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FAST POLYNOMIAL FACTORIZATION AND MODULAR
COMPOSITION∗

KIRAN S. KEDLAYA† AND CHRISTOPHER UMANS‡

Abstract. We obtain randomized algorithms for factoring degree n univariate polynomials over
Fq requiring O(n1.5+o(1) log1+o(1)q + n1+o(1) log2+o(1)q) bit operations. When log q < n, this is
asymptotically faster than the best previous algorithms [J. von zur Gathen and V. Shoup, Comput.
Complexity, 2 (1992), pp. 187–224; E. Kaltofen and V. Shoup, Math. Comp., 67 (1998), pp. 1179–
1197]; for log q ≥ n, it matches the asymptotic running time of the best known algorithms. The
improvements come from new algorithms for modular composition of degree n univariate polynomials,
which is the asymptotic bottleneck in fast algorithms for factoring polynomials over finite fields.
The best previous algorithms for modular composition use O(n(ω+1)/2) field operations, where ω
is the exponent of matrix multiplication [R. P. Brent and H. T. Kung, J. Assoc. Comput. Mach.,
25 (1978), pp. 581–595], with a slight improvement in the exponent achieved by employing fast
rectangular matrix multiplication [X. Huang and V. Y. Pan, J. Complexity, 14 (1998), pp. 257–
299]. We show that modular composition and multipoint evaluation of multivariate polynomials
are essentially equivalent, in the sense that an algorithm for one achieving exponent α implies an
algorithm for the other with exponent α+o(1), and vice versa. We then give two new algorithms that
solve the problem near-optimally: an algebraic algorithm for fields of characteristic at most no(1), and
a nonalgebraic algorithm that works in arbitrary characteristic. The latter algorithm works by lifting
to characteristic 0, applying a small number of rounds of multimodular reduction, and finishing with
a small number of multidimensional FFTs. The final evaluations are reconstructed using the Chinese
remainder theorem. As a bonus, this algorithm produces a very efficient data structure supporting
polynomial evaluation queries, which is of independent interest. Our algorithms use techniques that
are commonly employed in practice, in contrast to all previous subquadratic algorithms for these
problems, which relied on fast matrix multiplication.
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polynomial factorization

AMS subject classifications. 11Y16, 13P05, 68W30, 68W40

DOI. 10.1137/08073408X

1. Introduction. Polynomial factorization is one of the central problems in
computer algebra. Milestones in the development of polynomial-time algorithms for
factoring in Fq[X ] are the algorithms of Berlekamp [B70], Cantor and Zassenhaus
[CZ81], von zur Gathen and Shoup [vzGS92], and Kaltofen and Shoup [KS98]. See
the surveys [vzGP01, K03, vzG06]. Presently, there are practical algorithms that fac-
tor degree n polynomials over Fq using a quadratic number of operations (ignoring for
a moment the dependence on q), and subquadratic algorithms that rely on fast matrix
multiplication [KS98]. Efficient algorithms for factoring polynomials over other do-
mains (e.g., Q, Z, algebraic number fields) and for factoring multivariate polynomials
in turn depend on factoring in Fq[X ].
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1768 KIRAN S. KEDLAYA AND CHRISTOPHER UMANS

The bottleneck in most modern factoring algorithms (including the asymptotically
fastest ones) turns out to be the computation of the “Frobenius power” polynomials,

Xqi , modulo the degree n polynomial h to be factored, for various i between 1 and n.
When i = n, a repeated-squaring approach requires n log q modular multiplications
of degree n polynomials. A clever improvement based on the so-called polynomial
representation of the Frobenius map (an idea attributed to Kaltofen) was exploited
in this context by von zur Gathen and Shoup [vzGS92]: first, compute Xq mod h(X)
by repeated squaring, and then compose that polynomial with itself modulo h(X) to
get

(Xq)q mod h(X) = Xq2 mod h(X).

Repeating the composition logn times produces Xqn mod h(X) with only log q mod-
ular multiplications and logn modular compositions overall. There are subquadratic
algorithms for modular composition, and so this approach is asymptotically supe-
rior to the straightforward repeated-squaring algorithm. The same idea can also be
applied to other problems that arise in polynomial factorization, like computing the
norm and trace maps, Xqn−1+···+q+1 and Xqn−1

+Xqn−2

+ · · ·+Xq+X , with similar
speedups.

Thus the modular composition problem emerges as a crucial component of the
fastest factoring algorithms (as well as other problems, such as irreducibility testing
and constructing irreducible polynomials [S94], and manipulating normal bases of
finite fields [KS98]). Indeed, if we could compute f(g(X)) mod h(X) for degree n
polynomials f, g, h ∈ Fq[X ] in nα operations, then there would be algorithms for
factoring degree n polynomial over Fq using

O(nα+1/2+o(1) + n1+o(1) log q)

operations. For comparison, the currently fastest algorithms take either O(n2 +
n log q) · poly log(n, log q) [vzGS92] or O(n1.815 log q) · poly log(n, log q) [KS98] opera-
tions (also, see the more precise accounting and detailed comparisons in Figure 1 of
[KS98]).

1.1. Modular composition of polynomials. The problem of modular compo-
sition is, given three degree n univariate polynomials f(x), g(x), h(x) over a ring with
h having invertible leading coefficient, to compute f(g(x)) (mod h(x)). In contrast
to other basic modular operations on polynomials (e.g., modular multiplication), it
is not possible to obtain an asymptotically fast algorithm for modular composition
with fast algorithms for each step in the natural two step procedure (i.e., first com-
pute f(g(x)), and then reduce modulo h(x)). This is because f(g(x)) has n2 terms,
while we hope for a modular composition algorithm that uses only about O(n) oper-
ations. Not surprisingly, it is by considering the overall operation (and beating n2)
that asymptotic gains are made in algorithms that employ modular composition.

Perhaps because nontrivial algorithms for modular composition must handle the
modulus in an integrated way (rather than computing a remainder after an easier,
nonmodular computation) there have been few algorithmic inroads on this seemingly
basic problem. Brent and Kung [BK78] gave the first nontrivial algorithm in 1978,
achieving an operation count of O(n(ω+1)/2), where ω is the exponent of matrix mul-
tiplication (the best upper bound is currently ω < 2.376 [CW90]). Huang and Pan
[HP98] achieved a small improvement by noting that the bound is actually O(nω2/2),
where ω2 is the exponent of n × n by n × n2 matrix multiplication, and giving an
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upper bound on ω2 that is slightly better than 2.376 + 1. Even with optimal matrix
multiplication, these algorithms cannot beat O(n1.5), and it is currently not feasible
in practice to achieve their theoretical guarantees, because they rely on the asymp-
totically fastest algorithms for matrix multiplication, which are currently impractical.
Finding new algorithms for modular composition with running times closer to
O(n) was mentioned several times as an important and longstanding open problem
(cf. [S94, KS98], [BCS, Problem 2.4], [vzGG99, Research Problem 12.19]).

We note that the special case of modular composition in which the modulus h(X)
is Xd has an algorithm attributed to Brent and Kung that uses O(n1.5) · poly log(n)
operations (see Exercise 12.4 in [vzGG99]), and a different algorithm by Bernstein
[B98] that is faster in small characteristic. However, this special case is not useful for
polynomial factorization (and other applications), because in these applications h(X)
ends up being the input polynomial, and modular composition is used as a means of
determining its (initially unknown) structure.

1.2. From modular composition to multivariate multipoint evaluation.
While the algorithms of [BK78] and [HP98] reduce modular composition to ma-
trix multiplication, in this paper, we reduce modular composition to the problem
of multivariate multipoint evaluation of polynomials over a ring R: given m-
variate polynomial f(X0, . . . , Xm−1) over R of degree at most d− 1 in each variable,
and given αi ∈ Rm for i = 0, . . . , N − 1, compute f(αi) for i = 0, . . . , N − 1. Using
this reduction, an algorithm for multivariate multipoint evaluation that is op-
timal up to lower order terms yields an algorithm for modular composition that
is optimal up to lower order terms.

In fact, we consider a slight generalization of modular composition, in which we
are given a multivariate polynomial f(X1, X2, . . . , Xm) ∈ R[X1, X2, . . . , Xm] and m
univariate polynomials

g1(X), . . . , gm(X) ∈ R[X ]

together with the modulus h(X) ∈ R[X ] (with invertible leading coefficient) and we
wish to compute

f(g1(X), . . . , gm(X)) mod h(X).

We show that multivariate multipoint evaluation and this general version of
modular composition are in a precise sense equivalent (via reductions in both direc-
tions). This suggests that the reduction to multivariate multipoint evaluation

is the “right” approach, and indeed that progress on modular composition cannot
be achieved without progress on multivariate multipoint evaluation.

Recall that one can evaluate a degree n univariate polynomial at n evaluation
points in O(n log2 n) operations for an amortized cost of only O(log2 n) operations
per evaluation. However, nothing similar is known for multipoint evaluations of mul-
tivariate polynomials, which seems to be a significantly more challenging problem.
The only improvement over the straightforward algorithm is by Nüsken and Ziegler
[NZ04], who show how to evaluate bivariate polynomials with individual degrees d at
d2 points in O(dω2/2+1) operations; their algorithm generalizes to the m-variate case
where it takes O(d(ω2/2)(m−1)+1) operations. Unfortunately, this is not enough to
yield an improved algorithm for modular composition via the above equivalence.

1.3. Our results. In this paper, we essentially solve the modular composi-

tion problem completely, presenting algorithms that work over any finite field, whose



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1770 KIRAN S. KEDLAYA AND CHRISTOPHER UMANS

running times are optimal up to lower order terms. We do this via the aforementioned
reduction, by giving new algorithms for multivariate multipoint evaluation with
running times that are optimal up to lower order terms.

We give two very different algorithms for multivariate multipoint evalua-

tion. The first algorithm works over any finite field (or a general ring of the form
(Z/rZ)[Z]/(E(Z)), where E is some monic polynomial). It solves the problem by
lifting to characteristic 0 followed by recursive multimodular reduction and a small
number of multidimensional FFTs. A major advantage of this algorithm is that it
is simple and implementable. A minor disadvantage is that it is nonalgebraic—it
requires bit operations to compute the modular reductions. A purely algebraic algo-
rithm carries some aesthetic appeal and could be important in settings where one is
working in an arithmetic model of computation (see, e.g., the pseudorandom generator
of [KI04] for an example involving polynomial factorization). Our second algorithm
has the advantage of being algebraic, but it works only in fields of small characteristic.
It solves the problem by reducing multivariate multipoint evaluation to multi-
point evaluation of a univariate polynomial over an extension ring; to actually make
this natural idea work requires a fairly intricate lifting using the p-power Frobenius,
where p is the characteristic.

An important feature of both of our algorithms is that they do not rely on fast
matrix multiplication. The main operations are standard fast univariate polynomial
arithmetic operations, and multipoint evaluation and interpolation of univariate poly-
nomials. All of these problems have algorithms that are asymptotically optimal up
to lower order terms and that are very reasonable in practice. In all of the settings
we have mentioned where modular composition is the crucial subroutine, the other
parts of the algorithms are again these standard fast and practical operations, so the
algorithms derived from our new algorithm could be feasible in practice. However, we
have not attempted to optimize for feasibility in our choices of parameters, so some
care may be needed in order to obtain usable implementations.

In the next two subsections, we describe in more detail the techniques used in
each of our two algorithms.

1.4. Techniques used in the multimodular reduction algorithm. We de-
scribe the main idea assuming the ring is Fp for p prime; the reduction from the
general case to this case uses similar ideas.

A basic observation when considering multivariate multipoint evaluation

algorithms is that if the evaluation points happen to be all of Fm
p , then they can be

computed all at once via the multidimensional (finite field) FFT, with an operation
count that is best possible up to logarithmic factors. More generally, if the evaluation
points happen to be well structured in the sense of being all of Sm for some subset
S ⊆ Fp, then by viewing Fp[X0, X1, . . . , Xm−1] as Fp[X0, X1, . . . , Xm−2][Xm−1] and
applying an algorithm for univariate multipoint evaluation, and repeating m times,
one can again achieve an optimal algorithm up to logarithmic factors. But these are
both very special cases, and the general difficulty with multivariate multipoint

evaluation is contending with highly unstructured sets of evaluation points in Fm
p .

Our main idea is to use multimodular reduction to transform an arbitrary set of
evaluation points into a “structured” one to which the FFT solution can be applied
directly. Given an m-variate polynomial f with individual degrees at most d− 1, and
evaluation points αi ∈ Fm

p , we lift f and each evaluation point to the integers by iden-
tifying the field Fp with the set {0, . . . , p− 1}. We can then compute the multipoint
evaluation by doing so over Z and reducing modulo p. To actually compute the evalu-
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ation over Z, we reduce modulo several smaller primes p1, . . . , pk, producing separate
instances of multivariate multipoint evaluation over Fpi for i = 1, . . . , k. Af-
ter solving these instances, we reconstruct the original evaluations using the Chinese
remainder theorem.

This multimodular reduction can be applied recursively, with the primes in each
round shrinking until they reach p∗ ≈ (md) in the limit. By the last round, the
evaluation points have been “packed” so tightly into each domain Fm

p∗ that we can
apply the multidimensional FFT to obtain all evaluations in Fm

p∗ with little loss:
dm operations are required just to read the input polynomial f , and the FFT part
of our algorithm requires only about (dm)m operations (and we will always require
m < do(1)).

To obtain our most general result, we may need to apply three rounds of multi-
modular reduction; for the application to modular composition, only two rounds
are needed, making the algorithm quite practical.

It is worth noting that we benefit frommultimodular reduction for quite a different
reason than other algorithms that employ this technique. Typically, multimodular re-
duction is used to reduce the “word size” when computing with large word sizes would
be prohibitive or spoil the target complexity. In our case we are perfectly happy com-
puting with word size log q, so the multimodular reduction provides no benefit there.
What it does do, however, is “pack” the evaluation points into a smaller and smaller
space, and it does so extremely efficiently (requiring only local computations on each
point). Thus, we are benefiting from the aggregate effect of applying multimodular
reduction to an entire set, rather than directly from the reduced word size.

Our algorithm can also be used in the univariate (m = 1) case (via a simple
transformation to the m � 1 case via the map in Definition 2.3). The overall al-
gorithm requires only elementary modular arithmetic in Z, and the FFT. Thus, our
algorithm may be competitive, in simplicity and speed, with the “classical” algorithm
for univariate multipoint evaluation (see any standard textbook, e.g., [vzGG99]). One
striking contrast with the classical algorithm is that after a preprocessing step we can
achieve log q poly log(n, log q) actual time for each evaluation (as opposed to amor-
tized time); this can be interpreted as giving a powerful data structure supporting
polynomial evaluation queries. This observation is fleshed out in section 5.

1.5. Techniques used in the algebraic algorithm for small character-
istic. As mentioned above, our algebraic algorithm for multivariate multipoint

evaluation utilizes the very natural idea of reducing to multipoint evaluation of a
univariate polynomial over an extension ring. Suppose we have a multivariate poly-
nomial f(X0, X1, . . . , Xm−1) with individual degrees d− 1, with coefficients in Fq. A
related univariate polynomial f∗ is obtained by the Kronecker substitution:

f∗(Z) = f(Z,Zd, Zd2

, . . . , Zdm−1

).

A tempting approach is to describe some (efficiently computable) mapping from eval-
uation points α ∈ Fm

q intended for f to evaluation points ᾱ in an extension field,
intended for f∗, with the property that f(α) can be easily recovered from f∗(ᾱ).
Then we could perform multipoint evaluation of f by mapping all of the evaluation
points to their counterparts in the extension field and then invoking a fast univariate
multipoint evaluation algorithm to evaluate f∗ at these points.

We are able to make something very close to this strategy work. To do so we
need to (1) define f∗ by raising to successive powers of a parameter h ≈ dm2 instead
of d, (2) carefully construct the extension field, and (3) arrange for h to be a power



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1772 KIRAN S. KEDLAYA AND CHRISTOPHER UMANS

of the characteristic (this is why we need small characteristic) so that we can exploit
properties of the Frobenius endomorphism.

A technical requirement of our algorithm is that it needs an element of multiplica-
tive order h − 1 in Fq. If Fq does not contain the subfield Fh, such an element does
not even exist. As a result, we need to first extend Fq to guarantee such an element.
This complication is not needed in settings where an order-(h− 1) element is already
available.

The inspiration for this algorithm is two recent works in coding theory: a new
variant of Reed–Solomon codes discovered by Parvaresh and Vardy [PV05] and a
particular instantiation of these codes used by Guruswami and Rudra [GR06]. The
analysis of the decoding algorithm in [PV05] uses the Kronecker substitution to obtain
a univariate polynomial from a multivariate polynomial that carries information about
the received word. This univariate polynomial is then viewed over an extension field,
just as in this work. In [GR06], they utilize a particular extension field with the
property that raising a polynomial (which is a canonical representative of a residue
class in the extension field) to a Frobenius power is the same as shifting the polynomial
by a generator of the field. We use the same trick to “store” the coordinates of an
intended evaluation point in a single extension ring element and then “access” them
by raising to successive Frobenius powers.

1.6. Obtaining algorithms for transposed modular composition. The
transpose of the modular composition problem is called modular power projec-

tion, and it is also useful in algorithms for computing with polynomials. There is a
general method (the “transposition principle”) for transforming algebraic algorithms
into algorithms for the transposed problem with nearly identical complexity. Our
algebraic algorithm for modular composition thus immediately yields algorithms
for modular power projection with comparable operation counts, but only over
fields of small characteristic.

Because our multimodular reduction-based algorithm for modular composi-

tion is nonalgebraic, the transposition principle does not apply directly. However, in
section 7.2 we show that this disadvantage can be overcome—the nonalgebraic parts
of our algorithm interact well with the transposition principle—and consequently we
obtain from it an algorithm for modular power projection in any characteristic,
whose running time is optimal up to lower order terms.

1.7. Application to polynomial factorization. As noted above, modular
composition is used as a black box in a number of important algorithms for poly-
nomials over finite fields, and the same is true for the transposed problem modular

power projection discussed in the previous subsection. Perhaps the most impor-
tant example is factorization of degree n univariate polynomials; in this section we
summarize our improvements for that problem.1

Kaltofen and Shoup [KS98] show that an algorithm for modular composition of
degree n polynomials over Fq requiring C(n, q) bit operations gives rise to an algorithm
for polynomial factorization requiring

n0.5+o(1)C(n, q) + n1+o(1) log2+o(1) q

1Here we discuss our most general improvements (i.e., in arbitrary characteristic) using the nonal-
gebraic multimodular reduction-based algorithm. The running times therefore count bit operations,
so the reader familiar with the accounting in previous works, which counts arithmetic operations in
the field, should expect to see an “extra” log q factor.
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bit operations. We work out this dependence on C(n, q) explicitly in section 8. Using
our algorithm for modular composition, we thus obtain an algorithm for polynomial
factorization requiring

(n1.5+o(1) + n1+o(1) log q) log1+o(1) q

bit operations. By contrast, the best previous algorithms that work over arbitrary
finite fields (von zur Gathen and Shoup [vzGS92] and Kaltofen and Shoup [KS98])

require (n2+o(1) + n1+o(1) log q) · log1+o(1) q and n1.815 log2+o(1) q bit operations, re-
spectively; we thus obtain an asymptotic improvement in the range log q < n.

In section 8 we also discuss additional problems for which our results lead to faster
algorithms, including two fundamental ones: irreducibility testing, and computing
minimal polynomials.

1.8. Outline. In section 2, we give some preliminary definitions and conventions
and formally define the modular composition and multipoint evaluation problem for
multivariate polynomials. In section 3, we give the reductions showing that these
two problems are essentially equivalent. In section 4, we give our new multimodular
reduction-based algorithm for multipoint evaluation of multivariate polynomials. In
section 5, we describe the data structure for polynomial evaluation arising from this
algorithm. In section 6, we give our new algebraic algorithm for multipoint evaluation
of multivariate polynomials in small characteristic. In section 7, we describe nearly
linear time algorithms for modular composition and for its transpose (modular power
projection). In section 8, we describe some applications of our new algorithms, most
notably to factorization of polynomials over finite fields. In section 9, we mention
some remaining open problems.

2. Preliminaries. In this paper, R is an arbitrary commutative ring, unless
otherwise specified. For cleaner statements, we sometimes omit floors and ceilings
when dealing with them would be routine. We use o(1) frequently in exponents. We
will always write things so that the exponentiated quantity is an expression in a single
variable x, and it is then understood that the o(1) term is a quantity that goes to
zero as x goes to infinity.

2.1. Problem statements. The problems we are interested in are formally
defined below.

Problem 2.1 (multivariate multipoint evaluation). Given f(X0, . . . ,
Xm−1) in R[X0, . . . , Xm−1] with individual degrees at most d − 1, and evaluation
points α0, α1, . . . , αN−1 in Rm, output f(αi) for i = 0, 1, 2, . . . , N − 1.

Note that the input is specified by dm +mN ring elements. The straightforward
algorithm takes Ω(dmN) ring operations, while one may hope instead for an algorithm
that uses only O(dm +mN) ring operations.

Problem 2.2 (modular composition). Given polynomial f(X0, . . . , Xm−1) in
R[X0, . . . , Xm−1] with individual degrees at most d−1, and polynomials g0(X), g1(X),
. . . , gm−1(X) and h(X), all in R[X ] with degree at most N − 1, and with the leading
coefficient of h invertible in R, output f(g0(X), . . . , gm−1(X)) mod h(X).

We note that the term “modular composition” more commonly refers to the
special case of this problem in which m = 1 and N = d. Our generalization doesn’t
seem to make the problem significantly more difficult to handle, though; we note, for
example, that when N = dm the algorithms of [BK78, HP98] can be adapted in a
straightforward way to solve the general variant in O(Nω2/2) operations. Similar to
above, the input is specified by dm+(m+1)N ring elements, and the straightforward
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algorithm takes Ω(dmN) ring operations, while one may hope for an algorithm that
uses only O(dm +mN) ring operations.

For both problems, we sometimes refer to the problem “with parameters d, m,
N” if we need to specify these quantities explicitly.

2.2. Useful facts. We have already discussed the Kronecker substitution, which
can be viewed as a transformation that decreases the number of variables at the
expense of increasing the degree. We now define a map that is (in a sense made precise
following the definition) the “inverse” of the Kronecker substitution—it increases the
number of variables while decreasing the degree.

Definition 2.3. The map ψh,� from R[X0, X1, . . . , Xm−1] to R[Y0,0, . . . , Ym−1,�−1]
is defined as follows. Given Xa, write a in base h, a =

∑
j≥0 ajh

j, and define the
monomial

Ma(Y0, . . . , Y�−1)
def
= Y a0

0 Y a1
1 · · ·Y a�−1

�−1 .

The map ψh,� sends Xa
i to

Ma(Yi,0, . . . , Yi,�−1)

and extends multilinearly to R[X0, X1, . . . , Xm−1].
Note that ψh,�(f) can be computed in linear time in the size of f , assuming f

is presented explicitly by its coefficients. Also note that ψh,� is injective on the set
of polynomials with individual degrees at most h� − 1. For such a polynomial f , if
g = ψh,�(f), then

f(X0, . . . , Xm−1) = g(Xh0

0 , Xh1

0 , . . . , Xh�−1

0 , Xh0

1 , Xh1

1 , . . . , Xh�−1

1 , · · · ,
Xh0

m−1, X
h1

m−1, . . . , X
h�−1

m−1).

In this sense, ψh,� is the inverse of the Kronecker substitution.
Table 1 gives the operation counts for standard operations on univariate polyno-

mials that we use in the remainder of the paper. See, e.g. [vzGG99]. In this paper
polynomials are always represented explicitly by a list of their coefficients. We use
M(n) throughout the paper as the number of operations sufficient to multiply two
univariate polynomials of degree n (and we assume M(O(n)) = O(M(n))). Thus,
when we construct an extension field (or ring) by adjoining an indeterminate X and
modding out by a polynomial of degree n, arithmetic operations in the extension field
(or ring) take O(M(n)) operations in the base field, since they entail the addition or
multiplication of degree n−1 polynomials followed by a remainder operation involving
degree O(n) polynomials.

For our first algorithm we will need the following number theory fact.
Lemma 2.4. For all integers N � 2, the product of the primes less than or equal

to 16 logN is greater than N .
The constant 16 is not optimal; the prime number theorem implies that any

constant c > 1 can be used for N above some bound depending on c.
Proof. The exponent of the prime p in the factorization of n! equals

∑∞
i=1� n

pi �
since this counts multiples of p, multiples of p2, etc., in {1, . . . , n}. This implies
Kummer’s formula(

n

m

)
=
∏
p�n

pep , ep =
∞∑
i=1

(⌊
n

pi

⌋
−
⌊
m

pi

⌋
−
⌊
n−m

pi

⌋)
.
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Table 1

Operation counts for standard operations on univariate polynomials over a commutative ring.
For interpolation, we additionally require that αi − αj be a unit for i �= j. The upper bound for
multiplication, M(n), is O(n logn) for rings that support the FFT and O(n logn log logn) in general
[vzGG99].

Operation Input Output Operations
Multiplication f(X), g(X) of degree ≤ n f(X) · g(X) M(n)
Remainder f(X), g(X) of degree ≤ n f(X) mod g(X) O(M(n))
GCD f(X), g(X) of degree ≤ n gcd(f(X), g(X)) O(M(n) logn)
Evaluation f(X) of degree n; α1, . . . , αn f(αi), i = 1, . . . , n O(M(n) logn)
Interpolation α0, . . . , αn, β0, . . . , βn f(X) of degree n, f(αi) = βi O(M(n) logn)

Note that ep ≤ 1 for
√
n < p � n, and ep � logp n for all p. From this, and the fact
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For N � 50, we have 2nn−√
n/(n+ 1) � N for n = �16 logN�, so the claim follows.

For N < 50, the claim may be checked by hand.

3. The reductions. In this section we give the reductions showing (essen-
tially) that multivariate multipoint evaluation and modular composition

are equivalent. The reductions are not difficult, even though it appears that at least
one direction of this equivalence—the one needed for our main result—was not known
before.2 The other direction, reducing multipoint evaluation of multivariate polyno-
mials to modular composition, is just beneath the surface of the results in [NZ04].

We first reduce modular composition to multivariate multipoint evalu-

ation (this is the direction that we use in order to give our improved algorithm for
modular composition).

Theorem 3.1. Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1] with individual de-
grees at most d− 1, and polynomials g0(X), . . . , gm−1(X) and h(X), all in R[X ] with
degree at most N − 1, and with the leading coefficient of h invertible in R, there is,
for every 2 ≤ d0 < d, an algorithm that outputs

f(g0(X), . . . , gm−1(X)) mod h(X)

in

O((dm +mN)d0) · poly log(dm +mN)

ring operations plus one invocation of multivariate multipoint evaluation with
parameters d0,m

′ = �m,N ′ = Nm�d0, where � = 
logd0
d�, provided that the algo-

rithm is supplied with N ′ distinct elements of R whose differences are units in R.
Proof. We perform the following steps:
1. Compute f ′ = ψd0,�(f).

2. Compute gi,j(X)
def
= gi(X)d

j
0 mod h(X) for all i, and j = 0, 1, . . . , �− 1.

2However, we recently learned that in an unpublished 1992 manuscript, Shoup and Smolensky
used essentially the same transformation for the purpose of solving modular composition in smaller
space than [BK78].
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3. Select N ′ distinct elements of R, β0, . . . , βN ′−1, whose differences are units

in R. Compute αi,j,k
def
= gi,j(βk) for all i, j, k using fast (univariate) multipoint

evaluation.
4. Compute f ′(α0,0,k, . . . , αm−1,�−1,k) for k = 0, . . . , N ′ − 1.
5. Interpolate to recover f ′(g0,0(X), . . . , gm−1,�−1(X)) (which is a univariate

polynomial of degree less than N ′) from these evaluations.
6. Output the result modulo h(X).

Correctness follows from the observation that

f ′(g0,0(X), . . . , gm−1,�−1(X)) ≡ f(g0(X), . . . , gm−1(X)) (mod h(X)).

One of the keys in using this reduction is that the left-hand side is of sufficiently
low degree so that one can afford to compute it directly and then reduce modulo
h(X), something that is not possible for the original modular composition problem,
as discussed in the introduction.

The first step takesO(dm) time. For each gi, the second step takesO(M(N) log(dj0))

operations to compute g
dj
0

i by repeated squaring, and this happens for j = 0, 1, 2, . . . , �−
1 giving an upper bound of at most O(M(N)�2 log d0) operations to compute the re-
quired powers. This happens for each gi for a total of O(M(N)�2m log d0) operations.

The third step takes O(M(N ′)(logN ′)�m) operations using fast (univariate) mul-
tipoint evaluation. The fourth step invokes fast multivariate multipoint evaluation
with parameters d0, �m,N

′. The fifth step requires O(M(N ′) logN ′) operations, and
the final step requires O(M(N ′)) operations. Note that both of the logN ′ terms can
be removed if R supports an FFT and the β’s are chosen accordingly.

Corollary 3.2. Fix parameters d,m,N . If for every δ > 0 multivariate

multipoint evaluation with parameters d0 = dδ, m0 = m/δ, N can be solved in
O((dm +mN)α) operations for some constant α > 1, then for every δ > 0, modular
composition with parameters d,m,N can be solved in O((dm+mN)α+δ) operations.

The corollary is stated with matching N parameters for simplicity; it follows
easily after observing that multivariate multipoint evaluation with parameters
d0,m0, N

′ > N can be solved with 
N ′/N� invocations of multivariate multipoint

evaluation with parameters d0,m0, N .

Now, we reduce multivariate multipoint evaluation to modular compo-

sition, which demonstrates the equivalence of the two problems.
Theorem 3.3. Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1] with individual de-

grees at most d− 1, and evaluation points α0, . . . , αN−1 in Rm, there is an algorithm
that outputs f(αi) for i = 0, 1, . . . , N − 1 in

O(dm +mN) · poly log(dm +mN)

ring operations plus one invocation of modular composition with parameters d,m,
N , provided that the algorithm is supplied with N distinct elements of R whose dif-
ferences are units in R.

Proof. We perform the following steps:

1. Select distinct elements of R, β0, . . . , βN−1, whose differences are units in R.
Find gi ∈ R[X ] for which gi(βk) = (αk)i for all i, k using fast univariate polynomial
interpolation.

2. Produce the univariate polynomial h(X)
def
=
∏

k(X − βk), and then compute
f(g0(X), . . . , gm−1(X)) modulo h(X).
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3. Evaluate this univariate polynomial at β0, . . . , βN−1 using fast (univariate)
multipoint evaluation, and output these evaluations.

Correctness follows from the observation that

f(g1(X), . . . , gm(X))(βk) = f(αk),

and the same holds when taking the left-hand-side polynomial modulo h(X) since h
vanishes on the evaluation points βk.

The first step takes O(M(N) logN) operations for each interpolation, and there
are m such interpolations. The second step requires O(M(N) logN) time to compute
h(X), and then it invokes modular composition with parameters d,m,N . The
final step requires O(M(N) logN) operations. Note that the logN terms in the
first and final step can be removed if R supports an FFT and the β’s are chosen
accordingly.

Corollary 3.4. Fix parameters d,m,N . If modular composition with pa-
rameters d,m,N can be solved in O((dm+mN)α) operations for some constant α > 1,
then multivariate multipoint evaluation with parameters d,m,N can be solved
in O((dm +mN)α) operations.

4. Fast multivariate multipoint evaluation (in any characteristic). We
describe our first algorithm for multivariate multipoint evaluation, first for
prime fields, then for rings Z/rZ, and then for extension rings (and, in particular, all
finite fields).

4.1. Prime fields. For prime fields, we have a straightforward algorithm that
uses FFTs. The dependence on the field size p is quite poor, but we will remove that
in our final algorithm using multimodular reductions.

Theorem 4.1. Given m-variate polynomial f(X0, . . . , Xm−1) ∈ Fp[X0, . . . , Xm−1]
(p prime) with degree at most d − 1 in each variable, and α0, . . . , αN−1 ∈ Fm

p , there
exists a deterministic algorithm that outputs f(αi) for i = 0, . . . , N − 1 in

O(m(dm + pm +N) poly(log p))

bit operations.

Proof. We perform the following steps to compute f(αi) for i = 0, . . . , N − 1.

1. Compute the reduction f of f modulo Xp
j −Xj for j = 0, . . . ,m− 1.

2. Use an FFT3 to compute f(α) = f(α) for all α ∈ Fm
p .

3. Look up and return f(αi) for i = 0, . . . , N − 1.

In step 1, the reductions moduloXp
j −Xj may be performed usingmdm arithmetic

operations in Fp, for a total complexity of O(mdm poly(log p)).

In step 2, we may perform the FFTs one variable at a time, for a total complex-
ity of O(mpm poly(log p)). The details follow: we will give a recursive procedure for
computing evaluations of an m-variate polynomial with individual degrees at most
p − 1 over all of Fm

p in time m · O(pm poly(log p)). When m = 1, we apply fast
(univariate) multipoint evaluation at a cost of O(p poly(log p)). For m > 1, write

f(X0, X1, . . . , Xm−1) as
∑p−1

i=0 X
i
0fi(X1, . . . , Xm−1), and for each fi, recursively com-

pute its evaluations at all of Fm−1
p in time (m− 1) ·O(pm−1 poly(log p)). Finally, for

each β ∈ Fm−1
p evaluate the univariate polynomial

∑p−1
i=0 X

i
0fi(β) at all of Fp at a cost

3We need the finite field Fourier transform here, since we care about evaluations over Fp.
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of O(p poly(log p)), again using fast (univariate) multipoint evaluation. The overall
time is

(m− 1) ·O(pm−1 poly(log p)) · p+O(p poly(log p)) · pm−1,

which equals m ·O(pm poly(log p)) as claimed.
In step 3, we look up N entries from a table of length pm, for a total complexity

of O(mN poly(log p)). This gives the stated complexity.

4.2. Rings of the form Z/rZ. We now apply multimodular reduction recur-
sively to remove the suboptimal dependence on p. Our main algorithm for rings Z/rZ
(r arbitrary) appears below. It accepts an additional parameter t (which will eventu-
ally be chosen to be a small constant) that specifies how many rounds of multimodular
reduction should be applied.

Algorithm multimodular(f, α0, . . . , αN−1, r, t),

where f is an m-variate polynomial f(x0, . . . , xm−1) ∈ (Z/rZ)[X0, . . . , Xm−1]
with degree at most d − 1 in each variable, α0, . . . , αN−1 are evaluation points
in (Z/rZ)m, and t is the number of rounds.

1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[X0, . . . , Xm−1] from
f by replacing each coefficient with its lift in {0, . . . , r − 1} (via the natural
identification of Z/rZ with {0, 1, . . . , r − 1} ⊆ Z). For i = 0, . . . , N − 1, con-
struct the m-tuple α̃i ∈ Zm from αi by replacing each coordinate with its lift in
{0, . . . , r − 1}.

2. Compute the primes p1, . . . , pk less than or equal to � = 16 log(dm(r−
1)md), and note that k � �.

3. For h = 1, . . . , k, compute the reduction fh ∈ Fph
[X0, . . . , Xm−1] of

f̃ modulo ph. For h = 1, . . . , k and i = 0, . . . , N − 1, compute the reduction
αh,i ∈ Fm

ph
of α̃i modulo ph.

4. If t = 1, then for h = 1, . . . , k, apply Theorem 4.1 to com-
pute fh(αh,i) for i = 0, . . . , N − 1; otherwise if t > 1, then run
multimodular(fh, αh,0, . . . , αh,N−1, ph, t − 1) to compute fh(αh,i) for i =
0, . . . , N − 1.

5. For i = 0, . . . , N − 1, compute the unique integer in
{0, . . . , (p1p2 · · · pk) − 1} congruent to fh(αh,i) modulo ph for h = 1, . . . , k, and
return its reduction modulo r.

To bound the running time it will be convenient to define the function

λi(x) = x log x log log x log log log x · · · log(i−1)(x).

Note that λi(x) ≤ x(log x)log
∗ x = x1+o(1) (where log∗ x denotes the least nonnegative

integer i such that log(i)(x) � 1) and that λi(x) ≤ λj(x) for positive x and i < j �
log∗ x.

Theorem 4.2. Algorithm multimodular returns f(αi) for i = 0, 1, . . . , N − 1,
and it runs in

O((λt(d)
m +N)λt(log r)λt(d)

tλt(m)m+t+1) · O(log(t) r)m · poly log(md log r)
bit operations.

Proof. Correctness follows from the fact that 0 � f̃(α̃i) � dm(r−1)md < p1 · · · pk
by Lemma 2.4 and from Theorem 4.1.
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Observe that in the ith level of recursion, the primes ph have magnitude at most
�i = O(λi(m)λi(d) log

(i) r). For convenience, set �0 = 1.
At the ith level of the recursion tree, the algorithm is invoked at most �0�1�2 · · · �i−1

times. Each invocation incurs the following costs from the steps before and after the
recursive call in step 4. Step 1 incurs complexity at most O((dm +mN) log r) at level
1, and O((dm +mN) log �i−1) at level i > 1; both quantities are bounded above by
O((dm+mN)�i). Step 2 incurs complexity O(�i log �i) using the sieve of Eratosthenes
(cf. [Sho08, section 5.4]). Step 3 incurs complexity O((dm +mN)�i poly(log �i)) by
using remainder trees to compute the reductions modulo p1, . . . , pk all at once [Ber08,
section 18], [vzGG99, Theorem 10.24]. Step 5 incurs complexity O(N�i poly(log �i))
as in [Ber08, section 23] or [vzGG99, Theorem 10.25]. At the last level (the tth level)
of the recursion tree when the FFT is invoked, step 4 incurs complexity O((dm+ �mt +
N)m�t poly(log �t)).

Thus, using the fact that poly log(�i) ≤ poly log(md log r) for all i, each invocation
at level i < t uses

O((dm +N)m�i) · poly log(md log r)
operations, while each invocation at level t uses

O((dm + �mt +N)m�t) · poly log(md log r)
operations. There are a total of �0�1�2 · · · �i−1 invocations at level i. The total number
of operations is thus(

�0�1�2 · · · �t · O((dm + �mt +N)m) +

t−1∑
i=1

�0�1�2 · · · �i · O((dm +N)m)

)

· poly log(md log r),
and using the fact that �i ≥ 2 for i > 0, this is at most

O(�0�1�2 · · · �t) ·O((dm + �mt +N)m) · poly log(md log r)
≤ O(λt(m)tλt(d)

tλt−1(log r))

· O((dm + �mt +N)m) · poly log(md log r)
≤ O((λt(d)

m +N)λt−1(log r)λt(d)
tλt(m)m+t+1)

· O(log(t) r)m · poly log(md log r)
operations over all t levels. The bound in the theorem statement follows.

Plugging in parameters, we find that this yields an algorithm whose running time
is optimal up to lower order terms when m ≤ do(1).

Corollary 4.3. For every constant δ > 0 there is an algorithm for multivari-

ate multipoint evaluation over Z/rZ with parameters d,m,N , and with running

time (dm +N)1+δ log1+o(1) r, for all d,m,N with d sufficiently large and m ≤ do(1).
Proof. Let c be a sufficiently large constant (depending on δ). We may assume

m > c by applying the map from Definition 2.3, if necessary, to produce an equiv-
alent instance of multivariate multipoint evaluation with a greater number of
variables and smaller individual degrees (and note that the quantity dm is invariant

under this map). Now if log(3) r < m, then we choose t = 3, which gives a running
time of

O((d(1+o(1))m +N)d3mm(1+o(1))(1+4/c)(log r)1+o(1)) · O(m)m · poly log(md log r),
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which simplifies to the claimed bound using m ≤ do(1). Otherwise, log(3) r ≥ m, and
we choose t = 2, which gives a running time of

O((d(1+o(1))m +N)d2mm(1+o(1))(1+3/c)(log r)1+o(1))

·O(log(2) r)log(3) r · poly log(md log r),

which simplifies to the claimed bound, using the boundsm ≤ do(1) andO(log(2) r)log
(3) r

≤ O(logo(1) r).

4.3. Extension rings. Using algorithm multimodular and some additional
ideas, we can handle extension rings and, in particular, all finite fields. Specifically,
we will work over a ring R given as (Z/rZ)[Z]/(E(Z)), where E is a monic polynomial
of degree e. As usual, the elements of this ring are represented as polynomials in the
indeterminate Z, of degree at most e− 1, and with coefficients in Z/rZ; addition and
multiplication in R are performed by adding or multiplying such polynomials and
reducing modulo E(Z). The general strategy of our algorithm is to lift to Z[Z] and
then evaluate at Z =M and reduce modulo r′ for suitably large integersM, r′. (Note
that some finite rings are not covered by this setup, e.g., (Z/pZ)[X,Y ]/(X2, XY, Y 2).
One can treat these by lifting to a multivariate polynomial ring Z[Z1, . . . , Zn]; for
simplicity, we omit further details.)

The algorithm follows.

Algorithm multimodular-for-extension-ring(f, α0, . . . , αN−1, t),

whereR is a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic
polynomial E(Z) of degree e, f is an m-variate polynomial f(X0, . . . , Xm−1) ∈
R[X0, . . . , Xm−1] with degree at most d − 1 in each variable, α0, . . . , αN−1 are
evaluation points in Rm, and t > 0 is the number of rounds.

Put M = dm(e(r − 1))(d−1)m+1 + 1 and r′ =M (e−1)dm+1.
1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[Z][X0, . . . , Xm−1]

from f by replacing each coefficient with its lift, which is a polynomial of degree
at most e− 1 with coefficients in {0, . . . , r − 1}. For i = 0, . . . , N − 1, construct
the m-tuple α̃i ∈ Z[Z]m from αi by replacing each coordinate with its lift, which
is a polynomial of degree at most e− 1 with coefficients in {0, . . . , r − 1}.

2. Compute the reduction f ∈ (Z/r′Z)[X0, . . . , Xm−1] of f̃ modulo r′

and Z −M . For i = 0, . . . , N − 1, compute the reduction αi ∈ (Z/r′Z)m of α̃i

modulo r′ and Z −M . Note that the reductions modulo r′ don’t do anything
computationally, but are formally needed to apply Algorithm multimodular,
which works only over finite rings of the form Z/rZ.

3. Run multimodular(f, α0, α1, . . . , αN−1, r
′, t) to compute βi = f(αi)

for i = 0, . . . , N − 1.
4. For i = 0, . . . , N − 1, compute the unique polynomial Qi[Z] ∈ Z[Z] of

degree at most (e−1)dm with coefficients in {0, . . . ,M−1} for which Qi(M) has
remainder βi modulo r′ = M (e−1)dm+1, and return the reduction of Qi modulo
r and E(Z). The coefficients of polynomial Qi are simply the digits of βi mod r′

when written as an integer in base M .
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Theorem 4.4. Algorithm multimodular-for-extension-ring returns f(αi)
for i = 0, 1, . . . , N − 1, and it runs in

O((λt(d)
m +N)λt(log q)λt(d)

t+2λt(m)m+t+3) · O(log(t−1)(d2m2 log q log log q))m

· poly log(md log q)

bit operations.
Proof. To see that the algorithm outputs f(αi) for i = 0, . . . , N − 1, note that

f̃(α̃i) ∈ Z[Z] has nonnegative coefficients and its degree is at most (e− 1)dm. More-
over, the value at Z = 1 of each coordinate of α̃i and each coefficient of f̃ is at most
e(r−1), so f̃(α̃i)(1) � dm(e(r−1))(d−1)m+1 =M−1. In particular, each coefficient of
f̃(α̃i) belongs to {0, . . . ,M − 1}. We now see that the polynomials f̃(α̃i), Qi ∈ Z[Z]
both have degree at most (e − 1)dm and coefficients in {0, . . . ,M − 1}, and their
evaluations at Z = M are congruent modulo r′ = M (e−1)dm+1. This implies that
the polynomials coincide, so the reduction of Qi modulo r and E(Z) agrees with the
corresponding reduction of f̃(α̃i), which equals f(αi).

We expect a log q = log(re) term in the running time, and recall that Algorithm
multimodular is invoked over a ring of cardinality r′ =M (e−1)(d−1)m+1. We have

log r′ = log(M (e−1)(d−1)m+1) � (e − 1)dm log(dm(e(r − 1))(d−1)m+1 + 1)

≤ O(ed2m2(log e+ log r))

≤ O(log q log log q)d2m2.(4.1)

The dominant step is step 3, whose complexity is (by Theorem 4.2)

O((λt(d)
m +N)λt(log r

′)λt(d)tλt(m)m+t+1) · O(log(t) r′)m · poly log(md log r′),

which, using (4.1), yields the stated complexity.
Similar to Corollary 4.3, we obtain the following corollary.
Corollary 4.5. For every constant δ > 0 there is an algorithm for multivari-

ate multipoint evaluation over any ring (Z/rZ)[Z]/(E(Z)) of cardinality q with

parameters d,m,N , and with running time (dm + N)1+δ log1+o(1) q, for all d,m,N
with d sufficiently large and m ≤ do(1).

Proof. The proof is the same as the proof of Corollary 4.3, except the two cases
depend on m in relation to the quantity r′ appearing in the proof of Theorem 4.4.
The argument in the proof of Corollary 4.3 yields the claimed running time with r′

in place of q; we then use the inequality log r′ ≤ O(log q log log q)d2m2.

5. A data structure for polynomial evaluation. In this section we observe
that it is possible to interpret our algorithm for multivariate multipoint evalu-

ation as a data structure supporting rapid “polynomial evaluation” queries.
Consider a degree n univariate polynomial f(X) ∈ Fq[X ] (and think of q as being

significantly larger than n). If we store f as a list of n coefficients, then to answer a
single evaluation query α ∈ Fq (i.e., return the evaluation f(α)), we need to look at
all n coefficients, requiring O(n log q) bit operations. On the other hand, a batch of n
evaluation queries α1, . . . , αn ∈ Fq can be answered all at once using O(n log2 n) Fq-
operations, using fast algorithms for univariate multipoint evaluation (cf. [vzGG99]).
This is often expressed by saying that the amortized time for an evaluation query is
O(log2 n) Fq-operations. Can such a result be obtained in a nonamortized setting?
Certainly, if we store f as a table of its evaluations in Fq, then a single evaluation query



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1782 KIRAN S. KEDLAYA AND CHRISTOPHER UMANS

α ∈ Fq can be trivially answered in O(log q) bit operations. However, the stored data
is highly redundant; it occupies space q log q when information-theoretically n log q
should suffice.

By properly interpreting our algorithm for multivariate multipoint evalua-

tion, we arrive at a data structure that achieves “the best of both worlds”: we can
preprocess the n coefficients describing f in nearly linear time to produce a nearly
linear size data structure T from which we can answer evaluation queries in time
that is polynomial in logn and log q. This is a concrete benefit of our approach to
multipoint evaluation even for the univariate case, as it seems impossible to obtain
anything similar by a suitable reinterpretation of previously known algorithms for
univariate multipoint evaluation.

For clarity we state the theorem below for univariate polynomials; a similar state-
ment holds for m-variate multivariate polynomials with individual degrees at most
d− 1 after replacing occurrences of n with dm.

Theorem 5.1. Let R = (Z/rZ)[Z]/(E(Z)) be a ring of cardinality q, and let
f(X) ∈ R[X ] be a degree n polynomial. Choose any constant δ > 0. For sufficiently
large n, one can compute from the coefficients of f in time at most

T = n1+δ log1+o(1) q

a data structure of size at most T with the following property: there is an algorithm
that, given α ∈ Fq, computes f(α) in time

poly log n · log1+o(1) q

with random access to the data structure.
Proof. The first step is to apply the map ψd,m from Definition 2.3 to f . At the

end of this proof we will specify the parameters d,m to use (they depend only on
r, deg(E), and n); for now we need only know that dm = n. We also have a parameter
t that will be chosen at the end of this proof.

After applying ψd,m, we have an m-variate polynomial f , which we process by
following the operations of multimodular-for-extension-ring step-by-step, ig-
noring the ones that process the evaluation points. The key observation is that these
computations do not depend on the evaluation points and can thus comprise a pre-
processing phase that produces the desired data structure.

We go through the steps here: steps 1 and 2 of multimodular-for-extension-
ring produce f with coefficients in Z/r′Z. Step 3 calls multimodular, which
applies t rounds of multimodular reduction to finally produce reduced polynomials
fs1,s2,...,st ∈ Fst [X0, X1, . . . , Xm−1] for certain sequences s1, s2, . . . , st of primes (each
such sequence has s1 among the �1 primes computed in step 2 of the top-level invoca-
tion of multimodular; s2 is among the �2 primes computed in step 2 of the next-level
invocation of multimodular with s1 as its parameter “r,” etc.). In other words, the
primes si are the moduli in a sequence of t recursive calls to multimodular. At
the bottom level of the recursion, each reduced polynomial fs1,s2,...,st is evaluated (in
step 4, which applies Theorem 4.1) over its entire domain Fm

st (i.e., we ignore step 3
in the proof of Theorem 4.1, which looks up evaluation points, and instead return the
table of all evaluations over Fm

st computed in step 2 of that proof). Our data structure
consists of these tables of evaluations of each of the reduced polynomials fs1,s2,...,st ,
each one labeled by the sequence s1, s2, . . . , st, together with f itself.

Using notation from the proof of Theorem 4.2, there are at most �1�2 · · · �t
reduced polynomials, each pt has magnitude at most �t, and it holds that �i =
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O(λi(m)λi(d) log
(i) r′). Referring to the proof of Theorem 4.1, we see that the cost

incurred to produce the required tables of evaluations is at most

T = �1�2 · · · �t · O(m�mt ) · poly log(�t)
≤ O(λt(m)t+m+1λt(d)

t+mλt−1(log r
′)) · (log(t) r′)m · poly log(md log r′).

At this point, an evaluation query α′ ∈ R can be answered from the tables as
follows. First, compute the point α = (α′, α′d, . . . , α′dm−1

) ∈ Rm. Note that f(α)
is our desired output (since f is the input polynomial after the map ψd,m is applied
to it). We now follow the operations of multimodular-for-extension-ring on an
evaluation point step by step, ignoring the ones that process the polynomial. As above
we go through them one by one: steps 1 and 2 of multimodular-for-extension-
ring produce α ∈ (Z/r′Z)m. Step 3 calls multimodular, which applies t rounds
of multimodular reduction exactly as above to finally produce reduced evaluation
points αs1,s2,...,st ∈ Fm

st for certain sequences s1, s2, . . . , st of primes. The evaluations
fs1,s2,...,st(αs1,s2,...,st) can be found in the precomputed tables that comprise the data
structure for f . We reconstruct f(α) by “going up the recursion tree”: the evaluations
in the tables supply the needed data to execute step 5 of the bottom-level invocations
of multimodular (for the single evaluation point of interest); these in turn supply
the needed data to execute step 5 of the next-to-bottom level invocations of mul-
timodular, etc. Finally we obtain an evaluation β of f , which is the data needed
to execute step 4 of multimodular-for-extension-ring, which produces f(α) as
desired.

The dominant cost in processing an evaluation query is the recursive recon-
struction of the output from the table lookups. Again adopting the notation from
the proof of Theorem 4.2, the Chinese remainder theorem reconstruction (in step
5 of multimodular) is invoked �1�2 · · · �i−1 times at level i, each time with cost
O(�i poly log(�i)). The overall cost for an evaluation query is thus dominated by

t∑
i=1

�1�2 · · · �i−1 · O(�i poly log(�i)) ≤
t∑

i=1

�1�2 · · · �i · poly log(md log r′)

≤ O(�1�2 · · · �t) · poly log(md log r′)
≤ O(λt(m)tλt(d)

tλt−1(log r
′)) · poly log(md log r′).

It remains to choose the parameters d,m, and t. If r′ > 22
n

, then we choose d = n,
m = 1, t = 2; if r′ ≤ 22

n

, then choose d = logc n and m = (log n)/(c log logn) for a
sufficiently large constant c, and t = 4. These choices give the claimed running times
for preprocessing and queries, with r′ in place of q. As in the proof of Theorem 4.4,
we have log r′ ≤ O(log q log log q)d2m2, which completes the proof.

Theorem 5.1 is surprising in light of a number of lower bounds for this problem
under certain restrictions. For example, in the purely algebraic setting, and when the
underlying field is R, Belaga [B61] shows a lower bound on the query complexity of
� 3n

2 �+1 (and Pan [P66] has given a nearly matching upper bound). Miltersen [M95]
proves that the trivial algorithm (with query complexity n) is essentially optimal when
the field size is exponentially large and the data structure is limited to polynomial
size, and he conjectures that this lower bound holds for smaller fields as well (this
is in an algebraic model that does not permit the modular operations we employ).
Finally, Gál and Miltersen [GM07] show a lower bound of Ω(n/ logn) on the product
of the additive redundancy (in the data structure size) and the query complexity, thus
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exhibiting a tradeoff that rules out low query complexity when the data structure is
required to be very small (i.e., significantly smaller than 2n).

6. An algebraic algorithm in small characteristic. In this section we de-
scribe an algorithm for multivariate multipoint evaluation that is completely
different from the one in section 4. The advantage of this algorithm is that it is al-
gebraic (and it achieves an operation count that is optimal up to lower order terms);
the disadvantage is that it works only over fields of small characteristic. We present
our algorithm in an algebraic model with one nonstandard feature; this is discussed
next, followed by the algorithm itself.

6.1. The algebraic model. Fix a field Fq of characteristic p. In the standard
algebraic model, the basic operations are addition, subtraction, multiplication, and
division. A special feature of characteristic p is the existence of the (absolute) Frobe-
nius automorphism σ0, given by x �→ xp, and we make heavy use of the existence of
this automorphism. We include the operation of applying σ−1

0 as a basic operation in
our presentation below. This is nonstandard, but we believe it is justified as follows:

(i) It is easy to recover a pure Fq-algebraic algorithm by replacing each oper-
ation that applies σ−1

0 with the explicit computation of xq/p by repeated squaring
(and note that σ−1

0 (x) = xq/p). This replacement contributes at most an additional
O(log(q/p)) factor to the operation counts. This means that it is easy to read off an
upper bound in the standard model from the operation counts in our presentation
below.

(ii) Any (division-free) algebraic computation of σ−1
0 in the standard modelmust

entail log2(q/p) Fq-operations by a simple degree argument: fewer operations would
give rise to a polynomial f(X) of degree less than q/p, and yet f(X)p −X vanishes
on all of Fq, so it must have degree at least q. However, this cost is misleadingly
high, because in practice something much more efficient is possible. In practice,
Fq is usually represented as Fp[X ]/(f(X)) for a degree d irreducible f , and in this
representation σ−1

0 can be applied at a cost of O(p1+o(1)d1+o(1)) basic Fp-operations;
see Theorem 6.1. This is nearly linear time (like the other basic operations), provided
that p = do(1), as it will be in all of our algebraic algorithms below. (Alternatively,
one can compute Xq/p mod f(X) using our nonalgebraic algorithm for modular

composition, starting withXp mod f(X) and then computingXpi

for i = 21, 22, . . . .
Applying σ−1

0 to an element of Fq then entails only a single modular composition.)
For the remainder of this paper, unless otherwise noted, we assume this algebraic

model when discussing algebraic algorithms.
We now give the promised algorithm for computing σ−1

0 in a finite field. This is
a variation on a construction from [PT09].

Theorem 6.1. There is an algorithm which, given a prime number p, an irre-
ducible monic polynomial f(X) in Fp[X ] of degree d, and a polynomial g(X) in Fp[X ]
of degree at most d − 1, returns the unique polynomial h(X) in Fp[X ] of degree at
most d− 1 such that

h(X)p mod f(X) = g(X)

and runs in O(p1+o(1)d1+o(1)) Fp-operations.
Proof. The existence and uniqueness of h(X) follows from the fact that the

absolute Frobenius map on the finite field Fp[X ]/(f(X)) is a bijection. Since h(X)p =
h(Xp) and f(X)p = f(Xp), the congruence

h(X)p ≡ g(X) (mod f(X))
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is equivalent to

(6.1) h(Xp)f(X)p−1 ≡ g(X)f(X)p−1 (mod f(Xp)).

Write

f(X)p−1 = A0(X
p) +A1(X

p)X + · · ·+Ap−1(X
p)Xp−1

g(X)f(X)p−1 = B0(X
p) +B1(X

p)X + · · ·+Bp−1(X
p)Xp−1

with A0, . . . , Ap−1, B0, . . . , Bp−1 in Fp[X ]. Viewing Fp[X ] as a dimension p vector
space over Fp[X

p], and noting that X0, X1, . . . , Xp−1 form a basis, (6.1) forces

h(X)Ai(X) ≡ Bi(X) (mod f(X)) for i = 0, . . . , p− 1.

For any i such that Ai(X) is not divisible by f(X) (which implies that Ai and f are
relatively prime, since f is irreducible), the ith congruence above, by itself, uniquely
determines h(X) modulo f(X). It follows that we correctly compute h(X) using the
following algorithm.

1. Compute f(X)p−1 and g(X)f(X)p−1, and write them as

f(X)p−1 = A0(X
p) + · · ·+Ap−1(X

p)Xp−1

g(X)f(X)p−1 = B0(X
p) + · · ·+Bp−1(X

p)Xp−1

with A0, . . . , Ap−1, B0, . . . , Bp−1 in Fp[X ].
2. Note that deg(Ai)p+ i ≤ deg(f(X)p−1) = d(p− 1), which implies (for all i)

that deg(Ai) < d, and hence Ai cannot be divisible by f(X). There is an i (namely,
the i for which i ≡ deg(f(X)p−1) = d(p−1) (mod p)) such that the leading coefficient
of Ai is the leading coefficient of f(X)p−1, and hence Ai is nonzero. Select this Ai

and compute the unique polynomial h(X) of degree at most d− 1 such that

h(X)Ai(X) ≡ Bi(X) (mod f(X)).

Note that the index i and the polynomial Ai depend only on f , not on g, and so can
be precomputed.

Since both steps involve standard operations (multiplication, GCD, etc.) on poly-
nomials of degree O(pd), their complexities are each bounded by O((pd)1+o(1)) oper-
ations in Fp (refer to Table 1).

6.2. The algorithm. As described in section 1.5, our algorithm operates by
reducing multipoint evaluation of the target multivariate polynomial f to multipoint
evaluation of a related univariate polynomial f∗ obtained by substituting hth powers
of a single variable for the m different variables of f (the Kronecker substitution). The
given m-variate polynomial f will have coefficients in a field Fq, and the parameter
h will be a power of the characteristic. We will actually view f as a polynomial
with coefficients in an extension ring R = Fq[W ]/(P (W )) for some polynomial P (not
necessarily irreducible over Fq). The reason for this complication is that the algorithm
needs a special element η that satisfies the following two properties:

1. the multiplicative order of η is h− 1; and
2. ηi − ηj is invertible for all i, j ∈ {0, 1, 2, . . . ,m− 1}, with i �= j.

We will construct R so that we can easily get our hands on such a η. If an element
of order h − 1 is already available in Fq, then it automatically satisfies the second
property because Fq is a field, and there is no need to pass to the extension ring R.
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S = R[Z]/(E(Z))

R = Fq[W ]/(P (W ))

Fq Fp[W ]/(P (W ))

Fp

Fig. 1. Containment diagram. Our input polynomial will be over Fq, but we view it as a
polynomial over the extension ring R. We will end up evaluating a related polynomial at elements
of the further extension S.

We now describe in detail how to construct the extension ring R and find η.
Fix parameters d and m, and fix a field Fq with characteristic p. Let h = pc be
the smallest integer power of p that is larger than m2d. Construct the ring R =
Fq[W ]/(P (W )), where P (W ) is a degree c polynomial with coefficients in Fp that is
irreducible over Fp.

4 Notice that Fp[W ]/(P (W )) ⊆ R and that Fq ⊆ R, and note that
these embeddings are easy to compute. Choose η to be a primitive element of the
field Fp[W ]/(P (W )). This η clearly has multiplicative order h − 1, and because the
elements ηi for i = 0, 1, . . . ,m− 1 are distinct elements of a field, the second property
above is also satisfied. Figure 1 depicts the construction of R.

Given the m-variate polynomial f over R, we want to be able to evaluate it at
many points in Fm

q ⊆ Rm. Our strategy will be to lift the evaluation points to elements
of an extension ring S, evaluate a related univariate polynomial f∗ at those points,
and then project each resulting evaluation back to an element of R. We choose the

ring S to be the extension ring R[Z]/(E(Z)), where E(Z)
def
= Zh−1 − η. Refer to

Figure 1.
Let σ be (a power of) the Frobenius endomorphism from R to R, given by x �→ xh.

The “lift” map φ : Fm
q → S is defined as follows: given α = (α0, . . . , αm−1) ∈ Fm

q ⊆
Rm, φ(α) is the (residue class whose canonical representative is the) degree m − 1
polynomial gα(Z) ∈ R[Z] which has

(6.2) gα
(
ηi
)
= σ−i(αi) for i = 0, 1, 2 . . . ,m− 1.

Note that gα is well defined because although σi is only an endomorphism of R (under
which certain elements may have no preimage), we demand only preimages of elements
of Fq ⊆ R, and σi is an automorphism when restricted to Fq. Recall also that m < h
by our choice of h, and that the canonical representatives of the residue classes of
S are polynomials in R[Z] of degree less than h − 1, so gα is indeed a canonical
representative as asserted above.

The “project” map π : S → R that recovers the evaluation of the original mul-
tivariate polynomial f from an evaluation of the univariate polynomial f∗ is defined

4One may wonder why we don’t simply demand that P be irreducible over Fq, so that R is a
field. The reason is that we can afford to find an irreducible over Fp, even by brute force search,
while searching for an irreducible over Fq would introduce an undesirable dependence on q to the
operation counts.
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as follows: given an element of S whose canonical representative is the polynomial
g(Z) ∈ R[Z] (with degree less than h− 1), π(g) is the evaluation g(1).

Our main lemma shows how to recover the evaluation of the m-variate polynomial
f at a point α ∈ Fm

q ⊆ Rm from the evaluation of the univariate polynomial f∗ at an
element of the extension ring S.

Lemma 6.2. Let f(X0, X1, . . . , Xm−1) be a polynomial in Fq[X0, X1, . . . , Xm−1]
with individual degrees d−1, and suppose Fq has characteristic p. Define h,R,E, S, φ, π
as above, and define the univariate polynomial f∗(Y ) ∈ S[Y ] by

f∗(Y )
def
= f(Y, Y h, Y h2

, . . . , Y hm−1

).

For every α ∈ Fm
q ⊆ Rm, the following identity holds: π(f∗(φ(α))) = f(α).

Proof. Fix φ(α), which is an element of R[Z]/(E(Z)). Let gα(Z) ∈ R[Z] be its
(degreem−1) canonical representative, and denote by σi(gα) the polynomial obtained
by applying σi to the coefficients of gα. Then we have

(gα(Z))
hi

= σi(gα)(Z
hi

)

= σi(gα)(Z
hi−1Z)

≡ σi(gα)(η
(hi−1)/(h−1)Z) (mod E(Z))

= σi(gα)(η
(hi−1+hi−2+···+h0)Z)

= σi(gα)(η
iZ),

where the last equality used the fact that η has order h− 1, and so it is fixed under

σ. For convenience, let us denote by g
(i)
α (Z) the polynomial (gα(Z))

hi

mod E(Z). A

crucial point that we will use shortly is that deg(g
(i)
α ) = deg(gα). The above equation

implies that

(6.3) g(i)α (1) = σi(gα)
(
ηi
)
= σi

(
gα
(
σ−iηi

))
= σi

(
gα
(
ηi
))

= σi(σ−iαi) = αi,

where the third equality again used the fact that η is fixed under σ, and the fourth
equality used (6.2).

When we evaluate the polynomial f∗ at the element of S whose canonical repre-
sentative is gα we get the element of S whose canonical representative is

f(g(0)α (Z), g(1)α (Z), . . . , g(m−1)
α (Z)) mod E(Z).

Now f is a polynomial with total degree at most dm, and each g
(i)
α is a polynomial of

degree at most m− 1. Therefore, since E has degree at least dm2 > dm(m− 1), this
polynomial is just

f(g(0)α (Z), g(1)α (Z), . . . , g(m−1)
α (Z)),

and evaluating at 1 gives (using (6.3))

f(g(0)α (1), g(1)α (1), . . . , g(m−1)
α (1)) = f(α0, α1, . . . , αm−1)

as claimed.
The next theorem applies the strategy we have developed above to the multi-

variate multipoint evaluation problem. Note that this algorithm requires a field
(as opposed to the more general rings handled by the algorithm of section 4) and that
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an optimal dependence of the operation count on the input size (N+dm) (up to lower
order terms) can be achieved only when the characteristic p is at most do(1).

Theorem 6.3. Given f(X0, . . . , Xm−1) in Fq[X0, . . . , Xm−1] with individual de-
grees at most d− 1, and evaluation points α0, . . . , αN−1 in Fm

q , there is an algorithm
that outputs f(αi) for i = 0, 1, 2, . . . , N − 1 in

O((N + dm)(m2p)m) · poly(d,m, p, logN)

field operations.
Proof. We perform the following steps:
1. Choose h = pc to be the smallest power of p that is at least m2d. Find a de-

gree c irreducible polynomial P (W ) over Fp and a primitive element η of Fp[W ]/(P (W )).
Define the ring R = Fq[W ]/(P (W )), and the ring S = R[Z]/(E(Z)), where E(Z) =
Zh−1 − η, as above.

2. For i = 0, 1, 2, . . . , N − 1, compute the canonical representative of φ(αi): the
degree m− 1 polynomial gαi(Z) ∈ R[Z].

3. Produce the univariate polynomial f∗(Y ) = f(Y, Y h, Y h2

, . . . , Y hm−1

) over
S.

4. Evaluate f∗ at the points gαi(Z), and for each evaluation apply π to recover
f(αi).

Step 1 requires constructing the field Fh and finding a primitive element. This
can be done by brute force in poly(h) operations, although much better algorithms
are available.

Each polynomial gαi computed in step 2 requires the following operations (recall
(6.2)): first, we need to compute σ−j(αi)j for j = 0, 1, . . . ,m − 1. This is done5 by
applying σ−1

0 cj times to (αi)j (recall that σ = σc
0), and note that this is the only

place we use this nonstandard basic operation. The overall cost of doing this for all i
and j is O(Nm2c). Next, we perform N polynomial interpolations in R, each costing
O(M(m) logm) operations in R, or O(M(m) logmM(c)) operations in Fq. Note that
for every two interpolation points ηi, ηj , the difference ηi−ηj is a unit in R (since η is
an element of Fp[W ]/(P (W )), which is a field). This is required for the interpolation
step. The total cost for step 2 is

O(N(m2 log h+M(m)(logm)M(c)))

Fq-operations.
Step 4 is a univariate multipoint evaluation problem. We have N elements

of S, and a univariate polynomial f∗ over S, of degree at most dmhm. If L =
max(N, dmhm), this step requires O(M(L) logL) operations in S, or

O(M(L)(logL)M(h)M(c))

Fq-operations, using fast univariate multipoint evaluation. The N applications of π
take O(Nh) operations in R, or O(NhM(c)) Fq-operations.

The final complexity estimate is obtained by using the bound h � pm2d. (The
dominant step is step 4.)

5The conference paper [U08] erroneously claimed at this point that the computation of σ−j(αi)j
could be performed using O(m logh) standard Fq-operations. Here we recover essentially the same
theorem statement as Theorem 4.2 in [U08], but only in the nonstandard algebraic model; in the
standard model the operation count requires an extra O(log(q/p)) factor, as discussed in section 6.1.
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Corollary 6.4. For every constant δ > 0 there is an algorithm for multivari-

ate multipoint evaluation over Fq with parameters d,m,N , and with operation
count (dm+N)1+δ, for all d,m,N with d,N sufficiently large, provided m ≤ do(1) and
the characteristic p ≤ do(1).

Proof. Let c be a sufficiently large constant (depending on δ). We may assume
m > c by applying the map from Definition 2.3, if necessary, to produce an equivalent
instance of multivariate multipoint evaluation with more variables and smaller
individual degrees (and note that the quantity dm is invariant under this map). The
operation count of Theorem 6.3 has an “extra” multiplicative factor of (m2p)m ·
poly(d, p,m, logN), and we claim this can be made to be at most (N + dm)δ. This is
because m ≤ do(1) (so m2m+O(1) ≤ do(m)), and p ≤ do(1) (so pm+O(1) ≤ do(m)), and
dO(1) ≤ (dm)O(1)/c (recall we are choosing c sufficiently large), and finally poly logN ≤
N δ for sufficiently large N .

7. Fast modular composition and its transpose. We now obtain fast algo-
rithms formodular composition and its transpose, modular power projection,
via the reduction of Theorem 3.1 and via the transposition principle.

7.1. Modular composition. By applying the reduction in Theorem 3.1, we
obtain a nearly linear time algorithm for modular composition.

Theorem 7.1. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z))
for some monic polynomial E(Z). For every constant δ > 0, if we have access to
Ndδ distinct elements of R whose differences are units in R, there is an algorithm
for modular composition over R with parameters d,m,N , and with running time
(dm+N)1+δ log1+o(1) q, for all d,m,N with d,N sufficiently large, provided m ≤ do(1).
If R is isomorphic to the field Fq with characteristic p ≤ do(1), then the algorithm can
be taken to be algebraic, with operation count (dm +N)1+δ.

Proof. Let c be a sufficiently large constant (depending on δ), and set d0 = d1/c

and m0 = cm. Then applying Theorem 3.1, we obtain an algorithm for modular

composition requiring O((dm + mN)d0) · poly log(dm + mN) operations plus one
invocation of multivariate multipoint evaluation with parameters d0,m0, N

′ =
Nmcd0. By our choice of c, and the fact that m ≤ do(1) and d,N are sufficiently large,
this operation count is at most (dm +N)1+δ. By Corollary 4.5, the instance of mul-

tivariate multipoint evaluation can be solved in time (dm +N)1+δ log1+o(1) q,
or with (dm+N)1+δ field operations via Corollary 6.4 if we are working over the field
Fq with characteristic p ≤ do(1).

We remark that for the “standard” parameter setting of m = 1 and N = d, one
can achieve the claimed running time by taking t = 2 when solving the multivariate
multipoint evaluation instance via Algorithm multimodular-for-extension-

ring. This makes the overall algorithm (arguably) practical and implementable.
Indeed, use of a single round of multimodular reduction is quite common in practice;
for instance, Shoup’s NTL library [Sho] uses multimodular reduction for most basic
arithmetic involving multiprecision integer polynomials.

The following corollary addresses the most common special case of Theorem 7.1.

Corollary 7.2. For every δ > 0, there is an algorithm for modular com-

position over Fq with parameters d,m = 1, N = d running in d1+δ log1+o(1) q bit
operations for sufficiently large d. If the characteristic p is at most do(1), then the
algorithm may be taken to be algebraic, with operation count d1+δ.

Proof. Construct an extension field Fq′ of Fq with cardinality at least d1+δ, and
then apply Theorem 7.1 with R = Fq′ .
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Remark. In the running times claimed in Corollaries 4.3, 4.5, 6.4, and 7.2 and
Theorem 7.1, we have chosen to present bounds that interpret “almost linear in x”
as meaning “for all δ > 0, there is an algorithm running in time x1+δ for sufficiently
large x.” In all cases, it is possible to choose δ to be a subconstant function of the
other parameters, giving stronger, but messier, bounds.

7.2. Fast modular power projection. In this section, we restrict ourselves
to “standard” parameter setting for modular composition—in which m = 1 and
N = d. We consider the “transpose” of modular composition, defined next.

Problem 7.3 (modular power projection). Given a linear form τ : Rd →
R, and polynomials g(X), h(X) in R[X ], each with degree at most d− 1, and with the
leading coefficient of h a unit in R, output τ(g(X)i mod h(X)) for i = 0, 1, . . . , d− 1.
Here we identify a polynomial with the vector of its coefficients.

One can view modular composition as multiplying the d × 1 column vector
of coefficients of f on the left by the d× d matrix Ag,h, whose columns are the coeffi-
cients of g(X)i mod h(X) for i = 0, 1, . . . , d−1. Then modular power projection

is the problem of multiplying the column vector of coefficients of τ on the left by the
transpose of Ag,h.

By a general argument (the “transposition principle”), linear straight-line pro-
grams computing a linear map yield linear straight-line programs with essentially the
same complexity for computing the transposed map.

Theorem 7.4 (see [BCS, Thm. 13.20]). Let φ : Rn → Rm be a linear map that
can be computed by a linear straight-line program of length L and whose matrix in the
canonical basis has z0 zero rows and z1 zero columns. Then the transposed map φt :
Rm → Rn can be computed by a linear straight-line program of size L−n+m−z0+z1.

One can verify that the algebraic algorithm of Corollary 7.2 (which may be used
in the small characteristic case), when written as a straight-line program, computes
only linear forms in the coefficients of the input polynomial f . This is because the
computations involving the input polynomials g and h, including all applications of
the nonstandard algebraic operation σ−1

0 , can be isolated into a preprocessing phase,
which does not involve f . Thus Theorem 7.4 applies and immediately gives the
following theorem.

Theorem 7.5. For every δ > 0, there is an algebraic algorithm for modular

power projection over Fq with operation count d1+δ for sufficiently large d, pro-
vided the characteristic p is at most do(1).

Unfortunately, the arbitrary-characteristic algorithm of Corollary 7.2 (i.e., Algo-
rithm multimodular-for-extension-ring) does not compute only linear forms in
the coefficients of polynomial f (because of the lifting to characteristic 0 followed by
modular reduction), so we cannot apply Theorem 7.4 directly. However, with some
care, we can isolate the nonalgebraic parts of the algorithm into preprocessing and
postprocessing phases and apply the transposition principle to algebraic portions of
the algorithm. We do this in the rest of the section. Before considering modular

power projection, we consider the transpose of multivariate multipoint eval-

uation.
Theorem 7.6. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z))

for some monic polynomial E(Z). For every constant δ > 0, there is an algorithm for
the transpose of multivariate multipoint evaluation with parameters d,m,N
with running time (dm + N)1+δ log1+o(1) q for all d,m,N with d sufficiently large,
m ≤ do(1), and dm = N .

Proof. We view Algorithm multimodular-for-extension-ring as applying to
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f the linear map φ : Rdm → RN which computes evaluations at points α0, α1, . . . , αN−1.
Map φ is computed in Algorithm multimodular-for-extension-ring by first per-
forming a preprocessing phase: step 1 produces f̃ with coefficients in Z[Z] (having
degree at most e − 1) and α̃0, α̃1, . . . , α̃N−1 with coordinates in Z[Z] (having degree
at most e − 1), and then step 2 produces f and α0, α1, . . . , αN−1, with the coeffi-
cients of f and the coordinates of each αi in Z/r′Z. Let φ̃ : Z[Z]d

m → Z[Z]N and
φ : (Z/r′Z)d

m → (Z/r′Z)N be the multipoint evaluation maps with respect to the α̃i

and the αi, respectively (over the appropriate domains).
The entries in the matrix associated with φ̃ are products of at most (d−1)m degree

(e − 1) polynomials with nonnegative integer coefficients less than r; this matrix is
applied to a vector (the coefficients of f̃) whose entries are degree (e− 1) polynomials
with nonnegative integer coefficients less than r. An upper bound on the sum of dm

products of a matrix entry with a vector entry is the integerM computed in Algorithm
multimodular-for-extension-ring. Thus φ̃ produces a vector whose entries are
polynomials in Z[Z] with degree at most (e − 1)((d − 1)m + 1) ≤ (e − 1)dm and
coefficients in {0, 1, . . . ,M − 1}, and so does the transpose map φ̃t (since N = dm).
Step 4 of multimodular-for-extension-ring recovers φ̃(f̃) from φ(f), and its
correctness depends only on the choice of r′ as a function of the maximum degree
and maximum coefficient magnitude of the entries of φ̃(f̃). Thus the same procedure
(which recovers elements of Z[Z] from elements of Z/r′Z) will recover the result of

applying φ̃t from the result of φ
t
. As in step 4, reducing each element of Z[Z] modulo r

and E(Z) gives the result in R, allowing us to finally recover the result of applying the

map φt. The remainder of the present proof is thus devoted to arguing that φ
t
can be

applied in the specified time via a transposed version of Algorithm multimodular.
Algorithm multimodular computes in t successive rounds of multimodular re-

duction a collection of instances of multivariate multipoint evaluation. Con-
ceptually these are organized in a tree of depth t, with the root labeled by the prime
r′ and the children of each nonleaf node being the primes pi computed in step 2
of multimodular when its parameter “r” is the prime at the parent node. Each
node v has an associated instance of multivariate multipoint evaluation, com-
prising the polynomial f (v) (whose coefficients are obtained from the instance of
multivariate multipoint evaluation at the parent node u by lifting the coef-
ficients of f (u) to the integers and reducing modulo the prime labeling node v) and

the evaluations α
(v)
0 , α

(v)
1 , . . . , α

(v)
N−1 (whose coordinates are similarly derived from

α
(u)
0 , α

(u)
1 , . . . , α

(u)
N−1 by lifting to Z and reducing modulo the prime labeling node v).

At each node v, the α
(v)
i implicitly specify the linear map φ(v) that, when applied to

f (v), gives the vector of evaluations of f (v) at the various α
(v)
i . Each map φ(v) has an

associated matrix whose entries are (dm)-fold products of various α
(v)
i and an “integer

lift” version in which these products are not reduced modulo the prime labeling node
v.

The instances of multivariate multipoint evaluation associated with the
leaves of this tree are computed directly in step 4 of Algorithm multimodular.
Specifically, for each leaf v, the map φ(v) : Fdm

p → FN
p (where p is the prime labeling

leaf v) is applied to f (v) by invoking Theorem 4.1. In our algorithm for the transpose
problem, we apply the transpose map (φ(v))t to f (v).6 This is done within the same

6Formally, we should have a different name for the vector to which the transpose map is applied,
which has N entries instead of dm. But because N = dm, and to avoid clutter in the proof, we will
continue to use f .
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time bound, by Theorem 7.4, or directly by observing that the transpose of the DFT
computed in step 2 in the proof of Theorem 4.1 can again be computed rapidly using
the fast multidimensional FFT for finite fields.

In the original algorithm, a postprocessing phase (successive applications of step
5 of Algorithm multimodular) recovers each entry in the vector φ(f) in t successive
rounds of reconstruction using the Chinese remainder theorem. Specifically, we work
up the tree (from the leaves to the root), and at each node u we reconstruct each
entry of φ(u)(f (u)) from the corresponding entries of φ(v)(f (v)) as v ranges over the
children of u. Correctness at each such step comes from the fact that the product of
the primes labeling the children of u exceeds dm(r−1)md, which is an upper bound on
the sum of dm products, each being the product of an entry of the integer lift matrix
associated with φ(u) with the integer lift of an entry from the vector f (u). In our
algorithm for the transpose problem, we perform the same reconstruction, working
up the tree and reconstructing each entry of (φ(u))t(f (u)) from the corresponding
entries of (φ(v))t(f (v)) as v ranges over the children of u. For correctness we need
that the product of the primes labeling the children of u exceed an upper bound on
the sum of N products, each being the product of the transposed integer lift matrix
associated with φ(u) with the integer lift of an entry from the vector f (u). Since
dm = N , dm(r − 1)md is again a valid upper bound, and we conclude that each
Chinese remainder theorem reconstruction step succeeds, eventually yielding (at the

root) φ
t
(f) as desired.

Because our overall algorithm for the transpose of multivariate multipoint

evaluation entails the same computations in the pre- and postprocessing phases
as the nontransposed version, and the computation of the transposed multivariate

multipoint evaluation instances at the leaves can be performed in the same time
bound as the nontransposed version, we obtain an algorithm for the transpose of
multivariate multipoint evaluation, when N = dm, with the same running
time bound as stated in Corollary 4.5.

Theorem 7.7. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z))
for some monic polynomial E(Z). For every constant δ > 0, if we have access to d1+δ

distinct elements of R whose differences are units in R, there is an algorithm for mod-
ular power projection over R with running time d1+δ log1+o(1) q for sufficiently
large d.

Proof. Consider first the reduction from modular composition (with param-
eters d,m = 1, N = d) to multivariate multipoint evaluation of Theorem
3.1. An instance of modular composition is specified by degree d polynomials
f(X), g(X), h(X). We describe the reduction as the product of linear maps applied
to the vector of coefficients of f . Steps 2 and 3 do not involve f and can be executed
in a preprocessing phase.

Step 1 is given by φ1 : Rd → Rd′
, which maps f to f ′ by permuting the coefficients

and padding with 0’s (here d′ = d�0 ≥ d). Step 4 is given by φ4 : Rd′ → RN ′
, which

maps f ′ to its evaluations at the N ′ > d′ evaluation points (the α’s). Step 5 is
given by φ5 : RN ′ → RN ′

, which maps these evaluations to the coefficients of the
unique univariate polynomial having these values at the β’s. Step 6 is given by
φ6 : RN ′ → Rd, which maps the resulting degree N ′ − 1 univariate polynomial to
its reduction modulo h(X). All of φ1, φ4, φ5, φ6 are linear maps, and thus the overall
algorithm for modular composition (after the preprocessing phase involving g(X)
and h(X)) can be described as the linear map φ6 ◦ φ5 ◦ φ4 ◦ φ1 : Rd → Rd.

We are interested in computing the transposed map φt1 ◦ φt4 ◦ φt5 ◦ φt6 : Rd → Rd.
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We argue that the transposed map can be computed in time comparable to the time
required for the nontransposed map. In Theorem 3.1, φ6 is computed rapidly using
fast polynomial division with remainder. By the transposition principle (Theorem
7.4), φt6 can be computed in comparable time. In Theorem 3.1, φ5 is computed
rapidly using fast univariate polynomial interpolation. By the transposition principle
(Theorem 7.4), φt5 can be computed in comparable time.

In Theorem 3.1, φ4 is computed rapidly by invoking a fast algorithm for multi-
variate multipoint evaluation. We claim that φt4 can be computed in the time
expended by Algorithm multimodular-for-extension-ring to compute φ4. We’d
like to apply Theorem 7.6, but that requires a “square” instance (i.e., one in which
dm = N , which gives rise to a linear map represented by a square matrix), but in our
case N ′ is larger than d′. But, just as we could have computed φ4 by invoking Algo-
rithm multimodular-for-extension-ring N ′/d′ times with d′ evaluation points
each time, we can compute φt4 by computing the transpose of a N ′/d′ square instances
(via Theorem 7.6) and summing the resulting vectors.

Finally, φt1 is just a projection followed by a permutation of the coordinates,
which can trivially be computed in time comparable to that required for computing
φ1.

Remark. There are explicit algorithms known for φt5 (transposed univariate in-
terpolation) and φt6 (transposed univariate polynomial division with remainder) (see,
e.g., [BLS03]), and our algorithm in Theorem 7.6 is also explicit. Thus we have an
explicit algorithm for modular power projection (whereas in general, use of the
transposition principle may produce an algorithm that can be written down only by
manipulating the linear straight-line program).

8. Applications. In this section, we describe some improved algorithms that
arise as a consequence of our new algorithms for modular composition and mod-

ular power projection. To emphasize the fact that modular composition and
modular power projection occur as black boxes within these algorithms, we write
C(n, q) and P (n, q) for the number of bit operations required to perform a modular
composition and a modular power projection, respectively, of degree n polynomials
over Fq. As shown by Corollary 7.2 (and using the remark following it), we now

have C(n, q) ≤ n1+o(1) log1+o(1) q. Similarly, by Theorem 7.7 we have P (n, q) ≤
n1+o(1) log1+o(1) q.

Note that all of the algorithms we describe in this section are algebraic except
for the steps that use our multimodular reduction-based algorithm for modular

composition or modular power projection. Consequently, in characteristic
p ≤ no(1), we may instead use the second part of Corollary 7.2 and Theorem 7.5
to produce completely algebraic algorithms; to obtain an upper bound on algebraic
operation counts for these, remove a factor of log q from the bit operation counts we
state in this section.

8.1. Polynomial factorization. We start with the flagship application to the
problem of polynomial factorization.

There are three stages in variants of the Cantor–Zassenhaus algorithm for factor-
ing a degree n univariate polynomial over Fq: squarefree factorization, distinct-degree
factorization, and equal-degree factorization. The first stage, squarefree factorization,
can be performed in n1+o(1) log2+o(1) q bit operations, using an algorithm attributed
by [KS98] to Yun. The second stage, distinct-degree factorization, has a deterministic
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algorithm due to Kaltofen and Shoup [KS98] that takes

n0.5+o(1)C(n, q) +M(n) log2+o(1) q

bit operations, as described below. The third stage, equal-degree factorization, has
a randomized algorithm due to von zur Gathen and Shoup [vzGS92] that takes an

expected number of n1+o(1) log2+o(1) q + C(n, q) log n bit operations.

Notice that with our bound C(n, q) = n1+o(1) log1+o(1) q, the first and third stages

use n1+o(1) log2+o(1) q bit operations and the second stage improves to

n1.5+o(1) log1+o(1) q + n1+o(1) log2+o(1) q

bit operations. The second stage remains the barrier to an “exponent 1” algorithm,
so we describe the algorithm of Kaltofen and Shoup in enough detail here (and in a
manner differing somewhat from the original) to highlight a self-contained open prob-

lem whose resolution would improve its efficiency to n1+o(1) log2+o(1) q bit operations.
This will also illustrate the critical role played by modular composition in this
algorithm.

The problem we are trying to solve is the following.
Problem 8.1 (distinct-degree factorization). Given a monic, squarefree

polynomial f ∈ Fq[X ] of degree n, output f1, f2, . . . , fn ∈ Fq[X ], where fi is either 1
or the product of degree-i irreducible polynomials, and f1f2 · · · fn = f .

The crucial (standard) algebraic fact used in these algorithms is the following
proposition.

Proposition 8.2. The polynomial si(X)
def
= (Xqi −X) ∈ Fq[X ] is the product

of all monic irreducible polynomials over Fq whose degree divides i.
Therefore, computing gcd(si(X), f(X)) splits off those irreducible factors of f

whose degrees divide i. In preparing the polynomial si(X) for this purpose, we are
free to compute it modulo f(X).

The main step in the algorithm for distinct-degree factorization will
be to split the input polynomial f into two nonconstant polynomials f1f2 · · · fm
and fm+1fm+2 · · · fn for some m ∈ {1, 2, . . . , n}. One could do this by computing
gcd(si(X), f(X)) for i = 1, 2, . . . , n and stopping at the first nontrivial gcd, but in
the worst case, a nontrivial split will not be found until i ≈ n/2, which spoils any
chance of a subquadratic algorithm. Instead, we will perform a “binary search”: we
begin with m = n/2, and if this does not yield a nontrivial split, we proceed to either
m = n/4 or m = 3n/4 depending on whether f1f2 · · · fn/2 equals f or 1, and so on.

For this purpose we need to be able to solve the following subproblem, which gives
us the polynomials needed to compute the “splits” on the fly in the above binary-
search strategy (and note that for our intended application we do not care if the si(X)
factors are repeated, which explains the ai’s below).

Problem 8.3. Given a monic, squarefree polynomial f ∈ Fq[X ] of degree n, a
positive integer m, and the polynomial Xq mod f(X), compute a polynomial

s1(X)a1 · s2(X)a2 · · · · · sm(X)am mod f(X) =

m∏
i=1

(Xqi −X)ai mod f(X)

for some positive integers ai.
It is easy to see that this problem can be solved in

m ·O
(
C(n, q) +M(n) log1+o(1) q

)
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bit operations: with m successive modular compositions with Xq, we can obtain
Xqi mod f(X) for i = 1, 2, . . . ,m, and then m further polynomial additions and

multiplications modulo f suffice to compute
∏m

i=1(X
qi −X) mod f(X).

Kaltofen and Shoup describe a clever algorithm that reduces the exponent on m
from 1 to 1/2.

Lemma 8.4 (implicit in [KS98]). Problem 8.3 can be solved in

O
(
C(n, q)

√
m+M(n)M(

√
m) log

√
m log1+o(1) q

)
operations.

Proof. Refer to Table 1 for the running times of the operations on polynomials we
use in this proof. Put k = m− �√m�2 � 2

√
m. First, compute Xqi modulo f(X) for

i = 0, 1, 2, . . . , �√m�−1; then compute Xqj�
√

m�
modulo f(X) for j = 1, 2, . . . , �√m�.

This requires O(C(n, q)
√
m) bit operations, since we are given Xq mod f(X) to begin

with. At this point we have computed Xqm−k

mod f(X); now compute Xqm−i

mod
f(X) for i = k − 1, . . . , 0, using O(k) = O(

√
m) further compositions with Xq mod

f(X), at a cost of O(C(n, q)
√
m) bit operations. Form the product

Q0(X) =

k−1∏
i=0

(Xqm−i −X) mod f(X)

using O(M(n)
√
m log1+o(1) q) bit operations.

Form the degree �√m� polynomial P (Z) over the ring Fq[X ]/(f(X)) defined as

P (Z)
def
=

�√m�−1∏
i=0

(Z −Xqi) mod f(X).

This requires O(M(
√
m) log

√
m) operations in the ring, or

O
(
M(n)M(

√
m) log

√
m log1+o(1) q

)

bit operations. Evaluate P (Z) at the elementsXqj�
√

m�
mod f(X) for j = 1, 2, . . . , �√m�,

and take the product of these evaluations modulo f(X), yielding

Q1(X) =

�√m�∏
j=1

�√m�−1∏
i=0

(Xqj�
√

m� −Xqi) mod f(X),

which equals

�√m�∏
j=1

�√m�−1∏
i=0

(Xqj�
√

m�−i −X)q
i

mod f(X).

Using fast multipoint evaluation, this step entails O(M(
√
m) log

√
m) operations in

the ring, or

O
(
M(n)M(

√
m) log

√
m log1+o(1) q

)
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bit operations. Finally, multiply Q0(X) with Q1(X) to obtain a polynomial of the
desired form (the ai are various powers of q).

Using Problem 8.3 as a subroutine, it is not hard to describe a fast algorithm for
distinct-degree factorization.

Theorem 8.5. If Problem 8.3 can be solved in O(nαmβ log1+o(1) q) bit operations
(with α > 1), then there is an algorithm for distinct-degree factorization that
uses

O
(
nα+β log4 n+M(n) log q

) · log1+o(1) q

bit operations.
Proof. We first prepare the polynomial Xq mod f(X) needed as input to Problem

8.3, by repeated squaring, at a cost of O(M(n) log q) · log1+o(1) q bit operations.

Now, in addition to the input of a squarefree f(X) ∈ Fq[X ] of degree n, we assume
we are given a range within which we know all of the degrees of the irreducible factors
of f lie. Initially, this is just 1 . . . n.

If the range consists of only a single integer, then we can output f(X) itself and
halt. Otherwise, set m to the midpoint of this range, and compute a polynomial
as specified in Problem 8.3; call this polynomial S(X). Compute gcd(S(X), f(X)).
If this gcd is f(X), then we reduce the range to the first half and recurse; if this
gcd is a constant polynomial, then we reduce the range to the second half and re-
curse; if this gcd is a nontrivial polynomial flower(X), then we compute fupper(X) =
f(X)/flower(X), and these two polynomials represent a successful “split.” Notice that
deg(flower)+deg(fupper) = deg(f). We now recurse on flower (with the range reduced
to the first half) and fupper (with the range reduced to the second half).

We now analyze the operation count of this recursive algorithm when factoring
a degree n input polynomial. Notice that we never set m larger than n throughout
the entire algorithm, so we will pessimistically assume it is always n to simplify the
analysis.

Let T (n′, r) denote the bit operations used by the procedure when called with a
polynomial of degree n′ and range of size r. If r = 1, the cost is zero. Otherwise, the
procedure solves Problem 8.3 at a cost of at most c1n

′αnβ log1+o(1) q, and the other
operations before the recursive call (a gcd, and possibly a polynomial division) cost

at most c2n
′ log3 n′ log1+o(1) q for some constants c1, c2. Set c = c1 + c2.

We will prove that for all T (n′, r) with n′, r ≤ n,

T (n′, r) ≤ cn′α(log3 n′)nβ(log r) log1+o(1) q

by induction on r. The base case, when r = 1, is clear. In general we have that

T (n′, r) ≤ (c1n′αnβ + c2n
′ log3 n′) log1+o(1) q + max

1<i<n′

{
T (n′, r/2),
T (i, r/2) + T (n′ − i, r/2),

where the two lines in the inequality correspond to the cases that result in recursive
calls. In the first case we have(

c1n
′αnβ + c2n

′ log3 n′) log1+o(1) q + T (n′, r/2)

≤ (c1n′αnβ + c2n
′ log3 n′ + cn′α log3 n′nβ(log r − 1)

)
log1+o(1) q

≤ cn′α(log3 n′)nβ(log r) log1+o(1) q
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as required. In the second case, we have(
c1n

′αnβ + c2n
′ log3 n′) log1+o(1) q + T (i, r/2) + T (n′ − i, r/2)

≤ (c1n′αnβ + c2n
′ log3 n′

+ c[iα log3 i+ (n′ − i)α log3(n′ − i)]nβ(log r − 1)
)
log1+o(1) q

≤ (c1n′αnβ + c2n
′ log3 n′ + c[n′α log3 n′]nβ(log r − 1)

)
log1+o(1) q

≤ cn′α(log3 n′)nβ(log r) log1+o(1) q

as required. The upper bound claimed in the theorem is obtained by considering
T (n, n).

We now see how our new modular composition algorithm yields the fastest uni-
variate factorization algorithm that works over arbitrary finite fields.

Theorem 8.6. There is a randomized algorithm that returns the irreducible
factors of a degree n polynomial f ∈ Fq[X ] and uses an expected(

n1.5+o(1) + n1+o(1) log q
)
· log1+o(1) q

bit operations.
Proof. As noted above, the first and third phases already fall within this bound.

Plugging Corollary 7.2 into Lemma 8.4 yields an algorithm for Problem 8.3 using

n1+o(1)m0.5+o(1) log1+o(1) q

bit operations. Theorem 8.5 then yields the claimed result.
We consider it a very interesting open problem to devise an algorithm for Problem

8.3 that takes only n1+o(1)mo(1) log1+o(1) q bit operations. By Theorem 8.5, this would
give a randomized algorithm for factoring a degree n polynomial over Fq requiring an

expected n1+o(1) log2+o(1) q bit operations.

8.2. Irreducibility testing. In this problem we are given f(X) ∈ Fq[X ] of
degree n, and we want to determine whether or not it is irreducible. Rabin’s algorithm
[R80] can be implemented (deterministically) to take

n1+o(1) log2+o(1) q + C(n, q) · O(log2 n)
bit operations, so we obtain a running time of n1+o(1) log2+o(1) q. This becomes the
fastest known up to lower order terms, and it constitutes an improvement over the
running time of previous implementations when log q < n.

8.3. Manipulation of normal bases. A normal element in an extension field
of Fq of degree n is an element α for which α, αq , αq2 , . . . , αqn−1

form a basis for the
extension field over Fq. Such a basis is called a normal basis.

Kaltofen and Shoup [KS98] study three natural problems related to manipulating
normal bases: the problem of basis selection (given a degree n irreducible h(X), to find
a normal element of Fq[X ]/(h(X))); and the problems of converting to a normal-basis
representation from a power-basis representation, and vice versa. The algorithms in
[KS98] rely on two problems defined in that paper:

(i) Automorphism evaluation: given degree n − 1 polynomials f(X), g(X)
and degree n polynomial h(X), all in Fq[X ], output the degree n− 1 polynomial

n−1∑
i=0

fi(g(X)q
i

mod h(X)),
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where the fi’s are the coefficients of f(X) (i.e., f(X) =
∑n−1

i=0 fiX
i).

(ii) Automorphism projection: given a linear form τ : Fn
q → Fq, and a degree

n − 1 polynomial g(X) and a degree n polynomial h(X), both in Fq[X ], output

τ(g(X)q
i

mod h(X)) for i = 0, 1, . . . , n − 1. Here we identify a polynomial with the
vector of its coefficients.

The two problems are the transposes of each other and bear a resemblance to
modular composition and modular power projection, respectively (here the
g(X) polynomial is raised to successive qth powers, rather than consecutive powers).
Kaltofen and Shoup [KS98] describe explicit baby-step/giant-step algorithms for the
two algorithms that rely on fast matrix multiplication (à la Brent and Kung) and
modular composition and modular power projection. In particular, their
algorithms yield running times of

O
(
C(n, q)n1/2 + (nω2/2 +M(n) log q) log1+o(1) q

)
for automorphism evaluation and

O
(
C(n, q)n1/2 + P (n, q)n1/2 + (nω2/2 +M(n) log q) log1+o(1) q

)
for automorphism projection (recall the definition of ω2 from section 1.1). With
our algorithms for modular composition and modular power projection (and
noting that ω2 ≥ ω + 1 > 3), both problems can be solved in time

(8.1) nω2/2 log1+o(1) q + n1+o(1) log2+o(1) q.

The algorithms of [KS98] for manipulating normal bases have running times that are
dominated by the invocations of automorphism evaluation and projection. Thus the
three problems—of finding a normal element, converting from power-basis coordinates
to normal-basis coordinates, and converting from normal-basis coordinates to power-
basis coordinates—have running times bounded by (8.1) (the first and second are
randomized, with this expression bounding the expected running time). These run-
ning times represent improvements over [KS98] and are the current fastest algorithms
for these problems when log q < n.

Remark. In the algorithms in the previous three subsections, the quadratic depen-
dence on log q (which is nonoptimal) arises solely from the need to computeXq modulo
some degree n polynomial f ∈ Fq[X ] (specifically, the polynomial to be factored or
the polynomial being tested for irreducibility). This is done by repeated squaring at
a cost of O(M(n) log q) Fq-operations. An insight of Kaltofen and Shoup [KS97] is
that when q = pk, and assuming that Fq is represented explicitly as Fp[Z]/(E(Z)) for
some degree k irreducible E ∈ Fp[Z], this term can be improved as follows.

We illustrate the idea when k is a power of 2. Define gi(X)
def
= Xp2i

mod f(X),
and let σ : Fq → Fq denote the Frobenius map x �→ xp. As in section 6, denote by

σj(gi) the polynomial gi with σ
j applied to each of its coefficients. Define hi(Z)

def
=

Zp2i

mod E(Z) (so hi is the polynomial representation of the map σ2i). We have that

gi(X) = σ2i−1

(gi−1)(gi−1(X)) mod f(X),

and note that glog k(X) is the desired polynomial Xq mod f(X).
We can compute glog k as follows. First, compute g0(X) = Xp mod f(X) and

h0(Z) = Zp mod E(Z) using repeated squaring. Then, for i = 1, 2, . . . , log k, compute
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gi(X) = σ2i−1

(gi−1)(gi−1(X)) mod f(X), and hi(Z) = hi−1(hi−1(Z)) mod E(Z).
The latter computation entails a single modular composition of degree k polyno-
mials over Fp; each coefficient of the polynomial σ2i−1

(gi−1) can be obtained from
gi−1 by a modular composition of the degree k polynomial representing the coefficient
with hi−1, and then gi is obtained with a single modular composition of degree n
polynomials over Fq.

The overall cost is

O
(
log p

(
M(n) log1+o(1) q +M(k) log1+o(1) p

))
bit operations to compute g0 and h0, plus (n+ 1)C(k, p) + C(n, q) bit operations for
each of the log k iterations, for a total of

k1+o(1)n1+o(1) log2+o(1) p

bit operations, using our new algorithms for modular composition. This should be
contrasted with the k2+o(1)n1+o(1) log2+o(1) p bit operations for the standard repeated
squaring approach. Thus, in fixed characteristic, the nonoptimal quadratic depen-
dence on log q of the algorithms in the previous three subsections can be replaced
with the optimal one (up to lower order terms), using this idea.

8.4. Computing minimal polynomials. In this problem, we are given g(X),
h(X) ∈ Fq[X ], both of degree at most n, and we must output the minimal polyno-
mial of g(X) in the ring Fq[X ]/(h(X)), i.e., the monic polynomial f(X) of minimal
degree for which f(g(X)) mod h(X) = 0. Shoup’s randomized algorithm [S99] can be
implemented to run in expected time

O(M(n) log n log1+o(1) q + C(n, q) + P (n, q)),

so we obtain an expected running time of n1+o(1) log1+o(1) q using our algorithms for
modular composition and modular power projection, which is best possible
up to lower order terms.

8.5. Generating irreducible polynomials. In this problem, we are given a
finite field Fq and a positive integer d, and we must output an irreducible polynomial
of degree d over Fq. Using our algorithm for modular composition, Couveignes
and Lercier [CL] have very recently given a randomized algorithm for this problem

with expected running time d1+o(1) log5+o(1) q. While the dependence on log q is not
best possible up to lower order terms, this algorithm is the first to achieve nearly
linear complexity in the degree d.

8.6. Frobenius evaluation. The fact that our algorithm applies to extension
rings, not just to finite fields, leads to some additional applications. One example,
suggested to us by Hendrik Hubrechts, is that of Frobenius evaluation. (See [Hub] for
some related applications in p-adic arithmetic.)

Let P (X) ∈ (Z/pnZ)[X ] be a monic polynomial whose reduction modulo p is
irreducible. Then the ring R = (Z/pnZ)[X ]/(P (X)) admits a unique Frobenius en-
domorphism F : R → R satisfying F (r) ≡ rp (mod p) for all r ∈ R. Once one has
computed the image of X ∈ R under F , one can then evaluate F efficiently on any
element of R by using modular composition.

In more number-theoretic language, the ring R arises as the quotient modulo
pn of an unramified extension of the ring Zp of p-adic integers. (The existence of
the Frobenius endomorphism is a consequence of Hensel’s lemma.) Consequently, an
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algorithm for evaluating F efficiently leads to improvements in certain algorithms
based on p-adic analysis. An explicit example occurs in Hubrechts’s computation of
zeta functions of hyperelliptic curves over finite fields, using deformations in p-adic
Dwork cohomology: substituting for our modular composition algorithm in [Hub08,
section 6.2] leads to a runtime improvement therein.

9. Open problems. We conclude with some open problems.
(i) Our algorithm for multivariate multipoint evaluation is only optimal

up to lower order terms in case m � do(1). It would be interesting to describe a
near-optimal algorithm in the remaining cases, or perhaps just the multilinear case
to start. It would also be satisfying to give a near-optimal algebraic algorithm for
multivariate multipoint evaluation in arbitrary characteristic, not just small
characteristic.

(ii) It would also be interesting to adapt our algebraic algorithms so that they
work in a commutative ring of small characteristic. Currently we require a field (see
the discussion following (6.2)).

(iii) As noted earlier, the reduction from modular composition to multi-

variate multipoint evaluation plays an important role in our work because it
is easier to control the growth of integers when solving the lifted version of multi-
variate multipoint evaluation. One wonders whether there are other problems
involving polynomials that can exploit the combination of transforming the problem
to a multivariate version with smaller total degree and then lifting to characteris-
tic zero followed by multimodular reduction. For instance, can such techniques be
profitably applied to other problems whose currently best algorithms use a “baby
step/giant step” technique in the manner of [BK78]? We have in mind specifically
such problems as automorphism projection and automorphism evaluation as defined
in [KS98] and discussed in section 8.3.

(iv) An algorithm for Problem 8.3 using only n1+o(1)mo(1) log1+o(1) q bit opera-
tions, as noted earlier, would lead to a randomized algorithm for factoring a degree
n polynomial over Fq using n1+o(1) log2+o(1) q expected bit operations. It seems that
giving an algorithm for Problem 8.3 with operation count n1+o(1)mβ for any constant
β < 1/2, even under an assumption of small characteristic, will require a new idea.
Another route to an “exponent 1” algorithm for polynomial factorization would be to
give “exponent 1” algorithms for automorphism projection and automorphism evalu-
ation and then use the implementation described in [KS98] of the so-called black box
Berlekamp algorithm for polynomial factorization.
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