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Decentralized Detection in Sensor Network
Architectures with Feedback

O. Patrick Kreidl, John N. Tsitsiklis, and Spyros I. Zoumpoulis

Abstract—We study a decentralized detection architecture in
which each of a set of sensors transmits a highly compressed
summary of its observations (a binary message) to a fusion center,
which then decides on one of two alternative hypotheses. In
contrast to the star (or “parallel”) architecture considered in most
of the literature, we allow a subset of the sensors to both transmit
their messages to the fusion center and to also broadcast them
to the remaining sensors. We focus on the following architectural
question: is there a significant performance improvement when
we allow such a message broadcast? We consider the error
exponent (asymptotically, in the limit of a large number of
sensors) for the Neyman-Pearson formulation of the detection
problem. We prove that the sharing of messages does not improve
the optimal error exponent.

I. INTRODUCTION

We consider a decentralized detection problem and study
the value added (performance improvement) when feeding the
messages (“preliminary decisions”) of some of the sensors
to the remaining ones, so that the latter can take them into
consideration, along with their own observations, to form their
own messages. We carry out this comparison under a Neyman-
Pearson formulation of the detection problem, and (for reasons
of tractability) in the asymptotic regime, as the number of
sensors increases. This work is part of a broader effort to
understand the performance gains or losses associated with
different sensor network architectures. Primarily because of
analytical obstacles, this effort had been limited to the star
(also called “parallel” architecture) [1], [2] and, somewhat
more generally, to tree networks [3]. The present work is,
to the authors’ knowledge, the first to provide an exact
asymptotic performance analysis of a non-tree network.

A. Background and Related Literature

We consider a binary hypothesis testing problem, and a
number of sensors each of which obtains an observation
whose distribution is determined by the true hypothesis. In a
centralized system, every sensor communicates its observation
to a fusion center that makes a final decision. In contrast, in
a star decentralized detection architecture (introduced in the
seminal work of Tenney and Sandell [4]), each sensor sends
only a summary of its observation to a fusion center, in the
form of a message that takes values in a finite alphabet. The
fusion center then decides on one of the alternative hypotheses.
The problem is to design rules through which each sensor can
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form its message, and through which the fusion center can
interpret these messages to make a final decision, in a manner
that minimizes the probability of error.

Much research has followed [4]; for a review, see [5],
[2]. For conditionally dependent observations (given the true
hypothesis), the problem is NP-hard. Under the assumption of
conditional independence, an optimal decision rule for each
sensor takes the form of a likelihood ratio test, with a suitably
chosen threshold. In turn, an optimization over the set of all
thresholds can yield the desired solution. Numerical algorithms
for optimizing sensor thresholds in the star network have been
adapted to the series, or tandem, network and later extended
to any singly-rooted tree network [6]. It is now known that
likelihood ratio tests remain optimal (under the conditional
independence assumption) in every directed acyclic network
but, with regard to tractable computation, correctness and effi-
ciency is retained only for sparsely-connected tree-structured
networks: more specifically, threshold optimization scales ex-
ponentially with the maximal degree of the nodes [7].

Similar algorithmic developments have occurred for decen-
tralized detection architectures with feedback [8], [9], [10],
where the fusion center may communicate a preliminary
decision to the peripheral sensors for them to take into
consideration when forming a next message based on a next
observation. While the sensors in these feedback architectures
do remember all preceding messages from the fusion center,
each sensor is forced to forget all preceding own observations;
without this memory restriction, the design problem beyond
the first stage of feedback essentially faces difficulties similar
to those encountered in the intractable case of conditionally-
dependent observations.

The complexity of threshold optimization for large, densely-
connected decentralized detection networks has motivated
the study of a more tractable, asymptotic formulation (as
the number of sensors increases to infinity). Reference [11]
focuses on optimizing the asymptotic error exponent, for the
case of a star architecture with a large number of sensors
that receive conditionally independent, identically distributed
observations. The broader case of a network consisting of a
large number of nodes arranged as a tree of bounded height is
considered in [12], [3]. In the same asymptotic spirit, [13]
studies decentralized binary detection in a wireless sensor
network where each sensor transmits its data over a multiple
access channel.

B. Overview
We study the Neyman-Pearson decentralized detection prob-

lem (in the asymptotic regime) for a new network architecture



that we refer to as a “daisy chain.” In this architecture, the
second half of the sensors get to see the messages sent to the
fusion center by the first half of the sensors, before forming
their own messages. This is perhaps the simplest nontrivial
non-tree architecture and it features at least partial feedback.
While the study of non-tree or feedback architectures appears
to be quite difficult in general, the daisy chain turns out to be
amenable to asymptotic analysis. Indeed, we are able to prove
that the additional information feedback that is present in the
daisy chain does not result in a performance improvement: the
optimal error exponent is the same as for the case of a star
architecture with the same number of sensors.

To our knowledge, asymptotic analysis of decentralized
detection networks with feedback has not been undertaken
previously except in the portion of [14] devoted to concluding
that the Neyman-Pearson performance improvement from a
single stage of feedback diminishes fast with an increasing
signal-to-noise ratio or an increasing number of sensors. For
the daisy-chain architecture, our results strengthen those in
[14], proving no asymptotic performance gain from a single
stage of feedback regardless of the signal-to-noise ratio.

It is worth noting that there are certain cases where it
is easily shown that feedback cannot improve asymptotic
performance, for somewhat trivial reasons. One such example
is binary hypothesis testing for the case of two Gaussian
distributions with different means and the same variance, in
the limit of a high signal-to-noise ratio. In this case, it turns
out that a star architecture (with binary messages) achieves
the same error exponent as a centralized architecture in which
the observations are transmitted uncompressed to a fusion
center [15]. By a sandwich argument, the performance of
any architecture that involves binary messages plus some
additional feedback falls in between and the error exponent
remains the same.

The rest of the paper is organized as follows. We formulate
the decentralized detection problem for the various architec-
tures of interest in Section II. We present the main result and
its proof in Section III. Finally, we summarize and discuss
possible extensions and open problems in Section IV.

II. PROBLEM FORMULATION

In this section, we introduce the classical star architecture and
the daisy chain architecture. We define our notation, make the
necessary probabilistic assumptions, define the performance
measures of interest, and provide the necessary background.

A. Probabilistic Assumptions

We assume that the state of the environment satisfies one
of two alternative hypotheses H0 and H1. There is an even
number, n = 2m, of sensors, indexed 1, . . . , n. Each sensor
i observes the realization of a random variable Xi, which
takes values in an observation set X , endowed with a σ-field
FX of measurable sets. We assume that conditioned on either
hypothesis Hj , the random variables Xi are independent and
identically distributed (i.i.d.) according to a measure Pj on
(X ,FX ). In the sequel we use the notation Ej [ · ] to indicate an

expectation taken under hypothesis Hj , and Pj(A) to denote
the probability of an event A under Hj .

As in [11], we make the following technical assumption,
which serves to facilitate the subsequent asymptotic analysis.

Assumption II.1. The measures P0 and P1 are absolutely
continuous with respect to each other, but not identical.
Furthermore, E0[log2 dP0

dP1
] < ∞, where dP0

dP1
is the Radon-

Nikodym derivative of the two measures.

B. The Star Architecture

Every sensor i forms a binary message Yi, taking values
in {0, 1}, by following a rule of the form Yi = γi(Xi), for
some measurable function γi : X 7→ {0, 1}. Let Γ be the set
of all possible such functions. Note that a particular choice
of a function γ ∈ Γ results in particular distributions for
the binary random variable γ(X1), under the two hypotheses.
We define the Kullback-Leibler divergence D(γ) of these two
distributions by

D(γ) = P0(γ(X1) = 0) · log
P0(γ(X1) = 0)
P1(γ(X1) = 0)

+P0(γ(X1) = 1) · log
P0(γ(X1) = 1)
P1(γ(X1) = 1)

. (1)

The messages Y1, . . . , Yn are communicated to a fusion
center which uses a fusion rule of the form γ0 : {0, 1}n 7→
{0, 1} and declares hypothesis Hj to be true if and only if
Y0 = γ0(Y1, . . . , Yn) = j. See Figure 1 for an illustration.

Fig. 1. The star architecture.

According to Theorem 2 in [11], under a Neyman-Pearson
formulation, the optimal error exponent for the missed detec-
tion probability, in the limit as n→∞, is given by

g∗p = − sup
γ∈Γ

D(γ). (2)

Furthermore, given that the two measures P0 and P1 are not
identical, it is easily seen that there exists some γ for which
the distribution of γ(X1) is different under the two hypotheses,
so that D(γ) > 0. This implies that g∗p < 0.



C. The Daisy Chain Architecture
In the daisy chain architecture, the underlying probabilistic

model and the sensor observations are the same as for the star
architecture. What is different is that sensors m+1, . . . , 2m =
n get to observe the messages sent by the first m sensors
before forming their own messages. We use again Yi to denote
the message sent by sensor i, and let U = (Y1, . . . , Ym) be the
additional information made available to sensors m+1, . . . , n.
The equations that define this architecture are:

Yi = γi(Xi), i = 1, . . . ,m,
Yi = δi(Xi, U), i = m+ 1, . . . , n,
Y0 = γ0(Y1, . . . , Yn).

For i ≤ m, γi is as before the decision rule of sensor i,
a measurable function from X to {0, 1}. For i > m, the
decision rule δi of sensor i is a measurable function from
X × {0, 1}m. Finally, the decision rule γ0 of the fusion
center is a function from {0, 1}n to {0, 1}. Let Γ, ∆n, and
Γ0,n be the sets of possible decision rules γi, δi, and γ0,
respectively. We use the shorthand notation γn = (γ1, . . . , γm)
and δn = (δm+1, . . . , δn), where m = n/2. See Figure 2 for
an illustration.

Fig. 2. The daisy chain architecture.

Similar to the star architecture, we define the probabilities of
false alarm and missed detection associated with a collection
(γ0, γ

n, δn) of decision rules by

HI
n(γ0, γ

n, δn) = P0(Y0 = 1),
HII
n (γ0, γ

n, δn) = P1(Y0 = 0).

We define

qn(γ0, γ
n, δn) =

1
n
· logHII

n (γ0, γ
n, δn), (3)

and, for every α ∈ (0, 1),

Qn(α) = inf
γ0,γn,δn

qn(γ0, γ
n, δn), (4)

where the infimum is taken over all (γ0, γ
n, δn) ∈ Γ0,n ×

Γn×∆n
n for which HI

n(γ0, γ
n, δn) ≤ α. We finally define the

optimal error exponent, denoted by g∗d(α), by

g∗d(α) = lim inf
n→∞

Qn(α).

It should be clear that the daisy chain architecture is “more
powerful” than the star architecture: sensors m+ 1, . . . , n are
free to ignore the additional information U that they receive
and emulate any possible collection of decision rules for the
star architecture. For this reason, for every finite n, the optimal
missed detection probability Qn(α) in the daisy chain is no
larger than the optimal missed detection probability Rn(α) in
the star configuration. By taking the limit, it follows that

g∗d(α) ≤ g∗p , ∀ α ∈ (0, 1).

For any finite n, it will generically be the case that Qn(α) <
Rn(α), because the additional information available in the
daisy chain can be exploited to some advantage. On the other
hand, our main result, proved in the next section, shows that
the advantage disappears in the asymptotic regime.

III. NO GAIN FROM FEEDBACK

Our main result asserts that the optimal error exponent
(as the number of sensors increases) for the daisy chain
architecture is no better than that of the star configuration.

Theorem III.1. For every α ∈ (0, 1), we have g∗d(α) = g∗p .

Proof: As discussed at the end of the previous section,
the inequality g∗d(α) ≤ g∗p is immediate. We only need to
prove the reverse inequality. Toward this purpose, we consider
an arbitrary choice of decision rules for the daisy chain
architecture, and develop a lower bound on the probability of
missed detection (for finite n), in terms of the missed detection
probability for the star architecture.

Throughout we fix some α ∈ (0, 1), and also an auxiliary
parameter ε > 0. Let us also fix n and decision rules γ0,
γn, δn. Having done that, all of the random variables Yi
and U are well-defined. We assume that HI

n(γ0, γ
n, δn) =

P0(Y0 = 1) ≤ α and we will derive a lower bound on
HII(γ0, γ

n, δn) = P1(Y0 = 0).
Let1

L = log
P0(U)
P1(U)

=
m∑
i=1

log
P0(Yi)
P1(Yi)

.

This is the log-likelihood ratio (a random variable) associated
with the vector U of messages transmitted by the first m
sensors. The first equality above is the definition of L, and
the second follows from the definition U = (Y1, . . . , Yn) and
the independence of the Yi. Let µ0 = 1

mE0[L]. By comparing
with the definition (1), and using also Eq. (2), we have and
note that

µ0 =
1
m

m∑
i=1

D(γi) ≤ −g∗p. (5)

1With some abuse of notation, we use P0(U) to denote the random variable
that takes the numerical value P0(U = u) whenever U = u, and similarly
for P0(Yi), etc.



We say that a possible value u of the random vector U is
“normal” (symbolically, u ∈ N ), if

|L− µ0| ≤ εm.

Because of Assumption II.1, and as pointed out in
[11], the (conditionally independent) random variables
log
(
P0(Yi)/P1(Yi)

)
have second moments that are bounded

above (under P0) by some absolute constant c. Thus, the vari-
ance of L (under P0) is bounded above by cm. Chebyshev’s
inequality then implies that

P0(U /∈ N) ≤ c

ε2m
.

We assume that m is large enough so that

P0(U /∈ N) ≤ 1− α
2(1 + α)

. (6)

Let us also say that a possible value u of the random vector
U is “good” (symbolically, u ∈ G) if

P0(Y0 = 1 | U = u) ≤ 1 + α

2
.

We let B (for “bad”) be the complement of G.
Since P0(Y0 = 1) ≤ α, we have

α ≥ P0(Y0 = 1)

=
∑
u

P0(U = u) P0(Y0 = 1 | U = u)

≥
∑
u∈B

P0(U = u) P0(Y0 = 1 | U = u)

≥ 1 + α

2
·
∑
u∈B

P0(U = u)

=
1 + α

2
·P0(U ∈ B).

Thus,
P0(U /∈ G) = P0(U ∈ B) ≤ 2α

1 + α
. (7)

Using Eqs. (6) and (7), we obtain

P0(U ∈ N ∩G) ≥ 1−P0(U /∈ N)−P0(U /∈ G)

≥ 1− 1− α
2(1 + α)

− 2α
1 + α

=
1− α

2(1 + α)
> 0. (8)

We will now argue that whenever U takes a value in G, the
missed detection probability admits a O(emg

∗
p ) lower bound.

Suppose that a certain value u of the random vector U has
been realized. Conditioned on this event, and for this given
value of u, the final decision is determined by a rule of the
form

Y0 = γ0(u, δm+1(Xm+1, u), . . . , δn(Xn, u)).

Since u has been fixed to a constant, this is of the form

Y0 = γ̄0(δ̄m+1(Xm+1), . . . , δ̄n(Xn)),

for suitable functions γ̄0 and δ̄i. (Of course these functions
depend on the specific choice of u.) We recognize this as the
expression for Y0 in a decentralized detection problem with a

star architecture and m sensors.
For the constant value of u under consideration, and since

u ∈ G, the false alarm probability is bounded above by α′ =
(1 + α)/2 < 1. We now invoke the definition of g∗p , suitably
translated to the case of a finite number of sensors. It implies
that for the given α′ ∈ (0, 1), there exists some n0 (depending
on ε and α′) such that if JIm(γ0, γ

m) ≤ α′, then

JIIm (γ0, γ
m) ≥ emg

∗
p−mε, ∀ m ≥ n0,

where m is the number of sensors in the star architecture. By
applying this observation to the last m sensors of the daisy
chain architecture, and conditioned on U = u, we obtain, for
m ≥ n0,

P1(Y0 = 0 | U = u) ≥ emg
∗
p−mε, ∀ u ∈ G. (9)

Let us now suppose that u ∈ N . From the definition of the
log-likelihood ratio L, we have

P1(U) = e−LP0(U).

When U ∈ N , we also have L ≤ mµ0 + mε, and using also
Eq. (5), we obtain

P1(U = u) ≥ e−mµ0−mεP0(U = u)
≥ emg

∗
p−mεP0(U = u), if u ∈ N. (10)

We now apply the usual change of measure argument. We
have, for m ≥ n0,

P1(Y0 = 0) =
∑
u

P1(U = u) P1(Y0 = 0 | U = u)

≥
∑

u∈N∩G
P1(U = u) P1(Y0 = 0 | U = u)

≥ emg
∗
p−mε

·
∑

u∈N∩G
P0(U = u) P1(Y0 = 0 | U = u)

≥ emg
∗
p−mε

∑
u∈N∩G

P0(U = u) emg
∗
p−mε

= eng
∗
p−nεP0(U ∈ N ∩G)

≥ eng
∗
p−nε 1− α

2(1 + α)
.

Here, the second inequality follows from (10), and the third
inequality from (9). The next equality is because n = 2m.
The last inequality follows from (8).

Taking logarithms, dividing by n, and taking the limit as
n→∞, we obtain that g∗d(α) ≥ g∗p− ε. Since ε was arbitrary,
the desired result follows.

IV. CONCLUSION

We have proved that the daisy chain architecture introduced
and analyzed in this paper performs no better (in the sense of
the asymptotically optimal Neyman-Pearson error exponent)
than a star architecture with the same number of sensors and
observations. This is despite the fact that the daisy chain
architecture provides substantially richer information to the
last half of the sensors. To the authors’ knowledge, this is
the first non-trivial non-tree architecture for which a precise



comparison and determination of the error exponent has been
possible.

This work opens up a number of research questions. One
involves the case of a Bayesian performance criterion: we are
given prior probabilities for the two hypotheses (which do not
change with the number of sensors) and wish to minimize
the overall probability of error. From earlier works [12],
[3], we know that Bayesian formulations can be qualitatively
different. In particular, while for certain classes of trees the
Neyman-Pearson error exponent is the same for tree and star
architectures, this is not necessarily the case for the Bayesian
error exponent. Determining whether feedback provides some
added value (in terms of the optimal Bayesian error exponent)
in the daisy chain architecture remains an open problem.

More generally, the range of possible non-tree or feedback
architectures is vast. While such architectures tend to lead
into intractable problems (as far as the optimal exponent
is concerned), it may be possible to identify some that are
tractable or to carry out some qualitative comparisons.

REFERENCES

[1] J.-F. Chamberland and V. V. Veeravalli, “Asymptotic results for decen-
tralized detection in power constrained wireless sensor networks,” IEEE
J. Sel. Areas Commun., vol. 22, no. 6, Aug. 2004.

[2] ——, “Wireless sensors in distributed detection applications,” IEEE
Signal Process. Mag., vol. 24, no. 3, pp. 16–25, May 2007.

[3] W. P. Tay, J. N. Tsitsiklis, and M. Z. Win, “Data fusion trees for
detection: does architecture matter?” IEEE Trans. Inf. Theory, vol. 54,
no. 9, pp. 4155–4168, Sep. 2008.

[4] R. R. Tenney and J. N. R. Sandell, “Detection with distributed sensors,”
IEEE Trans. Aerosp. Electron. Syst., vol. 17, pp. 501–510, 1981.

[5] J. N. Tsitsiklis, “Decentralized detection,” Advances in Statistical Signal
Processing, vol. 2, pp. 297–344, 1993.

[6] Z. B. Tang, K. R. Pattipati, and D. L. Kleinman, “Optimization of
detection networks: Tree structures,” IEEE Trans. Syst., Man, Cybern.,
vol. 23, pp. 211–231, 1993.

[7] O. P. Kreidl and A. S. Willsky, “An efficient message-passing algorithm
for optimizing decentralized detection networks,” IEEE Trans. Autom.
Control, vol. 55, pp. 563–578, 2010.

[8] S. Alhakeem and P. K. Varshney, “A unified approach to the design of
decentralized detection systems,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 31, no. 1, pp. 9–20, Jan. 1995.

[9] ——, “Decentralized bayesian detection with feedback,” IEEE Trans.
Syst., Man, Cybern., vol. 26, no. 4, pp. 503–513, Jul. 1996.

[10] P. F. Swaszek and P. Willett, “Parley as an approach to distributed
detection,” IEEE Trans. Aerosp. Electron. Syst., vol. 31, no. 1, pp. 447–
457, Jan. 1995.

[11] J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,”
Mathematics of Control, Signal, and Systems, vol. 1, pp. 167–182, 1988.

[12] W. P. Tay, “Decentralized detection in resource-limited sensor network
architectures,” PhD Dissertation, Massachusetts Institute of Technology,
Cambridge, Massachusetts, February 2008.

[13] J.-F. Chamberland and V. V. Veeravalli, “Decentralized detection in
sensor networks,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 407–
416, Feb. 2003.

[14] D. A. Pantos, K. W. Halford, D. Kazakos, and P. Papantoni-Kazakos,
“Distributed binary hypothesis testing with feedback,” IEEE Trans. Syst.,
Man, Cybern., vol. 25, no. 1, pp. 21–42, Jan. 1995.

[15] S. I. Zoumpoulis, “Decentralized detection in sensor network archi-
tectures with feedback,” MEng Dissertation, Massachusetts Institute of
Technology, Cambridge, Massachusetts, May 2009.


