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Abstract 

We consider a multi-stage production/distribution supply chain subject to stochastic demand. We formulate an 

optimization problem to determine where to place decoupling inventories, so-called strategic inventories, across 

the supply chain so as to minimize inventory holding costs subject to a service constraint for satisfying customer 

demand. We assume demand is normally distributed. For each stage, we know its lead time, which we assume is 

deterministic, and we know the cost added at the stage. There are no capacity constraints in the supply chain, and 

each stage quotes and guarantees a service time by which it will supply its immediate successors.  These service 

times are decision variables for the optimization model. Associated with each stage is a service level, denoting the 

percentage of time that the guaranteed service time is to be met from inventory. Finally each stage operates with a 

base-stock control policy; that is, each period each stage orders a quantity equal to its demand. 

Introduction 

An emerging principle for the management of supply chains is that a supply-chain perspective provides the 

opportunity for significant savings in inventories from better coordination and communication across the supply 

chain.  One component of this savings is due to a coordinated strategy for setting safety stocks to protect against 

uncertainty and variability; that is, a supply-chain perspective can avert some of the local suboptimization that 

occurs, for instance, when each stage of a manufacturing or distribution process independently determines its own 

safety stocks. In this paper we describe ongoing research to develop tools and general principles for determining how 

to set safety stocks in a supply chain. 

In particular, we address how to determine the optimal placement of safety stock inventories in a supply chain 

subject to uncertain demand. In Section 2 we formulate a model, originally given in Simpson (1958), for the simplest 

supply chain, a serial line, and present a solution procedure to find the optimal safety stocks. In Section 3 we extend 

the Simpson model to more general multi-stage supply chains, including assembly and distribution networks. We 

conclude the paper in Section 4 with a status report on this research project. We are currently testing the model in 

two industrial settings, and briefly comment on these ongoing case studies in this section. We also describe the focus 

of ongoing work to improve the solution algorithms and to extend the model to more realistic assumptions. 

Related work on determining the inventory requirements for a supply chain include Lee and Billington (1993) 

(and the references therein) and Graves et al. (1996). This paper differs from the earlier work in terms of the 

underlying model assumptions, which result in our focus on where to place strategic inventories that completely 

decouple the upstream part of the supply chain from the downstream. In contrast Lee and Billington determine how 

much inventory is needed at each stage in the supply chain, so as to minimize total inventory. And Graves et al. 

determine the safety stock for a supply chain that is subject to dynamic requirements planning. 



2 Serial Line 

We first review the Simpson model of a serial production system and then present a solution procedure. In section 

2.1 we detail the model’s assumptions, formulation, and the notation we will be using throughout the paper. In 

section 2.2 we describe how the problem can be solved by dynamic programming. 

2.1 Model Assumptions 

We consider an N-stage serial system, where stage i is the immediate upstage stage or supplier for stage i+1, for i = 

1, 2, ... N-1. Hence, stage 1 is the raw material stage and has no supplier; and stage N is the finished goods inventory 

node, from which customer demand is served. Each stage represents a major processing function in the supply chain; 

a typical stage might represent the manufacturing of a subassembly or the shipment of the finished product from a 

regional warehouse to the customer’s distribution center. The only requirement for stage selection is that the process 

flow map that results from the selection captures the actual supply chain’s characteristics; i.e., the model can be 

tactical in scope but it should not leave any gaps in how the product gets from one stage to another. 

We assume demand each period is an independent normally-distributed random variable with mean µ and 

standard deviation σ. This is the only source of uncertainty in the model. 

For each stage i, we know its production lead-time Ti, which we assume is deterministic, and we know the 

holding cost, hi. There are no capacity constraints in the supply chain, and each stage i quotes and guarantees a 

service time Si by which it will supply its immediate successor.  We assume that the finished goods stage provides 

immediate service from inventory to the final customer; i.e. SN = 0. But for the other stages, these service times are 

decision variables for the optimization model. Thus, if Si = 3, say, then when an order is placed on stage i at time t, 

stage i will fulfill that order at time t + 3. Finally each stage operates with a (echelon) base-stock control policy; that 

is, each period each stage observes the current customer demand at stage N, and orders a quantity equal to replenish 

the current period’s demand. 

To determine the base stock level for a stage, we assume that associated with each stage is a service level, 

denoting the percentage of time that the guaranteed service time is to be met from inventory. Furthermore we do not 

attempt to model what happens when the guaranteed service time is violated, i. e., when demand exceeds some 

maximal level. In effect we assume that the base stocks will be sufficient as long as demand is within the range 

implied by the desired service level. For example, if the service level is 95%, then we assume that the base stocks 

will be set to cover a maximum demand equal to the 95th percentile of the demand distribution for any t-period time 

window; in effect, for setting the base stocks, we assume the maximum demand over t periods is tµ + kσ¥W�IRU�N� 
1.64. We ignore what happens when demand exceeds this level; that is, when demand might be regarded as being 

extraordinary, we assume that the operation would respond with an equally extraordinary measure, beyond the scope 

of the model and the assumed base-stock policy. See Simpson (1958) and Graves (1988) for further discussion of 

this assumption. 

As a consequence of this assumption we can express the safety stock required by stage i as the following: 

ci (Si −1, Si )= khiσ Si −1 + Ti − Si 

where k is the safety factor implied by the specified service level (e. g., k = 1.64 for 95% service level). In the above 

expression, Si-1 + Ti is the replenishment lead time for stage i, since it takes Si-1 time units for stage i to be supplied 

by its upstream stage, and another Ti time units for stage i to complete its processing. The safety stock at stage i must 



cover the variability in demand over the net replenishment time, namely the difference between the replenishment 

time for stage i (Si-1 + Ti) and the service time promised by stage i (Si). Since without capacity constraints there is no 

reason for stage i to promise a service time longer than its own replenishment time, we assume here that Si ��6i-1 + 

Ti. 

With these observations and assumptions, we can now formulate the following optimization problem for finding 

the optimal service times, or equivalently safety stocks, for each stage: 
N 

min ∑hi Ii 

i =1 

s.t.


I = kσ S
i −1 

+ T − S i = 1, ..., N

i i i 

0 ≤ Si ≤ Si−1 + Ti i = 1, ..., N 

where Ii denotes the expected safety stock at stage i and S0 is assumed to be 0. This problem formulation was first 

given by Simpson, who also showed that there is an optimal extreme point solution such that Si* = 0 or Si* = Si-1* + 

Ti for all i = 1, 2, ... N-1 (SN, the service time for the customer, equals 0 by assumption). Thus, there is an “all or 

nothing” optimal solution; either a stage has no safety stock (Si* = Si-1* + Ti) or the stage has sufficient safety stock 

(Si* = 0) to decouple it from its downstream stage. 

2.2 Solution Procedure 

The serial line case can be solved to optimality using dynamic programming or equivalently solving a shortest path 

problem. The dynamic program is a forward recursion starting at stage 1 and proceeding to stage N. For each stage, 

the algorithm finds the service time from the upstream stage that minimizes the cost of the current stage quoting a 

given service time; this procedure is repeated for each possible service time that stage i can quote. Define fi (Si )  as 

the optimal value of the network from stage 1 up to and including stage i given stage i quotes a service time of Si. 
i 

fi ( )=  min (fi −1 ( )+  ci  (Si −1, Si )) 0 ≤ Si ≤ ∑ Tj (1)Si i −1 
Si −1

0≤Si−1 ≤ ∑ Tj j =1 
j =1 

ci (Si −1, Si )= khiσ Si −1 + Ti − Si i = 1, ..., N (2) 

Equation 1 is the optimal cost-to-go function for a given service time Si . Equation 2 is just the safety stock cost at 

stage i given stage i quotes a service time of Si and is quoted a service time of Si-1. 

We can improve the computational efficiency of the dynamic program by exploiting the observation that Si* = 0 

or Si* = Si-1* + Ti. In particular, for SN = 0, we can solve the problem as a shortest path from node 0 to node N on 

an N+1 node network with arcs (i, j) for all i < j, and i, j = 0, 1, 2, ... N. The cost of arc (i, j) is the inventory holding 

cost for having a decoupling inventory at stage i, assuming that the next upstream decoupling inventory is at stage j. 

3 Extensions To Serial Case 

There are several extensions to the serial case. In section 3.1, we formulate the optimization problem for finding the 

service times for an assembly network. We then discuss how to solve this problem. In Section 3.2 and 3.3, we 

address how to approach distribution networks, and more general networks, respectively. 



3.1 Assembly Networks 

Suppose that we can represent the supply chain as an acyclic network, given by a graph G where N(G) is the node set 

and A(G) is the arc set. There is a one-to-one mapping between the stages of the supply chain and the nodes in N(G). 

There is an arc between stage i and stage j, i. e., (i, j) ∈ A(G), if and only if stage i is a direct supplier to stage j. This 

section considers the assembly network case; that is, each stage has at most one successor (see Figure 1). 

To formulate the optimization problem, for all (i, j) ∈ A(G) we define a service time Si as the service time that 

stage i quotes to stage j.  Since in an assembly network stage i feeds only one downstream stage, this notation is 

sufficient. As in the serial line case, the service times Si will be the decision variables for the optimization problem. 

For each stage i, we define Li to be replenishment lead time for stage i; since there may be several upstream 

suppliers to stage i, we note that the replenishment lead time equals the production lead time at stage i, plus the 

longest service time of its suppliers: Li = max { Sj + Ti } where the maximization is over all arcs (j, i) ∈ A(G). 

The formulation is now given by: 
N 

min ∑hi Ii 

i =1 

s. t. 

Ii = kσ Li − Si i = 1,.. ., N


j,i ( ) 
L ≥ S + T ∀ ( )∈ A G
i j i 

0 ≤ Si ≤ Li i = 1,..., N 

The first step in solving assembly networks is to identify the echelons in the network. Informally, this can be 

done as follows. First condense all the serial lines into super nodes. Then perform a breadth first search from Stage N 

to all the remaining stages. By definition of our aggregating procedure, each remaining stage must be in the echelon 

that is one higher than the echelon of the predecessor stage. 

Figure 1 shows the echelon structure of an assembly network. In this example, stage 13 is the Nth stage and all 

of the serial lines are to be condensed except for the lines composed of only one stage; i.e., stages 4 and 6. 

Echelon 4 E ch elon 3 Ech elon 2 Ech elon 1 

Figure 1: Assembly network broken into echelons 

The algorithm to determine the service times for an assembly network is as follows. First, determine the echelon 



structure of the network. Second, start at the highest echelon number and work toward echelon 1,  Within each 

echelon, loop over the serial lines in the echelon and solve the following cost-to-go function for each stage: 

⎞ 
f j ( )=  min ⎜ 

⎛ ∑ fi ( )+ c ( )⎟
⎠ 

(3)Sj s j s,S j
0 ≤ s ≤ Dj ⎝{i: (i  ,  j  )∈A(G)} 

where Dj is the longest possible time path to stage j. The cost-to-go function fj(Sj) is the minimum holding cost 

for the inventory at stage j and all upstream stages to stage j, given that stage j quotes a service time equal to Sj. 

Within the above expression, cj(s, Sj) denotes the inventory holding cost at stage j, given that the longest supplier 

service time is s and given that stage j quotes a service time of Sj to its downstream stage. For a given service time 

for stage j, the algorithm loops over all possible incoming service times and finds the minimum cost solution for 

stage j and its suppliers. The cost-to-go function needs to be evaluated for all possible choices for Sj. Note that this 

solution procedure exploits the observations that the longest supplier service time determines the replenishment lead 

time for a stage, and that all suppliers to a stage will quote the same service time in the minimum-cost solution. 

3.2 Distribution Networks 

In a distribution network, each stage has at most one upstream stage that supplies it. But each stage may now feed 

several downstream stages or serve customer demand, and may quote a distinct service time to each of its 

downstream customers. Also, unlike a serial line or an assembly network, there will be more than one stage that 

directly serves customer demand. Hence, each stage will see the convolution of several demand streams and will 

need to have safety stock to protect against the variation in aggregate demand. The expression for the safety stock is 

slightly more complex (see Willems, 1996) than given in Section 3.1. 

For the special case where we assume that each stage specifies a single service time applicable to each of its 

downstream customers, we can adapt the algorithm given above for assembly networks. In particular, the dynamic 

programming recursion is a “mirror image” of that for the assembly network. Whereas for an assembly network the 

recursion starts with the most upstream stages and works downstream, the algorithm for a distribution system starts 

with the most downstream stages and works upstream. 

We have not examined how to solve the case when a single stage quotes different service times to its 

downstream customers. 

3.3 General Networks 

We are developing recursive approaches for supply chains represented by general acyclic networks. The general idea 

involves breaking the network into assembly and distribution subgraphs. Each subgraph is then solved using the 

appropriate technique described in sections 3.1 and 3.2. If stage j is a stage where two subgraphs are connected, then 

once both subgraphs have been solved, we only need to loop over the possible service times at stage j to find out 

which one is optimal. When solving these more complicated networks, a key difficulty in the construction of an 

algorithm is in how to traverse the network. In particular we need to assure that once a stage is reached in the 

algorithm, that all of the relevant associated stages, either upstream or downstream, have been evaluated. 



4 Current Research 

We are working with two industrial settings to test and validate the model. At the first company, we are applying the 

model to determine strategic inventory levels within the company’s large internal supply chain. The supply chain is 

represented as an assembly network with about 15 stages. At the second company we are using the model to look at 

reducing redundant inventories between the company and a major customer. Here we have represented the supply 

chain as a serial system with 6 stages. These cases will provide some insight into how useful the current model is, as 

well as what are the most restrictive assumptions. 

The model has been programmed in C for the Macintosh. The graphical interface allows the user to quickly 

construct various supply chain configurations. The program allows the user to either use the program as an optimizer 

that determines optimal service times or as a calculator where the user can enter service times and see what impact 

the inputs have on the total inventory costs for the network. The user-friendly nature of the software has been a 

critical success factor in the case studies to date. 

We are currently looking at several extensions. As mentioned in Section 3, the first extension involves solving 

networks that have component commonality between adjacent echelons. The solution procedure will involve 

breaking the network into assembly and distribution subgraphs. After these subgraphs are solved, we are working on 

intelligent ways to recombine these subgraphs with the remaining nodes that do not belong in either an assembly or 

distribution subgraph. 

Another area of research is to develop computationally efficient ways to allow a stage to quote different service 

times to its immediate successor nodes. We will also be examining how to extend the work to incorporate stochastic 

production lead times and capacity constraints. 
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