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The one-shot classical capacity of a quantum channel quantifies the amount of classical information

that can be transmitted through a single use of the channel such that the error probability is below a certain

threshold. In this work, we show that this capacity is well approximated by a relative-entropy-type

measure defined via hypothesis testing. Combined with a quantum version of Stein’s lemma, our results

give a conceptually simple proof of the well-known Holevo-Schumacher-Westmoreland theorem for the

capacity of memoryless channels. More generally, we obtain tight capacity formulas for arbitrary

(not necessarily memoryless) channels.
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In information theory, a channel models a physical
device that takes an input and generates an output. One
may, for instance, think of a communication channel (such
as an optical fiber) that connects a sender (who provides the
input) with a receiver (who obtains an output, which may
deviate from the input). Another example is a memory
device, such as a hard drive, where the input consists of
the data written into the device, and where the output is the
(generally noisy) data that are retrieved from the device at a
later point in time.

A central question studied in information theory is
whether, and how, a channel can be used to transmit data
reliably in spite of the channel noise. This is usually
achieved by coding, where an encoder prepares the channel
input by adding redundancy to the data to be transmitted,
and where a decoder reconstructs the data from the noisy
channel output.

Here we focus on the case of classical-quantum channel
coding, where the data to be transmitted reliably are clas-
sical. No assumptions are made about the channel that is
used to achieve this task; i.e., the inputs and outputs may be
arbitrary quantum states. However, since the quantum-
mechanical structure of the input space is irrelevant for
the encoding of classical data, it can be represented by a
(classical) set X. For any input x 2 X, the channel pro-
duces an output, specified by a density operator �x on a
Hilbert space B. For our purposes, it is therefore sufficient
to characterize a channel by a mapping x � �x from a set
X to a set of density operators.

Classical-quantum channel coding has been studied ex-
tensively in a scenario where the channel can be used
arbitrarily many times. The channel coding theorem for
stationary memoryless classical-quantum channels, estab-
lished by Holevo [1] and Schumacher and Westmoreland
[2], provides an explicit formula [see (10)] for the rate at
which data can be transmitted under the assumption that

each use of the channel is independent of the previous uses.
More general channel coding theorems that do not rely on
this independence assumption have been developed in later
work by Hayashi and Nagaoka [3] and by Kretschmann
and Werner [4]. These results are asymptotic; i.e., they
refer to a limit where the number of channel uses tends
to infinity while the probability of error is required to
approach zero.
Here we consider a scenario where a given quantum

channel is used only once and derive tight bounds on the
number of classical bits that can be transmitted with a
given average error probability �, in the following referred
to as the �-one-shot classical-quantum capacity. This one-
shot approach provides a high level of generality, as noth-
ing needs to be assumed about the structure of the channel
[5]. (Note that any situation in which a channel is used
repeatedly can be equivalently described as one single-use
of a larger channel.) In particular, our bounds on the
channel capacities imply the aforementioned Holevo-
Schumacher-Westmoreland theorem for the capacity of
memoryless channels, as well as the generalizations by
Hayashi and Nagaoka. On the other hand, our work gen-
eralizes similar one-shot results for classical channels
[6–8]. Despite their generality, the bounds as well as their
proofs are remarkably simple. We hope that our approach
may therefore also be of pedagogical value.
Our derivation is based on the idea, already exploited in

previous works (see, e.g., [3,9–11]), of relating the prob-
lem of channel coding to hypothesis testing. Here, we use
hypothesis testing directly to define a relative-entropy-type
quantity, denoted D�

Hð� k �Þ [see (1)]. Our main result
asserts that the one-shot channel capacity is well approxi-
mated by D�

Hð� k �Þ (Theorem 1).
The remainder of this Letter is structured as follows. We

briefly describe hypothesis testing and state a few proper-
ties of the quantity D�

Hð� k �Þ. We then state and prove our
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main result which provides upper and lower bounds
on the �-one-shot classical-quantum capacity in terms of
D�

Hð� k �Þ. Finally, we show how the known asymptotic
bounds (for arbitrarily many channel-uses) can be obtained
from Theorem 1.

Hypothesis testing and D�
Hð� k �Þ.—Hypothesis testing

is the task of distinguishing two possible states of a system,
� and �. A strategy for this task is specified by a positive
operator valued measure (POVM) with two elements, Q
and I-Q, corresponding to the two possible values for the
guess. The probability that the strategy produces a correct
guess on input � is given by tr½Q��, and the probability that
it produces a wrong guess on input � is tr½Q��. We define
the hypothesis testing relative entropy D�

Hð� k �Þ as
D�

Hð� k �Þ ¼4 �log2 inf
Q:0�Q�I;
tr½Q���1��

tr½Q��: (1)

Note that D�
Hð� k �Þ is a semidefinite program and can

therefore be evaluated efficiently.
As its name suggests, D�

Hð� k �Þ can be understood as a
relative entropy. In particular, for � ¼ 0, it is equal to
Rényi’s relative entropy of order 0, D0ð� k �Þ ¼
�log2tr½�0��, where �0 denotes the projector onto the
support of �. For � > 0, it corresponds to a ‘‘smoothed’’
variant of the relative Rényi entropy of order 0 used by
Buscemi and Datta [12] for characterizing the quantum
capacity of channels [13]. D�

Hð� k �Þ has the following
properties, all of which hold for all �, � and � 2 ½0; 1Þ:

(1) Positivity:

D�
Hð� k �Þ � 0;

with equality if � ¼ � and � ¼ 0.
(2) Data processing inequality (DPI): for any com-

pletely positive map (CPM) E,

D�
Hð� k �Þ � D�

HðE½�� k E½��Þ:
(3) Let Dð� k �Þ denote the usual quantum relative en-

tropy, then

D�
Hð� k �Þ � ½Dð� k �Þ þHbð�Þ�=ð1� �Þ; (2)

where Hbð�Þ is the binary entropy function.
Positivity follows immediately from the definition.
To prove the DPI, consider any POVM to distinguish

E½�� from E½��. We can then construct a new POVM to
distinguish � from � by preceding the given POVM with
the CPM E. This new POVM clearly gives the same error
probabilities (in distinguishing � and �) as the original
POVM (in distinguishing E½�� and E½��). The DPI then
follows because an optimization over all possible strategies
for distinguishing � and � can only decrease the failure
probability.

To prove (2), first see that it holds when Dð� k �Þ is
replaced byDðP� k P�Þ, where P� is the distribution of the

outcomes of the optimal POVM performed on �, namely,

it is (1� �, �), and similarly for P� which is (2�D�
Hð�k�Þ,

1� 2�D�
Hð�k�Þ). This can be shown by directly computing

DðP� k P�Þ. Then (2) follows becauseDð� k �Þ satisfies the
DPI so Dð� k �Þ � DðP� k P�Þ.
A further connection between D�

Hð� k �Þ and Dð� k �Þ is
the quantum Stein’s lemma [9,14], which we restate as
follows.
Lemma 1 (quantum Stein’s lemma). For any two states �

and � on a Hilbert space and for any � 2 ð0; 1Þ,

lim
n!1

1

n
D�

Hð��n k ��nÞ ¼ Dð� k �Þ:

Statement and proof of the main result.—Before stating
our main result, we introduce some general terminology.
The encoder is specified by a list of inputs, fxig, i 2
f1; . . . ; mg, called a codebook of size m. The decoder
applies a corresponding decoding POVM, which acts on
B and has m elements. A decoding error occurs if the
output of the decoding POVM is not equal to the index i
of the input xi fed into the channel. An (m, �)-code
consists of a codebook of size m and a corresponding
decoding POVM such that, when the message is chosen
uniformly, the average probability of a decoding error is at
most � [15].
The main result of this Letter is the following theorem.
Theorem 1. The �-one-shot classical-quantum capacity

of a channel x � �x, i.e., the largest number R for which a
(2R, �)-code exists, satisfies

sup
PX

D�
Hð�AB k �A � �BÞ

� R � sup
PX

D�=2
H ð�AB k �A � �BÞ � log2

1

�
� 4; (3)

where �AB is the joint state of the input and output for an
input chosen according to the distribution PX, i.e.,

�AB ¼4
X
x2X

PXðxÞjxihxjA � �B
x ;

for any representation of the inputs x in terms of orthonor-
mal vectors jxiA on a Hilbert space A, and where �A and
�B are the corresponding marginals.
The proof of Theorem 1 is divided into two parts, one for

the first inequality (referred to as the converse) and the other
for the second inequality (the achievability). We start with
the conversewhich asserts that, if a (2R, �)-code exists, then

R � sup
PX

D�
Hð�AB k �A � �BÞ: (4)

Proof of Theorem 1—converse part.—By definition, it is
sufficient to prove (4) for a uniform distribution on the x’s
used in the codebook, so we can focus on states �AB of the
form

�AB ¼ 2�R
X2R
i¼1

jxiihxij � �xi :
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Note that the decoding POVM combined with the in-
verse of the encoding map (which is classical) can be
viewed as a CPM. This CPM maps �AB to the (classical)
state PMM0 denoting the joint distribution of the transmitted
message M and the decoder’s guess M0. Similarly, it maps
�A � �B to PM � PM0 . Hence, it follows from the DPI for
D�

Hð� k �Þ that
D�

HðPMM0 k PM � PM0 Þ � D�
Hð�AB k �A � �BÞ:

It thus remains to prove

R � D�
HðPMM0 k PM � PM0 Þ: (5)

For this, we consider a (possibly suboptimal) strategy to
distinguish between PMM0 and PM � PM0 . The strategy
guesses PMM0 if M ¼ M0, and guesses PM � PM0 other-
wise. Using this distinguishing strategy, the probability of
guessing PM � PM0 on state PMM0 is exactly the probability
that M � M0 computed from PMM0 , namely, the average
probability of a decoding error, and is thus not larger than �
by assumption. Furthermore, the probability of guessing
PMM0 on state PM � PM0 is given by

X2R
i¼1

PMðiÞPM0 ðiÞ ¼ 2�R
X2R
i¼1

PM0 ðiÞ ¼ 2�R:

This implies (5). j
We proceed with the achievability part of Theorem 1.

We show a slightly stronger result which asserts that,
for any � > �0 > 0 and c > 0, there exists a (2R, �)-code
with

R � sup
PX

D�0
Hð�AB k �A � �BÞ � log2

2þ cþ c�1

�� ð1þ cÞ�0 : (6)

Choosing c ¼ 1=3 and �0 ¼ �=2, this bound implies the
second inequality of (3).

The main technique we need for proving (6) is the follow-
ing lemma by Hayashi and Nagaoka ([3] Lemma 2):

Lemma 2. For any positive real c and any operators
0 � S � I and T � 0, we have

I � ðSþ TÞ�1=2SðSþ TÞ�1=2

� ð1þ cÞðI � SÞ þ ð2þ cþ c�1ÞT:
Proof of Theorem 1—achievability part.—Fix �0 2

ð0; �Þ, c > 0, and PX. We are going to show that there
exists a (2R, �)-code such that

� � ð1þ cÞ�0 þ ð2þ cþ c�1Þ2R�D�0
H ð�ABk�A��BÞ;

which immediately implies (6).
Let Q be an operator acting on AB such that 0 � Q � I

and tr½Q�AB� � 1� �0. By definition, it suffices to prove
that there exists a codebook and a decoding POVM with
error probability

� � ð1þ cÞ�0 þ ð2þ cþ c�1Þ2Rtr½Qð�A � �BÞ�: (7)

We generate a codebook by choosing its codewords xj at

random, each independently according to the distribution
PX. Furthermore, we define the corresponding decoding
POVM by its elements,

Ei ¼
�X2R
j¼1

Axj

��ð1=2Þ
Axi

�X2R
j¼1

Axj

��ð1=2Þ
;

where Ax ¼4 trA½ðjxihxjA � IBÞQ�.
For a specific codebook fxjg and the transmitted code-

word xi, the probability of error is given by

Prðerrorjxi; fxjgÞ ¼ tr½ðI � EiÞ�xi�:
We now use Lemma 2 with S ¼ Axi and T ¼ P

j�iAxj to

bound this by

Prðerrorjxi; fxjgÞ � ð1þ cÞð1� tr½Axi�xi�Þ
þ ð2þ cþ c�1ÞX

j�i

tr½Axj�xi�:

Averaging over all codebooks, but keeping the transmitted
codeword xi fixed, we find

PrðerrorjxiÞ�ð1þcÞð1� tr½Axi�xi�Þ
þð2þcþc�1Þð2R�1Þtr

� X
x02X

PXðx0ÞAx0�xi

�
:

Averaging now in addition over the transmitted codeword
xi, we obtain the upper bound

PrðerrorÞ� ð1þcÞ
�
1�X

x

PXðxÞtr½Ax�x�
�

þð2þcþc�1Þ2Rtr
�X

x0
PXðx0ÞAx0

X
x

PXðxÞ�x

�
:

(8)

Note thatX
x

PXðxÞtr½Ax�x� ¼
X
x

PXðxÞtr½QjxihxjA � �B
x �

¼ tr½Q�AB� � 1� �0

and

tr

�X
x

PXðx0ÞAx0
X
x

PXðxÞ�x

�

¼X
x0
PXðx0Þtr

�
Qjx0ihx0j�X

x

PXðxÞ�x

�

¼ tr½Qð�A��BÞ�:
Inserting these expressions into (8) we find that the upper
bound (7) holds for the probability of error averaged over
the class of codebooks we generated. Thus there must
exist at least one codebook whose error probability �
satisfies (7). j
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Asymptotic analysis.—Theorem 1 applies to the trans-
mission of a message in a single use of the channel.
Obviously, a channel that can be used n times can always
be modeled as one big single-use channel. We can thus
retrieve the known expressions for the (usual) capacity of
channels, i.e., the average number of bits that can be
transmitted per channel use in the limit where the channel
is used arbitrarily often and the error � approaches 0. Most
generally, a channel that can be used an arbitrary number of
times is characterized by a sequence of mappings xn � �n,
n 2 f1; 2; . . .g, where xn 2 Xn represents an input state
over n channel uses [16], and where �n is a density
operator on B�n. Note that such a channel need not have
any structure such as ‘‘causality’’ as defined in [4]. From
Theorem 1 it immediately follows that the capacity of
any channel is given by

C ¼ lim
�#0

lim
n!1

1

n
sup
PXn

D�
Hð�An�B�n k �An � �B�nÞ; (9)

whereAn denotes theHilbert space spanned by orthonormal
states jxni for all xn 2 Xn. This expression is equivalent
to ([3] Theorem 1) [17]. We can also derive similar results
for the optimistic capacity and the � capacity, see [18].

Now consider a memoryless channel whose behavior in
each use is independent of the previous uses. The capacity
C of such a channel is given by the well-known Holevo-
Schumacher-Westmoreland theorem [1,2]:

C ¼ lim
k!1

1

k
sup
PXk

Dð�Ak�B�k k �Ak � �B�kÞ: (10)

Note that Dð�Ak�B�k k �Ak � �B�kÞ may equivalently be
written as the mutual information IðAk;B

�kÞ. This theorem
can be proved easily using (9).

Proof of (10). To show achievability, i.e., that C is
lower-bounded by the right-hand side (RHS) of (10),
we restrict the supremum in (9) to product distributions

on k-use states, so the joint state �An�B�n
looks like

ð�Ak�B�kÞ�ðn=kÞ [19]. We then let n tend to infinity and
apply Lemma 1 to obtain that, for any k,

C � 1

k
sup
PXk

Dð�Ak�B�k k �Ak � �B�kÞ: (11)

This concludes the proof of the achievability part.
The converse, i.e., that C is upper-bounded by the RHS

of (10), follows immediately from (9) and (2). j
To conclude, it may be interesting to compare

Theorem 1 to other recently derived bounds on the one-
shot capacity of classical-quantum channels [20,21]. The
bounds of [20] are different from ours in that they are not
known to coincide asymptotically for arbitrary channels. In
[21], it has been shown that the one-shot classical-quantum
capacity R of a channel can be approximated (up to addi-
tive terms of the order log21=�) by

R � max
PX

H�
minðAÞ�A �H�

maxðAjBÞ�AB ;

where H�
min and H�

max denote the smooth min- and

max-entropies, which have recently been shown to be the
relevant quantities for characterizing a number of
information-theoretic tasks (see, e.g., [22] for definitions
and properties). Combined with our result, this suggests
that there is a deeper and more general relation between
hypothesis testing and smooth entropies (and, therefore,
the associated operational quantities). Exploring this link is
left as an open question for future work.
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