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F-25030 Besançon Cedex, France
(Received 22 October 2011; published 17 May 2012)

Recently, Chen et al. [Phys. Rev. A 84, 033835 (2011)] reported observation of anticorrelated photon
coincidences in a Mach-Zehnder interferometer whose input light came from a mode-locked Ti:sapphire laser
that had been rendered spatially incoherent by passage through a rotating ground-glass diffuser. They provided a
quantum-mechanical explanation of their results, which ascribes the anticorrelation to two-photon interference.
They also developed a classical-light treatment of the experiment and showed that it was incapable of explaining
the anticorrelation behavior. Here we show that semiclassical photodetection theory, i.e., classical electromagnetic
fields plus photodetector shot noise, does indeed explain the anticorrelation found by Chen et al. The key to
our analysis is properly accounting for the disparate time scales associated with the laser’s pulse duration,
the speckle-correlation time, the interferometer’s differential delay, and the duration of the photon-coincidence
gate. Our result is consistent with the long-accepted dictum that laser light which has undergone linear-optical
transformations is classical-state light, so that the quantum and semiclassical theories of photodetection yield
quantitatively identical results for its measurement statistics. The interpretation provided by Chen et al. for their
observations implicitly contradicts that dictum.

DOI: 10.1103/PhysRevA.85.057801 PACS number(s): 42.50.Ar, 42.50.Ct, 42.50.Dv

The recent paper by Chen et al. [1] reports the follow-
ing experiment. A continuous-wave mode-locked Ti:sapphire
laser operating at λ = 780 nm wavelength with a 78-MHz
pulse-repetition frequency and a τp ∼ 150 fs pulse duration
illuminated an interference filter to somewhat increase the
pulse duration, followed by a rotating ground-glass diffuser
to render the light spatially incoherent. The diameter D =
4.5 mm output beam from the diffuser was divided by a
50-50 beam splitter, with the resulting beams propagating
d ≈ 200 mm (from the diffuser) to collection planes, each of
which contained the tip of a single-mode optical fiber. These
fibers routed the light they collected to another 50-50 beam
splitter whose outputs illuminated single-photon detectors. By
sufficiently offsetting, in their respective planes, the transverse
coordinates of the fiber tips that collected light from the
diffuser, Chen et al. ensured that there was no first-order
interference in the Mach-Zehnder interferometer formed by
the two 50-50 beam splitters and the intervening fibers. They
measured photon coincidences between the two detectors, with
a T ∼ 1 ns coincidence gate, as one of the collection fibers was
moved longitudinally to create a −2 ps � δt � 2 ps differential
delay. What they observed was a pronounced dip (a photon
anticorrelation) in the coincidence rate, despite the absence of
any delay dependence in the singles rates. See Fig. 3 of [1]
for a diagram of Chen et al.’s experiment and Fig. 4 of [1] for
their observations of anticorrelation.

Chen et al. provided a quantum-mechanical explanation for
the anticorrelation seen in their experiment, which shows that
it is due to two-photon interference. Because light is quantum
mechanical and photodetection is a quantum measurement,
there must be a quantum explanation for the results in
Ref. [1]. But the authors of [1] do more than provide a
quantum explanation for their observations. They present a

classical-field analysis that, they claim, proves that only a
quantum treatment can account for the anticorrelation they
found. Were these authors correct, their work would present
a very significant conundrum for quantum optics. Laser light,
except for any excess noise it may carry, is coherent-state
light. Passage through a ground-glass diffuser, free-space
propagation, beam splitting, and fiber propagation are all
linear-optical effects, with the first best modeled as a random
process while the rest can be taken to be deterministic. Taken
together, the preceding two sentences imply that the joint
quantum state of the fields illuminating the two detectors
in Fig. 3 of Chen et al. is classical, viz., it is a random
mixture of coherent states. It has long been known that the
quantum and semiclassical [2] theories of photodetection
yield quantitatively identical predictions for classical-state
illumination; see [3] for a detailed review of this topic.

So, in view of the preceding discussion, we can say that
one of three things must be true: (1) despite what is argued in
Ref. [1], there is a classical explanation for the anticorrelation
reported therein, (2) laser light that has undergone linear
transformation is not in a coherent state or a random mixture of
coherent states, or (3) the quantum and semiclassical theories
of photodetection can make different quantitative predictions
for the measurement statistics of classical-state illumination.
To assert the truth of items (2) and/or (3), as Chen et al.
implicitly do, would constitute a major upheaval in quantum
optics. We shall show that item (1) holds. The key to doing so
is properly accounting for the disparate time scales associated
with the laser’s pulse duration, the speckle-correlation time,
the interferometer’s differential delay, and the duration of the
photon-coincidence gate.

With the interference filter in place, the duration of the laser
pulse that illuminated the ground-glass diffuser in Fig. 3 of [1]
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was increased to either τp ∼ 345 fs or τp ∼ 541 fs, depending
on which of two interference filters was employed. The linear
velocity of the rotating ground glass where it was illuminated
was ∼0.8 m/s [1], so that for either interference filter it is fair to
assume that the ground glass was completely stationary while
a single laser pulse propagated through it. In other words, the
speckle correlation time greatly exceeded τp. The differential
delay over which Chen et al. traced out coincidence rates was
|δt | � 2 ps. Thus the duration of the photon-coincidence gate
in Fig. 3 of [1] obeyed T � |τp ± δt |.

Chen et al. used single-mode fibers to collect spatial
samples of the two light beams that had propagated d ≈
200 mm from the diffuser and had been separated by the
initial 50-50 beam splitter in their Fig. 3. Coherence theory [4]
shows that the fields at that distance from the diffuser have
�c ∼ λd/D ≈ 35 μm transverse coherence lengths [5]. The
data in Fig. 4 of [1] were collected with more than 40�c

transverse separation, in their respective collection planes,
between the tips of the single-mode fibers, whose core
diameters we shall assume to be much smaller than �c.
Hence the field injected in each fiber comes from a unique
coherence cell, in time as well in space. This ensures that
every fiber-collected femtosecond pulse is coherent, although
with a random phase and amplitude. Moreover, the pulses in
each fiber arise from different coherence cells, and so their
random behaviors are statistically independent. Nevertheless,
it is incorrect to assert (cf. Sec. IV of [1]) that the light beams
emerging from the two fibers do not interfere. Rather, they
produce fringes that are random between pulses separated
by more than the decorrelation time of the pseudothermal
source. More importantly, energy conservation implies there
will be anticorrelation at output ports 1 and 2 in Chen
et al.’s experiment, viz., a bright fringe in port 1 is always
accompanied by a dark fringe in port 2. As noted in Ref. [1],
this anticorrelation would not depend on the interferometer’s
differential delay for continuous-wave (statistically stationary)
pseudothermal light. Chen et al., however, used femtosecond
pulses, for which the anticorrelation disappears when the
pulses do not overlap in time at the second 50-50 beam
splitter, and this loss of anticorrelation occurs even though
the necessary differential delay is much shorter than the
photodetectors’ nanosecond coincidence window.

The argument presented in the preceding paragraph consti-
tutes a complete explanation of Chen et al.’s anticorrelation
in terms of classical interference behavior. We will now
expand upon that classical-field explanation to provide a full
quantitative treatment. We define E+(t) and E−(t) to be the
positive-frequency classical fields (measured in

√
photons/s)

entering the single-mode fibers from a single pulse occurring
at time t = 0 [6]. Given that the speckle is frozen over a single
laser pulse and that the fibers have core diameters which are
much smaller than �c, it is fair to write these fields as follows:

E±(t) = v±f (t ± δt/2)e−iω0t , (1)

where v+ and v− are independent, identically distributed, zero-
mean, isotropic, complex-valued Gaussian random variables
with common mean-square strength,

〈|v+|2〉 = 〈|v−|2〉 = N, (2)

and

f (t) ≡ e−t2/τ 2
p(

πτ 2
p/2

)1/4 (3)

is a transform-limited Gaussian pulse normalized to satisfy∫
dt |f (t)|2 = 1. (4)

Physically, v+ and v− are the constant-in-time speckle values
for the given laser pulse, whose independence is guaranteed by
the large transverse separation of the fibers in their respective
collection planes. Our f (t) normalization then implies that
Nh̄ω0, with ω0 = 2πc/λ, is the average energy entering each
of the fibers from the given laser pulse. Thus N measures
the average energy of these classical fields in photon units,
and because the measurements reported in Ref. [1] were made
in the photon-counting regime, we will assume N 	 1. The
fields that illuminate the photodetectors, which we will denote
E1(t) and E2(t), as was done in Ref. [1], are then given by

E1(t) ≡ E+(t) + E−(t)√
2

(5)

and

E2(t) ≡ E+(t) − E−(t)√
2

. (6)

Furthermore, because N 	 1, we can say that the average
singles rates (counts/gate) and coincidence rate (coinci-
dences/gate) obey [3]

SK = η

∫ T/2

−T/2
dt 〈|EK (t)|2〉 for K = 1,2 (7)

and

C12 = η2
∫ T/2

−T/2
dt

∫ T/2

−T/2
du 〈|E1(t)|2|E2(u)|2〉, (8)

where η is the photodetectors’ quantum efficiency. All that
remains is to evaluate these rates.

Using the statistical independence of v+ and v− and their
common mean-square value, we immediately find that

S1 = S2 = ηN

2

∫ T/2

−T/2
dt [|f (t + δt/2)|2

+ |f (t − δt/2)|2] (9)

≈ ηN, (10)

where the approximation follows from |τp ± δt/2| 	 T and
Eq. (3). Similarly, for the coincidence rate, the statistical
independence of v+ and v− leads to [7]

C12 = η2

4

∫ T/2

−T/2
dt

∫ T/2

−T/2
du {〈|v+|4〉|f (t+)|2|f (u+)|2

+〈|v+|2〉〈|v−|2〉|f (t+)|2|f (u−)|2
+〈|v+|2〉〈|v−|2〉|f (u+)|2|f (t−)|2
− 2〈|v+|2〉〈|v−|2〉Re[f ∗(t+)f ∗(u−)f (t−)f (u+)]

+〈|v−|4〉|f (t−)|2|f (u−)|2}, (11)

where t± ≡ t ± δt/2 and u± ≡ u ± δt/2. Now, using the
Gaussian moment-factoring theorem [8], |τp ± δt/2| 	 T ,
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and Eq. (3), we can reduce the preceding expression to

C12 ≈ η2N2

2

(
3 −

∣∣∣∣
∫ T/2

−T/2
dτ f ∗(τ + δt/2)f (τ − δt/2)

∣∣∣∣
2
)

.

(12)

Using |τp ± δt | 	 T and Eq. (3) then gives us our final result,

C12 ≈ η2N2

2

(
3 − e−δt2/τ 2

p

)
. (13)

Equation (11) can be obtained in a slightly different way to
emphasize the presence of anticorrelated fringes at the output
ports. The intensities at these ports can be obtained from
Eqs. (5) and (6) as

|E1(t)|2 = 1
2 {|v+|2|f (t+)|2 + |v−|2|f (t−)|2
+ 2|v+||v−| Re[f ∗(t+)f (t−)ei	ϕ]}, (14)

|E2(u)|2 = 1
2 {|v+|2|f (u+)|2 + |v−|2|f (u−)|2
− 2|v+||v−| Re[f ∗(u+)f (u−)ei	ϕ]}, (15)

where 	ϕ ≡ ϕ− − ϕ+ in terms of the phases, ϕ+ and ϕ−,
associated with v+ and v−. Equation (11) can be retrieved
from Eqs. (14) and (15) by noting that the amplitude and phase
of v± are statistically independent, with ϕ± being uniformly
distributed on 0 � ϕ± � 2π , so that 〈eiϕ±〉 = 〈ei2ϕ±〉 = 0.
Equations (14) and (15) also show that the interference,
and hence the anticorrelation, disappears when the pulses
no longer overlap in time at the second 50-50 beam splitter
because

|δt | � τp ⇒ f ∗(t+)f (t−) = 0, ∀ t. (16)

At this point we have accomplished our objective. Our
simple classical-field theory predicts singles rates that are
independent of the differential delay and a coincidence rate
that exhibits a pronounced dip (anticorrelation) within a
(post-interference-filter) laser pulse duration, in agreement
with the experimental results from [1]. We shall close by

delving a little deeper into how our work stacks up against
those experiments. We have assumed N 	 1, i.e., that the
average photon number coupled into each fiber from a single
laser pulse is much smaller than 1. Our theory gives

max(C12)/S1 = 3ηN/2. (17)

From Fig. 4 of [1] we then get 3ηN/2 ≈ 0.004, which, for
reasonable values of η (say, η ∼ 0.1), is consistent with N

being much smaller than 1 [9].
Our theory predicts that the anticorrelation dip has visibility

V ≡ max(C12) − min(C12)

max(C12) + min(C12)
= 1/5, (18)

which is in reasonable agreement with the experimental results
from Fig. 4 of [1]. If we eliminate accidental coincidences (the
terms that Chen et al. refer to as “self-intensity correlations”)
from our theory by subtracting from C12 in Eq. (13) the
coincidence rate when E+(t) = 0 and the coincidence rate
when E−(t) = 0, we get

C12 ≈ η2N2

2

(
1 − e−δt2/τ 2

p

)
, (19)

which implies the anticorrelation dip has perfect, V = 1,
visibility. When Chen et al. make the like correction to
their anticorrelation data, they find near-unity visibility, in
agreement with our theory.

In conclusion, we have provided a classical explana-
tion for the anticorrelation experimental results reported in
Ref. [1]. Thus those experimental results do not require us
to abandon the well-accepted precepts that laser light through
linear-optical transformations can be modeled as a coherent
state or a classical mixture of coherent states and that the
photodetection measurement statistics for such states can be
computed from semiclassical theory, in which the light is
treated classically.

The work of J.H.S. was supported by the DARPA Infor-
mation in a Photon Program under US Army Research Office
Grant No. W911NF-10-1-0404.
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