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We describe a method for coupling disjoint quantum bits (qubits) in different local processing nodes of
a distributed node quantum information processor. An effective channel for information transfer between
nodes is obtained by moving the system into an interaction frame where all pairs of cross-node qubits are
effectively coupled via an exchange interaction between actuator elements of each node. All control is
achieved via actuator-only modulation, leading to fast implementations of a universal set of internode
quantum gates. The method is expected to be nearly independent of actuator decoherence and may be
made insensitive to experimental variations of system parameters by appropriate design of control
sequences. We show, in particular, how the induced cross-node coupling channel may be used to swap
the complete quantum states of the local processors in parallel.
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A distributed, multinode structure has been suggested as
a convenient means of arranging qubits in an experimen-
tally realizable quantum computer architecture [1-8]. Such
a structure requires the ability to define an array of disjoint
quantum processors that may be controlled locally, with
communication between local processors provided by a
coupling between nodes that may be turned on or off in
turn. One method of satisfying these requirements is to
append a small number of qubits to each node of an array
of nearest-neighbor coupled actuator elements. The actua-
tor elements provide local control of the surrounding
processor qubits and a means of transferring information
between nodes [9]. In this work, we present a method
for generating a universal set of gates between any pair
of disjoint cross-node qubits via isotropic actuator
couplings.

An effective cross-node processor coupling network is
created by taking advantage of four-body coupling terms
between actuator and processor elements that appear in a
manifold of excited states unused for quantum information
storage. By moving into an appropriate interaction frame,
the four-body coupling terms appear as two-body cou-
plings between every pair of cross-node processor qubits
in a properly defined computational manifold. While this
complete cross-node coupling network allows for a com-
putationally universal set of operations between nodes, we
present an explicit implementation of a parallel swap of the
complete quantum mechanical states of two local quantum
processors. Consideration of this representative entangling
operation serves to motivate the broader applicability of
the induced information transfer channel. Additionally,
since information is never explicitly stored for an appre-
ciable amount of time on the actuators—which are exposed
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to higher levels of noise than the processor elements—we
expect the channel to be nearly independent of actuator
decoherence.

The details of the method will be discussed from the
standpoint of a spin-based, distributed node quantum in-
formation processor. This system contains all the necessary
physics and is representative of many other modalities
being considered for experimental realizations of quantum
information processing. For example, Rydberg atom ex-
citations of neutral atoms [10,11], inductive coupling of
superconducting qubits [12,13], and Bloch wave disper-
sion in cavity devices [14,15] all take the form of an
isotropic dipolar coupling. Direct dipolar interactions
also naturally occur in spin-based devices such as semi-
conductor quantum dots [16,17], silicon-based devices
[5,18], nitrogen-vacancy defect centers in diamond [19],
and other solid-state spin systems [20-22]. The methods
developed in this work may be readily extended to these
systems.

In our spin-based model, each node consists of a single
actuator electron spin coupled via resolved anisotropic
hyperfine interactions to each of k qubits of a local nuclear
spin processor (Fig. 1). Control over the local processors is
achieved via electron-only modulation [23], taking advan-
tage of the relative strength of the hyperfine interaction to
generate a universal set of fast quantum gates on the
nuclear spins [24], which serve as excellent storage ele-
ments for quantum information due to their relatively long
coherence times [25]. The internode coupling of actuators
is given by an isotropic dipolar or exchange interaction
between electrons. The spatial separation of the nodes is
taken to be sufficient for any cross-node dipolar inter-
actions of nuclear spins to be negligible.

© 2012 American Physical Society
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FIG. 1 (color). 2 X (le-3n) node schematic. The nodes are
taken to be identical, with resolved anisotropic hyperfine inter-
actions (solid red lines) between electron actuator spins and
nuclear processor spins. The local processors are initially dis-
joint, but may be effectively coupled (dotted lines) by modulat-
ing an isotropic actuator exchange interaction (solid blue double
line) and moving into an appropriate microwave Hamiltonian
interaction frame. The spin labeling is e; for electron actuator
spins and n;; for nuclear processor spins, where i labels the
nodes and j labels the qubits.

The state structure of a two node system with one
electron actuator spin and one nuclear processor spin
each—a 2 X (le-1n) system—is shown in Fig. 2. The
computational basis states of the local quantum processors
are defined in the ground-state manifold of the actuators.
This choice of encoding allows us to implement gates
between the disjoint processors by taking advantage of
an induced cross-node coupling in the zero-quantum
(ZQ) manifold of actuator excited states not used for
information storage.

We derive the form of the cross-node coupling for a
general 2 X (le-kn) system. The nodes are taken to be
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FIG. 2 (color). Energy Structure of 2 X (le-1n) system.
Quantum information is encoded in the states | || 00), | || 01),
| 1l 10), and | || 11) of the actuator ground-state (computational)
manifold, where arrows indicate electron actuator spin states and
binary digits indicate nuclear processor spin states. The desired
transition (bold red arrow) for a SWAP operation is implemented
by applying a selective microwave field that induces transitions
between the two manifolds (dotted lines), effectively moving the
induced cross-node processor transitions (dashed lines) in the
actuator zero-quantum (ZQ) manifold to the computational
manifold. Note that the actuator excited state manifold, | 11), is
not included as it is not involved in the internode transfer
process.

identical with energy structure given by a dominant, quan-
tizing electron Zeeman interaction H¢, with a strong static
magnetic field oriented along the laboratory Z direction, a
corresponding nuclear Zeeman interaction H’,, an aniso-
tropic hyperfine interaction between electron and nuclear
spins HHF , and a dipolar interaction between electron
spins Hj;

H*M = HY + HY + HE' + HEe. ¢))

In a frame rotating at the electron Zeeman frequency, the
resulting secular Hamiltonians are given in terms of the
usual spin—% Pauli operators as [26]

HY = Za)’g(ag‘k + %)
X

H4¢ = w207 02 — oY o — oy 0y?) 2)

Higt = Y A" (003" + 06",
k

where the vectors AK = A% + A%$ + AXZ represent the
strengths and directions of the hyperfine coupling between
the kth nuclear spin in each node and the corresponding
actuator, ¥ is the strength of the nuclear Zeeman inter-
action for the kth nuclear spin, w, is the strength of the
dipolar interaction, and 6 = o,X + 0,9 + 0.2

The nuclear spins are quantized in an effective field
given by the vector sum of the hyperfine and nuclear
Zeeman interactions. The resulting eigenstates are non-
commuting, allowing for universal control of the nuclear
spins via electron-only control [24]. Note that, since the
nodes are identical, the above Hamiltonians do not provide
the ability to selectively address nodes. Universal control
over the entire 2 X (le-kn) system is obtained by adding a
term to the Hamiltonian that spatially labels the nodes to
allow for local operations. These terms are not included in
the present discussion as they are not necessary for the
implementation of gates between nodes, and may be effec-
tively turned off. We only require that the differences in the
hyperfine coupling strengths within each node are large
enough for each pair of identical spins to be spectroscopi-
cally resolved. This requirement limits the number of
qubits per node [8] but, due to the inherent inefficiency
of designing control sequences for a large number of
particles, it is advantageous to keep the size of nodes small
and rely on the ability to swap qubit states between nodes
to implement large-scale quantum algorithms.

The full set of interactions accessible by evolution under
the Hamiltonians in (2) is given by the Lie algebra gen-
erated by taking Lie brackets to all orders [27,28]. In
particular, the second-order bracket, [[H{ ¢, Hi' ], HE!
takes the form of a four-body internode interaction, g1ven
by an effective cross-node nuclear spin dipolar coupling
H}" along with flip-flop transitions of the electron spins:

[[H5¢ Hi' ] HEl < wy (0 02 + 09 0P) @ HE™. (3)
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FIG. 3 (color). Internode coupling network. The induced
coupling network of local processor elements consists of inter-
actions between every pair of cross-node spins. For implemen-
tation of a parallel swap operation, we wish to keep interactions
between identical spins (solid red lines) while refocusing all
other interactions (dotted lines).

The resulting nuclear spin dynamics in the ZQ manifold
may be decomposed into a sum of coupling terms, HY",
that act on every pair of cross-node spins, ny, and n,,,
(Fig. 3). Each HY" may be written in terms of the well-
known dipolar alphabet, with 0. = o, * io, [26]:

Ap = ALAI (02 o), (4a)
By, = (ALAT + ALAM) (0} oon + g o)
+ (ALAT — ALAT) (o) oon — o™egRr),  (4b)

Cop = (ALAZ — IALADY (2 02 + 02 '2)
4 Y4 Y4 Al n Ny
+ (ALAT — ALAT — IALAT + (LAY T g,

(4¢)
Epp = (ALAT — ALAT — iALAT — iACAT) 0" o',

(4d)
Dy, = C},, Fo = E}, (4e)

After application of an appropriate microwave control
field, these four-body interactions in the ZQ manifold
appear as effective cross-node two-body couplings in the
computational manifold. To demonstrate this, we consider
the implementation of a particularly powerful operation: a
parallel swap of entire local processor states between
nodes at once. For the case of a single nuclear spin per
node, the relevant ZQ transitions are | 1l 01)(|{ 10| and | {
1 10)(]1 01|. Application of a microwave field with matrix
elements | T1){|} | and | |1){Il | of strength commensurate
with the ZQ transitions transforms both of the transitions
to a swap operation in the computational manifold:
| 11 01| 10] (see Fig. 2).

When multiple nuclear spins are present in each node, a
parallel swap operation requires suppressing couplings
between nonidentical spins (€ # m) while retaining cou-
plings between identical spins (€ = m). This may be
accomplished by exploiting the difference in symmetry
between the prefactors of the coupling operators for iden-
tical versus nonidentical spins.

Consider, as an example, a 2 X (1e-2n) system. The
effective Hamiltonians of the induced interactions may
be written as Hj, + H), where Hj = HL + H? and
H}; = H}} + H?!. The effective dipolar coupling strength
for H}5 appears as odd order in A' and A? , while each term
in H% appears as even order. Thus, by inverting the state of
only the second (or first) spin in each node halfway through
free evolution under the induced Hamiltonians, we can
generate a zeroth-order average Hamiltonian of only the
desired Hg) interactions [29]. Higher-order terms in the
average Hamiltonian may be suppressed through the use
of more sophisticated pulses or by applying the evolution-
pulse-evolution cycle at a rate fast compared to wp. This
symmetry argument may be easily generalized to a larger
number of nuclear spins per node by applying a binomially
expanding set of inversion pulses to properly select the
desired couplings [30].

‘We now consider how to isolate the desired interaction (3)
from other elements of the algebra. One method of suppress-
ing the extraneous terms is to use a composite pulse sequence
to generate an effective Hamiltonian for which the desired
second-order commutator is the dominant term. Concretely,
recall that by the BCH expansion, eXe? = exp(X + Y+
X Y1+ S5IX X Y]+ 5[y [Y, X+ -+ +). By recur-
sively applying this expansion, we can derive an identity
that suppresses all terms below second order:

XeVo X Vo Xp¥ oXp=V = XXV (5)
By making the correspondence X = Hf' and Y = Hj°,
we obtain a pulse composed of sequential periods of only
electron dipolar or hyperfine evolution, leading to the
effective propagator,

U(87) =~ o™ [Hy “Hi"LH"] (6)

where higher-order terms have been neglected. We may
also suppress the undesired terms by numerically optimiz-
ing experimentally robust microwave pulses which achieve
the desired interaction while suppressing all other inter-
actions [31-34].

A final consideration is the sensitivity of the induced
channel to actuator noise processes. We claim that by never
transferring complete qubit state information to the actua-
tors, we may operate in a regime where any portion of the
information present in the ZQ manifold arrives back to the
computational manifold before it is corrupted. We may
quantitatively determine the robustness of the channel to
actuator noise by comparing, as a function of noise
strength, the Hilbert-Schmidt inner product fidelity,

X A At A .
F(Sideab Snoisy) = Tr(SidealSnoisy)/dz, between d” dimen-
sional superoperators representing the channel in the pres-

ence of noise, Syi5y, and in the ideal noiseless case, Sigeql-
The ideal channel is generated by a Liouvillian operator,

L, corresponding to unitary evolution only. The noisy

140502-3



PRL 108, 140502 (2012)

PHYSICAL REVIEW LETTERS

week ending
6 APRIL 2012

F(Sideah Snoisy)
0.9999 -

0.999

0.99 -

09

lOglO(lel = Tgwl)

FIG. 4 (color online). Channel noise robustness. A plot of the
channel fidelity, F, as a function of noise strength, 7, = T,
scaled by computing — log[1 — F]. The induced channel (solid
line) performs significantly better than a serial swap operation
(dotted line) [36]. Given a modest Rabi frequency, w; =
100 MHz, the induced channel is nearly independent of actuator
decoherence for electron relaxation times above 100 us.

channel includes two dissipation operators, D; and D,,

describing the relaxation of e; and e,, respectively:
§n0isy(t) — o iL+iD +1D; (7)

A physically motivated model of noise is a contribution of

phase and amplitude damping applied separately to each
electron, which leads to a dissipator,

A 1
D= —5(1“l +I)(E_®1+1QE_)
+F10’+ ®0'+ +F2E_ ®E_, (8)

where E, = |0X0| and E_ = |1)(1] are projection opera-
tors. The noise strength is parameterized by I'; ,, which are
related to the commonly used energy, 7, and coherence,
T,, relaxation times by I'y =1/T, and T, = 2T, —
T,)/(T,T,). A plot of the superoperator fidelity versus
noise strength is shown in Fig. 4. The noise has a minimal
effect on the operation of the channel for values of
Tyw; = 10*. Assuming a modest Rabi frequency of
w; = 100 MHz, actuator relaxation times of 100 us
are required to avoid significant corruption of the informa-
tion during transfer. Currently achievable relaxation times
for electron spins are well within this range [18,35].

By taking advantage of the additional degrees of free-
dom present in an actuator based system, and manipulating
the naturally occurring actuator interactions between
nodes, we were able to create an effective channel between
initially disjoint local processors that allows the parallel
transfer of k-qubit states between nodes, effectively inde-
pendent of actuator decoherence. The channel takes the
form of four-body cross-node interactions in the zero-
quantum manifold of actuator states which, after moving

into an appropriate microwave interaction frame, appear as
effective two-body couplings of cross-node qubits in the
computational manifold. The resulting complete cross-
node coupling network may be used to generate a universal
set of gate operations between nodes. We expect the tech-
niques described in this work to be applicable to a wide
variety of quantum devices, with minimal need for
modification.

This work was supported by the Canadian Excellence
Research Chairs (CERC) Program and the Canadian
Institute for Advanced Research (CIFAR).
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