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The advanced versions of the LIGO and Virgo ground-based gravitational-wave detectors are expected

to operate from three sites: Hanford, Livingston, and Cascina. Recent proposals have been made to place a

fourth site in Australia or India, and there is the possibility of using the Large Cryogenic Gravitational

Wave Telescope in Japan to further extend the network. Using Bayesian parameter-estimation analyses of

simulated gravitational-wave signals from a range of coalescing-binary locations and orientations at fixed

distance or signal-to-noise ratio, we study the improvement in parameter estimation for the proposed

networks. We find that a fourth detector site can break degeneracies in several parameters; in particular,

the localization of the source on the sky is improved by a factor of �3–4 for an Australian site, or

�2:5–3:5 for an Indian site, with more modest improvements in distance and binary inclination estimates.

This enhanced ability to localize sources on the sky will be crucial in any search for electromagnetic

counterparts to detected gravitational-wave signals.

DOI: 10.1103/PhysRevD.85.104045 PACS numbers: 04.30.Db

I. INTRODUCTION

Gravitational waves and electromagnetic counterparts
from the merger of compact binaries carry complementary
information, and the successful association of the two
types of merger signatures allows many crucial questions
in stellar and binary evolution and cosmology to be
answered (see [1,2] and references therein). Good sky
localization of gravitational-wave sources is crucial in
searching for associated electromagnetic transients. In
this paper, we discuss ways in which relocating one of
the LIGO detectors to a site in Australia or India could
improve the prospects of multimessenger gravitational-
wave astronomy.

The final S6 science run of the enhanced-LIGO
gravitational-wave detectors [3], along with the third sci-
ence run of the Virgo detector [4] and GEO 600 [5], has
recently concluded. Construction of the second generation
of instruments is already underway, with 4 km advanced
LIGO detectors undergoing installation at the Hanford,
WA and Livingston, LA observatories [6], with sensitivity
expected to improve by about 1 order of magnitude. These
two sites in North America are expected to be joined by the
advanced Virgo [7] detector, located in Cascina, Italy, to
form a second-generation network consisting of three
sites. Recently, proposals have been made to add a fourth
site to the network, at Gingin in Western Australia
(� 31�2102800S, 115�4205000E), or outside Bangalore in

India (14�140N, 76�260E). The advantages and disadvan-
tages of the LIGO Australia and LIGO India proposals
were studied by a working group within the LIGO
Scientific Collaboration, and their conclusions for LIGO
Australia are reported in [8]. Kamioka gravitational wave
detector, large-scale cryogenic gravitational wave gele-
scope (KAGRA—formerly known as LCGT) is a planned
interferometer with 3 km arms and cryogenically cooled
mirrors, located in Japan (36�150N, 137�110E) 200 m be-
low ground to reduce seismic noise [9]. In addition to the
four-site advanced LIGO/Virgo networks, we also consider
the possible network with two advanced LIGO detectors at
Hanford, one at Livingstonand an advanced Virgo at
Cascina and KAGRA in Japan. In the following, we use
an acronym for denoting the network based on the first
initials of the sites involved: Australia (A), Hanford (H),
India (I), Japan (J), Livingston (L), and Virgo (V); e.g.,
AHLV is a network consisting of LIGO detectors in
Australia, Hanford, Livingston, and the Virgo detector.
In this study, we make a comparison of the performance

of the proposed networks with the performance of the
three-site HHLV network in terms of parameter estimation
for compact binaries. We focus on binary neutron-star
systems, which are expected to be a prevalent source of
observable signals for the advanced detector network [10].
Using independent Bayesian analyses, we compare the

parameter-estimation performance of each network for an
ensemble of sources spread throughout parameter space,
and demonstrate the improvement gained from the addition
of sites to the network. The relative improvement for
individual sources is assessed at a fixed distance or
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signal-to-noise ratio (SNR). Bayesian inference allows us
to extract all of the available information about system
parameters from the full data set. In contrast with the
timing triangulation method discussed below, all of the
data from all interferometers are taken into account coher-
ently. And unlike Fisher information matrix techniques,
which explicitly only describe the local structure of the
parameter space and are accurate only in the limit of high
SNR, Bayesian inference methods search through the full
parameter space, showing the global structure of posteri-
ors, including multiple modes or near degeneracies.

Beginning with the work of Jaranowski et al. [11],
several other studies have analyzed sky-localization accu-
racy with different network configurations [12–15]. These
investigations either used only a limited amount of infor-
mation (e.g., timing information alone) or Fisher-matrix
techniques that may fail in a multimodal, degenerate pa-
rameter space. A similar method that included second-
order corrections to the Fisher matrix found that these
terms tended to increase the estimated area on the sky
[16]. The study by Nissanke et al. [17] used Bayesian
methods to compare HLV, AHLV, HJLV, and AHJLV net-
works, but used a single detector at Hanford for the HLV
case (so some of their quoted improvements are simply due
to greater SNR accessible with 4 rather than 3 detectors).
Furthermore, Nissanke et al. [17] used a population of
sources randomly distributed in space out to z ¼ 1,
whereas we distributed our sources at constant distance
[for nested sampling (NS) and Markov chain Monte Carlo
(MCMC) methods] or constant SNR (Fisher-matrix
method) and varied the other extrinsic parameters. This
was done to ensure good coverage of the extrinsic parame-
ter space when assessing the relative network perfor-
mances. Meanwhile, the study by Klimenko et al.
focused on sky localization of transient burst sources
rather than coalescing compact binaries with known wave-
forms [18].

The ‘‘Report of the Committee to Compare the
Scientific Cases for AHLV and HHLV,’’ which considered
the scientific advantages of moving one of the Hanford
detectors to Australia [8], was based in part on a prelimi-
nary version of the work presented here. Ours is the first
study to apply Bayesian techniques to comparisons of
parameter-estimation accuracies with a network including
an Indian detector as well as networks with Australian or
Japanese detectors. Furthermore, we analyze the impact of
moving one of the detectors to Australia or India on the
accuracy of measuring masses, distances, and other pa-
rameters in addition to sky localization for the first time.1

This paper is organized as follows. In Sec. II, we de-
scribe the network configurations being analyzed. In
Sec. III, we introduce the analysis techniques employed
in this paper. The simulations and their results are de-
scribed in Sec. IV. We conclude in Sec. V. We also include
an Appendix discussing the impact of the change of net-
work configurations on false alarm probabilities and
detection thresholds for a fully coherent analysis.

II. NETWORK CONFIGURATIONS

Interferometric gravitational-wave detectors are notori-
ously bad at determining the direction of incoming radia-
tion from short duration sources when used individually, as
the detector has good sensitivity over a large range of
angles. Although this allows an all-sky search to be per-
formed without the need for ‘‘pointing,’’ it also means that
the amplitude of the incoming signal cannot be used to
determine its location well. To be able to resolve the
position on the sky of a short duration gravitational-wave
source, a network of interferometers is needed.
With more than one site it is possible to use triangulation

to determine the location of an observed signal using the
observed time delay between different detectors. With two
sites, this method can resolve the position to within a ring
on the sky centered on the axes between the sites; with
three sites this is reduced to two patches; but the addition of
a fourth site allows a unique patch to be determined for
each source. The limiting factors in the accuracy of the
timing method are the distances between the sites in the
network and the timing accuracy of the sites, which is itself
governed by the signal-to-noise ratio and the effective
bandwidth of the signal in each detector [12]. So, to
achieve a better sky resolution for any particular gravita-
tional wave, a network should consist of detectors with a
wide band of sensitivity, with the longest possible baselines
between sites. As the sensitive band of the noise curve is
generally limited by available technology and fundamental
noise sources, we are left with the option of dispersing the
detectors as widely as possible.
Given the necessity to build detectors on Earth, the

maximum possible baseline would be the diameter of the
Earth, 42.5 ms (distances converted to gravitational-wave
travel times). The existing LIGO-Virgo network of detec-
tors consists of three sites, at Hanford, Livingston, and
Cascina, all in the northern hemisphere. The longest base-
line between detectors in this network, Hanford-Virgo, is
27 ms. With the addition of the Gingin site to the network,
this is increased to 41 ms for the Livingston-Gingin base-
line, close to the maximum possible, and the two baselines
from Gingin to the other sites are all also of great length.
The Japanese and Indian sites similarly increase the lon-
gest baseline, with Japan being closer to the U.S. sites but
India closer to Virgo. All times are given for reference in
Table I.

1The impact of an Australian detector on distance and incli-
nation measurements was discussed in [19] in a very different
context, where the sky location was assumed to be known
perfectly because of a presumed detection of an electromagnetic
counterpart.
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In this study, we compare the networks under the as-
sumption that all detectors are operational at the time of the
observation of a signal. In practice, however, detectors
have limited duty factors. The probability of having at
least three noncolocated detectors up at a given time
is higher with the larger networks than with the HHLV
network, increasing the probability for decent source
localization.

Although the triangulation method above captures well
the essential reason for desiring a longer baseline, the
methods used in this paper are based on a fully coherent
Bayesian analysis of the data to extract posterior probabil-
ity functions on the parameters of interest. This method
naturally incorporates the information from the time delays
between sites, but it also includes the information from the
amplitudes and relative phases of the signals present in
each detector. This information can be used to further
restrict the sky location, for example, by eliminating the
secondary maximum in the sky location for the majority of
signals in the three-detector network.

The addition to the network of a fourth site also gives a
fourth separate detector orientation (instead of the replica
of the H1 detector in the HHLV network). This raises the
possibility of improved measurement of the other parame-
ters of the source, in particular, the measurement of the
polarization angle c and inclination angle � of the gravi-
tational wave may be expected to improve in certain cases.
We perform a comprehensive comparison of measurement
accuracies of these and other parameters encoded in the
gravitational-wave signal from an inspiraling binary com-
posed of nonspinning neutron stars.

III. ANALYSES

For this study, we used two independent Bayesian in-
ference codes that implement two different techniques: the
LAL INFERENCE MCMC code (based on the SPINSPIRAL code

[20–22]) uses a MCMC [23], while the INSPNEST code
[24,25] uses nested sampling [26].

Both techniques stochastically sample the parameter
space in a search for the parameters that best match the
observed data, simultaneously finding the set of parameters
that yield the best fit to the data, and determining the

accuracy of the parameter estimation. This is achieved by
calculating the posterior probability density function

(PDF) on the parameter space ~� of the signal, given the

data in the frequency domain ~d, and a signal model hy-
pothesis H, which is

pð ~�j~d;HÞ¼pð ~�jHÞpð~dj ~�;HÞ
pð~djHÞ

/pð ~�jHÞexp
�
�1

2
h~d� ~hð ~�Þj~d� ~hð ~�Þi

�
; (3.1)

where pð ~�jHÞ is the prior probability density of the pa-

rameters ~�, and ~hð ~�Þ is the model used to describe the
signal in the frequency domain [27]. The noise-weighted
residuals in the presence of Gaussian noise with power
spectral density SnðfÞ are given by

h~d� ~hð ~�Þj~d� ~hð ~�Þi ¼ 4
Z 1

0

j~dðfÞ � ~hðf; ~�Þj2
SnðfÞ df: (3.2)

For these simulations, for the LIGO and Virgo detectors,
including the A and I sites, we used simulated noise with
noise power spectral density SnðfÞ similar to the advanced
LIGO design curve from the LIGO algorithm library
(LAL) [28]. Use of the advanced LIGO noise curve for
the advanced Virgo detector may change the absolute
results slightly; however the relative improvements ought
to be consistent. The noise curve fit has a functional
form of

SnðfÞ ¼ S0

��
f

f0

��4:14 � 5

�
f0
f

�
2

þ 111

�1� ð ff0Þ2 þ 1
2 ð ff0Þ4

1þ 1
2 ð ff0Þ2

��
; (3.3)

where S0 ¼ 1049 Hz�1 and f0 ¼ 215 Hz. For the KAGRA
detector, an interpolated KAGRA design sensitivity curve
was used [9,29].
The MCMC method used by LAL INFERENCE MCMC

explores the parameter space with a random walk, using

the Metropolis-Hastings algorithm to simulate samples ~�
from the posterior probability distribution function

pð ~�jd;HÞ. LAL INFERENCE MCMC uses a variety of optimi-
zation techniques, including parallel tempering, to con-
verge on the modes of the distribution and ensure
adequate mixing of the chain [20–22]. It was started with
randomly offset parameter values to simulate imperfect
initial inputs from the detection pipeline. Five independent
MCMC chains were run on each event to allow for tests of
convergence. In particular, we checked that all chains
converged to the same likelihood (within expected fluctua-
tions), and confirmed that the Gelman-Rubin statistic was
close to unity, R< 1:01 [30].
The nested sampling algorithm used by INSPNEST oper-

ates by generating and replacing samples from the prior

TABLE I. Table of gravitational-wave travel times between
sites (Hanford, Livingston, Virgo, Australia, India, and Japan,
identified by their first letters), in milliseconds. The maximum
possible baseline for a terrestrial network is 42.5 ms.

H L V A I J

H 0 10 27 39 36 25

L 10 0 26 41 39 32

V 27 26 0 37 22 29

A 39 41 37 0 14 7

I 36 39 22 14 0 21

J 25 32 29 7 21 0
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distribution pð ~�Þ, gradually shrinking the volume sampled

by imposing a limit of minimum likelihood pðdj ~�; HÞ on
each replacement sample [26]. INSPNEST samples the prior
distribution using an MCMC algorithm, which is opti-
mized for exploring the structure of the limited prior,
with jumps proposed through differential evolution, and
along possible degeneracies in parameter space [24,25]. It
is designed to compute the evidence pðdjHÞ, but the output
samples from the prior can be weighted appropriately and
resampled to produce samples from the posterior distribu-
tion. Multiple parallel runs were performed for each signal
to ensure coverage of the parameter space, and the results
merged to form the posterior.

The output from both Bayesian codes is a list of samples

from the posterior distribution pð ~�jd; hÞ, which are then
used to estimate the mean, variance, and percentiles of the
distributions. We performed two-dimensional binning and
used a greedy algorithm to compute two-dimensional mini-
mum probability intervals, as explained in Sec. IV.

As well as the two Bayesian methods, we also used
the Fisher information matrix (FIM) to estimate the
measurement uncertainties. The FIM technique, which
approximates the likelihood surface quadratically near
the likelihood peak, has a long history in gravitational-
wave parameter estimation (e.g., [31]). It is known to
suffer from a number of flaws, particularly in the low-
SNR limit (when the quadratic approximation breaks
down), or when correlations between parameters are
very significant [32]. Furthermore, the Fisher information
matrix is entirely local, and only approximates the shape
of the maximum where it is evaluated, ignoring other
maxima in the global parameter space which are picked
up by the Bayesian analyses. On the other hand, the FIM
technique is computationally inexpensive, and hence al-
lows a larger number of sources to be simulated in order
to improve statistics.

The signal model for a nonspinning inspiral signal re-

quires nine physical parameters: the chirp mass M ¼
ðm1m2Þ3=5ðm1 þm2Þ�1=5 and the symmetric mass ratio
� ¼ m1m2ðm1 þm2Þ�2 (wherem1 andm2 are the individ-
ual masses), right ascension �, declination �, inclination �,
orientation c , the luminosity distance dL, the time of
coalescence tc, and the phase at coalescence �. For the
Bayesian analyses, the prior probability distribution was
assumed to be isotropic on the sphere of the sky, and on the
inclination of the binary relative to the line of sight, and
proportional to dL

2. All other priors are uniform unless
otherwise specified.

IV. SIMULATIONS

For this study, we assumed that a successful detection
has already been made, and we have the correct waveform
model to process the data, so we did not perform evidence
calculations or model selection. The waveform model used

for injection in all cases was generated by the LIGO
algorithm library GeneratePPNInspiral routine [28], which
uses a time-domain approximant at 2.0 pN order in phase
and 0 pN order in amplitude [33]. All injections used
symmetric binary neutron-star signals with masses m1 ¼
m2 ¼ 1:4M� as observed in the detector frame. For recov-
ery and posterior calculation, we used the frequency-
domain stationary phase approximation TaylorF2 approx-
imant from LAL at 2.0 pN order (see, e.g., [34,35] for
additional information on post-Newtonian waveform
approximants).
Injections were coherently made into four network con-

figurations: (i) HHLV, (ii) AHLV, (iii) HILV, and
(iv) HHJLV. All injections were performed using
Gaussian colored noise, using the advanced LIGO power
spectral density approximated by Eq. (3.3) for the ad-
vanced LIGO and advanced Virgo sites (including
Australia and India), and a fit to the KAGRA noise curve
for the J detector in the HHJLV network. In each of the
four-site networks the noise realizations were kept the
same in each network, although the sites are moved. In
the HHJLV network the noise realization in the HHLV
portion was the same as in the other four-site networks.
We also examined the possibility of rotating the Australia
detector by 45�, and found very similar results to the
AHLV case, which are omitted from further discussion
for brevity.
The additional A and I detectors were positioned with

their arms oriented along the local North and East vectors
projected onto the tangent plane to the Earth’s surface at
the site, whose locations are given in Sec. I. The J detector
was aligned with its y arm 19� from the local North vector
as the geometry of the detector is constrained by the
existing underground tunnels.
As the speeds of the methods differed, we performed a

different set of simulations with each method, with the
following details.
Nested sampling.—The nested sampling implementa-

tion was able to run on a large set of injections. All signals
were injected at a luminosity distance of 180 Mpc, but the
inclination angle, polarization angle, right ascension, and
declination were located on a 5� 6� 5� 5 rectangular
grid in the �� sin�� cos�� c parameter space for a
total of 750 injections. This resulted in a range of SNRs
between 5 and 35, but mostly between 7 and 25. We chose
low and high frequency cutoffs of 30 and 2048 Hz, which
included the maximum frequency of the inspiral signal as
no merger or ring-down components were used. Of the
750 signals, 728 were detected in all network configura-
tions, and it is these we will use for the summary statistics
throughout the remainder of the paper. The nested sam-
pling search, by its nature, samples the entire prior
range given for the parameters. In this case, the total
mass M ¼ m1 þm2 was assumed to be between 2 and
35M�, with component masses allowed to be in the range
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m1; m2 2 ½1; 30�M�. The prior distribution on M used

was pðMÞ / d2LM
�5=6, chosen as an approximation to

the Jeffrey’s prior which sets the prior as a function of

the Fisher matrix � on the parameter space, pð ~�Þ /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�ð ~�Þ

q
, in order to improve sampling where the template

bank density is highest [36].
MCMC.—The MCMC method was used to run on a

randomly chosen subset of the injections that were ana-
lyzed with nested sampling (computational constraints
prevented us from using the full set of injections).
Results from 42 injections are used in this analysis. For
consistency, the MCMC runs employed the same priors
and frequency range for the overlap integral as the nested
sampling runs. The MCMC results on individual injections
matched the nested sampling results, therefore allowing us
to gain extra confidence in the Bayesian parameter estima-
tion. However, because of the concern that smaller num-
bers of runs could increase statistical fluctuations, we do
not quote absolute accuracies for MCMC runs, but only
compare the expected parameter-estimation accuracies for
different network configurations.

Fisher matrix.—The FIM has the advantage of being
computationally inexpensive, and so permits a large number
of simulations to be analyzed. Therefore, we used the FIM to
confirm the results of our Bayesian analyses.We used a low-
frequency cutoff of 30Hz and integrated up to the innermost
stable circular orbit frequency, around 1600 Hz.

For this study we used 4000 random realizations of the
angles, adjusting the distance to keep the total network
SNR equal to 30 for all injections in all network configu-
rations. We chose injections with this relatively high value
of SNR, rather than the SNR distribution used for nested
sampling and MCMC studies, because of concerns about
the accuracy of the FIM approach outside the high-SNR
limit. The SNRs were separately normalized to 30 for all
networks, including the five-detector HHJLV network;
therefore, results for that network from the FIM study are
expected to be worse than those obtained with Bayesian
studies, which would normally have higher SNRs in the
five-detector network than the four-detector networks for a
given injection.

A. Quantities compared

Although our techniques make full nine-dimensional
posterior PDFs available, these are unwieldy to compare
or visualize. So we typically consider only one- or two-
dimensional PDFs marginalized over the remaining pa-
rameters (see Sec. IVC for examples). However, to allow
us to make comparisons, we had to restrict ourselves to
particular estimators for the PDFs, with the understanding
that unless PDFs are extremely narrow or are described by
a simple analytical function (e.g., a Gaussian), a few
estimators are not sufficient to describe all of the informa-
tion contained in the PDFs.

We estimated the width of a particular one- or two-
dimensional PDF as follows. For a given fraction 0<F <
1, the Fwidth of a one-dimensional PDF was defined as the
width of the smallest region that contains that fraction F of
the posterior PDF. Thus, the 95% width represents the
width of the smallest region of parameter space that con-
tains 95% of the total posterior probability. A similar
approach was used for two-dimensional PDFs in (inclina-
tion, distance) space and (right ascension, declination)
space, with pixels of a fixed size (0:25 deg2) being used
in a greedy algorithm to estimate the sky area for sky
localization.
We also define a ‘‘standard accuracy’’ (by analogy with

the standard deviation) as the square root of the mean of the
sum of the squared differences between the points in the
PDF (sampled according to the posterior) and the true
value. Thus, for a marginalized one-dimensional PDF,

standard accuracy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxi � xtrueÞ2
vuut :

For a PDF whose mean is equal to the true value, the
standard accuracy is just the standard deviation. For a
delta-function PDF that is biased away from the true value,
the standard accuracy is the error. In general, the standard
accuracy is equal to the sum, in quadrature, of the standard
deviation of the PDF and the difference between the PDF
mean and the true value.
Standard accuracies are sensitive to systematic biases in

parameter estimation. Sources of bias include the effect of
using a different waveform family for injection and recov-
ery. For the waveforms considered here, we expect that
these differences will not significantly affect sky localiza-
tion for nonspinning signals, but could contribute to biases
in the mass parameters. Quantification of the bias induced
by the use of different waveform approximants is a major
goal of future work on parameter estimation.

B. Relative improvements

In the following sections, we present the results of each
of the three analyses of the differences in parameter-
estimation accuracy between the three networks. In the
case of the two Bayesian codes, we measure the 95%
confidence intervals for each parameter and compute the
ratio of these in comparison to the result from the HHLV
network for the same injection. The median value of the
ratio is quoted in each table, along with the range incor-
porating the 5% and 95% quantiles of the distribution. This
gives some measure of the spread of the ratios across
different sky positions, locations, and orientations.
MCMC results.—In Table II, we average comparisons of

the 95% confidence intervals across the 42 injections ana-
lyzed with the LAL INFERENCE MCMC code. We show the
values of the 95% confidence interval widths for the ex-
tended network configurations as fractions of the same
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widths for the HHLV configuration. Table II lists the
median ratio of the size of the 95% probability region
over all of our injection runs, while the 5% and 95%
percentiles of the distribution of ratios are shown in super
and subscripts, to indicate the range of the results.

As discussed in more detail below, the accuracy with
which individual masses can be recovered is not signifi-
cantly affected by the network configuration. This con-
forms to our expectation that mass measurements, which
come from waveform phasing, are constrained primarily
by the total network SNR. Sky-localization accuracy can
be significantly improved in both directions when a fourth
site is added to the network. Timing accuracy at the geo-
center is strongly correlated with sky localization and is
similarly improved. A fourth site also moderately improves
the accuracy of distance measurements.

We should particularly point out the next-to-last line of
the table, ‘‘�� �.’’ The area of this two-dimensional PDF
is a direct measure of the uncertainty in estimating the
position of the source on the sky. The error box shrinks by a
factor of�4when the second Hanford detector is moved to
Australia or India because of the much-improved north-
south baseline. This improvement in sky-localization
accuracy will make the detection of an electromagnetic
counterpart to the gravitational-wave source more feasible,
and is perhaps the biggest boon in moving one of the
Hanford detectors to India or Australia.

Inspnest results.—In Fig. 1 and Table III we show the
results of determining the sky location of 728 injections
with the INSPNEST nested sampling code. The lines show
the cumulative histograms for the 95% confidence interval
on the sky location of the binary for each of the network
configurations considered. As expected, the addition of a
fourth site to the network yields a significant improvement

in the resolution of the sky location, due to the increased
baseline for relative timing measurements. The greatest
improvement is seen for the addition of the Australian
detector, yielding the longest north-south baseline. HILV
and HHJLV are both great improvements on the HHLV
network, and have similar performance for the majority of
signals, although HHJLV suffers from fewer outliers with
sky resolution greater than 100 deg2, possibly due to the
increased signal-to-noise ratio from the additional detector.
This improved performance is reflected in the compari-

son of the median 95% confidence interval for each of the
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FIG. 1 (color online). Cumulative histogram of the 95% con-
fidence interval for the area of the sky in square degrees,
estimated using the INSPNEST analysis of 728 signals which
were detected in all network configurations, covering the range
of sky locations and orientations of the binary. The extended
networks show significantly better performance than the three-
site network, with AHLVoffering the highest fraction of signals
resolved to better than 10 deg2. HILV and HHJLV show similar
performance to each other for a large fraction of the signals, but
the HHJLV network avoids the tail of poorly resolved signals
located in regions of parameter space with poor sensitivity in
HILV.

TABLE II. Comparative 95% interval widths and standard accuracies for one-dimensional PDFs, and comparative 95% areas for
two-dimensional PDFs (last two lines) averaged over all injections, calculated using the MCMC algorithm. All values are reported as
fractions of the corresponding values for the HHLV network configuration. The median values of the ratios across all injections are
computed; the error bars correspond to the spread between the 5% and 95% quantile values of these ratios across all injections. See text
for details.

AHLV/HHLV HILV/HHLV HHJLV/HHLV

Parameter 95% width Std. acc. 95% width Std. acc. 95% width Std. acc.

M 0:97þ2:03
�0:66 0:93þ2:59

�0:66 1:00þ2:18
�0:65 0:85þ2:27�0:73 0:82þ1:92

�0:80 0:72þ3:23
�0:69

� 0:93þ3:27
�0:70 0:94þ3:34

�0:80 0:96þ1:26
�0:59 0:80þ1:63

�0:55 0:88þ1:72
�0:63 0:77þ3:61

�0:50

tc 0:62þ1:06
�0:47 0:46þ1:02

�0:41 0:71þ1:86
�0:51 0:62þ1:22

�0:56 0:55þ0:60
�0:42 0:37þ1:98

�0:32

dL 0:93þ0:29
�0:23 0:98þ0:11

�0:36 0:93þ0:38
�0:24 0:96þ0:17

�0:35 0:85þ0:40
�0:27 0:95þ0:19

�0:33

� 0:50þ1:23
�0:29 0:43þ0:77

�0:41 0:59þ0:53
�0:46 0:47þ1:87

�0:45 0:50þ0:83
�0:43 0:46þ1:47

�0:44

� 0:43þ0:74
�0:35 0:27þ0:98

�0:23 0:50þ0:70
�0:38 0:46þ0:97

�0:43 0:55þ0:62
�0:42 0:29þ1:67

�0:24

� 0:85þ0:51
�0:31 1:01þ0:64

�0:56 0:88þ0:42
�0:52 1:00þ0:35

�0:41 0:82þ0:68
�0:45 1:04þ0:54

�0:47

c 0:98þ0:38
�0:60 0:98þ0:16

�0:17 0:97þ0:38
�0:66 0:99þ0:11

�0:25 0:95þ0:55
�0:63 0:99þ0:17

�0:15

�� � 0:27þ0:65
�0:21 � � � 0:30þ0:89

�0:22 � � � 0:38þ0:77
�0:29 � � �

dL � � 0:76þ0:49
�0:32 � � � 0:80þ0:36

�0:54 � � � 0:76þ0:57
�0:51 � � �
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networks, given in Table IV. The median resolution for all
sources shrinks from 30.25 to 6:625 deg2 between HHLV
and the most accurate AHLV network. In addition to the
reduction of the median resolution, these improvements are
also reflected in the relative resolutions of the networks.
Table III shows the median ratio of the 95% probability
region size for the extended networks against HHLV; note
that the median of the ratios for the sky location intervals
(�� � row) is not the same as the ratio of the medians in
Table IV.

The qualitative behavior inferred from the LAL

INFERENCE MCMC and INSPNEST runs is in excellent agree-

ment. Some differences between the ‘‘typical’’ results of
Tables II and III are due to the impact of statistical fluctua-
tions in the smaller subset of injections analyzed with LAL

INFERENCE MCMC; however, we have confirmed quantita-

tive agreement between the two methods on the individual
injections being analyzed.

For a more detailed look at the performance of the
networks for the non-sky-location parameters, we show
in Fig. 2 the cumulative probability distributions for the
fraction of signals found within a given probability interval
width for M, �, dL, �, c , and tc. Although our range of

injections at constant distance is astrophysically unrealis-
tic, these figures give a good idea of the relative perform-
ance of the networks across an isotropic distribution of sky
position, polarization, and inclination angles. We can see
immediately that the improvement in the resolution of the
chirp mass and � parameters is marginal, as evident from
Table III. The slightly improved performance for HHJLV
can be attributed to the higher signal-to-noise ratio in that
network thanks to the fifth detector.
With the distance and inclination angle parameters, we

see slight improvements, with the biggest effect again
being produced by the additional SNR in the HHJLV net-
work. Because of degeneracies in the parameter space, the
effect is more pronounced when the two-dimensional
distribution is considered, as in Sec. IVC. From
Table III, we see that the median relative improvement
of the polarization angle c resolution is minimal; how-
ever in Fig. 2 it is apparent that for the four-site networks
there are a greater fraction of injections which are re-
solved well. This is explained by the large fraction of
signals (� 50%) which have a very broad distribution
where the c parameter is degenerate with the phase of
the signal, when � is close to 0 or �. Although the
median of the improvement ratio for individual sources
is �1, the mean is �0:95 for HALV and �0:85 for HILV
and HHJLV, indicating that the sources which can be
resolved in c are better resolved in the four-site net-
works. The tc distribution shows similar performance for
all four-site networks for most signals, with slightly
fewer signals poorly resolved in time with the HILV
network than AHLV, reflecting the shorter tails of the
distributions in Figs. 1 and 3 (sky localization is strongly
correlated with the accuracy of timing the gravitational
wave at the geocenter).

TABLE III. Comparative 95% probability interval widths and standard accuracies between alternative network configurations and
the HHLV network, calculated using the nested sampling algorithm. The median values of the ratios across 728 injections detected in
all networks are computed. Errors quoted correspond to the 5% and 95% quantiles of the distribution of ratios, as in Table II. For the
�� � plane, 95% probability intervals are calculated using a greedy binning algorithm.

AHLV/HHLV HILV/HHLV HHJLV/HHLV

Parameter 95% width Std. acc. 95% width Std. acc. 95% width Std. acc.

M 1:00þ0:80
�0:40 1:00þ1:92

�0:56 1:00þ0:71
�0:47 1:02þ1:39

�0:68 0:92þ0:33
�0:37 0:98þ0:34

�0:42

� 1:00þ0:78
�0:38 1:02þ1:28

�0:51 1:00þ0:70
�0:44 1:01þ1:14

�0:56 0:92þ0:30
�0:29 0:98þ0:35

�0:38

tc 0:73þ0:54
�0:47 0:69þ1:04

�0:61 0:69þ0:61
�0:46 0:62þ0:90

�0:52 0:68þ0:32
�0:43 0:66þ0:49

�0:57

dL 1:00þ0:33
�0:21 0:98þ0:15

�0:25 1:05þ0:45
�0:30 0:91þ0:53

�0:30 0:92þ0:25
�0:24 0:98þ0:16

�0:30

� 0:67þ0:58
�0:48 0:61þ0:88

�0:55 0:62þ0:52
�0:47 0:56þ1:00

�0:50 0:60þ0:40
�0:44 0:56þ0:59

�0:52

� 0:50þ0:70
�0:40 0:39þ1:12

�0:34 0:61þ0:59
�0:48 0:48þ1:02

�0:41 0:67þ0:33
�0:49 0:59þ0:53

�0:49

� 0:93þ0:24
�0:46 0:91þ0:35

�0:58 0:86þ0:28
�0:47 0:83þ0:56

�0:56 0:86þ0:19
�0:44 0:90þ0:26

�0:59

c 1:00þ0:19
�0:52 0:99þ0:32

�0:51 0:97þ0:11
�0:66 0:91þ0:32

�0:63 0:93þ0:11
�0:52 0:97þ0:22

�0:56

�� � 0:32þ0:78
�0:24 � � � 0:43þ0:87

�0:32 � � � 0:33þ0:51
�0:22 � � �

dL � � 0:90þ0:29
�0:45 � � � 0:88þ0:44

�0:49 � � � 0:53þ0:24
�0:27 � � �

TABLE IV. Median 95% confidence intervals in square de-
grees for each network configuration.

Network Median 95% conf. int.

AHLV 6:625 deg2

HHLV 30:25 deg2

HILV 9 deg2

HHJLV 9:5 deg2
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FIG. 2 (color online). Cumulative histograms comparing the ability of the networks to resolve the individual parameters of main
interest. Plots show fractions of events found within a given width of the confidence interval. The chirp mass M and symmetric mass
ratio � (top row) do not benefit significantly from a fourth site, except through better uniformity of SNR across the sky. The distance
and inclination angle (middle row) show slight improvements in their resolvability but the effect is most marked in the 2D confidence
intervals (see Fig. 6). The polarization angle c shows interesting behavior, with the additional sites able to resolve a greater fraction of
the signal to within a given interval of c , but with the median ratio of intervals being approximately unity (see Table III). This is
explained by the sizable fraction of signals where the polarization angle is not well resolved. The resolution of the time of coalescence
parameter tc is similar for all four-site networks, with 90% of signals resolved within 5 ms. The longer tail of less well-resolved times
agrees with Figs. 1 and 3 which show a hint of longer tail in sky resolution for AHLV compared to HILV.
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Fisher-matrix results.—The Fisher information matrix
results are presented in Table V. These are ratios of the
median standard deviations for each parameter, taken over
random realizations of the angles (with distance adjusted to
keep the total network SNR equal to 30). According to the
FIM results, the greatest change in sky localization comes
from the improvement in the measurement of the declina-
tion angle with a network that includes an Australian
detector. The declination angle can be measured more

accurately by a factor of �3 with an AHLV network
relative to the HHLV network, as a detector in the southern
hemisphere greatly improves the latitudinal baseline of the
network, allowing for superior angular resolution in that
direction. The last line in Table V indicates the Fisher-
matrix estimate of the sky area, defined following Eq. (43)
of [37]. Figure 3 shows a histogram of the sky-area accu-
racy for four network configurations.

C. Parameter degeneracies

In cases where a signal is observed with marginal SNR
in one or more detectors, or when the orientation of the
binary is unfavorable (i.e. � is close to 90�), a degeneracy
between two sky locations often emerges. The addition
of the fourth site to the network ensures that the source
can be localized to a single region on the sky, as shown
in the two-dimensional PDFs of Fig. 4 which compares
the 95% probability regions for different networks but
the same injection. Note the two areas on the sky in the
left panel, indicating a degeneracy that exists in a net-
work with three sites but is removed when a fourth site is
added.
Moderate improvements also appear in inclination and

luminosity distance measurements. Here, the one-
dimensional estimators used in Tables II, III, and V do
not tell the full story because of the strong correlation
between inclination and luminosity distance. The second-
ary maximum on the sky position also corresponds to a
secondary mode in the cos� parameter corresponding to the
transformation � � �� �. In fact, the addition of a fourth
site allows this degeneracy to be broken, as can be seen by
comparing the marginalized one-dimensional PDFs for a
sample injection of the HHLV and AHLV network con-
figurations, plotted in Fig. 5. Although the width did not
shrink significantly from red to blue posteriors, with the
AHLV network configuration the posteriors are unimodal
and centered on the true values, as a degeneracy in the
inclination-distance space is broken.
Both these effects are clearly visible in Fig. 4, which

shows the breaking of the degeneracy in dL-�-�-� space as
projected onto the dL-� and �-� planes. In this example all
the expanded networks allow the secondary maximum to
be eliminated. Figure 6 shows the cumulative distribution
of the 95% probability region for the dL-� space, with the
improvement in two dimensions more prominent than
looking at dL or � individually (cf. Fig. 2).
On the other hand, the accuracy with which mass

parameters are measured does not improve as a conse-
quence of moving the site of the fourth detector to India
or Australia. We can speculate that the reason for this is that
information about masses comes primarily from the phase
evolution of the signal, and the accuracy in mass estimation
is predominantly set by the overall network SNR.
Meanwhile, masses do not strongly correlate with extrinsic
parameters (with the exception of the time of coalescence),

FIG. 3 (color online). A cumulative histogram over injections
of the estimated accuracies in sky localization obtained via the
Fisher information matrix technique. Blue, green, red, and cyan
are the distributions of sky-localization uncertainties for the
AHLV, HHLV, HHJLV, and HILV networks, respectively. All
injections are independently normalized to an SNR of 30 for
each network configuration, to avoid concerns about the trust-
worthiness of FIM results at low SNRs. The relative shapes of
the histograms are thus more relevant than their actual values.

TABLE V. Ratios of median standard deviations for each
parameter and the sky area as reported by the Fisher information
matrix, as a function of network configuration. All injections are
renormalized to an SNR of 30 in the given network, so the last
column, corresponding to a five-detector network renormalized
to the same SNR as the four-detector networks, cannot be
directly compared to similar columns in the tables above.

Parameter AHLV/HHLV HILV/HHLV HHJLV/HHLV

M 1.00 1.00 1.02

� 1.00 1.00 1.02

tc (ms) 0.54 0.56 0.65

dL 0.77 0.66 0.71

� (deg) 0.66 0.56 0.50

� (deg) 0.31 0.57 0.62

� (deg) 0.76 0.67 0.70

c (deg) 0.77 0.67 0.69

�c (deg) 0.88 0.84 0.91

�� � (deg2) 0.29 0.35 0.47
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FIG. 4 (color online). An example of the ability of a four-site network to break the degeneracy between multiple modes in �� � and
cos�� dL parameter space. This example shows the 95% confidence intervals from the HHLV (red, solid), AHLV (green, dashed),
HILV (blue, dot-dashed), and HHJLV (black, dotted) networks. The sky position can be confined to one region with the four-site
network, while the partial inclination angle degeneracy upon reflection is broken. The location of the injection in parameter space is
indicated with a star.

FIG. 5 (color online). Comparison of the one-dimensional PDFs for a typical source as detected by the HHLV network (red,
ascending strokes) and AHLV network (blue, descending strokes). Note the bimodal posteriors in right ascension and declination for
the HHLV network vs unimodal ones for the AHLV network. The latter network also allows for better estimates of the posteriors for
inclination and luminosity distance, which is not properly reflected by the simple estimators of the PDF width used in Table II. Dashed
lines indicate the true injected values (different true values of the luminosity distance were used for the HHLVand AHLV injections so
that the total network SNR is 15 in both cases).
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so their estimation is not significantly improved by better
sky localization or inclination measurements.

The results from the Fisher information matrix are in
qualitative agreement with the two Bayesian approaches
regarding the partial breaking of the distance/inclination
degeneracy achieved by moving a detector to Australia or
India (leading to marginal improvements in both parame-
ters, see Table V). They also indicate that the accuracy with
which masses can be measured is not affected by the net-
work choice.

V. CONCLUSIONS

In this paper we studied the effect on parameter estima-
tion of different networks of advanced detectors. We em-
ployed two different Bayesian techniques and the Fisher
information matrix to estimate the accuracy of parameter
recovery. We analyzed a set of injections distributed in a
grid in the extrinsic parameter space (without varying the
mass and distance of injections) with the INSPNEST code,
and verified the results with LAL INFERENCE MCMC. We
performed a large-scale Monte Carlo simulation using the
Fisher-matrix method with constant-SNR injections. We
found consistent results between the three methods, point-
ing to significant gains in sky localization (typically by a
factor of �3—4) and modest gains in distance and incli-
nation measurements with a network including a fourth
site. We found that the four-site networks are able to better
resolve the polarization angle of the source, in the cases
where this is possible. We found no significant effect on
mass measurements.

Comparing the different network configurations, we
found, as expected, the strongest improvement in
sky-localization capability when the longest baseline
(namely AHLV) was used, but that a site in India also

provides a significant improvement in sky resolution. The
HHJLV network, with the shortest extra baseline, provides
the weakest improvement in sky resolution at a fixed
signal-to-noise ratio; however, the fifth detector in this
network can mitigate this, for an overall performance
similar to HILV, but with fewer signals in the tail of the
distribution with poor resolution.
We also found good agreement with previous work. In

particular, Fairhurst [13] found 20%–50% of signals local-
ized within 20 deg2 for HHLV, and up to 20% within
5 deg2 with HHJLV, for an ensemble of sources at fixed
distance of 160 Mpc, in good agreement with Fig. 1.
Despite the use of a different population of sources,
Nissanke et al [17] found results which qualitatively agree
with our own. Comparison of the Fisher-matrix results in
Fig. 3 with Wen and Chen [15] showed good qualitative
agreement with their expected distribution for the HLV
network at fixed SNR of 15, when taking into account a
factor of ð30=15Þ2 ¼ 4 for the difference in SNR used (30
in our case, 15 in theirs).
In the present study, we focused on binary NS, which are

the most ‘‘confident’’ source for the advanced detectors,
but which are not expected to have significant spins [38].
On the other hand, black holes (BH) in NS-BH or BH-BH
binaries can be rapidly spinning. Previous studies (see, e.g.,
[21]) have shown that the presence of spin in one or both
binary components can aid sky localization by providing
additional polarization information through the precession
inherent in misaligned spinning binaries. Localization may
be further enhanced when a signal from a spinning binary
is captured by a four-detector network; on the other hand,
improved resolution of extrinsic parameters with the help
of a fourth detector site may aid in the reconstruction of
astrophysically interesting quantities such as spin-orbit
misalignment angles.
The improved ability to localize sources on the sky

will be crucial in any search for electromagnetic counter-
parts to detected gravitational-wave signals (e.g., [1,2,39]).
Accurate measurements of the location of the merging
binary can also be useful even in the absence of electro-
magnetic counterparts, for example, in measuring
typical binary kick velocities [40]. We thus conclude that
scientific considerations strongly favor an international
gravitational-wave network with four or more sites.
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APPENDIX: FALSE ALARM PROBABILITIES IN A
COHERENT SEARCH

It is instructive to ask how different network configura-
tions affect false alarm probabilities (FAPs), or, alterna-
tively, what the detection thresholds would need to be for a
fixed FAP. We consider only the case of a fully coherent
search; the FAP of triggers in searches that only require
coincidence between detectors in mass and time of coales-
cence parameters, such as [41,42], should not depend on
the accuracy of measuring the sky location and other
extrinsic parameters. If a coherent search is used, and all
detectors are assumed to have independent noise, we might
expect that the coherence constraint would be stronger for
two colocated detectors that should have the same signal,
and therefore HHLV should have a lower FAP than AHLV
or HILV for a fixed network SNR.

We provide a Bayesian treatment of this question by
comparing the odds ratio between the coherent signal
hypothesis GW and the noise hypothesis N for different
network configurations. The odds ratio is just the ratio of
posterior probabilities for the two models,

BGW;N ¼ PðGWjdÞ
PðNjdÞ ¼ PðGWÞ

PðNÞ
PðdjGWÞ
PðdjNÞ : (A1)

The only term that depends on the network configuration
is the evidence for the presence of a signal, ZGW �
PðdjGWÞ, which can be written as

ZGW ¼
Z

pð ~�jGWÞpðdj ~�; GWÞd ~�: (A2)

We assume for the sake of simplicity that the prior

pð ~�jGWÞ ¼ k is constant in the small region where the

likelihood is significant, and the likelihood pðdj ~�; GWÞ is
Gaussian in the model parameters about a maximum Lmax

at ~�0 (as assumed for the Fisher-matrix calculation),

pðdj ~�;GWÞ	Lmax exp½�1
2ð ~�� ~�0ÞC�1ð ~�� ~�0ÞT�: (A3)

This yields

ZGW ¼ kLmaxð2�Þ�N=2
ffiffiffiffiffiffiffiffiffiffi
detC

p
; (A4)

where C is the covariance matrix of the parameters, N is
the dimensionality of the model, and Lmax is the maximum
likelihood of the data, given by

Lmax / exp

�
� 1

2
h~d� ~hð ~�0Þj~d� ~hð ~�0i

�
¼ �2

2
: (A5)

For a fixed network SNR (maximum likelihood), the evi-

dence is therefore proportional only to
ffiffiffiffiffiffiffiffiffiffiffiffi
det C

p
, which

scales with the size of the region in parameter space to
which a signal’s parameters can be constrained.
Thus, for a fixed SNR, the Bayes factor is larger when

parameters are less precisely estimated. Because of the
shrinking size of the posterior distribution in sky location,
distance, and inclination, we might expect a decrease by a
factor of �5 in the allowed fraction of the prior volume
between the HHLVand AHLVor HILV networks. Then, for
a fixed detection threshold �min, the odds ratio will be a
factor �5 smaller for the AHLVor HILV network than for
the HHLV network. Conversely, if we want to keep the
same false alarm probability (same minimal odds ratio
required for detection), the SNR threshold �2

min �
2 logLmax for the AHLV or HILV network must increase
by 2 log5 relative to the HHLV network. This corresponds
to a very modest increase in the SNR: for example, if the
threshold is 12 for the HHLV network, it will only rise to
12.13 for the AHLVor HILV network.
The analysis above assumes that the noise in all inter-

ferometers is uncorrelated. While that is a reasonable
assumption for distant interferometers, various environ-
mental factors can lead to correlated noise in colocated
interferometers, such as the two possible detectors at
Hanford. This correlation can increase the threshold nec-
essary for detection. For example, at times when only two
of the four detectors in our presumed network are opera-
tional, it may not be possible to make a convincing detec-
tion if only the two Hanford detectors are operating from
the HHLV network, while any two detectors from the
AHLV or HILV network have a chance to detect a suffi-
ciently loud signal.
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