged to a χ2

1 asymptotically, while in Figure 10 we plot
the distribution of the statistic for T = 100. At both sample sizes (and for a number of
other parameter values not shown), the statistic is dominated by a χ2

1, and as a result
6We produced simulations for di�erent values of π and Σ, which are available from the authors by

request.
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the statistic under-rejects. These results suggest that it may be possible to extend our
results to show that the L̃M statistic is dominated by a χ2

k in the case of weak IV with
more than one endogenous variable.
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9 Appendix with Proofs

As before, we assume that the normalizing matrix KM,T is diagonal. In order to sim-
plify notation when dealing with objects in three or more dimensions, we will somewhat
abuse our notation by using KM,T as if it were a sequence of constants. For example,
K2

α,T Kβ,T Λααβ →p 0 means that for all indexes i, j, n we have Kαi,T Kαj ,T Kβn,T Λαiαjβn →p

0. In the Taylor expansions used in the proof for Theorem 2, the expansion is assumed to
be for each entry of the expanded matrix. In addition, there is often a silent summation
over the indices in α, as will be clear in context.

32



Proof of Lemma 1
The proof follows closely the argument of Bhat (1974), starting with the Taylor ex-

pansion:

0 = Sα(α̂, β0) = S0
α − I0

αα(α̂− α0)− (Iαα(α∗, β0)− I0
αα)(α̂− α0)

where α∗ is a convex combination of α̂ and α0. As usual, we may consider di�erent
α∗ for di�erent rows of Iαα. Assumption 2(b) helps to control the last term of this
expansion, while Assumption 2(a) allows us to substitute Jαα,T for Iαα,T in the second
term. Assumption 1 gives the CLT for Kα,T Sα,T .¤

Lemma 4 Let MT =
∑T

t=1 mt be a multi-dimensional martingale with respect to sigma-
�eld Ft, and let [X]t be its quadratic variation. Assume that there is a sequence of
diagonal matrices KT such that

(a) KT [M ]T KT → Σ, where Σ is some �nite matrix;

(b) for any ε > 0 we have that
∑

t E (KT |mt|I{KT |mt| > ε}) → 0 as T →∞.

Let mi,t be i-th component of mt, and Ki,T the i-th diagonal element of KT . For any
i, j, l:

Ki,T Kj,T Kl,T

T∑
t=1

mi,tmj,tml,t →p 0

Proof of Lemma 4
Take any ε > 0.

∣∣∣∣∣Ki,T Kj,T Kl,T

T∑
t=1

mi,tmj,tml,t

∣∣∣∣∣ ≤ max
t
|Ki,T mi,t|

(
Kj,T Kl,T

T∑
t=1

mj,tml,t

)
≤

≤ max
t
|Ki,T mi,t| (Kj,T Kl,T [Mj,Ml]T )

Condition (a) implies that Kj,T Kl,T [Mj,Ml]T →p Σj,l is bounded in probability.

E
(
max

t
|Ki,T mi,t|

)
≤ ε + E

(
Ki,T max

t
|mi,t|I{|Ki,T mi,t| > ε}

)
≤

≤ ε +
∑

t

E (Ki,T |mi,t|I{|Ki,T mi,t| > ε})
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the last term converges to 0 according to condition (b). ¤
Proof of Lemma 2
Notice �rst that

− ∂

∂α
Iαα(θ0) = −3[Aαα, Sα]T + 2

T∑
t=1

s3
α,t + Λααα (15)

where Λααα is a martingale de�ned in (9), and [·, ·]T is a joint quadratic variation of any
two martingales.

Denote by ft = f(xt|Xt−1; θ) the (valid) pdf, while fα,t, fαα,t etc. are its partial
derivatives with respect to α. Notice that the increments of martingales Sα,T , Aαα,T and
Λααα are sα,t = fα,t

ft
, aαα,t = fαα,t

ft
, and λααα,t = fααα,t

ft
respectively. By de�nition

− ∂

∂α
Iαα =

∂3

∂α3

T∑
t

log ft =
T∑
t

fααα,t

ft

− 3
T∑
t

fαα,t

ft

fα,t

ft

+ 2
T∑
t

(
fα,t

ft

)3

so (15) follows.
Given Assumptions 1 and (2a) we have that Kα,T IααKα,T → Σ. Now consider the

quantity of interest from Assumption (2b)

∣∣K2
α,T (Iαα(α1, β0)− I0

αα)
∣∣ = K2

α,T

∣∣∣∣
∂

∂α
Iαα

∣∣∣∣ |α1 − α0| ≤ δK3
α,T

∣∣∣∣
∂

∂α
Iαα

∣∣∣∣ .

It su�ces to show that K3
α,T

∣∣ ∂
∂α

Iαα

∣∣ →p 0, using identity (15). Assumption (2b') implies
that the last term converges to zero in probability. Lemma 4 implies that the second term
is negligible. And �nally, Assumption (2a) gives us that the �rst term also converges to
zero in probability. ¤

Proof of Theorem 2
We denote by super-script 0 quantities evaluated at θ0 = (α0, β0). According to

martingale CLT, Assumption 3 implies that

(Kα,T S0
α, Kβ,T S0

β, Kαβ,T A0
αβ) ⇒ (ξα, ξβ, ξαβ), (16)

where ξ's are jointly normal with variance matrix ΣM .
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We Taylor expand Sβ(α̂, β0), keeping in mind that I0
βα = − ∂2

∂α∂β
`(α0, β0), and receive

Kβ,T Sβ(α̂, β0) = Kβ,T S0
β −Kβ,T I0

βα(α̂− α0) +
1

2
Kβ,T (α̂− α0)

′(I0
ααβ)(α̂− α0) + R̃

with residual
R̃ = Kβ,T

1

2
(α̂− α0)

′(I∗ααβ − I0
ααβ)(α̂− α0)

where I0
ααβ = ∂3

∂α2∂β
`(α0, β0), I∗ααβ = ∂3

∂α2∂β
`(α∗, β0) and α∗ is again a point between α̂

and α0. From Lemma 1 we have that α̂ is Kα,T -consistent. As a result, Assumption 4
(c) makes the Taylor residual negligible:

Kβ,T Sβ(α̂, β0) = Kβ,T S0
β −Kβ,T I0

βα(α̂− α0) + Kβ,T
1

2
(α̂− α0)

′(I0
ααβ)(α̂− α0) + op(1).

We plug asymptotic statement (8) into this equation and get

Kβ,T Sβ(α̂, β0) = Kβ,T S0
β −Kβ,T I0

βα(I0
αα)−1S0

α +
1

2
Kβ,T S0′

α (I0
αα)−1(I0

ααβ)(I0
αα)−1S0

α + op(1).

Reacall that by de�nition I0
βα = J0

βα −A0
βα. We use this substitution in the equation

above, and receive:

Kβ,T Sβ(α̂, β0) = Kβ,T S0
β −Kβ,T J0

βα(I0
αα)−1S0

α + Kβ,T A0
βα(I0

αα)−1S0
α+

+
1

2
Kβ,T S0′

α (I0
αα)−1(I0

ααβ)(I0
αα)−1S0

α + op(1). (17)

One can notice that we have the following informational equality:

I0
ααβ = −[A0

αα, S0
β]− 2[A0

αβ, S0
α] + 2

T∑
t=1

s2
α,tsβ,t + Λααβ.

It can be obtained in the same manner as (15). Assumption 4 (b) implies that Kβ,T K2
α,T Λααβ →p

0. Assumption 2(a) and Assumption 3 together imply that K2
α,T

Kαα,T
→ 0. Using Assumption

2(a) and Lemma 4, we notice that

Kβ,T K2
α,T I0

ααβ = −2Kβ,T K2
α,T [A0

αβ, S0
α] + op(1). (18)

According to Assumption 4 (a), 2Kβ,T K2
α,T [A0

αβ, S0
α] is asymptotically bounded so Kβ,T K2

α,T I0
ααβ =

Op(1). According to Assumption 2(a) Kα,T I0
ααKα,T = Kα,T JααKα,T + op(1), so Assump-
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tion 4 (a) implies that Kα,T AαβKβ,T is bounded. Taken together, these statements imply
that we can substitute J0

αα for I0
αα everywhere in (17). Doing so gives us:

Kβ,T Sβ(α̂, β0) = Kβ,T S0
β −Kβ,T J0

βα(J0
αα)−1S0

α + Kβ,T A0
αβ(J0

αα)−1S0
α+

+
1

2
Kβ,T S0′

α (J0
αα)−1(I0

ααβ)(J0
αα)−1S0

α + op(1).

Or

Kβ,T Sβ(α̂, β0) = Kβ,T S0
β −Kβ,T J0

βα(J0
αα)−1S0

α + D(J0
ααKα,T )−1S0

α + op(1) (19)

where
D = Kα,T Kβ,T A0

αβ +
1

2
Kα,T Kβ,T (I0

ααβ)(J0
αα)−1S0′

α .

Notice that D is asymptotically normal (though it may have zero variance, i.e. it
may converge to zero) and asymptotically independent of Kα,T S0

α. Indeed, using (??) we
have:

D =
Kα,T Kβ,T

Kαβ,T

Kαβ,T A0
αβ + (K2

α,T Kβ,T [A0
αβ, S0

α] + op(1))(Kα,T J0
ααKα,T )−1Kα,T S0′

α =

=
Kα,T Kβ,T

Kαβ,T

(
Kαβ,T A0

αβ − (Kα,T Kαβ,T [A0
αβ, S0

α])(Kα,T J0
ααKα,T )−1Kα,T S0′

α

)
+ op(1) ⇒

⇒ C

(
ξαβ − cov(ξαβ, ξα)

V ar(ξα)
ξα

)

where variables (ξ′α, ξ′αβ) = lim(Kα,T S0′
α , Kαβ,T A0′

αβ) are as described at the beginning of
the proof.

Plugging the last statement and (16) into equation (19) we have:

Kβ,T Sβ(α̂, β0) ⇒ ξβ − cov(ξβ, ξα)

V ar(ξα)
ξα + C

(
ξαβ − cov(ξαβ, ξα)

V ar(ξα)
ξα

)
ξα

V ar(ξα)
.

Conditional on ξα, Kβ,T Sβ(α̂, β0) is asymptotically normal with mean zero and condi-
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tional variance

lim V ar(Kβ,T Sβ(α̂, β0)|Kα,T S0
α = ξα) =

(
V ar(ξβ)− cov2(ξβ, ξα)

V ar(ξα)

)
+

+2C
ξα

V ar(ξα)

(
cov(ξαβ, ξβ)− cov(ξαβ, ξα)cov(ξβ, ξα)

V ar(ξα)

)
+

+

(
C

ξα

V ar(ξα)

)2 (
V ar(ξαβ)− cov2(ξαβ, ξα)

V ar(ξα)

)
. (20)

Now we turn to the inverse variance term in formula (7) for L̃M(β0),
(
Jββ − JβαJ−1

ααJ ′βα

)∣∣
(α̂,β0)

.
Below we prove the following lemma:

Lemma 5 Under Assumptions of Theorem 1 we have:

(a) K2
β,T Jββ(α̂, β0) ⇒ V ar(ξβ) + 2Ccov(ξαβ, ξβ) ξα

V ar(ξα)
+ C2V ar(ξαβ)

(
ξα

V ar(ξα)

)2

(b) Kα,T Kβ,T Jαβ(α̂, β0) ⇒ cov(ξα, ξβ) + C · cov(ξαβ, ξα) ξα

V ar(ξα)

(c) K2
α,T Jαα(α̂, β0) →p V ar(ξα)

Lemma 5 implies that

K2
β,T

(
Jββ − JβαJ−1

ααJ ′βα

)∣∣
(α̂,β0)

⇒

⇒ V ar(ξβ) + 2Ccov(ξαβ, ξβ)
ξα

V ar(ξα)
+ C2V ar(ξαβ)

(
ξα

V ar(ξα)

)2

−

−
(

cov(ξα, ξβ) + C · cov(ξαβ, ξα)
ξα

V ar(ξα)

)
1

V ar(ξα)

(
cov(ξα, ξβ) + C · cov(ξαβ, ξα)

ξα

V ar(ξα)

)
.

Note that the last expression is the same as (20). That is, K2
β,T

(
Jββ − JβαJ−1

ααJ ′βα

)∣∣
(α̂,β0)

is asymptotically equal to the asymptotic variance of Kβ,T Sβ(α̂, β0) conditional on ξα.
As a result statistic L̃M(β0), conditional on ξα, is distributed χ2

kβ
asymptotically and

thus is asymptotically χ2
kβ

unconditionally as well. This completes the proof of Theorem
2.

Proof of Lemma 5
(a) We can Taylor expand Jββ(α̂, β0) as:

Jββ(α̂, β0) = J0
ββ +

∂

∂α
J0

ββ(α̂− α0) +
1

2

∂2

∂α2
J0

ββ(α̂− α0)
2 + R, (21)
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where R = ∂3

∂α3 J
0
ββ(α∗ − α0)

2. Consider the �rst term of the Taylor expansion above:

∂

∂α
Jββ =

∂

∂α

∑
t

sβ,tsβ,t = −2
∑

iαβ,tsβ,t = 2
∑

aαβ,tsβ,t − 2
∑

sα,ts
2
β,t.

Using the statement of Lemma 4 and Assumption 4 (a) we have

Kα,T K2
β,T

∂

∂α
Jββ = 2

Kα,T Kβ,T

Kαβ,T

Kαβ,T Kβ,T

∑
aαβ,tsβ,t − 2Kα,T K2

β,T

∑
sα,ts

2
β,t →p

→p 2Ccov(ξαβ, ξβ). (22)

Now let us consider the second derivative of Jββ:

∂2

∂α2
Jββ = 2

∂

∂α

∑
aαβ,tsβ,t − 2

∂

∂α

∑
sα,ts

2
β,t =

= 2
∑

λααβ,tsβ,t + 2
∑

a2
αβ,t − 8

∑
aαβ,tsβ,tsα,t − 2

∑
aαα,ts

2
β,t + 6

∑
t

s2
α,ts

2
β,t.

We is interested in the limit of K2
α,T K2

β,T
∂2

∂α2 Jββ(α̂, β0). According to Lemma 4,
K2

α,T K2
β,T

∑
aαβ,tsβ,tsα,t →p 0 and K2

α,T K2
β,T

∑
aαα,ts

2
β,t →p 0. Analogously we can show

that K2
α,T K2

β,T

∑
t s

2
α,ts

2
β,t →p 0. Assumption 4 (b) implies that K2

α,T K2
β,T

∑
λααβ,tsβ,t →p

0. Finally using Assumption 3(b) we get

K2
α,T K2

β,T

∂2

∂α2
Jββ →p 2C2V ar(ξαβ). (23)

In the same way as above we can show that

K3
α,T K2

β,T

∂3

∂α3
Jββ →p 0 (24)

Putting the expressions for derivatives (22), (23) and (24) into equation (21), and also
noticing that due to Lemma 1 K−1

α,T (α̂ − α0) ⇒ ξα

V ar(ξα)
, we get statement (a) of Lemma

5.
(b) Again we use Taylor expansion:

Jαβ(α̂, β0) = J0
αβ +

∂

∂α
J0

αβ(α̂− α0) +
1

2

∂2

∂α2
J0

αβ(α∗ − α0)
2. (25)
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From assumption 3(b)

Kα,T Kβ,T J0
αβ →p cov(ξα, ξβ) (26)

Taking the derivative we see

∂

∂α
Jαβ =

∂

∂α

∑
t

sα,tsβ,t = [Aαα, Sβ] + [Aαβ, Sα]− 2
∑

s2
α,tsβ,t

According to Lemma 4 K2
α,T Kβ,T

∑
s2

α,tsβ,t → 0. Assumptions 2(a) and 3 imply that
K2

α,T

Kαα,T
→ 0, so K2

α,T Kβ,T [Aαα, Sβ] →p 0. We have

K2
α,T Kβ,T

∂

∂α
Jαβ =

K2
α,T Kαβ,T

Kαβ,T

Kαβ,T Kα,T [Aαβ, Sα] + op(1) →p C · cov(ξαβ, ξα) (27)

Similarly, we can show that

K3
α,T Kβ,T

∂2

∂α2
J0

αβ → 0

Putting the last equation, together with (26) and (27), into (25) and using Lemma 1 we
get statement (b) of Lemma 5.

(c) As before we use Taylor expansion

K2
α,T Jαα(α̂, β0) = K2

α,T J0
αα + K3

α,T

∂

∂α
J0

αα

(α∗ − α0)

Kα,T

∂

∂α
Jαα = 2[AααSα] + 2

∑
s3

α,t.

By the same argument as before K3
α,T [AααSα] →p 0, and according to Lemma 4 K3

α,T

∑
s3

α,t →p

0. Given the result of Lemma 1 we arrive at statement (c). ¤
Proof of statement from Section 5.3
We consider model

Y = β0Zπ0 + U0; X = Zπ0 + V0.

Here Y, X, U0 and V0 are n× 1, Z is n× k, π0 is k× 1, and β0 is 1× 1. Here we assume
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that u0
t , v

0
t are i.i.d. with mean zero and known variance matrix


 1 0

0 1


.

The test we wish to perform is H0 : β = β0, so π is a nuisance parameter. In what
follows all parameters and errors with zero indexes stand for their true values, while
those without zero are calculated with values of π which are not necessarily the truth.
For example, U = Y − β0Zπ is equal to U0 only if π = π0. We also use Ṽ = β0U + V

and E = U − β0V . Notice that E = E0 for all π.
The score (up to a constant multiplier) is (k + 1)× 1 vector ST = (S1, S

′
2)
′, where

S1 = π′Z ′U ; S2 = β0Z
′U + Z ′V = Z ′Ṽ .

We consider a slightly di�erent version of the J matrix, using the expected quadratic

variation J =
∑

t E [sts
′
t] =


 π′Z ′Zπ β0π

′Z ′Z

β0Z
′Zπ (1 + β2

0)Z
′Z


 . The LM statistic for the full

parameter vector (β0, π) is

LM(β0, π) = S ′J−1S =
1

1 + β2
0

(
(π′Z ′E)2

π′Z ′Zπ
+ Ṽ ′Z(Z ′Z)−1Z ′Ṽ

)
. (28)

Consider an alternative to our statistic introduced in (7). In particular, consider statistic
LM c(β0) introduced in equation (11). It is of the same type as the statistic considered
in Kleibergen and Mavroeidis (2009). We need to minimize LM(β0, π) with respect to
π. For this purpose we take �rst derivative with respect to π:

∂LM

∂π
=

1

1 + β2
0

(
2

π′Z ′E
π′Z ′Zπ

Z ′E − 2
(π′Z ′E)2

(π′Z ′Zπ)2
Z ′Zπ − 2(1 + β2

0)Z
′Ṽ

)
.

So our �rst order condition is

π′Z ′E
π′Z ′Zπ

Z ′E − (π′Z ′E)2

(π′Z ′Zπ)2
Z ′Zπ − (1 + β2

0)Z
′Ṽ = 0. (29)

Note that if we multiply equation (29) by π′ from the left the �rst two terms cancel out
and

π′Z ′Ṽ = 0. (30)

We next derive a formula for Ṽ ′Z(Z ′Z)−1Z ′Ṽ from equation (29). As a �rst step we
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multiply it by Ṽ ′Z(Z ′Z)−1

(1 + β2
0)Ṽ

′Z(Z ′Z)−1Z ′Ṽ =
π′Z ′E
π′Z ′Zπ

Ṽ ′Z(Z ′Z)−1Z ′E − (π′Z ′E)2

(π′Z ′Zπ)2
Ṽ ′Z(Z ′Z)−1Z ′Zπ =

=
π′Z ′E
π′Z ′Zπ

Ṽ ′Z(Z ′Z)−1Z ′E.

The last equality follows from (30). We plug the last equation into (28) and receive:

LM c(β0) =
1

1 + β2
0

(
(π̃′Z ′E)2

π̃′Z ′Zπ̃
+

1

1 + β2
0

π̃′Z ′E
π̃′Z ′Zπ̃

Ṽ ′Z(Z ′Z)−1Z ′E
)

,

where π̃ is the minimizer of LM(β0, π) and the point at which we consider FOC (29).
Now let us introduce Ỹ = β0Y + X = (1 + β2

0)Zπ̃ + Ṽ , or Ṽ = Ỹ − (1 + β2
0)Zπ̃ and plug

it in the last expression:

LM(β0, π̃) =
1

(1 + β2
0)

2

π̃′Z ′E
π̃′Z ′Zπ̃

Ỹ ′Z(Z ′Z)−1Z ′E. (31)

We adopt notation from Andrews, Moreira, and Stock (2006),

QS =
E ′Z(Z ′Z)−1Z ′E

1 + β2
0

; QST =
E ′Z(Z ′Z)−1Z ′Ỹ

1 + β2
0

; QT =
Ỹ ′Z(Z ′Z)−1Z ′Ỹ

1 + β2
0

.

Let us also denote γ = 1 + β2
0 ; a = π̃′Z ′E; b = π̃′Z ′Zπ̃. We can re-write (29) as

a

b
Z ′E − a2

b2
Z ′Zπ − γZ ′Ỹ + γ2Z ′Zπ = 0. (32)

Multiply equation (32) by E ′Z(Z ′Z)−1 from the left and multiply (32) by Ỹ ′Z(Z ′Z)−1

from the left and take a linear combination of the resulting expressions. We arrive at the
following equation

(
a

γb

)2

QST − a

γb
(QT + QS) + QST = 0.

As a result
a

γb
=

(QS + QT )−
√

(QS + QT )2 − 4Q2
ST

2QST

.

Putting this into formula (31) we get

LM c(β0) =
(QS + QT )−

√
(QS + QT )2 − 4Q2

ST

2
.
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Simulations show that under weak identi�cation, the statistic is strictly dominated by
χ2

1.
Proof of Lemma 3.
First we prove that (Z ′Z)−1/2Z ′Û , β̂ and (Z ′Z)−1/2Z ′V0 are asymptotically normal

and asymptotically uncorrelated with each other. Two k−vectors (Z ′Z)−1/2Z ′V0 and
(Z ′Z)−1/2Z ′U0 have exact normal distribution and independent from each other (condi-
tionally on Z, however, the whole analysis here is done conditionally on Z).

From the de�nition of Û we can see:

(Z ′Z)−1/2Z ′Û = (Z ′Z)−1/2Z ′U0 − π′0Z
′U0

π′0Z ′Zπ0

(Z ′Z)−1/2Z ′π0

and β̂−β0 = π′Z′U0

π′Z′Zπ
. As we can see (Z ′Z)−1/2Z ′U0 is represented as a sum of two orthog-

onal components (Z ′Z)−1/2Z ′Û and π′0Z′U0

π′0Z′Zπ0
(Z ′Z)−1/2Z ′π0. The last one is normalized β̂.

So, asymptotic normality and independence is proved.
Now, consider LM(β̂, π0) written as in (13) and condition it on β̂. We can see that

(Z ′Z)−1/2Z ′
(
β̂Û + V0

)
is normal k × 1- vector conditionally on β̂, and

(1 + β̂2)Ik − β̂2(Z ′Z)1/2π0π
′
0(Z

′Z)1/2

π′0Z ′Zπ0

is its conditional covariance matrix. Thus, conditionally on β̂ statistic LM(β̂, π0) has χ2
k

asymptotic distribution. ¤
Notation. Whenever a function is given with no argument, it means it is evaluated

at the true θ0. Whenever we evaluate a function at a point other than θ0, we write it
explicitly. For martingales S and A and for information quantities J and I indexes 1

and 2 stand for the sub-matrices corresponding to α1 and α2 respectively, and β for the
sub-matrix corresponding to β.

For the functions `,m, n and r only, the subscript 1 stands for the partial derivative
with respect to α1, subscript 2 stands for the partial derivative with respect to α2, and
subscript β denotes the partial derivative with respect to β. For the second derivatives
the order of subscripts determine the dimension of the corresponding matrix, for example,
`1,2 = ∂2

∂α′1∂α2
is k1 × k2 matrix. In general the third derivative is a third order tensor,

the forth derivative is a fourth order tensor, and any statement about convergence of
tensors means element-by-element convergence unless otherwise speci�ed. N1 is the set
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of indexes of α1, so α(n) is an element of α1 if n ∈ N1. N2 is the set of indexes for α2, and
Nβ is the set of indexes for β. For example, `1β(n) = ∂

∂α(n)
`1β is a matrix of size k1 × kβ

of third derivatives, and if n ∈ N2 then `1β(n) is sub-matrix of tensor `1β2. Likewise Aβ1

is kβ × k1 matrix, while Aβ(n) is kβ × 1 sub-matrix of Aβ1 if n ∈ N1.
Consider the following normalization: K1,T = 1√

T
Idk1 ; K2,T = Idk2 ; Kβ,T = Idkβ

;

Kα,T =


 K1,T 0

0 K2,T


 and KT =


 Kα,T 0

0 Kβ,T


.

Lemma 6 Under the conditions of Theorem 3 the following statements hold:

(a) KT JT KT →p Σ, where Σ is non-degenerate �nite matrix;

(b) J−1
αα,T Iαα,T →p Idkα;

(c) 1
T 3/2 `111 →p 0; 1

T
`112 →p 0; 1√

T
`122 →p 0; `222 →p 0;

(d) 1
T
`11β →p 0; 1

T
`112β →p 0; 1√

T
`122β →p 0; `222β →p 0;

(e) `22(j) − [A2(j), S2]− [S2, A2(j)] →p 0 for any j ∈ Nβ;

(f) 1√
T

(
`β1(j) − [Aβ(j), S1]

) →p 0 for any j ∈ N2;

(g) Aβ1√
T
→p 0; [

Aβ(j)√
T

, S1√
T
] →p 0 and [

Aβ(j)√
T

, S2] →p 0 for any j ∈ N1;

Proof of Lemma 6. Let us denote H1 =
∑T

t=1

(
H(xt)− Ȧ

)
(which is a p×1 vector),

H2 =
∑T

t=1

(
H(xt)− Ȧ

)(
H(xt)− Ȧ

)′
(a p× p matrix). According to the conditions of

Theorem 3, 1
T
H1 →p 0 and 1

T
H2 →p −Ä.

(a) One can check that

ST =




(m1 + 1√
T
n1α2 + 1√

T
r1)

′H1

n′√
T
H1

(nβα2+rβ)′√
T

H1


 =

∂η

∂θ

′
H1,

where ∂η
∂θ

= ((m1 + 1√
T
n1α2 + 1√

T
r1),

n√
T
,

(nβα2+rβ)√
T

) is p × k matrix. It is easy to show
that JT = ∂η

∂θ

′
H2

∂η
∂θ
. Using the normalization KT we have:

KT JT KT →p −




m′
1

n′

(nβα2 + rβ)′


 Ä(m1, n, nβα2 + rβ) = Σ.
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Due to the rank assumption, Σ is positive-de�nite.
(b) We calculate Iαα,T :

Iαα,T =asy


 m11H1 − Tm′

1Äm1
n′1√
T
H1 − T n√

T
Äm1

n′1√
T
H1 − T n√

T
Äm1 −T n′√

T
Ä n√

T




Now it is straightforward to show that Kα,T Iαα,T Kα,T converges to the same limit as
Kα,T Jαα,T Kα,T . This means that J−1

αα,T Iαα,T →p Idkα .
(c) Can be proved by tedious di�erentiation. Below we drop all terms that are of

obviously smaller order:

1

T 3/2
`111 =

1

T 3/2

(
H1m111 − 3TÄm1m11 − T

...
Am3

1

)
+ op(1) →p 0

1

T
`112 =

1

T

(
H1

n11√
T
− TÄm11

n√
T
− 2TÄm1

n1√
T
− T

...
Am2

1

n√
T

)
→p 0

1√
T

`122 =
1√
T

(
T
...
Am1

(
n√
T

)2

− 2TÄ
n√
T

n1√
T

)
→ 0

`222 = −T
...
A

(
n√
T

)3

→ 0

The last two statements employ that α2 enters linearly, so any time we di�erentiate with
respect to α2 a term including n√

T
appears.

(d) As above, the idea here is that since ηT is linear in α2, each additional derivative
with respect to α2 generates n√

T
.

1

T
`11β =

1

T

(
H1

n11βα2 + r11β√
T

− TÄm11
nβα2 + rβ√

T
− 2TÄm1

n1βα2 + r1β√
T

− T
...
Am2

1

nβα2 + rβ√
T

)
→ 0

1√
T

`122β =
1√
T

(
−T

...
Am1β

(
n√
T

)2

− 2T
...
Am1

n√
T

nβ√
T
− T

....
A m1

(
n√
T

)2
nβα2 + rβ√

T
−

−2TÄ
nβ√
T

n1√
T
− 2TÄ

n√
T

n1β√
T
− 2T

...
A

n√
T

n1√
T

nβα2 + rβ√
T

)
→ 0

`222β = −3T
...
A

(
n√
T

)2
nβ√
T
− T

....
A

(
n√
T

)3
nβα2 + rβ√

T
→ 0.

The expression for 1
T
`112β is quite long, and we omit it here.
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(e) One can easily check that `22 = −n′Än, so for any j ∈ N2 we have

`22(j) = −n′(j)Än− n′Än(j) − n′
...
An

n(j)α2 + r(j)√
T

→ −n′(j)Än− n′Än(j).

We also have
A2(j) =

n′(j)√
T

H1 + op(1)

and as a result
[A2(j), S2] =

n′(j)√
T

H1
n√
T

+ op(1) →p −n′(j)Än,

where we have used assumptions (a)-(c) of Theorem 3 several times.
(f) Taking derivatives one can check that for any j ∈ N2

1√
T

`1β(j) →p −m′
1Ä

(
ne(j)

)
β
,

where e(j) is a vector of size k2×1 with (j)-th component 1 and zeros in all other entries.

Aβ(j) = H ′
1

(
ne(j)

)
β√

T
+ op(1).

As a result,
[
S1√
T

,Aβ(j)] = m′
1

1

T
H2

(
ne(j)

)
β
→p −m′

1Ä
(
ne(j)

)
β
.

(g) For j ∈ N1

Aβ(j)√
T

=
1√
T

H ′
1

nβ(j)√
T

+ op(1).

As a result,
[
Aβ(j)√

T
,

S1√
T

] =
1√
T

m′
1

H2

T
nβ(j) + op(1) →p 0

and
[
Aβ(j)√

T
, S2] =

1√
T

n′
H2

T
nβ(j) + op(1) →p 0.

Proof of Theorem 3
Let us consider the restricted ML estimator for α, namely α̂ solving Sα,T (α̂, β0) = 0.

Taylor expanding this expression around α0 gives us

Kα,T Sα(α̂, β) = Kα,T S0
α −Kα,T Iαα,T Kα,T K−1

α,T (α̂− α0) + R
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where

R(i) =





1√
T

(
1
2
(α∗1 − α0

1)
′`11(i)(α

∗
1 − α0

1) + (α∗1 − α0
1)
′`12(i)(α

∗
2 − α0

2)
)

if i ∈ I1;
(
(α∗1 − α0

1)
′`12(i)(α

∗
2 − α0

2) + 1
2
(α∗2 − α0

2)
′`22(i)(α

∗
2 − α0

2)
)

if i ∈ I2;

Lemma 6 (c) implies that R →p 0. Using also Lemma 6 (b) we get:

K−1
α,T (α̂− α0) = K−1

α,T (Iαα,T )−1 Sα + op(1) = K−1
α,T (Jαα,T )−1 Sα + op(1).

This means that the equation for the restricted MLE is asymptotically linear in Sα, and
thus that the asymptotic distribution of α̂ will be normal despite the fact that α̂2 is not
consistent.

Now let us consider the score at the restricted MLE

Sβ,T (α̂, β0) = Sβ − Iβα(α̂− α0) +
1

2

∑
i∈I2

`β2(i)(α̂2 − α0
2)(α̂(i) − α0

(i))+

+
∑
i∈I2

`β1(i)(α̂1 − α0
1)(α̂(i) − α0

(i)) + R̃ (33)

where for each i ∈ Iβ

R̃(i) =
1

2
(α∗1 − α0

1)
′`11(i)(α

∗
1 − α0

1) +
1

2

∑
j∈I2

(α∗1 − α0
1)
′`11(i)(j)(α

∗
1 − α0

1)(α
∗
(j) − α0

(j))
2+

+
1

2

∑
j∈I2

(α∗1 − α0
1)
′`12(i)(j)(α

∗
2 − α0

2)(α
∗
(j) − α0

(j))
2+

+
1

6

∑
j∈I2

(α∗2 − α0
2)
′`22(i)(j)(α

∗
2 − α0

2)(α
∗
(j) − α0

(j)).

Statement (d) of Lemma 6 gives us that R̃ →p 0.
Now we plug statements (e) and (f) of Lemma 6 in to equation (33):

Sβ,T (α̂, β0) = Sβ − Iβα(α̂− α0) +
∑
i∈I2

[Aβ(i), S2](α̂2 − α0
2)(α̂(i) − α0

(i))+

+
∑
i∈I2

[Aβ(i), S1](α̂1 − α0
1)(α̂(i) − α0

(i)).
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By de�nition

Iβα(α̂− α0) = JβαJ−1
ααSα − Aβ1(α̂1 − α0

1)− Aβ2(α̂2 − α0
2) =

= JβαJ−1
ααSα − Aβ1(α̂1 − α0

1)−
∑
i∈I2

Aβ(i)(α̂(i) − α0
(i)).

So,

Sβ,T (α̂, β0) = Sβ − JβαJ−1
α,αSα − Aβ1(α̂1 − α0

1)−
−

∑
i∈I2

(
Aβ(i) − [Aβ(i), S1](α̂1 − α0

1)− [Aβ(i), S2](α̂2 − α0
2)

)
(α̂(i) − α0

(i)) =

= Sβ − JβαJ−1
α,αSα −

∑
i∈I2

(
Aβ(i) − [Aβ(i), Sα](α̂− α0)

)
(α̂(i) − α0

(i)) =

= S⊥β − A⊥
β2(α̂2 − α0

2)

where S⊥β and A⊥
β2 are asymptotically normal and independent from 1√

T
S1 and S2. In the

derivation above we used statement (g) of Lemma 6.
More explicitly,

S⊥β = S0
β − J0

αβJ−1
α,αSα

and for any i ∈ I2

A⊥
β(i) = Aβ(i) − [Aβ(i), Sα](α̂− α0) = Aβ(i) − [Aβ(i), Sα]J−1

ααSα.

To summarize, we showed that

Sβ,T (α̂, β0) = S⊥β − A⊥
β2(α̂2 − α0

2). (34)

This statistic is asymptotically normal conditional on Kα,T Sα,T (and thus conditional on
K−1

α,T (α̂− α0)).
Now, we consider the denominator. Let us consider sβ,t(θ) =

nβ(α1,β)α2+rβ(α1,β)√
T

(H(xt)−
Ȧ(ηt(θ))). We may notice that

sβ,t(α̂, β0) = sβ,t(θ0) +
∂

∂α2

sβ,t(θ0)(α̂2 − α0
2) + Op(

1

T
) (35)

This can be seen from observing that ∂
∂α1

sβ,t(θ0) = Op(
1√
T
), ∂2

∂α2
2
sβ,t = Op(

1
T
), (α̂1−α0

1) =
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Op(
1√
T
), etc.

Similarly,
s1,t(α̂, β0) = s1,t(θ0) + Op(

1√
T

)

and
s2,t(α̂, β0) = s2,t(θ0) + Op(

1

T
).

Joining the last two together we get:

Kα,T sα,t(α̂, β0) = Kα,T sα,t(θ0) + Op(
1

T
) (36)

Based on the de�nition of martingale AT we can re-write (35) as

sβ,t(α̂, β0) = sβ,t(θ0) + aβ2,t(α̂2 − α0
2) + sβ,t(θ0)s2,t(θ0)

′(α̂2 − α0
2) + Op(

1

T
). (37)

From (37) and Lemma 4

Jββ(α̂, β0) = Jββ+[Sβ, Aβ2](α̂2−α0
2)+(α̂2−α0

2)
′[A2β, Sβ]+(α̂2−α0

2)
′[A2β, Aβ,2](α̂2−α0

2)+op(1).

Joining together (37) and (36) we get

Kα,T Jαβ(α̂, β0) = Kα,T Jαβ(θ0) + Kα,T [Sα, Aβ2](α̂2 − α0
2) + op(1).

Finally (36) implies that

Kα,T Jαα(α̂, β0)Kα,T = Kα,T Jαα(θ0)Kα,T + op(1).

Putting together the last three statements we have

(
Jββ − JβαJ−1

ααJαβ

)∣∣
θ=(α̂,β0)

= Jββ − JβαJ−1
ααJαβ+

+[Sβ, Aβ2](α̂2 − α0
2) + (α̂2 − α0

2)
′[A2β, Sβ] + (α̂2 − α0

2)
′[A2β, Aβ,2](α̂2 − α0

2)−
−JβαJ−1

αα [Sα, Aβ2](α̂2 − α0
2)− (α̂2 − α0

2)
′[Aβ2, Sα]J−1

ααJαβ−
−(α̂2 − α0

2)
′[Aβ2, Sα]J−1

αα [Sα, Aβ2](α̂2 − α0
2) + op(1).

All functions on the right side are evaluated at θ0. One can see that the quantity on the
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right side of the last equation is the conditional variance of the score from equation (34)
given (α̂2 − α0

2).

10 Figures and Tables

Figure 1: Histogram of parameter estimates from jointly estimating
α, φx, φπ, ρ, δ, κ, σa, σu, σ
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Table 1: Size of Classical Tests for θ0 in Simulation
Test Satatistic Size of 5% Test Size of 10% Test

LR(θ0) 3.20% 7.05%
Wald (I(θ0)) 65.45% 67.20%
Wald (I(θ̂)) 63.05% 64.30%
Wald (J(θ0)) 68.05% 70.80%
Wald (J(θ̂)) 68.15% 71.00%

LM(θ0) 6.55% 8.60%
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Figure 2: CDF of simulated LM statistic (using J) compared to χ2
9
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Table 2: Simulated Test Size for (φx, φπ, κ, σa, σu, σ)
Test Statistic 5% 10%
L̃M(α̂, β0) 7.99% 15.28%

minα L̃M(α, β0) 6.41% 12.99%

Table 3: Simulated Test Size for (α, ρ, δ, σa, σu, σ)
Test Statistic 5% 10%
L̃M(α̂, β0) 8.95% 15.40%

minα L̃M(α, β0) 7.50% 13.30%

Table 4: Simulated Test Size for one dimensional hypotheses for (φx, φπ)
Parameter Test Statistic 5% 10%

φx L̃M(α̂, β0) 8.90% 16.30%
minα L̃M(α, β0) 3.80% 8.00%

φπ L̃M(α̂, β0) 9.90% 18.90%
minα L̃M(α, β0) 3.30% 7.80%

Table 5: Size of 5% and 10% Tests based on L̃M(π0, β̂ML)for Nonlinear IV Model
Sample Size Rejection rate for 5% test Rejection rate for 10% test

100 6.49% 12.70%
10000 5.70% 11.34%
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Figure 3: CDF of L̃M(π0, β̂ML) for Nonlinear weak IV, c = .01, T=100

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 

Empirical

χ2
1

Table 6: Size of 5% and 10% Asymptotic Tests Based on L̃M(β0
1 , β̂2, π̂1, π̂2)

Sample Size Rejection rate for 5% test Rejection rate for 10% test
100 1.81% 4.89%

10000 1.37% 4.04%
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Figure 4: CDF of L̃M(β0
1 , β̂2, π̂) for T = 100
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