
MIT Open Access Articles

Indoor robot gardening: design and implementation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Correll, Nikolaus et al. “Indoor Robot Gardening: Design and Implementation.” 
Intelligent Service Robotics 3.4 (2010): 219–232. Web.

As Published: http://dx.doi.org/10.1007/s11370-010-0076-1

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/71699

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/71699
http://creativecommons.org/licenses/by-nc-sa/3.0/


Noname manuscript No.
(will be inserted by the editor)

Indoor Robot Gardening: Design and Implementation

Nikolaus Correll · Nikos Arechiga · Adrienne Bolger · Mario Bollini ·
Ben Charrow · Adam Clayton · Felipe Dominguez · Kenneth Donahue ·
Samuel Dyar · Luke Johnson · Huan Liu · Alexander Patrikalakis ·
Timothy Robertson · Jeremy Smith · Daniel Soltero · Melissa Tanner ·
Lauren White · Daniela Rus

the date of receipt and acceptance should be inserted later

Abstract This paper describes the architecture and
implementation of a distributed autonomous garden-
ing system with applications in urban/indoor precision
agriculture. The garden is a mesh network of robots and
plants. The gardening robots are mobile manipulators
with an eye-in-hand camera. They are capable of locat-
ing plants in the garden, watering them, and locating
and grasping fruit. The plants are potted cherry toma-
toes enhanced with sensors and computation to moni-
tor their well-being (e.g. soil humidity, state of fruits)
and with networking to communicate servicing requests
to the robots. By embedding sensing, computation and
communication into the pots, task allocation in the sys-
tem is de-centrally coordinated, which makes the sys-
tem scalable and robust against the failure of a central-
ized agent. We describe the architecture of this system
and present experimental results for navigation, object
recognition and manipulation as well as challenges that

This work was done at the Department of Electrical Engineer-
ing and Computer Science and the Computer Science and Arti-

ficial Intelligence Laboratory, Massachusetts Institute of Tech-

nology, Cambridge, MA 02478, USA. Corresponding author
nikolaus.colorado@colorado.edu

An abbreviated version of this paper was presented at the Inter-

national Conference on Intelligent Robots and Systems (IROS),
St. Louis, MO, 2009, (Correll et al 2009).

N. Correll

Department of Computer Science, University of Colorado at
Boulder, 1111 Engineering Drive, 80309 Boulder CO

Nikos Arechiga · Adrienne Bolger · Mario Bollini · Ben Charrow ·
Adam Clayton · Felipe Dominguez · Kenneth Donahue · Samuel

Dyar · Luke Johnson · Huan Liu · Alexander Patrikalakis · Timo-

thy Robertson · Jeremy Smith · Daniel Soltero · Melissa Tanner ·
Lauren White · Daniela Rus

Computer Science and Artificial Intelligence Laboratory, Mas-

sachusetts Institute of Technology, Vassar Street 32, 02139 Cam-
bridge MA

lie ahead toward autonomous precision agriculture with
multi-robot teams.

1 Introduction

Our long-term goal is to develop an autonomous green
house consisting of autonomous robots and pots and
plants enhanced with computation, sensing, and com-
munication. The network of robots, pots, and plants
transforms energy, water and nutrients into produce
and fruits. In this type of precision agriculture system
water and nutrients will be delivered locally on-demand
and fruit will be harvested when they are ripe. Plants
will drive the robots’ activities in the garden using sen-
sors to monitor their local environment conditions, and
maintain a local database storing fruit location and ma-
turity that is obtained in interaction with robots. By
relying sensing and coordination of the system to in-
dividual plants, the proposed system operates without
any centralized control which makes it scalable and ro-
bust.

From an economical perspective, cultivation of spe-
cialty crops (such as fruits and vegetables) requires a
huge amount of manual labor when compared with broad-
land crops. This need has recently led to multiple ini-
tiatives in the United States (e.g. the Comprehensive
Automation for Specialty Crops (CASC) program) and
Europe (e.g. with in the scope of the 7th Framework
program which aims at sustainable crop and forestry
management, among others).

From a social perspective, robotic precision agri-
culture might allow for the economical maintenance of
gardens in cities and buildings, which might positively
contribute to the building’s and city’s climate and pos-
sibly even the autonomy of its inhabitants. For instance



Fig. 1 Tomato plants are arranged on a platform of 3×4 meters.

Plants are illuminated by growing lights.

Fig. 2 Roof-garden in Osaka, Japan. Plants might positively

contribute to the city climate, and potentially even contribute to

the building’s inhabitants diet.

Figure 2 shows a roof garden in Osaka, Japan, on an
integrated shopping, commercial and residential com-
plex. While the impact of a single installation on city
climate is marginal, a robot-supported, city wide de-
ployment might not be. Other possible installations are
indoors in shopping malls or inside integrated living,
shopping and commercial high-rises.

From an ecological perspective, the ability to pre-
cisely manipulate individual plants bears not only the
potential to save water, pesticides and fertilizer, but
might also allow to move from the dominating mono-
cultures to heterogeneous plant cultures, which we be-
lieve will have tremendous advantages for insects and
wildlife, and might lead to more efficient soil utilization.

We argue that the precision agriculture as we envi-
sion it is not only a manipulation challenge, but as tend-
ing is sensor-based and plant-centered, requires novel
sensing methods to sense plant status and coordination

mechanisms to allocate the robots and its capabilities
to plants in an on-demand basis.

We describe the system architecture and algorith-
mic details that constitute the distributed robot garden
that consist of autonomous robots and sensing, comput-
ing and communicating pots. We also describe exper-
imental results for watering plants, identifying toma-
toes, harvesting tomatoes, and coordinating the inter-
action between robots and plants in this system that
have been collected during a spiral-based design ap-
proach and motivated our design decisions.

Our work provides a proof of concept working sys-
tem but much work remains to be done to achieve
our vision of self-sustaining precision agriculture with
teams of gardening robots.

1.1 Project Structure

The system has been designed following a spiral-design
philosophy that aimed at experimental evaluation of
working sub-systems of the system after each term (Sum-
mer ’08, Fall ’08, Summer ’09) and a rotating student
population working on this project. This approach has
led to a series of major design revisions for almost all of
the hardware components, sensors and algorithms and
has led to the system presented in this paper.

In order to arrive at a working system as fast as pos-
sible, we relied as much as possible on off-the-shelf hard-
ware and algorithms that are available open-source. This
approach allowed us to focus on the key algorithmic and
systems aspects that were needed to achieve a certain
function.

1.2 Related work

Commercial agriculture has reached a high level of au-
tomation, although mainly for broad-land crops, e.g.
using autonomous combiners (Blackmore 2007). Also,
fine-grain satellite imagery is commercially available
for targeted pesticide and fertilizer application, lead-
ing to the novel paradigm of precision agriculture, with
the primary goal of saving pesticides and water (Al-
Kufaishi et al 2005; Srinivasan 2006). At the same time,
interest is growing to move towards individually smaller
robotic platforms that can apply precise sensing and
manipulation in the field (Blackmore et al 2006).

Indeed, advances in mechatronics and computer vi-
sion (Jimenez et al 2000) have led to autonomous solu-
tions for harvesting specialty crops such as apples (Tabb
et al 2006), cherries (Tanigaki et al 2008), cucumbers
(van Henten et al 2002), tomatoes (Kondo et al 1996),



melons (Edan 1995), mushrooms (Reed et al 2001), and
strawberries (Kondo et al 2005) among others.

Similarly, automatic weed control is an active area
of research. Åstrand and Baerveldt (2002), for example
uses gray-level vision to navigate in a structured out-
door environment and color vision to distinguish crops
from weeds and control a weeding tool, whereas Lee
et al (1995) applies chemicals using a similar system.

Besides their application in the field, we envision
precision agricultural robots to also enable gardening
in urban environments, indoors — as demonstrated in
this paper — or in outer space Jagannatha et al (2001).

Also, embedding sensors in the environment for mon-
itoring crops has been studied (Wang et al 2006). For in-
stance, in (Zhang et al 2004; Kim et al 2006) distributed
wireless sensor networks for precision agriculture (e.g.
irrigation) are presented. Our work aims to extend this
body of research by focusing on precision agriculture
tasks where autonomous mobile agents are networked
with the environment. Other instances of systems that
heavily rely on sensors and actuators embedded in the
environment in a home companion context are (Saffiotti
et al 2008), (Rusu et al 2008).

1.3 Outline

We start with describing the system architecture that
consist of robots and plants networked with each other
(Section 2). We will then describe the individual com-
ponents of the robotic system: Navigation and Path-
Planning (Section 3), Object Recognition (Section 4),
Inventory (Section 5), Visual Servoing and Grasping
(Section 6), and Task Allocation (Section 7). We will
then present experimental results for selected compo-
nents of the system in Section 8.

2 System Architecture

The distributed robot garden architecture (Figure 5)
consists of robots and computationally enhanced plants
(Figure 3) and includes the following subsystems :

Robots

– Notebook computer running Ubuntu Linux.
– An iRobot Create providing a bumper sensor (left/right),

four cliff sensors, a wall sensor and an infra-red sen-
sor on the robot base. The robot has been retrofitted
with a rear-end caster wheel to improve odometry,
has been powered by an external battery and is out-
fitted with a laser-cut Delrin structure to attach its
peripherals. The robot is controlled from the note-
book using an USB-to-Serial connection.

– Servo board (Lynxmotion SSC-32), which controls
the arm, provides an analog-digital converter for the
force sensor, and PWM control for the water pump
using an USB-to-Serial connection.

– Water tank and pump (Hargraves) connected to the
SSC-32.

– 4-DOF arm (Crustcrawler robotics) with gripper
and resistive force sensor (0-10 Newton) connected
to the SSC-32 (Figure 3, right).

– Lithium-Polymer battery pack (19.2V, 130Wh) for
powering the entire system.

– Logitech Quickcam connected to the notebook using
USB.

– Hagisonic Stargazer relying on markers mounted at
the ceiling for global localization.

– Atheros PCMCIA radio card.

The ability to program, debug, and visualize the sys-
tem on the notebook (vs. an embedded PC) drastically
sped up the software engineering process. Also, USB
(together with a series of TTL serial port to USB con-
verters) proved to be an elegant solution for connecting
all of the robot’s components. The Crustcrawler arm
does not allow for position-based feedback control, but
turned out to be sufficient for proof-of-concept visual
servo based grasping at a fraction (around 1/20th) of
the cost of the smallest available industrial arm that
we could find at the time of writing. Using a single bat-
tery pack for powering all of the system’s components is
motivated by the need for autonomously charging the
system using a docking station. Battery power is fed
directly to the notebook and regulated down using a
series of switching regulators to accommodate the volt-
age requirements of the different platforms. The Log-
itech Quickcam has been selected for its low price trad-
ing off achievable frame rate (factor 3) with a Firewire
camera. The indoor localization system makes the sys-
tem independent of the arrangement of plants in the
environment, but requires the deployment of infra-red
reflecting markers at the ceiling.

Plants

– Cherry tomato shrubs of approximately 1m height
that continuously carry fruits in all stages of matu-
rity (flowers, green and red tomatoes). Every shrub
grows in a dedicated pot.

– iRobot docking station, which provides an infrared
field that allows a robot to autonomously dock. The
dock is retrofitted to provide charging current to the
130Wh battery pack.

– Humidity sensor (Vegetronix) outputting values in
the range of 0-1024, with “0” corresponding to ab-
solute dryness.



Fig. 3 Robots are equipped with a 4-DOF end-effector, a monocular camera, an indoor, global localization system and watering
device that are controlled by a notebook computer. Robots coordinate with each other and intelligent pots using wireless radio.

– Wireless sensor node running OpenWRT Linux (tem-
peraturealert.com) on an Atheros AR2315 radio-on-
a-chip.

– Each plant has a unique identity provided by its IP
address in the mesh network.

Embedding the plants with sensing, computation
and communication abilities turned out to have nu-
merous advantages: performing humidity sensing on the
plant guarantees to respond to detect plant needs in the
most timely fashion (as opposed to a mobile robot mea-
suring each plant using a probe). Storing the result of
fruit inventory performed by a robot on the plant vs. a
central server provides a distributed and hence scalable
and robust solution and comes at very little computa-
tional cost. Finally, coordinating plant-specific tasks by
the plant itself allows to forgo a centralized task alloca-
tion system, which again contributes to the scalability
and robustness of the overall system.

In our experimental setup, four potted plants are
aligned in a grid on a 3 × 4 meters elevated astro-turf
field (Figure 1). Robots and plants communicate via an
ad-hoc mesh network. The plants provide the following
functionality:

– A plant periodically reads its humidity sensor and
posts a watering request when the reading falls be-
low a manually-specified threshold every 10 seconds.

– Upon request, a plant reports the location and ma-
turity (red or green) of its fruits in a local coordinate
frame.

– A plant accepts the location and maturity status
(red or green) of a new fruit from a robot and stores
it in its local database.

– Upon request, a plant deletes a fruit from its database.

The robots have the following functionality

– Navigate to a specific plant and dock at its pot.
– Water a plant.
– Provide an inventory of a plant (fruit maturity and

location in local coordinates) using its on-board cam-
era, merging it with the current inventory obtained
from the plant.

– Pick a specific fruit on the plant.

All of these functions are implemented as web services,
leveraging standard tools, and rely on a TCP/IP con-
nection to a specific robot or plant. Here it is important
to understand that not the robots query plants about
their status, but plants will solicity robots for services.
This allows the plants to keep communication and CPU
time to a minimum.

2.1 Robot Architecture

The software architecture for the robot is depicted in
Figure 5. The core processes are the Scheduler and the
Planner. The Scheduler’s job is to coordinate and main-
tain a queue of high level tasks that the robot needs
to accomplish, such as “Water plant #2”, these tasks



Fig. 4 Plants are enhanced with a wireless embedded Linux device that can monitor its status using a humidity sensor and information

collected by the robot as well as issue requests.

can be either generated by the plants or injected by a
human supervisor. For this, the scheduler receives mes-
sages from the common gateway interface (CGI) of an
Apache web server that accepts HTTP requests on the
local mesh-network IP.

The Planner is in charge of getting a task from the
scheduler, decomposing it into a series of jobs each of
which can be handled by an individual module, and
then overseeing the execution of those jobs. For this,
the planner interfaces with the navigation and visual
servoing process as every task in our system can be
decomposed into a navigation and a manipulation step.

All software modules are locally communication us-
ing the inter-process communication (IPC) framework
ROS (Robot Operating System) (Quigley et al 2009),
which is available open source and provides bindings
for a wide range of programming languages (Python,
LISP, Octave, and C) and works by exchanging cus-
tom data packets using shared memory or using a local
network. ROS differentiates itself from other packages
with similar intent such as LCM (Lightweight Commu-
nication and Marshalling) (Russell et al 2008) by pro-
viding a large number of open source algorithms, and
visualization and management tools that can be readily
integrated into ROS systems.

In their current implementations, both ROS and
LCM are only of limited use for wireless inter-robot

communication. We initially implemented the system
using LCM as it does not require a centralized name
server, which we consider preventive in a distributed
system. It turns out, however, that the main bottleneck
is that only little control is available where messages
get routed (in fact LCM uses UDP flooding) and that
UDP is unreliable as it is a connection-less protocol.
We therefore implemented robot-robot and plant-robot
communication primitives using web services, i.e. infor-
mation is transmitted by requesting a specific document
on the remote machine using the HTTP protocol. Us-
ing the common gateway interface (CGI) on a robot’s
or plant’s web server, this approach allows for execution
of arbitrary code on the target platform and to report
its output via the HTTP protocol. Likewise, robots can
interact with each plants using a lightweight web server
on the plant (lighttpd) and the libcurl toolchain.

2.2 Plant Architecture

The plant’s (Figure 4) functionality was implemented
using the Linux cron daemon for periodically checking
humidity status, the wget tool for issuing HTTP re-
quests to the robot and the lighttpd web server together
with a PHP interpreter to serve and update information
about location and maturity of fruits. This information
was stored and transmitted in JSON format, which is



Fig. 5 Overall system architecture including robots and plants and grouped into low-level sensing, perception algorithms, high-level

control, actuation and communication.

similar in intent than a XML description but provides
a more compact representation for simple table data.

2.3 Network Architecture

The robots and plants establish an ad-hoc mesh net-
work using the Optimized Link State Routing (OLSR)
algorithm (which is available in binary form for both
Ubuntu and OpenWRT). OLSR is a link-state rout-
ing algorithm. OLSR implements a series of optimiza-
tions geared toward large-scale wireless networks and
has proved its performance in city-scale networks in-
volving multiple thousand nodes. Each node floods in-
formation about its links to its neighbors until every
node has discovered the other nodes and links. Each
node then runs the same local shortest path computa-
tion algorithm from itself to any other node. We imple-
ment broadcasting by issuing HTTP requests sequen-
tially to all IP addresses that are shown in the kernel
routing table. Since the routing table also maintains a
hop count (roughly corresponding to the spatial distri-
bution of the nodes), this approach can also be used to

address only nodes that are within 1-hop communica-
tion.

3 Navigation and Path-Planning

Robots use the basic navigation structure provided by
the iRobot Create platform to travel to specific plants.
It turned out that solely relying on odometry for local-
ization is not sufficient for navigating passages that are
only a few centimeters wider than the robot. In partic-
ular, using only odometry does not allow the robot for
recovering from errors, as it does not provide a global
reference frame. For global localization, we selected the
Hagisonic Stargazer that provides relatively accurate
localization and orientation (±2cm) by detecting in-
frared markers mounted at the ceiling. Each marker
consists of at least four reflecting stickers that are ar-
ranged in a 4x4 matrix and encode a unique ID. Know-
ing the position of each marker in a global coordinate
frame then allows each robot to compute is position
using a transformation and rotation.



The Hagisonic sensor provides position information
at roughly 2 Hz whereas odometry sends updates at
50Hz. Therefore, and because we expect odometry to
outperform the global localization system on short dis-
tances, position information from both sensors is fused
asynchronously. Whenever new sensor data arrives, the
robot either integrates odometry with full confidence
or updates the position estimate using the global posi-
tioning information using an exponential average filter
with 10% weight for new incoming data. We choose this
policy for filtering occasional jumps in position that
correspond to noise from the Stargazer sensor, which
happens rarely, however. This is particularly notewor-
thy as the bright lights emitted by the growing system
emit considerable large amounts of light in the IR spec-
trum.

Each robot is equipped with a configuration-space
map of the environment that is provided by ROS mapserver
component. The pots are arranged in a regular pat-
tern, which let the system scale also for large numbers
of pots. For path-planning, the navigable space of the
map is discretized into a grid of 1cm2 cells and paths are
planned using the Wavefront algorithm implemented
by the ROS package with the same name. Although
the Wavefront algorithm is inferior to state-of-the-art
planning algorithms such as D* ? and does not address
multi-robot navigation and coordination explicitly such
as Otte and Correll (2010), we have chosen it in order
— in line wiht our spiral-based design philosophy — to
arrive at a working system as fast as possible.

The Wavefront package also accepts updates to the
local map by a laser range scanner, which is a standard
message type in ROS. We are using this interface for
injecting the position of other robots on the field into
the map. For this, our localization node periodically
(1 Hz) reads positions from other robots visible on the
mesh via the HTTP protocol and emulates a laser range
scanner mounted at the origin of the coordinate system.

To navigate to a plant, the robot plans a path to
a point in front of the pot’s docking station and then
docks at the plant using the Create’s built-in docking
algorithm. The actual location that is required for suc-
cessful docking is known by the plant and transmitted
to the robot at each service request.

In case of a collision (usually due to poor localiza-
tion), the robot launches a low-level avoidance behav-
ior, which eventually leads to recover a safe position,
from which the planner will re-plan.

The dock provides three infrared rays (red buoy,
green buoy and an omni-directional force-field) that en-
code three different bytes and can thus be distinguished
by the robot and provide a sense whether the dock is
to the left or to the right in the direction of driving.

Although the Create can detect whether it is charging
at the dock, we retrofitted the dock for providing the
charging source for the 130Wh battery to the robot.
We therefore rely on a combination of red buoy, green
buoy and force field detection for establishing whether
the robot is close enough to the dock.

4 Object Recognition

Object recognition is considered one of the hardest prob-
lems in robotics and computer science. Though there
are solutions to more confined environments such as
“block worlds”, a world where everything exists in high
contrast and is polygonal shaped, the real world pro-
vides many more complications where these algorithms
fail. In the garden environment, there is no guarantee
that an object has an exact size or shape. Also, objects
might be partially obscured or show spectral highlights
due to reflection of light.

The goal of object recognition is to identify the cen-
troid of red and green tomatoes, associate the centroid
with coordinates in the plant-fixed coordinate system,
communicate this location to the plant and use it for vi-
sually servo to a fruit for grasping. The location is used
by the plant to maintain the fruit inventory and to give
harvesting robots guidance on where the tomatoes to
be harvested are.

Recognizing plants and tomatoes is a significant chal-
lenge because the foliage has complex geometry and
affects lighting in unpredictable ways. The tomatoes
are generally round, but their exact size and shape has
many variations. The tomatoes may be partially ob-
scured by other tomatoes or leaves. Their shiny skin
gives spectral highlights due to the reflection of light.

For doing an inventory of the plant that can be
stored on its wireless router, we are interested in find-
ing both ripe (red) and unripe (green) tomatoes in an
image. Because we are searching for both red and green
tomatoes, color has been ruled out as discriminative fac-
tor. This does not apply for visual servoing, however,
where we are solely interested in picking ripe fruits.

We investigated two distinct approaches for object
recognition: feature-based, resource intensive classifiers
as well as filter-based classifiers that rely on a combi-
nation of Hough circle transform (for detecting circles),
the Sobel filter (for detecting smooth areas), and color
filters for detecting red and green areas as well as spec-
tral high-lights. The output of each detector was then
weighted and combined to a single estimator.

Image processing routines were implemented in Mat-
lab (for feature-based approaches) and SwisTrack (Lochmat-
ter et al 2008), which provides a graphical user interface



to OpenCV and allows for rapid prototyping of image
processing algorithms. SwisTrack was then interfaced
to ROS allowing the visual servoing component and the
inventory component to receive fruit locations.

4.1 Feature-based Object Recognition

Object recognition is formulated as the convolution of
an image with a target pattern. If the target pattern can
be found, the convolution will yield high values in this
region. An extension of this approach is to use many
small discriminative features, i.e. small patches that are
relevant to the target pattern (Torralba et al 2004), and
store the relative location of each feature with respect to
the object’s center. The set of features serves as a joint
classifier that collectively votes for a specific location.
In order to identify which features are most discrimina-
tive, Torralba et al (2004) applies a machine learning
technique known as boosting. In practice, this involves
taking a set of pictures with known object locations and
choosing random features of the images to vote on the
center of the object by convolving the feature with the
target image in an offline learning step. These features
are tested on other images from the training set, which
allows selecting those that are most promising to detect
objects in a wide range of images. If a feature turns out
to be useful for a number of images in the training set,
its weight is increased. If not, its weight is decreased.
Figure 6 illustrates this process.

We generated a training set consisting of a large
number of red and green tomatoes. We labeled the data
using the online tool LabelMe 1 (Russell et al 2008).
The 40 most dominant features were than extracted
using the boosting algorithm (available online2).

After the best features and weights pairs are ex-
tracted from the training set, a convolution of a feature
and the target image highlights possible locations of
the class described associate with this feature. Figure
7 shows two examples with green tomatoes. As toma-
toes vary drastically in size depending on the distance
to the camera, we convolved the features not only with
the target image, but also with a number of down-scaled
versions.

Processing time of this algorithm is approx. 10-30
seconds per image, and depends on the number of fea-
tures and number of scale variances used (see (Torralba
et al 2004) for details on the computational complexity
of the algorithm). Since the main feature of tomatoes is
its relative lack of features, the algorithm achieves only

1 http://labelme.csail.mit.edu
2 http://people.csail.mit.edu/torralba/

shortCourseRLOC/boosting/boosting.html

Fig. 6 Feature-based object recognition: Image with 3 quadratic

features (squares in the top left image) and target object (cir-

cle). Each feature is associated with the relative position of the
centroid of the target object (ellipsoids). A candidate image is

convoluted with every feature. Bright areas in the gray image

correspond to zones with high likelihood for the object location.
Peaks in the gray image are possible object locations (squares in

the bottom left image).

Fig. 7 Left: Result of convolution of input image with 40 fea-

ture/location pairs. Red dots correspond to local maxima. Right
column: Detected fruits are highlighted with a rectangle. Notice
the false-positive and misses in the bottom row.

around 34% success rate in identifying tomatoes. We
next compare this approach to a filter-based algorithm
for recognizing tomatoes.

4.2 Filter-based Object Recognition

This algorithm relies on shape, color, size, and spectral
highlights that result from the shiny skin of the toma-
toes. Possible tomato locations are given by a collective



Fig. 8 Schematic representation of the filter-based object recog-
nition algorithm. The source image (top) is filtered with Sobel,

Shape, Color and Spectral Highlight filters that each yield possi-

ble tomato locations, which are then combined into a collective
estimate.

estimate (weighted sum) of these filters. The gains for
each filter were hand-tuned using quantitative feedback
from a series of test images. The Hough transform reli-
ably detects the tomato’s outer contours, but leads to a
large number of false-positives triggered by the foliage.
Relying on spectral highlights (corresponding to white
image patches on each fruit (but not on the leaves) is
not robust with respect to changing lighting conditions.
Smoothness (corresponding to dark regions after Sobel-
filtering) is the most dominant feature for both red and
green tomatoes. By combining this information with a
constraint on the minimum and maximum area of each
blob we were able to develop a tomato recognizer with
high precision performance. Color is used to differenti-
ate between red and green tomatoes. The filter-based
tomato detection algorithm is shown in Algorithm 1
and illustrated in Figure 8.

Sample detection results for tomatoes of different
colors are shown in Figure 9. The processing time of
this algorithm was in the order of 1/3 second per image.

5 Inventory

The inventory task consists of a systematic scan of the
plant to identify and store the location and color of each
fruit on the plant’s router. For this, the robot docks at
the pot and servos its camera to six distinct locations

Algorithm 1: Tomato detector (Pseudo
Code)

Data: Image frame from color video

Result: Position and color of all detected tomatoes in the
frame

foreach frame do1

smooth = Sobelframe2

red = MinMaxColor(RedPlane(frame))3

green = MinMaxColor(GreenPlane(green))4

redTomatoes = MinMaxArea(red ∪ smooth)5

greenTomatoes = MinMaxArea(green ∪ smooth)6

ROSPublish (redTomatoes, greenTomatoes)7

Fig. 9 Detection of red and green tomatoes using a filter-based

approach in the tracking software SwisTrack.

in front of the plant (Figure 10) and runs the object
recognition algorithm on each image.

If there is previous inventory, the new inventory
data is used to compare and update the plant router. A
tomato’s description consists of: 1) the robots relative
position to the plant at the time of detection, 2) the
tomato’s x and y image coordinates (in the scanning
plane), 3) radius, 4) color, and 5) confidence level of
the measurement. The confidence level is updated ev-
ery time using the detection accuracy (75%, see below)
such that confidence increases if a tomato’s descrip-
tion is consistent throughout several inventories, and
decreases otherwise. The inventory algorithm is given
in pseudo-code as Algorithm 2.

6 Visual Servoing and Grasping for Harvesting

Harvesting tomatoes requires several steps: identifica-
tion, reach, grasping, and removal. We use the output of
the object recognition and inventory module as input
to a visual servoing algorithm for reaching, grasping,
and removing the fruit. The visual servoing algorithm



Fig. 10 Fruits and their locations are counted by having the

camera arm servo to 6 distinct locations in front of the plant
when the robot is docked. Data is stored on the intelligent pot as

a probabilistic map that reflects sensor uncertainty.

Algorithm 2: Inventory (Pseudo Code)

Data: Sequence of end-effector positions for systematic

scan
Result: Position and color of all detected tomatoes on

the plant, distance threshold for merging

tomatoes in previous inventories
foreach end-effector position do1

moveToPosition(end-effector position)2

tomatoes = ROSGetTomatoes()3

if inventory available then4

MergeInventory(inventory,tomatoes)5

else6

WriteInventory(tomatoes)7

uses the color-based object recognition and approxi-
mate knowledge of the location of a tomato to drive
the robot manipulator to grasp the tomato. As the lo-
cations of the fruits can only be approximately known
from the inventory step using the feature-based classi-
fier, we use a closed-loop control algorithm to align the
gripper with the fruit and eventually execute the grasp.
We implemented an image-based visual servoing algo-
rithm (Chaumette and Hutchinson 2006). The motion
of a robot end-effector is calculated in Cartesian space
using the perceived error in the camera image.

Let u = (u, v, r) be the position and its radius
in pixels of a tomato in an image taken by a camera
mounted on the end-effector and u̇ the change induced
by the camera speed ẋ. The relationship between u̇
and ẋ is given by u̇ = Lẋ in which L ∈ R3×3 is the
interaction matrix related to u and which entries can
be calculated using (Chaumette and Hutchinson 2006)
and experimentally. Thus, L relates a change in camera
coordinates in meters (ẋ) to the change (u̇) a specific
pixel will undergo in pixels.

Knowing the desired location of the tomato in the
image (within the gripper) u∗ and assuming constant
size of the tomatoes, we can calculate the error in image

Fig. 11 Image-based visual servoing: actual fruit location within

inventory location 2 (red dot) and desired fruit location within
the gripper (green disc).

Fig. 12 Sample trajectory describing the Cartesian error (X,

Y, and Z coordinates) of the robot’s end-effector from its initial
position to a successful grasp.

space e = u − u∗ (see also Figure 11 that shows the
actual (red) and desired position (green) of the tomato).

Using a feedback controller with proportional gain,
we can now calculate the desired position of the end
effector by the inverse of the interaction matrix. Calcu-
lating an estimate of the interaction matrix for a specific
camera/end-effector configuration requires knowledge
about the geometry of the camera relative to the end-
effector, its focal length, and the ratio of pixel width and
height, which we established using simple experiments
that consisted of moving a target of known dimensions
in front of the camera. Notice that the interaction ma-
trix requires an assumption about the distance of the
object. We solve this by assuming all the tomatoes to
have a constant radius.

The visual servoing algorithm is summarized in Al-
gorithm 3.



Algorithm 3: Harvesting (Pseudo Code)

Data: Sequence of image frames, inventory
Result: Grasped fruit

selectTomato(inventory)1

while !grasped do2

tomato = ROSGetTomato()3

error = goal-tomato4

if error==0 then5

graspTomato()6

else7

nextpos = ImageJacobian(error)8

moveTo(nextpos)9

7 Task Allocation

The high-level coordination of all the activities required
to maintain the tomato garden is done via a task allo-
cation algorithm. The task allocation algorithm keeps
track of the active robot tasks and requests (e.g. water-
ing, inventory, harvesting) and allocates each task to
exactly one robot. The algorithm is decentralized and
aims for load-balancing among robots. Each task has a
unique ID. Tasks are generated either by a user request-
ing a tomato, or by a plant requesting to be visited (for
watering, inventory, or harvesting). For each task, a re-
quest is broadcast to each robot over the mesh-network.
Robots reply with their cost of task completion. The
cost is a function of the distance to the plant, the length
of the task queue and the abilities of the robot (infinite
cost for infeasible tasks—e.g. a robot that does not have
the watering system installed will not be able to com-
plete the watering task).

Task assignments are periodically re-allocated to en-
sure success even in the presence of robot delays and
failures (see also (Amstutz et al 2009) for a similar
scheme and its analysis). An example task allocation
process for two robots and two plants is depicted in
Figure 13. Time increases downward in the graph.

8 Results

The algorithms described have been implemented in C,
C++, PHP and Python and are interconnected by ROS
messages and web interfaces. We evaluated the reliabil-
ity of each robot operation, the reliability of the plant
sensory-computational system, the ability of the system
to coordinate multiple robots, and the effectiveness of
the task allocation algorithm with up to 2 robots. Al-
though we developed 6 robots within the course of the
project (one for each student team), we chose to con-
duct experiments with only 2 robots as our current ex-
perimental setup is limited to 4 plants due to space

Fig. 13 Task allocation scheme for a two robots, two plant setup.
Plants select robots that can offer a task at the lowest cost (time).

The cost at which a robot can do a task depends on the length

of its task queue and its position. Plants periodically re-evaluate
offers and re-assign tasks. For example, robot 1 updates the cost

of a task that was previously assigned from plant 1 from cost “3”

to“7”. As plant 1 knows about robot 2, which performs the task
for cost “4”, a “kill task” message is sent to robot 1 and the task

is reassigned to robot 2.

reasons, and we would like to demonstrate division of
labor and coordination, rather than a one-robot-per-
plant scenario.

8.1 Networking

We evaluated the data rates in the network of robots
and plants and quantified the effects distance and high
network load had on the messages that were sent.

In this experiment, a message was judged “success-
ful” if it was sent and received properly. To see what
effect distance had, we had one computer send messages
to the routers at a distance of 1m, 13m, and 27m. To
measure the success rate of messages sent under high
load, we had 4 laptops next to each other, all sending
messages, at a distance of 1m from the routers.

Both plants and robots use the same wireless net-
work architecture. Thus, the metric we measure affects
both plant-robot coordination as well as robot-robot co-
ordination. An example of such a coordination and the
typical number of packets that are exchanged during
this process are shown in Figure 13.

Overall, our experiments suggest that as long as the
robots are within the experimental platform, it is rea-
sonably to expect almost all of our messages (> 95%)
to be sent and received within 0.05 seconds even under



Fig. 14 Delay distribution for packet transmission over the ad-hoc network as a function of the distance and network load.

high network load (Figure 14), which enables robots
and plants to coordinate in less than a second.

We also demonstrated a sequence of experiments in
which the task allocation algorithm controls two robots
in parallel. In this experiment, each robot was tasked
asynchronously to go to a different plant. Once docked
at the plant, the task of the robot (e.g. watering or
harvesting) was done according to the results described
below.

8.2 Navigation and Watering

In order to evaluate the navigation performance of our
system, we required a robot to loop in a square of
85cm side length. The robot’s position was consistently
off by around 10% over 10 iterations. Odometry per-
formed worse than expected from the specifications of
the iRobot Create base due to the additional weight
of arm, notebook and watering system. Even though
the astro-turf ground provides sufficient traction to the
robot’s wheels, it provides significant friction to the
front and rear casters, which particularly impacts the
accuracy of turns. By adding the external localization
system, the performance of the navigation algorithm in-
curred no accumulated errors over 20+ loops along the
test square. Whereas the reactive algorithm to reach
the dock compensated for errors in waypoint naviga-
tion, odometry was not reliable enough for repeatedly
navigating through narrow passages in the arena. In the
absence of global positioning information, getting stuck

between the plants or supporting poles eventually leads
to a total loss of orientation, which has been remedied
by the Stargazer sensor.

In rare cases, however, navigation error lead to an
orientation in front of the plants in which the robot
was attracted by a neighboring pot when docking. This
is mitigated by the planner which supervises that the
robot stays within a rectangle of 1 by 1.5m around the
dock and navigates to the original launching point oth-
erwise.

We evaluated navigation for watering by starting
a single robot in the top-left corner of the arena. We
tasked the robot with watering two different plants, one
closer to the origin, 6 and respectively 4 times and solely
relying on odometry. Watering takes approximately 20s
and involves moving the arm toward the soil using open-
loop control. The average navigation time to reach the
closer dock was 79.5s ± 11.3 and 94.25 ± 8.9 for the
dock farther away. We observed 100% success rate of
watering over 100+ trials.

8.3 Object recognition and Inventory

We trained classifiers using the boosting algorithm (Tor-
ralba et al 2004) for red and green tomatoes using a
training set of 17 images that were labeled using (Rus-
sell et al 2008). We then tested the classifiers on live
images from the robot. Over 150 images, each contain-
ing at least one tomato, the classifiers detected and



correctly classified around 34% of the tomatoes and
38% false-positives. We also counted the total number
of tomatoes that were present in the images and cal-
culated the percentage of tomatoes that the algorithm
did not recognized at all to 44%. Of these 44% misses,
87% were expected as the tomatoes were occluded or
cropped, for which we did not train appropriate classi-
fiers. Note that these results are including both red and
green tomatoes as the extracted features do not encode
color.

As the detector convoluted 15 scaled instances of
each image with the 40 most important features, pro-
cessing one image requires approximately 16s per im-
age on the Centrino Duo notebook. This makes the
feature-based algorithm unsuitable for real-time track-
ing, which is required for visual servoing and grasping.

Using the Sobel-filter based tracker in Algorithm 1,
we improved the rate of correctly classified tomatoes to
75%, although focussing exclusively on red tomatoes.

Inventory took an average of around 45s over 10
trials.

8.4 Visual Servoing and Grasping

We conducted the following experiment ten times in a
row using both the feature-based and filter-based detec-
tion approaches. The robot starts in a docked configu-
ration with a plant. The robot is given the coordinates
of a tomato and moved its arm from the docking con-
figuration to a position close to the tomato (given its
location stored on the plant). The robot then uses the
visual servo feedback controller to grasp the tomato.

Using the feature-based approach, grasping was suc-
cessful in 50% of the time over 10 trials. The average
duration for the successful trials was 30.6s ± 16.1 and
30.8± 31.6 for the unsuccessful trials.

The filter-based approach improved the performance
of the visual servo to 75% successful grasps over 20 tri-
als. The average time was 28.3± 10s for the successful
trials. The success rate of this algorithm is closely re-
lated to the object recognition performance. In case the
robot started in a position that did not lead to any of
the expected detections, the visual servo immediately
terminates.

Reasons for failure were mostly due to singularities
on the trajectory from initial position to desired grasp-
ing location and false-positives on object recognition
that lead to premature grasping. The force sensor helps
detecting failed grasping attempts for false-positive de-
tections. It does not help, however, when the gripper
grasps another part of the plant, which we also ob-
served.

We also observed several instances in which the grip-
per was protruded by branches and leafs. As the plant
is flexible, this often led to movements also of the fruit
itself. While such movement could be partially miti-
gated by the visual servo, this often leads to a “dead-
lock” where the fruit becomes unreachable. In this case
additional sensing would be needed to detect such a sit-
uation as well as to better understand the geometry of
the branch structure and its location in space.

9 Discussion

Networking. OLSR will scale for thousands of nodes.
However it might make more sense (for this particu-
lar application) to forgo routing altogether and simply
flood the requests into the network with a limited hop
count. Although IEEE 802.11b allowed us to leverage
off-the-shelf software and protocols, a less resource in-
tensive, short range communication system such as in-
frared might be more appropriate. As a side-effect the
infrared signals could also be leveraged for navigation.

Plants. The system performance can be enhanced
by using a model of plant growth. This will allow plants
to predict their status in between updates received from
robots and it is part of our current work.

Navigation and Path Planning. If global posi-
tioning is available, the gardening system can recover
from navigation errors as described in this paper. If
global positioning is not available, robots with better
odometry and navigation sensors are needed. Although
we employed a global positioning system that also makes
the system independent from the structure of the en-
vironment, a simpler solution in an environment with
matrix arrangment of plants — such as on a field —
would be to encode the plant id on the docking signal
to re-locate the robot.

Object Recognition. Object recognition using
joint boosting is resource intensive and is difficult in the
gardening domain. A key problem is that texture-less
tomatoes provide only very limited features by them-
selves. Thus, dominant features are mostly located at
the boundary of tomato and background, which leads to
poor performance when the background varies strongly
as in our experiment (astroturf, leaves, other robots,
laboratory). An advantage of a feature-based method
is that its success rate is independent of color, i.e. red
and green tomatoes are treated equally.

Detecting green tomatoes using a filter-based ap-
proach is much harder, however. Although the Hough
transform (detecting circles) and the extrema detection
for spectral highlights provide strong clues for the de-
tection of green tomatoes, tomatoes are still hard to



differentiate from leaves that exhibit similar features.
For this reason, only red tomatoes — using color as the
final discriminant — can be detected reliably using a
filter-based approach.

Visual Servoing. Visual servoing fails when the
robot is unable to detect the tomatoes at the expected
position. This situation can be improved by implement-
ing an additional planning step using position-based vi-
sual servoing, which systematically explores the region
of interest from different angles, potentially also involv-
ing movement of the base. The performance of the vi-
sual servo would also been drastically improved when
using stereo vision, which allows for depth estimation.

Grasping. As the orientation of the stem growing
out of the tomato fruit is not always vertical it turns out
that we could only grasp a subset of tomatoes without
an additional degree of freedom (wrist rotation) and ap-
propriate image detection algorithms. Also, the limited
workspace of the arm imposes constraints on reachable
tomatoes, and an arm that provides the full six degrees
of freedom would be necessary to reach tomatoes in all
possible orientations. Finally, performing collision-free
grasps might require a complete 3D reconstruction of
the branch structure as pushing branches aside will lead
to undesired motion of the entire plant, which makes
fruit collection infeasible in some cases.

Scalability The distributed architecture of the sys-
tem should theoretically ensure the scalability of the
systems for large numbers of robots and plants. In par-
ticular, all information is stored on the plants and each
plant stores only its own information and robots inter-
act only with plants that solicit them and those that are
within 1-hop communication radius for collision avoid-
ance. In practice, however, a large-scale deployment
must ensure that robots are evenly distributed in the
environment and that plant requests can always reach
at least one robot via multi-hop communication (see the
discussion on networking above). At the same time, ad-
ditional coordination between robots would be required
to assure equal coverage of the environment even if in-
dividual robots fail, e.g. using the approach described
in Schwager et al (2009).

10 Conclusion

This paper describes our experience with designing and
building a distributed robot garden. We have developed
a network of mobile manipulators and plant sensor net-
works. We demonstrated that our system can coordi-
nate plant requests and robot activities for precision
plant watering, fruit inventory, and fruit harvesting in a
fully distributed way. Open problems are the robustness

of the operations provided by the hardware and the lim-
ited workspace of the chosen arm. Particular challenges
are global localization for recovering from navigation
errors and the limited robustness of the state-of-the art
vision algorithms to changing lighting conditions of ob-
ject recognition during visual servoing.

Our current focus and challenge in this project is
achieving persistent autonomous operation of the dis-
tributed gardening robots for periods on the order of
several weeks, which requires overcoming challenges in
power autonomy, self-charging and improved manipu-
lation capabilities. In the long run, we are interested in
developing algorithms and mechanisms that can phys-
ically change the location of a plant in order to au-
tonomously distribute plants on the landscape that max-
imizes growth and minimizes resources. Also, we would
like to study the relation between plants and various
pests — in particular those which are known to have
a repellent affect — and leverage this plant-to-plant
interaction by controlled deployment and mobility to
minimize pesticides.

Acknowledgements This work was supported in part by the

Swiss NSF under contract number PBEL2118737, MURI SWARMS

project W911NF-05-1-0219, NSF IIS-0426838, EFRI 0735953 In-
tel, and by the MIT UROP and MSRP programs. We are grate-

ful for this support. This paper is partly the result of a challenge

class” taught at MIT (6.084/85) by the authors.

We would like to thank A. Torralba for his help on feature-

based object recognition, J. French, J. Myers and A. Zolj who
have been working on the Distributed Robotics Garden as part

of the MIT Summer UROP program in 2008, Kevin Quigley and

Marsette Vona for providing their visual servoing implementa-
tion, and Michael Otte for helping out on navigation.

References

Al-Kufaishi S, Blackmore B, Sourell H (2005) The potential con-

tribution of precision irrigation to water conservation. In:

Proceedings of the 5th European conference on Precision
Agriculture, pp 943–950

Amstutz P, Correll N, Martinoli A (2009) Distributed boundary

coverage with a team of networked miniature robots using a
robust market-based algorithm. Annals of Mathematics and

Artifcial Intelligence Special Issue on Coverage, Exploration,
and Search 52(2–4):307–333

Åstrand B, Baerveldt AJ (2002) An agricultural mobile robot

with vision-based perception for mechanical weed control.
Autonomous Robots 13(1):21–35

Blackmore B (2007) A systems view of agricultural robots. In:

Proceedings of the 6th European Conference on Precision
Agriculture, pp 23–31

Blackmore B, Fountas S, Gemtos T, Vougioukas S (2006)

Ecobots: Improved energy utilisation through smaller
smarter machines. In: Proceedings of the 3rd IFAC Inter-
national Workshop on Bio-Robotics

Chaumette F, Hutchinson S (2006) Visual servo control part
i: Basic approaches. Robotics & Automation Magazine

13(4):82–90



Correll N, Arechiga N, Bolger A, Bollini M, Charrow B, Clayton
A, Dominguez F, Donahue K, Dyar S, Johnson L, Liu H,

Patrikalakis A, Robertson T, Smith J, Soltero D, Tanner M,
White L, Rus D (2009) Building a distributed robot garden.

In: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), St. Louis, MO, pp 1509–1516
Edan Y (1995) Design of an autonomous agricultural robot. Ap-

plied Intelligence 5(1):41–50

van Henten E, Hemming J, van Tuijl B, Kornet J, Meuleman
J, Bontsema J, van Os E (2002) An autonomous robot for

harvesting cucumbers in greenhouses. Autonomous Robots

13(3):241–258
Jagannatha S, Levesque A, Singh Y (2001) Approximation-based

control and avoidance of a mobile base with an onboard arm

for mars greenhouse operation. In: Proceedings of the 2001
IEEE International Symposium on Intelligent Control, pp

103–108

Jimenez A, Ceres R, Pons J (2000) A survey of computer vision
methods for locating fruit on trees. Transactions of the ASAE

43(6):1911–1920
Kim Y, Evans R, Iversen W, Pierce F (2006) Instrumentation and

control for wireless sensor network for automated irrigation.

ASAE Paper No 061105 St Joseph, Michigan
Kondo N, Nishitsuji Y, Ling P, Ting K (1996) Visual feed-

back guided robotic cherry tomato harvesting. Transactions

of the American Society of Agricultural Engineers (ASAE)
39(6):2331–2338

Kondo N, Ninomiya K, Hayashi S (2005) A new challenge of robot

for harvesting strawberry grown on table top culture. In:
Proceedings of ASAE Annual International Meeting, Tampa,

Florida, p Paper number: 053138

Lee W, Slaughter D, Giles D (1995) Robotic weed control system
for tomatoes. Precision Agriculture 1(1):95–113

Lochmatter T, Roduit P, Cianci C, Correll N, Jacot J, Martinoli
A (2008) Swistrack - a flexible open source tracking software

for multi-agent systems. In: IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), Nice, France,
pp 4004–4010

Otte M, Correll N (2010) The any-com approach to multi-robot

coordination. In: IEEE International Conference on Robotics
and Automation (ICRA), Workshop on Network Science and

Systems Issues in Multi-Robot Autonomy (NETSS), Anchor-

age, AK, USA
Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J,

Wheeler R, Ng A (2009) Ros: an open-source robot operating

system. In: International Conference on Robotics and Au-
tomation, Workshop on Open-Source Robotics, Open-Source

Software workshop
Reed J, Miles S, Butler J, Baldwin M, Noble R (2001) Auto-

matic mushroom harvester development. Journal of Agricul-

tural Engineering Research 78(1):15–23
Russell B, Torralba A, Murphy K, Freeman W (2008) Labelme:

A database and web-based tool for image annotation. Inter-

national Journal of Computer Vision 77(1–3)
Rusu R, Gerkey B, Beetz M (2008) Robots in the kitchen: Ex-

ploiting ubiquitous sensing and actuation. Robotics and Au-

tonomous Systems, special issue on Network Robot Systems
56:844–856

Saffiotti A, Broxvall M, Gritti M, LeBlanc K, Lundh R, Rashid

J, Seo B, Cho Y (2008) The peis-ecology project: Vision and
results. In: Proc. of the IEEE/RSJ Int Conf on Intelligent
Robots and Systems (IROS), Nice, France, pp 2329–2335

Schwager M, Rus D, Slotine JJ (2009) Decentralized, adaptive
coverage control for networked robots. International Journal

of Robotics Research 28(3):357–375

Srinivasan A (ed) (2006) Handbook of Precision Agriculture:
Principles And Applications. CRC Press

Tabb A, Peterson D, Park J (2006) Segmentation of apple fruit

from video via background modeling. In: Proceedings of the
American Society of Agricultural and Biological Engineers

ASABE Annual International Meeting, Portland, OR, 63060,

p 11 pages
Tanigaki K, Fujiura T, Akase A, Imagawa J (2008) Cherry-

harvesting robot. Computers and Electronics in Agriculture

63(1):65 – 72, special issue on bio-robotics
Torralba A, Murphy K, Freeman W (2004) Sharing features: ef-

ficient boosting procedures for multiclass object detection.

In: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pp

762–769
Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture

and food industry – recent development and future perspec-

tive. Computers and Electronics in Agriculture 50(1):1–14
Zhang W, Kantor G, Singh S (2004) Integrated wireless sen-

sor/actuator networks in agricultural applications. In: Proc.

of ACM SenSys, p 317


