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Abstract

Background: Principal component analysis (PCA) has been widely employed for
automatic neuronal spike sorting. Calculating principal components (PCs) is
computationally expensive, and requires complex numerical operations and large
memory resources. Substantial hardware resources are therefore needed for
hardware implementations of PCA. General Hebbian algorithm (GHA) has been
proposed for calculating PCs of neuronal spikes in our previous work, which
eliminates the needs of computationally expensive covariance analysis and
eigenvalue decomposition in conventional PCA algorithms. However, large memory
resources are still inherently required for storing a large volume of aligned spikes for
training PCs. The large size memory will consume large hardware resources and
contribute significant power dissipation, which make GHA difficult to be
implemented in portable or implantable multi-channel recording micro-systems.

Method: In this paper, we present a new algorithm for PCA-based spike sorting
based on GHA, namely stream-based Hebbian eigenfilter, which eliminates the
inherent memory requirements of GHA while keeping the accuracy of spike sorting
by utilizing the pseudo-stationarity of neuronal spikes. Because of the reduction of
large hardware storage requirements, the proposed algorithm can lead to ultra-low
hardware resources and power consumption of hardware implementations, which is
critical for the future multi-channel micro-systems. Both clinical and synthetic neural
recording data sets were employed for evaluating the accuracy of the stream-based
Hebbian eigenfilter. The performance of spike sorting using stream-based eigenfilter
and the computational complexity of the eigenfilter were rigorously evaluated and
compared with conventional PCA algorithms. Field programmable logic arrays
(FPGAs) were employed to implement the proposed algorithm, evaluate the
hardware implementations and demonstrate the reduction in both power
consumption and hardware memories achieved by the streaming computing

Results and discussion: Results demonstrate that the stream-based eigenfilter can
achieve the same accuracy and is 10 times more computationally efficient when
compared with conventional PCA algorithms. Hardware evaluations show that 90.3%
logic resources, 95.1% power consumption and 86.8% computing latency can be
reduced by the stream-based eigenfilter when compared with PCA hardware. By
utilizing the streaming method, 92% memory resources and 67% power
consumption can be saved when compared with the direct implementation of GHA.

Conclusion: Stream-based Hebbian eigenfilter presents a novel approach to enable
real-time spike sorting with reduced computational complexity and hardware costs.
This new design can be further utilized for multi-channel neuro-physiological
experiments or chronic implants.
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Background
Recently, multi-electrode arrays (MEAs) have become increasingly popular for neuro-

physiological experiments in vivo [1-4] or in vitro [5-8]. Compared with other methods

of signal acquisition, such as Electroencephalography (EEG) [9] and Electrocorticogra-

phical (ECoG) [10], MEAs provide the capability of recording neuronal spikes from

specific regions of the brain with high signal-to-noise ratio [1,5]. The substantial tem-

poral and spatial resolutions provided by MEAs facilitate the studies of neural network

dynamic [11], plasticity [12], learning and information processing [13] and the develop-

ments of high performance brain-machine interface (BMI) for emerging applications,

such as motor rehabilitation for paralyzed or stroke patients [14-16].

Neuronal spike trains recorded by electrodes encompass noises introduced by mea-

surement instruments, interferences from other vicinity neurons and action potentials

from unknown number of neurons. Neural signal processing that extracts useful infor-

mation from noisy spike trains is necessary for spike information decoding and neural

network analysis in subsequent processes. In most MEA based systems, especially the

MEA based brain-machine interface (BMI), spike sorting that discriminates neuronal

spikes to corresponding neurons is among the very first steps of signal processing

[17-19] and its correctness significantly affects the reliability of the subsequent analysis

[20].

PCA-based spike sorting

Principal component analysis (PCA) is an effective and automatic spike sorting

method. PCA-based spike sorting calculates principal components (PCs) of a group of

neuronal spikes, and uses the first 2 or 3 PCs to constitute a feature space. Most var-

iance of spikes can be captured by the feature space. When projecting neuronal spikes

into the feature space, inherent characters of neuronal spikes are highlighted, and sev-

eral clusters composed by different neuronal spikes can be observed and differentiated.

A complete PCA-based spike sorting flow, including spike detection, peak alignment,

PCA-based feature extraction, and clustering is illustrated by Figure 1. Firstly, spike

detection [21,22] distinguishes neuronal spikes from background noises according to a

pre-trained threshold. Detected high dimensional spikes are then aligned at their peak

point for the PCA. PCs of aligned neuronal spikes that are orthogonal to each other

Figure 1 The procedure of PCA-based spike sorting.
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can be obtained through PCA-based feature extraction. The first two or three PCs are

used to constitute a low dimensional feature space. Aligned spikes are projected into

the feature space by the dot production between spikes and each PC. In the feature

space, dots represent aligned neuronal spikes and each cluster represents a prospective

neuron. At last, clustering algorithms are employed to differentiate clusters in the

feature space and assign dots (spikes) to their closest cluster (neuron).

Calculating PCs requires computationally expensive operations, including covariance

matrix calculation and eigenvalue decomposition. Besides, a large volume of neuronal

spikes needs to be temperately stored for training PCs. Large size memories are there-

fore required. While large computational complexity and memory usage are not issues

for recording and analysis of 100 channel systems [23], they are critical concerns for

systems with large number of channels (> 1000), and especially for implantable sys-

tems, which have tight constraints of hardware size and power consumptions.

GHA for calculating PCs of neuronal spikes

In our previous work [24], general Hebbian algorithm (GHA), so-called Hebbian eigenfil-

ter, which presents an efficient approach for realizing PCA, was proposed for calculating

the leading PCs of neuronal spikes. Let �x(i) , i Î [1, n] be n aligned spikes. Each aligned

spike is d dimension (containing d sample points), i.e. �x(i) =
[
x1(i),x2(i), ..., xd(i)

]T . Let l

be the dimension of feature space (the number of extracted principal components), h be

the learning rate, �W(j) =
[

�W1(j), �W2(j), ..., �Wd(j)
]T

be a l × d synaptic weight matrix

that is initialized to �W(1) , and j be the iteration index. GHA for calculating the first l

principal components of n aligned neuronal spikes is summarized in Table 1. Step 1 initia-

lizes synaptic weights and the learning rate. The mean vector of n aligned spikes, �μ , is

calculated in Step 2. After the mean vector is available, the mean vector is subtracted from

Table 1 GHA-basedspike feature extraction

Input:

Neuronal spikes, �x(i) ;
Initial synaptic weight, �x(i);
Learning rate, h ;

Output:

Principal components of neuronal spikes, �W(N) ;
1. Initialize synaptic weight �x(i)and learning rate h, j = 1

2. Calculate the mean vector of the aligned spikes

�μ =
∑n

i=1 �x(i)/n
3. Zero-mean transformation

�x(i) = �x(i) − �μ 1 ≤ i ≤ n
4. Perform Hebbian learning on zero-mean data

�y(j) = �W(j)�x(i)

LT(j) = LT
[�y(j)�yT(j)

]

dW(j) = η
(�y(j)�xT(i) − LT(j) �W(j)

)

�W(j + 1) = �W(j) + dW(j)
5. If j= N, the algorithm stops, otherwise j = j+ 1, go to step 4
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all aligned spikes in Step 3. After that, iteration learning will be performed on zero-mean

spikes. In the iteration learning, LT
[ �m]

is an operator that sets all the elements above the

diagonal of matrix, �m, to zeros. The algorithm stops when the iteration step, j, equals to

N. If N is large enough and the learning rate is appropriate [25], �W(j) will converge to the

l most significant principal components of input spikes.

Compared with conventional PCA algorithms, GHA does not involve complicated

matrix computations, such as covariance matrix calculation and eigenvalue decomposi-

tion. Also, the algorithm has the ability to filter a specified number of most significant

PCs. Since most variances of aligned spikes are captured by the first few PCs, comput-

ing the leading PCs can effectively reduce a lot of computational efforts.

Although GHA eliminates computationally expensive operations, large memory

resources are still required in the training procedure. Large size hardware memories

consume significant hardware resources and power, which makes GHA impractical for

systems with tight constraints on hardware resources and power consumption.

In this paper, a new algorithm, namely stream-based Hebbian eigenfilter, is proposed

to mitigate the problem associated with the large memory required in the training pro-

cedure. Neural signals can be regarded as pseudo-stationary in considering of a short

recording period and relatively stable recording condition. The stream-based algorithm

exploits the pseudo-stationary characteristic of neural spikes and, thus eliminates the

need for temporary storage in the Hebbian learning. In order to justify the streaming

method and evaluate the performance of the stream-based eigenfilter, both clinical and

synthetic spike trains were used in this study. The accuracy of spike sorting using the

stream-based Hebbian eigenfilter was evaluated by comparing with conventional PCA

algorithms. The improvements in memory size and power consumption were rigor-

ously evaluated using FPGA devices. The hardware performance of our method was

also compared with FPGA-based PCA. Evaluation results show that our proposed

approach mitigates the expensive hardware requirement of PCA, and further enables

real-time multi-channel recording systems and future BMI systems.

Method
Stream-based Hebbian eigenfilter

As shown in the definition of GHA-based feature extraction (Table 1), Hebbian learning

is defined to perform on a group of spikes of which mean is zero. Since zero-mean trans-

formation cannot start until the mean is available, memories are required to temporarily

store all the aligned spikes when computing the mean vector. Therefore, the same set of

neuronal spikes can be used in the subsequent zero-mean transformation and Hebbian

learning. The memory size needed for buffering aligned spikes can be formulated by Eq.

1, where n is the number of spikes for learning, d is the number of sample points of

each spike, and w is the hardware word length of each sample point. For a quantitative

estimation of the memory requirement, we chose values of these parameters based on

commonly used recording and training conditions [19,26]. 25 KHz of sampling rate and

64 sampling points per spikes (each spike spans around 2.5 ms) were used for our esti-

mation. In general, thousands neuronal spikes are used for training PCs [19]. Suppose

that the number of neuronal spikes for training is 1024, and each sample is 16 bits, 1 mil-

lion bits memories are required for storing spikes. Note that this is only for one channel

training. Even larger memories are required for the multi-channel scheme.
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Memspikes = n × d × w (1)

Memory resources are expensive in terms of hardware design, especially for implan-

table or portable applications. Large size memory will consume large portions of hard-

ware resources in hardware constrained systems. Reducing storage resources allows

integrating more computing resources in a single device, and further enables parallel

processing for a large number of channels at the same time. In addition, large mem-

ories contribute significant power consumption and thermal dissipation of hardware,

which should be minimized for implantable or portable applications. In this section,

we proposed a method, so-called stream-based Hebbian eigenfilter, to reduce the extre-

mely large memory associated with Hebbain training by utilizing the pseudo-stationary

property of neuronal spikes.

Recorded neural signals have non-stationary nature which is mainly due to the rela-

tive movements between the recording electrodes and the recorded neurons. Also, the

magnitude of spike could change during excitation block or post inhibitory rebound

excitation or spike frequency adaptation, and the shape of the spike could change

when other ion channels are recruited, such as calcium-dependent potassium channels.

However, neural signals can be regarded as pseudo-stationary in considering of a short

recording period and relatively stable condition, simply because the chance of distur-

bance is small.

During a period of time, in which pseudo-stationarity exists, the shape of a neuronal

spike stays relatively fixed and can only be disturbed by various noises. This similarity

in recorded neuronal signals can be utilized to reduce the temporary storage require-

ment. That the same operation performed on signals from different recording periods

can lead to similar results due to the similarity of signals. For mean calculation, it

means that mean values of spikes from different recording periods are similar under

the pseudo-stationary property. Hebbian eigenfilter can use the mean vector obtained

from the previous recording period as an approximate mean of current spikes when

performing zero-mean transformation and Hebbian learning. Therefore, there is no

need to store a certain subset of data for both mean calculation and zero-mean trans-

formation, and the corresponding memory requirement is eliminated.

The algorithm of stream-based Hebbian eigenfilter for spike sorting is presented in

Table 2. It has the same initialization scheme with the non-streaming algorithm, and

then calculates the mean vector of n neuronal spikes (step 2 in Table 2). Different

from the non-streaming algorithm for spike sorting, the spikes for mean calculation

are discarded after use. After mean calculation, zero-mean transformation and Hebbian

learning are performed on the obtained mean vector and the subsequent spikes (step 3

and 4 in Table 2). Since mean calculation and zero-mean transformation are per-

formed on different data sets, there is no explicit storing requirement associated with

mean operations and Hebbian learning in the stream-based algorithm.

Evaluation method

Stream-based Hebbain eigenfilter uses data sets from different recording periods for mean

calculation and Hebbian learning. It is an approximate method based on the precondition

of pseudo-stationarity of neuronal spikes. In order to justify the pseudo-stationarity, we

evaluated the discrepancy in mean and PCs obtained by stream-based eigenfilter and
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conventional PCA. In order to test the performance of the eigenfilter in the spike sorting

scenario, the accuracy of spike sorting using stream-based Hebbain eigenfilter was further

evaluated, and compared with that using conventional PCA algorithm. In addition, both

streaming and non-streaming eigenfilter were implemented on FPGAs to evaluate the

memory and power consumption reduced by utilizing the stream-based method.

Testing data

In order to verify the streaming method, realistic neuronal spike shapes, background

noises and vicinity neuronal interference should be taken into account in the evalua-

tion. Both clinical data [27] and sophisticated synthetic spikes [27] were utilized for the

evaluation. These synthetic spike trains accurately model various background noises

and neuronal spikes profile that appear at single-channel clinical recordings.

For quantitatively evaluating the performance of the Hebbian spike sorting algorithm,

spike trains with known spike times and classifications should be employed. Clinical

extracellular recording with realistic spike shapes and noise interferences is one option

for qualitative studies. However, it is difficult to determine the precise classifications

and the source of the spike from clinical measurement and these are the “ground

truth” for any effective quantitative evaluation. Although these recordings can be

further manually annotated by experts, it has been shown that manually clustered

spikes have relative low accuracy and reliability [28]. For these reasons, synthetic spike

trains were utilized to quantify the performance of the proposed algorithm.

Both baseline [29] and sophisticated synthetic spike trains [27] were employed for

the quantitative evaluation. These benchmarks were used to maximize representative

different scenarios in real experiments. The baseline spike trains were generated from

spike synthesis tool [29]. The tool accurately models factors affecting extracellular

recordings, such as ion channels of the membrane, the electrical resistance and

Table 2 Algorithm of stream-based Hebbian Eigenfilter for spike sorting

Input:

Neuronal spikes, �x(i) ;
Initial synaptic weight, �x(i);
Learning rate, h;

Output:

Principal components of neuronal spikes, �W(N) ;

1. Initialize synaptic weight �x(i)and learning rate h, j = 1

2. Calculate the mean vector of n aligned spikes

a. i= 1, �μ = 0
b. When new spike �x(i)arrives �μ = �μ + �x(i)
c. If i equals to n, �μ = �μ/n , and go to step 3. Otherwise i = i + 1, go to Step 2.b

3. When new spike arrives, subtract the mean vector obtained from step 2

�x(i) = �x(i) − �μ i > n
4. Perform Hebbian x learning on �x(i)

�y(j) = �W(j)�x(i)

LT(j) = LT
[�y(j)�yT(j)

]

dW(j) = η
(�y(j)�xT(i) − LT(j) �W(j)

)

�W(j + 1) = �W(j) + dW(j)
5. If j= N, the algorithm stops, otherwise j = j + 1, go to step 3
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capacitance of the membrane, the extended spiking neural surface, back ground noises

and inference from other neurons, and provides an approximation of realistic clinical

data. Figure 2 shows both the clinical and synthetic spike shapes. More importantly,

parameters, such as the number of neurons contributing to the spike train, the wave-

form of neuronal spike, signal to noise ratio and the firing rate, can all be specified in

the tool. Through adjusting these parameters, various spike trains can be generated for

quantitative evaluations. For our evaluation, three groups of spike trains containing

two, three and four neurons were generated. White noise and artifacts noises contribu-

ted by background neurons were considered when generating noisy synthetic spike

trains. Each group contains spike trains with 11 different noise levels. The level of

noises is quantified by the SNR (signal-to-noise ratio). Under the same noise level, a

group of spike trains with neuron’s firing rate from 5 Hz to 50 Hz was generated. All

the data sets are 100 s in length and generated at a sampling rate of 25 KHz. These

spike trains provide ideal testing benchmarks to evaluate the proposed algorithm with

a variety of noise immunity and realistic background noise. Because our method differ-

entiates neuronal spikes according to spike profiles, it is not effective for bursting

spikes that appear as concatenated and with decreasing amplitude. Although bursting

spikes can be identified and ruled out with the help of inter-spike-interval histograms

and cross-correlograms, addressing how to combine these methods with our work is

beyond the scope of the paper. In this paper, we do not take bursting spikes into

account.

Figure 2 (a) Clinical and (b)synthetic spike waveform of two neurons [24].
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Accuracy evaluation

As shown in Table 2 stream-based algorithm uses the mean vector of one data set to

estimate the mean vector of the following spikes (belonging to another data set). This

approximation of mean calculation is based on pseudo-stationary property of neuronal

spikes. Let d be the dimensionality of the mean vector, �μj be the mean vector of data

set j, and μj,i represents the i-th elements of the mean vector of data set j. We used

the difference (error) between mean vectors obtained from two different data sets to

justify the pseudo-stationarity and the approximation. The difference (error) of mean is

defined by Eq. 2. The value of the difference (error) indicates the accuracy of the

streaming method for mean estimation. The smaller the error is, the more accurate

the estimation is. When the difference is zero, �μ2 can be accurately estimated from

Errormean =

∑d
i=1 |μ1,i − μ2,i|∑d

i=1 |μ2,i|
.

Errormean =

∑d
i=1 |μ1,i − μ2,i|∑d

i=1 |μ2,i|
(2)

Further, we evaluated the deviation between PCs obtained by the stream-based Heb-

bian eigenfilter and conventional PCA. For PCA-based spike sorting, the direction of

PCs determines the feature space that is critical to the accuracy of classification. We

therefore used the angle between synaptic weights and PCs to define the deviation

(error) between PCs obtained by eigenfilter and PCA, as shown in Eq. 3. In the equa-

tion, �W and P�C are synaptic weights and PCs obtained by Hebbian and conventional

PCA methods respectively. When the two vectors have the same direction or the oppo-

site direction, the result will equal to zero. Otherwise a value in [0,1) is obtained.

ErrorPC = 1 − ∣∣ �W.PC
∣∣ (3)

Finally the accuracy of spike sorting using stream-based Hebbian eigenfilter was eval-

uated in our work. Besides Hebbian eigenfilter, NEO based detection algorithm [22]

and K-means clustering algorithm [30] were employed in our evaluation to complete

spike sorting algorithms. We used the true positive rate (TPR) and the false positive

rate (FPR) to evaluate the performance of our algorithm. The true positive rate is

defined by Eq. 4, where K is the number of estimated clusters, and Numcorrect_classified_-

spikes,i and Numspikes,i stand for the number of correctly classified spikes of neuron i

and the total number of spikes of neuron i, respectively.

TPR =
1
K

K∑
i=1

Numcorrect classified spikes;i

Numspikes;i
(4)

The false positive rate is defined by Eq. 5, where Numfalse_classified_spikes,i and Numfal-

se_spikes,i stand for the number of false spikes (not belonging to neuron i) assigned to

neuron i and the total number of false spikes for neuron i, respectively.

FPR =
1
K

K∑
i=1

Numfalse classified spikes;i

Numfalse spikes;i
(5)

Yu et al. BioMedical Engineering OnLine 2012, 11:18
http://www.biomedical-engineering-online.com/content/11/1/18

Page 8 of 19



Computational complexity evaluation

In order to quantitatively evaluate the computational complexity, we used the number

of operations and hardware memories required by an algorithm in the study. By com-

paring stream-based Hebbian eigenfilter with GHA and a group of traditional PCA

algorithms, the computationally economical property of the proposed method was

demonstrated. The operation and memory counts of stream-based Hebbian eigenfilter

were obtained according to the algorithm shown in Table 2. The computational com-

plexity of GHA was derived according to Table 1. Conventional PCA algorithms are

composed by covariance matrix calculation and eigenvalue decomposition of covar-

iance matrix. For eigenvalue decomposition, three commonly used symmetric eigenva-

lue decomposition methods were taken into account for our comparison, which were

the orthogonal iteration [31], the symmetric QR algorithm [31] and the Jacobi method

[31]. Operation and memory counts for covariance matrix calculation and symmetric

matrix decomposition algorithms were derived according to standard texts on matrix

computation [31].

Algorithm implementation

The algorithm of stream-based eigenfilter was developed under Matlab R2009b. Matlab

built-in functions, princomp, was used as the conventional PCA routine. For evaluating

the performance of spike sorting using stream-based Hebbian eigenfilter and PCA,

NEO-based spike detection algorithm was developed using Matlab, and Matlab built-in

functions, kmeans, was used for K-means clustering.

Hardware implementation

Xilinx FPGA was used for hardware implementation and evaluation. The targeting

device is Xilinx Spartan6 FPGA (xc6slx75t). Xilinx System Generator was our hardware

design tool, which is a schematic based design tool. Working in Matlab Simulink envir-

onment makes System Generator easy for hardware-software co-design and hardware

verification. We obtained the hardware resources usage through Xilinx ISE tool. The

hardware power was obtained from Xilinx Xpower tool.

Both streaming and non-streaming Hebbian eigenfilter were implemented on the

FPGA. Figure 3 shows the architecture of hardware Hebbian eigenfilter. It is an exam-

ple that the first three principal components are filtered. It consists “learning kernel”,

“system controller”, “mean calculator”, “interface” and “memory”. Memory block only

exists in the non-streaming structure. “System controller” controls the operation of the

whole system. “Learning kernel” performs learning operations and consists of arith-

metic units, storing units and switchers. “LT” stores the result of LT = LT
[�y�yT] , “score”

stores result of �y = �W�x , “weight” stores the three synaptic weights. These synaptic

weights are updated concurrently. Shifters are used when multiplying a small learning

rate has to be performed. Switchers route the signals between arithmetic unit and sto-

rage elements. “Mean calculator” calculates mean of data before mean is ready. After

mean is ready, “mean calculator” subtracts mean from data and sends mean centered

data to “learning kernal”. In the non-streaming Hebbian eigenfilter, “interface” write

the input streaming data to the memory and read data from memory for mean calcula-

tion and Hebbian learning. In the stream-based Hebbian eigenfilter, “interface” directly

forwards the input data to “mean calculator”.
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The data path for computing the score, �y, and LT = LT
[�y�yT] is illustrated by Figure 4

(a). The multipliers and accumulators (adders) implement the dot product between

input spikes and synaptic weights. The results of dot products are stored in the

“score”. After the scores are obtained, multipliers are re-used for calculating the lower

triangular matrix of �y�yT . The results are stored in the “LT”. Figure 4(b) shows the data

path for updating the i-th synaptic weight, �Wi . Updated results are stored in registers

“Wi“.

Results and discussion
Accuracy evaluation

In general, thousands of spikes are used in PC training procedure [19]. In our evalua-

tion, we suppose 1024 spikes are used for training. For stream-based method, we used

the first 1024 spikes (data set 1) for mean calculation and the following 1024 spikes

(data set 2) for Hebbian learning. Figure 5(a) and 5(b) show the evaluation results of

differences (errors) between mean vectors of the two data sets (defined by Eq. 2) and

deviations of PCs obtained by stream-based eigenfilter and PCA (defined by Eq. 3).

Clinical data and synthetic spikes from [27] were used in the evaluation. The average

error of mean vector is 3.7%. The average deviation of the first two PCs is 1.7%. From

the results we can see that the error of mean vector introduced by the streaming esti-

mation is small. This small error of mean vector leads to small discrepancy in PCs.

Figure 3 The hardware architecture of Hebbian eigenfilter.
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We further evaluated the performance of Hebbian-based spike sorting algorithm and

compared with that using conventional PCA. For stream-based Hebbian eigenfilter, we

let N equal to 1024, which is the number of spikes used for mean calculation and Heb-

bian learning. The initializing learning rate equals to 0.1 and the weights equal to 0.5.

It has been shown in the experiments that the convergence of the eigenfilter is rela-

tively independent to the initial synaptic weights. However, the learning rates would

contribute to the speed of the convergence, as reported in [24]. Both true positive rate

and false positive rate of classification were considered in our evaluation, as shown in

Figure 6(a) and 6(b). The results show that stream-based Hebbian eigenfilter can

achieve nearly the same performance as PCA-based sorting in terms of the accuracy of

spike classification.

In addition, the noise immunity of the proposed method was studied. Synthetic spike

trains with various noise level and neurons (2 to 4) were generated by synthetic spike

tool [29]. Figure 7 shows the relationship between the true positive rate and SNR for

spike sorting algorithms using the stream-based Hebbian eigenfilter and Matlab built-

in algorithm for PCA, princomp. Comparing Figure 7(a), (b) and 7(c), we can see that

at the same SNR level, the smaller the neuron number is, the better classification

results are. We can also see that there is little difference between stream-based

Figure 4 (a) The data path for calculating score (�y = �W�x) and the lower triangular matrix �y�yT .

(b) The data path for updating synaptic weights, �Wi .

Yu et al. BioMedical Engineering OnLine 2012, 11:18
http://www.biomedical-engineering-online.com/content/11/1/18

Page 11 of 19



Hebbian eigenfilter and Matlab princomp function used for spike sorting. As a result,

stream-based eigenfilter has the same effect as other PCA algorithms in spike sorting

process. Figure 8 shows the relationship between the false positive rate and SNR for

spike sorting algorithms using stream-based Hebbian eigenfilter and Matlab built-in

PCA. The false positive rates of spike sorting using the stream-based eigenfilter and

Matlab princomp function are nearly the same. For both methods, the false positive

rate falls as the SNR increases.

Computational complexity

In this section, the computational complexity of stream-based Hebbian eigenfilter are

evaluated and compared with GHA and other conventional PCA algorithms in terms

of operation counts and memory consumption. Hebbian and conventional PCA algo-

rithms are all based on matrix computations. The complexity of matrix computations

Figure 5 Error evaluation of steam-based Hebbian eigenfilter when compared to PCA. (a) Errors for
mean calculation and, (b) principal components calculation. Benchmark #1 ~ #12 are obtained from [27],
#13 is clinical data from [27].
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is associated with the dimension of matrixes. Particularly, for spike feature extraction,

it is determined by the dimension of aligned neuronal spikes. In our evaluation, we

suppose the number of spikes for PCA training is 1024, each spike contains 64 sam-

ples, and the first two PCs are calculated.

Conventional PCA algorithms consist of covariance matrix calculation and the eigen-

value decomposition. Three most used eigenvalue decomposition algorithms were evalu-

ated, including orthogonal iteration, QR method and Jacobi method. The three

benchmark algorithms are all based on some sort of iterative calculations. We assume

that these numerical methods can be converged in 8 iterations in our evaluation. The

operation counts of Hebbian eigenfilter and three numerical PCA algorithms are listed

in Table 3. The results show that Hebbian eigenfilter reduce 89.8% ~ 95.7% and 86.6% ~

93.4% addition and multiplication operations, respectively. Besides, Hebbian method

Figure 6 (a) True positive rate and (b) false positive rate of spike sorting using PCA (Matlab
princomp) and stream-based Hebbian eigenfilter. Benchmarks #1 ~ #12 are obtained from[27].
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Figure 7 Evaluation of spike sorting accuracy with varied SNR. Comparisons between PCA (Matlab
princomp) and stream-based Hebbian eigenfilter are based on (a) 2 neruons (b) 3 neruons (c) 4 neurons
cases.
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Figure 8 Evaluation of false positive rate of spike sorting with varied SNR. Comparisons between
stream-based Hebbian eigenfilter and PCA (Matlab princomp) are based on (a) 2 neruons (b) 3 neruons (c)
4 neurons cases.
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does not need division and square root operations, which are complex and costly for

hardware implementation.

Table 3 also lists the memory consumptions of GHA, stream-based eigenfilter and

conventional PCA algorithms. In order to estimate the memory requirement, we sup-

pose that each sample is represented by 16 bits. Because of not requiring covariance

matrix and matrixes related to eigenvalue decomposition, GHA needs smaller memory

than conventional PCA algorithms. But, large size memory is still needed for mean cal-

culation and the following zero-mean transformation. Through employing stream-

based processing that estimates the mean value by using the previous data, stream-

based Hebbian algorithm does not require the large memory for buffering neuronal

spikes for mean and zero-mean transformation. Thus, it consumes the smallest mem-

ory. Compared with GHAand PCA, around 99% memories can be reduced by the

stream-based eigenfilter.

Hardware evaluation

Both non-stream and stream based Hebbian eigenfilter were implemented on Xilinx

Spartan6 FPGA (xc6slx75t). Table 4 shows the area and performance of the hardware

Hebbian eigenfilter. The learning latency is the time needed to process one spike.

Logic consumption is the LUT (look-up-table), which is the basic logic block in FPGA,

consumed by the design. Memory consumption is the block RAM (BRAM) consumed

by the design, which is the basic memory block in FPGA. The results show that signifi-

cant memory and power consumption reduction can be achieved by using the stream-

ing approach. Compared with non-streaming eigenfilter, 92% BRAM and 67% power

consumption can be saved by streaming method.

Table 3 Comparison on computational complexity between PCA methods and Hebbian
eigenfilter

#Add. #Multi. #Div. #Square root #Memory

× 106 × 106 × 103 ×103 (bits) × 106

Hebbian eigenfilter (HE) 0.46 0.59 0 0 1.05

Stream-based HE (SHE) 0.46 0.59 0 0 0.0031

Orthogonal iteration (OI) based PCA 4.51 4.39 0.016 0.016 1.18

QR method based PCA 4.77 4.75 1.1 0.57 1.25

Jacobi method based PCA 10.6 8.94 48.4 322 1.18

Computational OI vs SHE 89.8% 86.6% 100% 100% 99.7%

complexity improvement QR vs SHE 90.4% 87.6% 100% 100% 99.8%

(reduction rate) Jacobi vs SHE 95.7% 93.4% 100% 100% 99.7%

Table 4 Area and performance comparison between FPGA-based Hebbi an eigenfilter
and PCA

Hebbian eigenfilter Stream-based HE PCA Improvement

(HE) (SHE) [32] (SHE vs PCA)

Number of slice 897 749 7722 10.3x

Number of BRAM 65 5 65 13x

Power (mW) 7.3 2.4 49.3 20.5x

Learning latency (μs ) 5.6 5.6 42.4 7.6x
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Table 4 also compares the hardware performance between the FPGA-based Hebbian

eigenfilter and PCA hardware [32]. Hardware performances are varied if different tech-

nologies and devices are employed for the implementations. Especially, hardware per-

formances using ASIC (application specific integrated circuit) and FPGAs are different

for a particular design. To obtain a fair comparison, we normalized the performance of

the ASIC-based PCA hardware [32] to FPGA equivalent and compared with our imple-

mentations. These would provide insightful quantitative evaluations between the differ-

ent approaches in terms of hardware performance. But these results shouldn’t be

regarded as specifications of system performances.

Suppose the PCA hardware architectures have the same computing capability as the

Hebbian eigenfilter, under the same clock frequency latency will be proportional to the

computational complexity. Latency (or delay) results are reported in Table 4. The Heb-

bian eigenfilter approach has a significant advantage in delay that is 7.6 times faster

than the PCA hardware. This is critical to be employed in real-time spike sorting. The

Hebbian eigenfilter approach also has significant improvement in hardware resources.

Hardware logic resources can be significantly reduced by 10.3 times when compared to

the PCA hardware. Finally, we evaluated the power consumption. Results show that the

stream-based Hebbian eigenfilter have 20.5 times improvement when compared to the

PCA hardware implementations in terms of power consumption.

Conclusion
This paper presents a novel stream-based Hebbian eigenfilter for spike sorting. It cal-

culates principal components of neuronal spikes based on an effective auto-associative

Hebbian learning, which is computationally economical. A stream-based computing

scheme is proposed to effectively reduce the memory requirements by utilizing the

pseudo-stationarity of neuronal spikes. Evaluation results show that the stream-based

eigenfilter is as accurate as conventional PCA methods for spike sorting. The computa-

tional complexity of the proposed method is ten times less than that of conventional

PCA. By utilizing the streaming method, 92% memory resources and 67% power con-

sumption can be saved when compared with non-streaming eigenfilter. Compared with

FPGA-based PCA hardware, the proposed eigenfilter reduces logic resources and

power consumption by 10.3 and 20.5 times respectively. The new method enables real-

time spike sorting for multi-channels neuro-physiological experiments and can be

further utilized by implantable systems for chronic diseases.

Endnotes
We follow a widely acceptable approach [33,34] to convert the ASIC design into FPGA

results. Particularly, FPGA implementation is 4.5 times slower than the corresponding

ASIC design. In terms of area, FPGA implementation is 21 times larger than equivalent

ASIC design in terms of area, and 128 logic counts in FPGAs equals to 0.82 mm2 in 90

nm CMOS technology [34]. Also, FPGA consumes 12 times more power than the

equivalent ASIC.
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