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MATRIX PROBING AND ITS CONDITIONING∗

JIAWEI CHIU† AND LAURENT DEMANET‡

Abstract. When a matrix A with n columns is known to be well-approximated by a linear com-
bination of basis matrices B1, . . . , Bp, we can apply A to a random vector and solve a linear system to
recover this linear combination. The same technique can be used to obtain an approximation to A−1.
A basic question is whether this linear system is well-conditioned. This is important for two reasons:
a well-conditioned system means (1) we can invert it and (2) the error in the reconstruction can be
controlled. In this paper, we show that if the Gram matrix of the Bj ’s is sufficiently well-conditioned
and each Bj has a high numerical rank, then n ∝ p log2 n will ensure that the linear system is well-
conditioned with high probability. Our main application is probing linear operators with smooth
pseudodifferential symbols such as the wave equation Hessian in seismic imaging [L. Demanet et al.,
Appl. Comput. Harmonic Anal., 32 (2012), pp. 155–168]. We also demonstrate numerically that
matrix probing can produce good preconditioners for inverting elliptic operators in variable media.
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1. Introduction. The earliest randomized algorithms include Monte Carlo in-
tegration and Monte Carlo Markov chains [1]. These are standard techniques in
numerical computing with widespread applications from physics and econometrics to
machine learning. However, they are often seen as the methods of last resort, because
they are easy to implement but produce solutions of uncertain accuracy.

In the last few decades, a new breed of randomized algorithms has been developed
by the computer science community. These algorithms remain easy to implement and
have failure probabilities that are provably negligible. In other words, we have rigorous
theory to ensure that these algorithms perform consistently well. Moreover, their time
complexity can be as good as the most sophisticated deterministic algorithms, e.g.,
Karp–Rabin’s pattern matching algorithm [17] and Karger’s min-cut algorithm [16].

In recent years, equally attractive randomized algorithms are being developed in
the numerical community. For example, in compressed sensing [4], we can recover
sparse vectors with random measurement matrices and �1 minimization. Another
interesting example is that we can build a good low rank approximation of a matrix
by applying it to random vectors [14].

Our work carries a similar flavor: often, the matrix A can be approximated as
a linear combination of a small number of matrices and the idea is to obtain these
coefficients by applying A to a random vector or just a few of them. We call this
“forward matrix probing.” What is even more interesting is that we can also probe
for A−1 by applying A to a random vector. We call this “backward matrix probing”
for a reason that will be clear in section 1.5.
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172 JIAWEI CHIU AND LAURENT DEMANET

Due to approximation errors, the output of “backward probing,” denoted as C, is
only an approximate inverse. Nevertheless, as we will see in section 4, C serves very
well as a preconditioner for inverting A, and we believe that its performance could
match that of multigrid methods for elliptic operators in smooth media.

The idea of “matrix probing” is not new. For example, Chan and Resasco [6]
and Chan and Mathew [5] use the technique to approximate A with a sparse matrix.
Another example is the work by Pfander, Rauhut, and Tanner [21], where the same
idea is used in a way typical in compressed sensing. In the next section, we will see
that their setup is fundamentally different from ours.

1.1. Forward matrix probing. Let B = {B1, . . . , Bp}, where each Bj ∈ Cm×n

is called a basis matrix. Note that B is specified in advance. Let u be a Gaussian or
a Rademacher sequence, that is, each component of u is independent and is either a
standard normal variable or ±1 with equal probability.

Define the matrix L ∈ Cm×p such that its jth column is Bju. Let A ∈ Cm×n be
the matrix we want to probe and suppose A lies in the span of B. Say

A =

p∑
i=1

ciBi for some c1, . . . , cp ∈ C.

Observe that Au =
∑p

i=1 ci(Biu) = Lc. Given the vector Au, we can obtain the
coefficient vector c = (c1, . . . , cp)

T by solving the linear system

(1.1) Lc = Au.

In practice, A is not exactly in the span of a small B and (1.1) has to be solved
in a least squares sense, that is, c = L+(Au), where L+ is the pseudoinverse of L.

We will assume that p ≤ n. Otherwise there are more unknowns than equations
and there is no unique solution if there is any. This differs from the setup in [21],
where n� p but A is assumed to be a sparse linear combination of B1, . . . , Bp.

1.2. Conditioning of L. Whether (1.1) can be solved accurately depends on
cond(L), the condition number of L. This is the ratio between the largest and the
smallest singular values of L and can be understood as how different L can stretch or
shrink a vector.

Intuitively, whether cond(L) is small depends on the following two properties of B:
1. The Bi’s “act differently” in the sense that 〈Bj , Bk〉 � δjk for any 1 ≤ j, k ≤
p.1

2. EachBi has a high rank so thatB1u, . . . , Bpu ∈ Cn exist in a high dimensional
space.

When B possesses these two properties and p is sufficiently small compared to
n, it makes sense that L’s columns, B1u, . . . , Bpu, are likely to be independent, thus
guaranteeing that L is invertible, at least.

We now make the above two properties more precise. Let

(1.2) M = L∗L ∈ C
p×p and N = EM.

Clearly, cond(M) = cond(L)2. If EM is ill-conditioned, there is little chance that
M or L is well-conditioned. This can be related to Property 1 by observing that

(1.3) Njk = EMjk = Tr(Bj
∗Bk) = 〈Bj , Bk〉 .

1Note that 〈·, ·〉 is the Frobenius inner product and δjk is the Kronecker delta.
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MATRIX PROBING AND ITS CONDITIONING 173

If 〈Bj , Bk〉 � δjk, then the Gram matrix N is approximately the identity matrix
which is well-conditioned. Hence, a more quantitative way of putting Property 1 is
that we have control over κ(B) defined as follows.

Definition 1.1. Let B = {B1, . . . , Bp} be a set of matrices. Define its condition
number κ(B) as the condition number of the matrix N ∈ C

p×p, where Njk = 〈Bj , Bk〉.
On the other hand, Property 2 can be made precise by saying that we have control

over λ(B) as defined below.
Definition 1.2. Let A ∈ Cm×n. Define its weak condition number2 as

λ(A) =
‖A‖n1/2

‖A‖F
.

Let B be a set of matrices. Define its (uniform) weak condition number as

λ(B) = max
A∈B

λ(A).

We justify the nomenclature as follows. Suppose A ∈ Cn×n has condition number
k; then ‖A‖2F =

∑n
i=1 σ

2
i ≥ nσ2

min ≥ n‖A‖2/k2. Taking the square root, we obtain
λ(A) ≤ k. In other words, any well-conditioned matrix is also weakly well-conditioned.
And like the usual condition number, λ(A) ≥ 1 because we always have ‖A‖F ≤
n1/2‖A‖.

The numerical rank of a matrix A is ‖A‖2F/‖A‖2 = nλ(A)−2; thus having a small
λ(A) is the same as having a high numerical rank. We also want to caution the reader
that λ(B) is defined very differently from κ(B) and is not a weaker version of κ(B).

Using classical concentration inequalties, it was shown [9] that when λ(B) and
κ(B) are fixed, p = Õ(n1/2)3 will ensure that L is well-conditioned with high proba-
bility.

In this paper, we establish a stronger result, namely, that p = Õ(n) suffices. The
implication is that we can expect to recover Õ(n) instead of Õ(n1/2) coefficients. The
exact statement is presented below.

Theorem 1.3 (main result). Let C1, C2 > 0 be numbers given by Remark B.1 in
the appendix. Let B = {B1, . . . , Bp}, where each Bj ∈ Cm×n. Define L ∈ Cn×p such
that its jth column is Bju, where u is either a Gaussian or a Rademacher sequence.
Let M = L∗L, N = EM κ = κ(B), and λ = λ(B). Suppose

n ≥ p (Cκλ log n)
2
for some C ≥ 1.

Then

P

(
‖M −N‖ ≥ t ‖N‖

κ

)
≤ 2C2pn

1−α, where α =
tC

eC1
.

The number C1 is small. C2 may be large but it poses no problem because n−α

decays very fast with larger n and C. With t = 1/2, we deduce that with high
probability,

cond(M) ≤ 2κ+ 1.

In general, we let 0 < t < 1 and for the probability bound to be useful, we need
α > 2, which implies C > 2eC1 > 1. Therefore the assumption that C ≥ 1 in the
theorem can be considered redundant.

2Throughout the paper, ‖·‖ and ‖·‖F denote the spectral and Frobenius norms respectively.
3Note that Õ(n) denotes O(n logc n) for some c > 0. In other words, ignore log factors.
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We remark that Rauhut and Tropp have a new result (a Bernstein-like tail bound)
that may be used to refine the theorem. This will be briefly discussed in section 4.1,
where we conduct a numerical experiment.

Note that when u is a Gaussian sequence, M resembles a Wishart matrix for
which the distribution of the smallest eigenvalue is well-studied [11]. However, each
row of L is not independent, so results from random matrix theory cannot be used in
this way.

An intermediate result in the proof of Theorem 1.3 is the following. It conveys
the essence of Theorem 1.3 and may be easier to remember.

Theorem 1.4. Assume the same setup as in Theorem 1.3. Suppose n = Õ(p).
Then

E ‖M −N‖ ≤ C(log n) ‖N‖ (p/n)1/2λ for some C > 0.

A numerical experiment in section 4.1 suggests that the relationship between p
and n is not tight in the log factor. Our experiment shows that for E‖M −N‖/‖N‖ to
vanish as p→ ∞, n just needs to increase faster than p log(np), whereas Theorem 1.4
requires n to grow faster than p log2 n.

Next, we see that when L is well-conditioned, the error in the reconstruction is
also small.

Proposition 1.5. Assume the same setup as in Theorem 1.3. Suppose A =∑p
j=1 djBj + E, where ‖E‖ ≤ ε and assume with high probability

‖M −N‖ ≤ t ‖N‖
κ

for some 0 < t < 1.

Let c = L+Au be the recovered coefficients. Then with high probability∥∥∥∥∥∥A−
p∑

j=1

cjBj

∥∥∥∥∥∥ ≤ O

(
ελ

(
κp

1− t

)1/2
)
.

If ε = o(p−1/2), then the proposition guarantees that the overall error goes to
zero as p→ ∞. Of course, a larger n and more computational effort are required.

1.3. Multiple probes. Fix n and suppose p > n. L is not going to be well-
conditioned or even invertible. One way around this is to probe A with multiple
random vectors u1, . . . , uq ∈ Cn at one go, that is, to solve

L′c = A′u,

where the jth column of L′ and A′u is, respectively,⎛⎜⎝ Bju1
...

Bjuq

⎞⎟⎠ and

⎛⎜⎝ Au1
...

Auq

⎞⎟⎠ .

For this to make sense, A′ = Iq ⊗ A, where Iq is the identity matrix of size q.
Also define B′

j = Iq ⊗ Bj and treat the above as probing A′ assuming that it lies in
the span of B′ = {B′

1, . . . , B
′
p}.

Regarding the conditioning of L′, we can apply Theorem 1.3 to A′ and B′. It is an
easy exercise (cf. Proposition A.1) to see that the condition numbers are unchanged,
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that is, κ(B) = κ(B′) and λ(B) = λ(B′). Applying Theorem 1.3 to A′ and B′, we
deduce that cond(L) ≤ 2κ+ 1 with high probability provided that

nq ∝ p(κλ logn)2.

Remember that A has only mn degrees of freedom; while we can increase q
as much as we like to improve the conditioning of L, the problem setup does not
allow p > mn coefficients. In general, when A has rank ñ, its degrees of freedom is
ñ(m+ n− ñ) by considering its SVD.

1.4. When to probe. Matrix probing is an especially useful technique when
the following holds:

1. We know that the probed matrix A can be approximated by a small number
of basis matrices that are specified in advance. This holds for operators with
smooth pseudodifferential symbols, which will be studied in section 3.

2. Each matrix Bi can be applied to a vector in Õ(max(m,n)) time using only
Õ(max(m,n)) memory.

The second condition confers two benefits. First, the coefficients c can be recov-
ered fast, assuming that u and Au are already provided. This is because L can be
computed in Õ(max(m,n)p) time and (1.1) can be solved in O(mp2+p3) time by QR
factorization or other methods. In the case where increasing m,n does not require a
bigger B to approximate A, p can be treated as a constant and the recovery of c takes
only Õ(max(m,n)) time.

Second, given the coefficient vector c, A can be applied to any vector v by summing
over Biv’s in Õ(max(m,n)p) time . This speeds up iterative methods such as GMRES
and Arnoldi.

1.5. Backward matrix probing. A compelling application of matrix probing
is computing the pseudoinverse A+ of a matrix A ∈ Cm×n when A+ is known to be
well-approximated in the space of some B = {B1, . . . , Bp}. This time, we probe A+

by applying it to a random vector v = Au, where u is a Gaussian or Rademacher
sequence that we generate.

Like in section 1.1, define L ∈ Cn×p such that its jth column is Bjv = BjAu.
Suppose A+ =

∑p
i=1 ciBi for some c1, . . . , cp ∈ C. Then the coefficient vector c can

be obtained by solving

(1.4) Lc = A+v = A+Au.

The right-hand side is u projected onto null(A)⊥, where null(A) is the nullspace of
A. When A is invertible, A+Au is simply u. We call this “backward matrix probing”
because the generated random vector u appears on the opposite side of the matrix
being probed in (1.4). The equation suggests the following framework for probing A+.

Algorithm 1 (backward matrix probing). Suppose A+ =
∑p

i=1 ciBi. The goal
is to retrieve the coefficients c1, . . . , cp.

1. Generate u ∼ N(0, 1)n independently and identically distributed (iid).
2. Compute v = Au.
3. Filter away u’s components in null(A). Call this ũ.
4. Compute L by setting its j-column to Bjv.
5. Solve for c the system Lc = ũ in a least squares sense.

In order to perform the filtering in step 3 efficiently, prior knowledge of A may
be needed. For example, if A is the Laplacian with periodic boundary conditions,
its nullspace is the set of constant functions and step 3 amounts to subtracting the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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mean from u. A more involved example can be found in [9]. In this paper, we invert
the wave equation Hessian, and step 3 entails building an illumination mask. Further
comments on [9] are located in section 4.5 of this paper.

For the conditioning of L, we may apply Theorem 1.3 with B replaced with
BA := {B1A, . . . , BpA} since the jth column of L is now BjAu. Of course, κ(BA) and
λ(BA) can be very different from κ(B) and λ(B); in fact, κ(BA) and λ(BA) seem much
harder to control because it depends on A. Fortunately, as we shall see in section 3.5,
knowing the “order” of A+ as a pseudodifferential operator helps in keeping these
condition numbers small.

When A has a high dimensional nullspace but has comparable nonzero singular
values, λ(BA) may be much larger than is necessary. By a change of basis, we can
obtain the following tighter result.

Corollary 1.6. Let C1, C2 > 0 be numbers given by Remark B.1 in the appendix.
Let A ∈ Cm×n, ñ = rank(A), and BA = {B1A, . . . , BpA}, where each Bj ∈ Cn×m.
Define L ∈ Cn×p such that its jth column is BjAu, where u ∼ N(0, 1)n iid. Let
M = L∗L, N = EM , κ = κ(BA), and λ = (ñ/n)1/2λ(BA). Suppose

ñ ≥ p (Cκλ log ñ)2 for some C ≥ 1.

Then

P

(
‖M −N‖ ≥ t ‖N‖

κ

)
≤ (2C2p)ñ

1−α, where α =
tC

eC1
.

Notice that ñ = rank(A) has taken the role of n, and our λ is now max1≤j≤p

ñ1/2‖BjA‖
‖BjA‖F

, which ignores the n− ñ zero singular values of each BjA and can be much

smaller than λ(BA).

2. Proofs.

2.1. Proof of Theorem 1.3. Our proof is decoupled into two components:
one linear algebraic and one probabilistic. The plan is to collect all the results that
are linear algebraic, deterministic in nature, then appeal to a probabilistic result
developed in the appendix.

To facilitate the exposition, we use a different notation for this section. We
use lowercase letters as superscripts that run from 1 to p and Greek symbols as
subscripts that run from 1 to n or m. For example, the set of basis matrices is now
B = {B1, . . . , Bp}.

Our linear algebraic results concern the following variables:
1. Let T jk = Bj∗Bk ∈ Cn×n and Tξη ∈ Cp×p such that the (j, k)th entry of Tξη

is the (ξ, η)th entry of T jk.
2. Let Q =

∑
1≤ξ,η≤n T

∗
ξηTξη.

3. Let S =
∑p

j=1 B
jBj∗ ∈ Cm×m.

4. Let F and G be block matrices (Tξη)1≤ξ,η≤n and (T ∗
ξη)1≤ξ,η≤n, respectively.

The reason for introducing T is thatM can be written as a quadratic form in Tξη
with input u:

M =
∑

1≤ξ,η≤n

uξuηTξη.

Since uξ has unit variance and zero mean, N = EM =
∑n

ξ=1 Tξξ.
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Probabilistic inequalties applied to M will involve Tξη, which must be related to
B. The connection between these n by n matrices and p by p matrices lies in the
identity

(2.1) T jk
ξη =

m∑
ζ=1

Bj
ζξB

k
ζη.

The linear algebraic results are contained in the following propositions.
Proposition 2.1. For any 1 ≤ ξ, η ≤ n,

Tξη = T ∗
ηξ.

Hence, Tξξ, N are all Hermitian. Moreover, they are positive semidefinite.
Proof. Showing that Tξη = T ∗

ηξ is straightforward from (2.1). We now check that

Tξξ is positive semidefinite. Let v ∈ Cp. By (2.1), v∗Tξξv =
∑

ζ

∑
jk v

jvkBj
ζξB

k
ζξ =∑

ζ |
∑

k v
kBk

ζξ|2 ≥ 0. It follows that N =
∑

ξ Tξξ is also positive semidefinite.
Proposition 2.2.

Qjk = Tr(Bj∗SBk) and Q =
∑

1≤ξ,η≤n

TξηT
∗
ξη.

Proof. By (2.1), Qjk =
∑

l〈T lj, T lk〉 =
∑

l Tr(B
j∗BlBl∗Bk). The summation

and trace commute to give us the first identity. Similarly, the (j, k)th entry of∑
ξη TξηT

∗
ξη is

∑
l〈T kl, T jl〉 =

∑
l Tr(B

l∗BkBj∗Bl). Cycle the terms in the trace

to obtain Qjk.
Proposition 2.3. Let u ∈ Cp be a unit vector. Define U =

∑p
k=1 u

kBk ∈ Cm×n.
Then

‖U‖2F ≤ ‖N‖ .
Proof. ‖U‖2F = Tr(U∗U) = Tr(

∑
jk u

jukBj∗Bk). The sum and trace commute

and due to (1.3), ‖U‖2F =
∑

jk u
jukN jk ≤ ‖N‖.

Proposition 2.4.

‖Q‖ ≤ ‖S‖ ‖N‖ .
Proof. Q is Hermitian, so ‖Q‖ = maxu u

∗Qu, where u ∈ Cp has unit norm. Now
let u be an arbitrary unit vector and define U =

∑p
k=1 u

kBk. By Proposition 2.2,

u∗Qu =
∑

jk u
jukQjk = Tr(

∑
jk u

jukBj∗SBk) = Tr(U∗SU). Since S is positive
definite, it follows from ‖AB‖F ≤ ‖A‖‖B‖F that u∗Qu = ‖S1/2U‖2F ≤ ‖S‖‖U‖2F . By
Proposition 2.3, u∗Qu ≤ ‖S‖‖N‖.

Proposition 2.5. For any 1 ≤ j ≤ p,∥∥Bj
∥∥ ≤ λn−1/2 ‖N‖1/2 .

It follows that

‖Q‖ =

∥∥∥∥∥∥
∑
ξη

TξηT
∗
ξη

∥∥∥∥∥∥ ≤ pλ2 ‖N‖2 /n.

Proof. We begin by noting that ‖N‖ ≥ maxj |N jj | = maxj〈Bj , Bj〉 = maxj ‖Bj‖2F .
From Definition 1.2, ‖Bj‖ ≤ λn−1/2‖Bj‖F ≤ λn−1/2‖N‖1/2 for any 1 ≤ j ≤ p, which
is our first inequality. It follows that ‖S‖ ≤∑p

j=1 ‖Bj‖2 ≤ pλ2‖N‖/n. Apply Propo-
sitions 2.4 and 2.2 to obtain the second inequality.
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Proposition 2.6. F,G are Hermitian, and

max(‖F‖ , ‖G‖) ≤ λ2 ‖N‖ (p/n).
Proof. That F,G are Hermitian follows from Proposition 2.1. Define F ′ =

(T jk) another block matrix. Since reindexing the rows and columns of F does
not change its norm, ‖F‖ = ‖F ′‖. By Proposition 2.5, ‖F ′‖2 ≤ ∑p

j,k=1 ‖T jk‖2 ≤∑p
j,k=1 ‖Bj‖2‖Bk‖2 ≤ λ4‖N‖2(p/n)2. The same argument works for G.
We now combine the above linear algebraic results with a probabilistic result in

Appendix B. Prepare to apply Proposition B.6 with Aij replaced with Tξη. Note that
R =

∑
ξη TξηT

∗
ξη = Q by Proposition 2.2. Bound σ using Propositions 2.5 and 2.6:

σ = C1 max(‖Q‖1/2 , ‖R‖1/2 , ‖F‖ , ‖G‖)
≤ C1 ‖N‖max((p/n)1/2λ, (p/n)λ2)

≤ C1 ‖N‖ (p/n)1/2λ.
The last step goes through because our assumption on n guarantees that (p/n)1/2λ ≤
1. Finally, apply Proposition B.6 with t‖N‖/κ = eσu. The proof is complete.

2.2. Sketch of the proof for Theorem 1.4. Follow the proof of Proposi-
tion B.6. Letting s = logn, we obtain

E ‖M −N‖ ≤ (E ‖M −N‖s)1/s

≤ C1(2C2np)
1/ssmax(‖Q‖1/2 , ‖R‖1/2 , ‖F‖ , ‖G‖)

≤ C(log n) ‖N‖ (p/n)1/2λ.
2.3. Proof of Proposition 1.5. Recall that A is approximately the linear com-

bination
∑p

j=1 d
jBj , while

∑p
j=1 c

jBj is the recovered linear combination. We shall
first show that the recovered coefficients c is close to d:

‖d− c‖ =
∥∥L+Au− c

∥∥
=
∥∥L+(Lc+ Eu)− c

∥∥
=
∥∥L+Eu

∥∥
≤ ε ‖u‖

(
κ

(1 − t) ‖N‖
)1/2

.

Let v be a unit n-vector. Let L′ be a n× p matrix such that its jth column is Bjv.
Now,

Av −
p∑

j=1

cjBjv = (L′d+ Ev)− L′c = Ev + L′(d− c).

Combining the two equations, we have

(2.2)

∥∥∥∥∥∥A−
p∑

j=1

cjBj

∥∥∥∥∥∥ ≤ ε+ ε ‖L′‖ ‖u‖
(

κ

(1 − t) ‖N‖
)1/2

.

With overwhelming probability, ‖u‖ = O(
√
n). The only term left that needs to

be bounded is ‖L′‖. This turns out to be easy because ‖Bj‖ ≤ λn−1/2‖N‖1/2 by
Proposition 2.5 and

‖L′‖2 ≤
p∑

j=1

∥∥Bjv
∥∥2 ≤ λ2 ‖N‖ p/n.

Substitute this into (2.2) to finish the proof.
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2.4. Proof of Corollary 1.6. Let u ∼ N(0, 1)n iid. Say A has a singular
value decomposition EΛF ∗, where Λ is diagonal. Do a change of basis by letting
u′ = F ∗u ∼ N(0, 1)n iid, B′

j = F ∗BjE, and B′
Λ = {B′

1Λ, . . . , B
′
pΛ}. Equation (1.1) is

reduced to L′c = Λu′, where the jth column of L′ is B′
jΛu

′.
Since Frobenius inner products ‖·‖ and ‖·‖F are all preserved under unitary trans-

formations, it is clear that κ(B′
Λ) = κ(BA) and λ(B′

Λ) = λ(BA). Essentially, for our
purpose here, we may pretend that A = Λ.

Let ñ = rank(A). If A has a large nullspace, i.e., ñ � min(m,n), then B′
jΛ

has n− ñ columns of zeros and many components of u′ are never transmitted to the
B′

j ’s anyway. We may therefore truncate the length of u′ to ñ, let B̃j ∈ Cn×ñ be
B′

jΛ with its columns of zeros chopped away, and apply Theorem 1.3 with B replaced

with B̃ := {B̃1, . . . , B̃p}. Observe that κ(B̃) = κ(B′
Λ), whereas λ(B̃) = (ñ/n)1/2λ(B′

Λ)

because ‖B̃j‖F = ‖B′
jΛ‖F and ‖B̃j‖ = ‖B′

jΛ‖ but B̃j has ñ instead of n columns.
The proof is complete.

3. Probing operators with smooth symbols.

3.1. Basics and assumptions. We begin by defining what a pseudodifferential
symbol is.

Definition 3.1. Every linear operator A is associated with a pseudodifferential
symbol a(x, ξ) such that for any u : Rd → R,

(3.1) Au(x) =

∫
ξ∈Rd

e2πiξ·xa(x, ξ)û(ξ)dξ,

where û is the Fourier transform of u, that is, û(ξ) =
∫
x∈Rd u(x)e

−2πiξ·xdx.
We refrain from calling A a “pseudodifferential operator” at this point because its

symbol has to satisfy some additional constraints that will be covered in section 3.5.
What is worth noting here is the Schwartz kernel theorem, which shows that every
linear operatorA : S(Rd) → S ′(Rd) has a symbol representation as in (3.1) and in that
integral, a(x, ξ) ∈ S ′(Rd × Rd) acts as a distribution. Recall that S is the Schwartz
space and S ′ is its dual or the space of tempered distributions. The interested reader
may refer to [12] or [25] for a deeper discourse.

The term “pseudodifferential” arises from the fact that differential operators have
very simple symbols. For example, the Laplacian has the symbol a(x, ξ) = −4π2‖ξ‖2.
Another example is

Au(x) = u(x)−∇ · α(x) gradu(x) for some α(x) ∈ C1(Rd).

Its symbol is

(3.2) a(x, ξ) = 1 + α(x)(4π2 ‖ξ‖2)−
d∑

k=1

(2πiξk)∂xk
α(x).

Clearly, if the media α(x) is smooth, so is the symbol a(x, ξ) smooth in both x and
ξ, an important property which will be used in section 3.3.

For practical reasons, we make the following assumptions about u : Rd → R on
which symbols are applied:

1. u is periodic with period 1, so only ξ ∈ Zd will be considered in the Fourier
domain.

2. u is bandlimited, say, û is supported on Ξ := [−ξ0, ξ0]d ⊆ Zd. Any summation
over the Fourier domain is by default over Ξ.4

4To have an even number of points per dimension, one can use Ξ = [−ξ0, ξ0 − 1]d, for example.
We leave this generalization to the reader and continue to assume ξ ∈ [−ξ0, ξ0]d.
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3. a(x, ξ) and u(x) are only evaluated at x ∈ X ⊂ [0, 1]d which are points
uniformly spaced apart. Any summation over x is by default over X .

Subsequently, (3.1) reduces to a discrete and finite form:

(3.3) Au(x) =
∑
ξ∈Ξ

e2πiξ·xa(x, ξ)û(ξ).

We like to call a(x, ξ) a “discrete symbol.” Some tools are already available for
manipulating such symbols [10].

3.2. User friendly representations of symbols. Given a linear operator A,
it is useful to relate its symbol a(x, ξ) to its matrix representation in the Fourier
basis. This helps us understand the symbol as a matrix and also exposes easy ways of
computing the symbols of A−1, A∗, and AB using standard linear algebra software.

By a matrix representation (Aηξ) in Fourier basis, we mean of course that Âu(η) =∑
ξ Aηξû(ξ) for any η. We also introduce a more compact form of the symbol:

â(j, ξ) =
∫
x a(x, ξ)e

−2πij·xdx. The next few results are pedagogical and listed for
future reference.

Proposition 3.2. Let A be a linear operator with symbol a(x, ξ). Let (Aηξ) and
â(j, ξ) be as defined above. Then

Aηξ =

∫
x

a(x, ξ)e−2πi(η−ξ)xdx; a(x, ξ) = e−2πiξx
∑
η

e2πiηxAηξ;

Aηξ = â(η − ξ, ξ); â(j, ξ) = Aj+ξ,ξ .

Proof. Let η = ξ + j and apply the definitions.
Proposition 3.3 (trace). Let A be a linear operator with symbol a(x, ξ). Then

Tr(A) =
∑
ξ

â(0, ξ) =
∑
ξ

∫
x

a(x, ξ)dx.

Proposition 3.4 (adjoint). Let A and C = A∗ be linear operators with symbols
a(x, ξ), c(x, ξ). Then

ĉ(j, ξ) = â(−j, j + ξ); c(x, ξ) =
∑
η

∫
y

a(y, η)e2πi(η−ξ)(x−y)dy.

Proposition 3.5 (composition). Let A,B, and C = AB be linear operators with
symbols a(x, ξ), b(x, ξ), c(x, ξ). Then

ĉ(j, ξ) =
∑
ζ

â(j + ξ − ζ, ζ)b̂(ζ − ξ, ξ);

c(x, ξ) =
∑
ζ

∫
y

e2πi(ζ−ξ)(x−y)a(x, ζ)b(y, ξ)dy.

We leave it to the reader to verify the above results.

3.3. Symbol expansions. The idea is that when a linear operator A has a
smooth symbol a(x, ξ), only a few basis functions are needed to approximate a, and
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correspondingly only a small B is needed to represent A. This is not new; see, for
example, [10]. In this paper, we consider the separable expansion

a(x, ξ) =
∑
jk

cjkej(x)gk(ξ).

This is the same as expanding A as
∑

jk cjkBjk, where the symbol for Bjk is
ej(x)gk(ξ). With an abuse of notation, let Bjk also denote its matrix representation
in Fourier basis. Given our assumption that ξ ∈ [−ξ0, ξ0]d, we have Bjk ∈ C

n×n,
where n = (2ξ0 + 1)d. As its symbol is separable, Bjk can be factorized as

(3.4) Bjk = F diag(ej(x))F−1 diag(gk(ξ)),

where F is the unitary Fourier matrix. An alternative way of viewing Bjk is that it
takes its input û(ξ), multiplies it by gk(ξ), and convolves it with êj(η), the Fourier

transform of ej(x). There is also an obvious algorithm to apply Bjk to u(x) in Õ(n)
time as outlined below. As mentioned in section 1.4, this speeds up the recovery of
the coefficients c and makes matrix probing a cheap operation.

Algorithm 2. Given vector u(x), apply the symbol ej(x)gk(ξ).
1. Perform FFT on u to obtain û(ξ).
2. Multiply û(ξ) by gk(ξ) elementwise.
3. Perform inverse FFT on the previous result, obtaining

∑
ξ e

2πiξ·xgk(ξ)û(ξ).
4. Multiply the previous result by ej(x) elementwise.

Recall that for L to be well-conditioned with high probability, we need to check
whether N , as defined in (1.3), is well-conditioned or in a rough sense whether
〈Bj , Bk〉 � δjk. For separable symbols, this inner product is easy to compute.

Proposition 3.6. Let Bjk, Bj′k′ ∈ Cn×n be matrix representations (in Fourier
basis) of linear operators with symbols ej(x)gk(ξ) and ej′(x)gk′ (ξ). Then

〈Bjk, Bj′k′〉 = 〈ej, ej′〉 〈gk, gk′〉 ,
where 〈ej , ej′〉 = 1

n

∑n
i=1 ej(xi)ej′(xi) and x1, . . . , xn are points in [0, 1]d uniformly

spaced, and 〈gk, gk′〉 =∑ξ gk(ξ)gk(ξ).
Proof. Apply Propositions 3.3, 3.4, and 3.5 with the symbols in the â(η, ξ)

form.
To compute λ(B) as in Definition 1.2, we examine the spectrum of Bjk for every

j, k. A simple and relevant result is as follows.
Proposition 3.7. Assume the same setup as in Proposition 3.6. Then

σmin(Bjk) ≥ min
x

|ej(x)|min
ξ

|gk(ξ)|; σmax(Bjk) ≤ max
x

|ej(x)|max
ξ

|gk(ξ)|.

Proof. In (3.4), F diag(ej(x))F−1 has singular values |ej(x)| as x varies over X ,
defined at the end of section 3.1. The result follows from the min-max theorem.

As an example, suppose a(x, ξ) is smooth and periodic in both x and ξ. It is
well-known that a Fourier series is a good expansion scheme because the smoother
a(x, ξ) is as a periodic function in x, the faster its Fourier coefficients decay, and less
is lost when we truncate the Fourier series. Hence, we pick5

(3.5) ej(x) = e2πij·x; gk(ξ) = e2πik·ϕ(ξ),

where ϕ(ξ) = (ξ + ξ0)/(2ξ0 + 1) maps ξ into [0, 1]d.

5Actually, exp(2πikξ0/(2ξ0 + 1)) does not vary with ξ, and we can use ϕ(ξ) = ξ/(2ξ0 + 1).
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Due to Proposition 3.6, N = EM is a multiple of the identity matrix and κ(B) = 1,
where B = {Bjk}. It is also immediate from Proposition 3.7 that λ(Bjk) = 1 for
every j, k, and λ(B) = 1. The optimal condition numbers of this B make it suitable
for matrix probing.

3.4. Chebyshev expansion of symbols. The symbols of differential operators
are polynomials in ξ and nonperiodic. When probing these operators, a Chebyshev
expansion in ξ is in principle favored over a Fourier expansion, which may suffer from
the Gibbs phenomenon. However, as we shall see, κ(B) grows with p and can lead to
ill-conditioning.

For simplicity, assume that the symbol is periodic in x and that ej(x) = e2πij·x.
Applying Proposition 3.2, we see that Bjk is a matrix with a displaced diagonal and
its singular values are (gk(ξ))ξ∈Ξ. (Recall that we denote the matrix representation
(in Fourier basis) of Bjk as Bjk as well.)

Let Tk be the kth Chebyshev polynomial. In one dimension, we can pick

(3.6) gk(ξ) = Tk(ξ/ξ0) for k = 1, . . . ,K.

Define ‖Tk‖2 = (
∫ 1

z=−1
Tk(z)

2dz)1/2. By approximating sums with integrals,

λ(Bjk) �
√
2‖Tk‖−1

2 = (4k
2−1

2k2−1 )
1/2. Notice that there is no (1− z2)−1/2 weight factor

in the definition of ‖Tk‖2 because ej(x)Tk(ξ) is treated as a pseudodifferential symbol
and has to be evaluated on the uniform grid. In practice, this approximation becomes
very accurate with larger n and we see no need to be rigorous here. As k increases,
λ(Bjk) approaches

√
2. More importantly, λ(Bjk) ≤ λ(Bj1) for any j, k, so

λ(B) =
√
3.

Applying the same technique to approximate the sum 〈gk, gk′〉, we find that
〈gk, gk′〉 ∝ (1− (k+k′)2)−1+(1− (k−k′)2)−1 when k+k′ is even and zero otherwise.
We then compute N = EM for various K and plot κ(B) versus K, the number of
Chebyshev polynomials. As shown in Figure 3.1(a),

κ(B) � 1.3K.

This means that if we expect to recover p = Õ(n) coefficients, we must keep K
fixed. Otherwise, if p = K2, only p = Õ(n1/2) are guaranteed to be recovered by
Theorem 1.3.

In two dimensions, a plausible expansion is

(3.7) gk(ξ) = eik1 arg ξTk2(ϕ(‖ξ‖)) for 1 ≤ k2 ≤ K,

where k = (k1, k2) and ϕ(r) = (
√
2r/ξ0) − 1 maps ‖ξ‖ into [−1, 1]. We call this the

“Chebyshev on a disk” expansion.

The quantity λ(Bjk) is approximately 2(
∫ 1

x=−1

∫ 1

y=−1 Tk(ψ(x, y))
2dx dy)−1/2, where

ψ(x, y) = (2x2 + 2y2)1/2 − 1. The integral is evaluated numerically and appears to
converge6 to

√
2 for large k2. Also, k2 = 1 again produces the worst λ(Bjk) and

λ(B) ≤ 2.43.7

6This is because when we truncate the disk of radius ξ0
√
2 to a square of length 2ξ0, most is lost

along the vertical axis and away from the diagonals. However, for large k, Tk oscillates very much
and the truncation does not matter. If we pretend that the square is a disk, then we are back in the
one-dimensional (1D) case where the answer approaches

√
2 for large k.

7The exact value is 2(4− 8
3

√
2 sinh−1(1))−1/2 .
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Fig. 3.1. Let K be the number of Chebyshev polynomials used in the expansion of the symbol;
see (3.6) and (3.7). Observe that in one dimension, κ(B) = O(K), while in two dimensions, κ(B) =
O(K3). These condition numbers mean that we cannot expect to retrieve p = Õ(n) parameters
unless K is fixed and independent of p, n.

As for κ(B), observe that when k1 �= k′1, 〈gk1k2 , gk′
1k

′
2
〉 = ±1 due to symmetry,8

whereas when k1 = k′1, the inner product is proportional to n and is much larger.
As a result, the gk’s with different k1’s hardly interact and in studying κ(B), one
may assume that k1 = k′1 = 0. To improve κ(B), we can normalize gk such that the
diagonal entries of N are all ones, that is g′k(ξ) = gk(ξ)/‖gk(ξ)‖.

This yields another set of basis matrices B′. Figure 3.1(b) reveals that

κ(B) = O(K3) and κ(B′) � κ(B).

The latter can be explained as follows: we saw earlier that 〈Bjk, Bjk〉 converges
as k2 increases, so the diagonal entries of N are about the same and the normalization
is only a minor correction.

If a(x, ξ) is expanded using the same number of basis functions in each direction of
x and ξ, i.e., K = p1/4, then Theorem 1.3 suggests that only p = Õ(n2/5) coefficients
can be recovered.

To recap, for both one and two dimensions, λ(B) is a small number but κ(B)
increases with K. Fortunately, if we know that the operator being probed is a second
order derivative, for example, we can fix K = 2.

Numerically, we have observed that the Chebyshev expansion can produce dra-
matically better results than the Fourier expansion of the symbol. More details can
be found in section 4.3.

3.5. Order of an operator. In standard texts, A is said to be a pseudodif-
ferential operator of order w if its symbol a(x, ξ) is in C∞(Rd × Rd) and for any
multi-indices α, β there exists a constant Cαβ such that

|∂αξ ∂βxa(x, ξ)| ≤ Cαβ 〈ξ〉w−|α|
for all ξ, where 〈ξ〉 = 1 + ‖ξ‖ .

8The ξ and −ξ terms cancel each other. Only ξ = 0 contributes to the sum.
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Letting α = β = 0, we see that such operators have symbols that grow or decay
as (1 + ‖ξ‖)w. As an example, the Laplacian is of order 2. The factor 1 prevents 〈ξ〉
from blowing up when ξ = 0. There is nothing special about it and if we take extra
care when evaluating the symbol at ξ = 0, we can use

〈ξ〉 = ‖ξ‖ .
For forward matrix probing, if it is known a priori that a(x, ξ) behaves like 〈ξ〉w,

it makes sense to expand a(x, ξ) 〈ξ〉−w
instead. Another way of viewing this is that

the symbol of the operator Bjk is modified from ej(x)gk(ξ) to ej(x)gk(ξ) 〈ξ〉w to suit
A better.

For backward matrix probing, if A is of order z, then A−1 is of order −z and we
should replace the symbol of Bjk with ej(x)gk(ξ) 〈ξ〉−w. We believe that this small
correction has an impact on the accuracy of matrix probing, as well as the condition
numbers κ(BA) and λ(BA).

Recall that an element of BA is BjkA. If A is of order w and Bjk is of order 0,
then BjkA is of order w and λ(BjkA) will grow with nw, which will adversely affect
the conditioning of matrix probing. However, by multiplying the symbol of Bjk by

〈ξ〉−w
, we can expect BjkA to be order 0 and that λ(BjkA) is independent of the

size of the problem n. The argument is heuristical but we will support it with some
numerical evidence in section 4.3.

4. Numerical examples. We carry out four different experiments. The first
experiment suggests that Theorem 1.4 is not tight. The second experiment presents
the output of backward probing in a visual way. In the third experiment, we explore
the limitations of backward probing and also tests the Chebyshev expansion of sym-
bols. The last experiment involves the forward probing of the foveation operator,
which is related to human vision.

4.1. 1D statistical study. We are interested in whether the probability bound
in Theorem 1.3 is tight with respect to p and n, but as the tail probabilities are small
and hard to estimate, we opt to study the first moment instead. In particular, if
Theorem 1.4 captures exactly the dependence of E‖M −N‖/‖N‖ on p and n, then
we would need n to grow faster than p log2 n for E‖M −N‖/‖N‖ to vanish, assuming
λ(B) is fixed.

For simplicity, we use the Fourier expansion of the symbol in one dimension so
that λ(B) = κ(B) = 1. Let J be the number of basis functions in both x and ξ and
p = J2. Figure 4.1(a) suggests that E‖M −N‖/‖N‖ decays to zero when n = p logc p
and c > 1. It follows from the previous paragraph that Theorem 1.4 cannot be tight.

Nevertheless, Theorem 1.4 is optimal in the following sense. Imagine a more
general bound

(4.1) E
‖M −N‖

‖N‖ ≤ (logα n)
( p
n

)β
for some α, β > 0.

In Figure 4.2(a), we see that for various values of p/n, α = 1 since the graphs
are linear. On the other hand, if we fix p and vary n, the log-log graph of Figure
4.2(b) shows that β = 1/2. Therefore, any bound in the form of (4.1) is no better
than Theorem 1.4.

Next, we fix p = 25, n = 51 and sample ‖M −N‖/‖N‖ many times to esti-
mate the tail probabilities. In Figure 4.1(b), we see that the tail probability of
P (‖M −N‖/‖N‖ > t) decays as exp(−c1t) when t is big and as exp(−c2t2) when t
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Fig. 4.1. Consider the Fourier expansion of the symbol. J is the number of basis functions
in x and ξ, so p = J2. Let n = p logc p. Figure (a) shows that the estimated E‖M −N‖/‖N‖
decays for c ≥ 1.1, which suggests that Theorem 1.4 is not tight. In figure (b), we estimate
P (‖M −N‖/‖N‖ > t) by sampling ‖M −N‖/‖N‖ 105 times. The tail probability appears to be
subgaussian for small t and subexponential for larger t.
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Fig. 4.2. Consider bounding E‖M −N‖/‖N‖ by (logα n)(p/n)β . There is little loss in replacing
logn with log p in the simulation. In figure (a), the estimated E‖M −N‖/‖N‖ depends linearly on
log p, so α ≥ 1. In figure (b), we fix p and find that for large n, β = 1/2. The conclusion is that the
bound in Theorem 1.4 has the best α, β.

is small for some positive numbers c1, c2. This behavior may be explained by Rauhut
and Tropp’s not yet published result.

4.2. Elliptic equation in one dimension. We find it instructive to consider
a 1D example of matrix probing because it is easy to visualize the symbol a(x, ξ).
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Fig. 4.3. Let A be the 1D elliptic operator in (4.2) and A+ be its pseudoinverse. Let C be the
output of backward matrix probing with the following parameters: q is the number of random vectors
applied to A+; J,K are the number of ej’s and gk’s used to expand the symbol of A+ in equation
(3.5). Figure (a) is the symbol of A+. Figure (b) is the symbol of C with J = K = 5. It lacks the
sharp features of figure (a) because B is too small to represent A+ well. With J = K = 13, probing
with only one random vector leads to ill-conditioning and an inaccurate result in figure (b). In figure
(c), four random vectors are used and a much better result is obtained. Note that the symbols are
multipled by 〈ξ〉3 for better visual contrast.

Consider the operator

(4.2) Au(x) = − d

dx
α(x)

du(x)

dx
, where α(x) = 1 + 0.4 cos(4πx) + 0.2 cos(6πx).

Note that we use periodic boundaries and A is positive semidefinite with a 1D
nullspace consisting of constant functions.

We probe for A+ using Algorithm 1 and the Fourier expansion of its symbol or
(3.5). Since A is of order 2, we premultiply gk(ξ) by 〈ξ〉−2

as explained in section 3.5.
In the experiment, n = 201 and there are two other parameters J,K which are

the number of ej’s and gk’s used in (3.5). To be clear, −J−1
2 ≤ j ≤ J−1

2 and

−K−1
2 ≤ k ≤ K−1

2 .
Let C be the output of matrix probing. In Figure 4.3(b), we see that J = K = 5

is not enough to represent A+ properly. This is expected because our media α(x) has
a bandwidth of 7. We expect J = K = 13 to do better, but the much larger p leads
to overfitting and a poor result, as is evident from the wobbles in the symbol of C in
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Fig. 4.4. Let A be the operator defined in (4.3) and C be the output of backward probing. In
figure (b), we fix T = 104 and find that as J goes from 2γ − 1 to 2γ + 1, the bandwidth of the
media, the quality of the preconditioner C improves by a factor between 100.5 and 10. In figure (a),
we fix γ = 2 and find that increasing the contrast worsens cond(CA)/cond(A). Nevertheless, the
improvement between J = 3 and J = 5 becomes more distinct. The error bars correspond to σ̂,
where σ̂2 is the estimated variance. They indicate that C is not just good on average but good with
high probability.

Figure 4.3(c). Probing with four random vectors, we obtain a much better result, as
shown in Figure 4.3(d).

4.3. Elliptic equation in two dimensions. In this section, we extend the
previous setup to two dimensions and address a different set of questions. Consider
the operator A defined as

(4.3) Au(x) = −∇ · α(x)∇u(x) where α(x) = 1

T
+ cos2(πγx1) sin

2(πγx2).

The positive value T is called the contrast while the positive integer γ is the
roughness of the media, since the bandwidth of α(x) is 2γ + 1. Again, we assume
periodic boundary conditions such that A’s nullspace is exactly the set of constant
functions.

Let C be the output of the backward probing of A. As we shall see, the quality
of C drops as we increase the contrast T or the roughness γ.

Fix n = 1012 and expand the symbol using (3.5). Let J = K be the number
of basis functions used to expand the symbol in each of its four dimensions, that is,
p = J4.

In Figure 4.4(b), we see that between J = 2γ − 1 and J = 2γ+1, the bandwidth
of the media, there is a marked improvement in the preconditioner, as measured by
the ratio cond(CA)/cond(A).9

On the other hand, Figure 4.4(a) shows that as the contrast increases, the pre-
conditioner C degrades in performance, but the improvement between J = 2γ−1 and
2γ + 1 becomes more pronounced.

9Since A has one zero singular value, cond(A) actually refers to the ratio between its largest
singular value and its second smallest singular value. The same applies to CA.
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Fig. 4.5. Consider the backward probing of A in (4.3), a pseudodifferential oeprator of order 2.
Perform order correction by multiplying gk(ξ) by 〈ξ〉q in the expansion of the symbol. See section 3.5.
Observe that at q = −2, the condition numbers λ(BA) and κ(BA) are minimized and hardly grow
with n.

The error bars in Figure 4.4 are not error margins but σ̂, where σ̂2 is the unbiased
estimator of the variance. They indicate that cond(CA)/cond(A) is tightly concen-
trated around its mean, provided J is not too much larger than is necessary. For
instance, for γ = 1, J = 3 already works well, but pushing to J = 9 leads to greater
uncertainty.

Next, we consider forward probing ofA using the “Chebyshev on a disk” expansion
or (3.7). Let m be the order correction, that is, we multiply gk(ξ) by 〈ξ〉m = ‖ξ‖m.
Let C be the output of the probing and K be the number of Chebyshev polynomials
used.

Fix n = 552, T = 10, γ = 2, and J = 5. For m = 0 and K = 3, i.e., no order
correction and using up to quadratic polynomials in ξ, we obtain a relative error
‖C −A‖/‖A‖ that is less than 10−14. On the other hand, using Fourier expansion,
with K = 5 in the sense that −K−1

2 ≤ k1, k2 ≤ K−1
2 , the relative error is on the

order of 10−1. The point is that in this case, A has an exact “Chebyshev on a disk”
representation and probing using the correct B enables us to retrieve the coefficients
with negligible errors.

Finally, we consider backward probing with the Chebyshev expansion. We use
J = 5, γ = 2, and T = 10. Figure 4.5 shows that when m = −2, the condition
numbers λ(BA) and κ(BA) are minimized and hardly increase with n. This emphasizes
the importance of knowing the order of the operator being probed.

4.4. Foveation. In this section, we forward probe for the foveation operator, a
space-variant imaging operator [7], which is particularly interesting as a model for
human vision. Formally, we may treat the foveation operator A as a Gaussian blur
with a width or standard deviation that varies over space, that is,

(4.4) Au(x) =

∫
R2

K(x, y)u(y)dy where K(x, y) =
1

w(x)
√
2π

exp

(
−‖x− y‖2
2w2(x)

)
,

where w(x) is the width function which returns only positive real numbers.
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Fig. 4.6. Let A be the foveation operator in (4.4) and C be the output of the forward probing
of A. Figure (a) is the test image z. Figure (b) is Cz and shows that C behaves like the foveation
operator as expected. Figure (c) shows that the relative �2 error (see text) decreases exponentially
with the number of parameters p = J4.

The resolution of the output image is highest at the point where w(x) is minimal.
Call this point x0. It is the point of fixation, corresponding to the center of the fovea.
For our experiment, the width function takes the form of w(x) = (α‖x− x0‖2+β)1/2.
Our images are 201 × 201 and treated as functions on the unit square. We choose
x0 = (0.5, 0.5) and α, β > 0 such that w(x0) = 0.003 and w(1, 1) = 0.012.

The symbol of A is a(x, ξ) = exp(−2π2w(x)2‖ξ‖2), and we choose to use a Fourier
series or (3.5) for expanding it. Let C be the output of matrix probing and z be a stan-
dard test image. Figure 4.6(c) shows that the relative �2 error ‖Cz −Az‖	2/‖Az‖	2
decreases exponentially as p increases. In general, forward probing yields great results
like this because we know its symbol well and can choose an appropriate B.

4.5. Inverting the wave equation Hessian. In seismology, it is common to
recover the model parameters m, which describe the subsurface, by minimizing the
least squares misfit between the observed data and F (m), where F , the forward model,
predicts data from m.
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Methods to solve this problem can be broadly categorized into two classes: steep-
est descent or Newton’s method. The former takes more iterations to converge but
each iteration is computationally cheaper. The latter requires the inversion of the
Hessian of the objective function but achieves quadratic convergence near the opti-
mal point.

In another paper, we use matrix probing to precondition the inversion of the
Hessian. Removing the nullspace component from the noise vector is more tricky (see
Algorithm 1) and involves checking whether “a curvelet is visible to any receiver” via
raytracing. For details on this more elaborate application, see [9].

5. Conclusion and future work. When a matrix A with n columns belongs
to a specified p-dimensional subspace, say, A =

∑p
i=1 ciBi, we can probe it with a few

random vectors to recover the coefficient vector c.
Let q be the number of random vectors used, κ be the condition number of the

Gram matrix of B1, . . . , Bp, and λ be the “weak condition number” of each Bi (cf.
Definition 1.2) which is related to the numerical rank. From Theorem 1.3 and sec-
tion 1.3, we learn that when nq ∝ p(κλ logn)2, the linear system that has to be solved
to recover c (cf. (1.1)) will be well-conditioned with high probability. Consequently,
the reconstruction error is small by Proposition 1.5.

The same technique can be used to compute an approximate A−1 or a precondi-
tioner for inverting A. In [9], we used it to invert the wave equation Hessian—here
we demonstrate that it can also be used to invert elliptic operators in smooth media
(cf. sections 4.2 and 4.3).

Some possible future work includes the following:
1. Extend the work of Pfander, Rauhut, and others [21, 20, 22]. These papers are

concerned with sparse signal recovery. They consider the special case where
B contains n2 matrices each representing a time-frequency shift, but A is an
unknown linear combination of only p of them. The task is to identify these p
matrices and the associated coefficients by applying A to noise vectors. Our
proofs may be used to establish similar recovery results for a more general
B. However, note that in [20], Pfander and Rauhut show that n ∝ p logn
suffices, whereas our main result requires an additional log factor.

2. Build a framework for probing f(A) interpreted as a Cauchy integral

f(A) =
1

2πi

∮
Γ

f(z)(zI −A)−1dz,

where Γ is a closed curve enclosing the eigenvalues of A. For more on approx-
imating matrix functions, see [13, 15].

3. Consider expansion schemes for symbols that highly oscillate or have singu-
larities that are well-understood.

Appendix A. Linear algebra. Recall the definitions of κ(B) and λ(B) at the
beginning of the paper. The following concerns probing with multiple vectors (cf.
section 1.3).

Proposition A.1. Let Iq ∈ C
q×q be the identity. Let B = {B1, . . . , Bp}. Let

B′
j = Iq ⊗Bj and B′ = {B′

1, . . . , B
′
p}. Then κ(B) = κ(B′) and λ(B) = λ(B′).

Proof. Define N ∈ Cp×p such that Njk = 〈Bj , Bk〉. Define N ′ ∈ Cp×p such that
N ′

jk = 〈B′
j , B

′
k〉. Clearly, N ′ = qN , so their condition numbers are the same and

κ(B) = κ(B′).
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For any A = Bj ∈ Cm×n and A′ = B′
j , we have ‖A′‖(nq)1/2

‖A′‖F
= ‖A‖(nq)1/2

‖A‖F q1/2
=

‖A‖n1/2

‖A‖F
. Hence, λ(B) = λ(B′).

Appendix B. Probabilistic tools. In this section, we present some probabilis-
tic results used in our proofs. The first theorem is used to decouple homogeneous
Rademacher chaos of order 2 and can be found in [8, 23], for example.

Theorem B.1. Let (ui) and (ũi) be two iid sequences of real-valued random
variables and Aij be in a Banach space where 1 ≤ i, j ≤ n. There exists universal
constants C1, C2 > 0 such that for any s ≥ 1,

(B.1)

⎛⎝E

∥∥∥∥∥∥
∑

1≤i
=j≤n

uiujAij

∥∥∥∥∥∥
s⎞⎠1/s

≤ C1C
1/s
2

⎛⎝E

∥∥∥∥∥∥
∑

1≤i,j≤n

uiũjAij

∥∥∥∥∥∥
s⎞⎠1/s

.

A homogeneous Gaussian chaos is one that involves only products of Hermite
polynomials with the same total degree. For instance, a homogeneous Gaussian chaos
of order 2 takes the form

∑
1≤i
=j≤n gigjAij +

∑n
i=1(g

2
i − 1)Aii. It can be decoupled

according to Arcones and Giné [2].
Theorem B.2. Let (ui) and (ũi) be two iid Gaussian sequences and Aij be in a

Banach space where 1 ≤ i, j ≤ n. There exists universal constants C1, C2 > 0 such
that for any s ≥ 1,⎛⎝E

∥∥∥∥∥∥
∑

1≤i
=j≤n

uiujAij +

n∑
i=1

(u2i − 1)Aii

∥∥∥∥∥∥
s⎞⎠1/s

≤ C1C
1/s
2

⎛⎝E

∥∥∥∥∥∥
∑

1≤i,j≤s

uiũjAij

∥∥∥∥∥∥
s⎞⎠1/s

.

Remark B.1. For Rademacher chaos, C1 = 4 and C2 = 1. For Gaussian chaos,
we can integrate equation (2.6) of [2] (with m = 2) to obtain C1 = 21/2 and C2 = 214.
Better constants may be available.

We now proceed to the Khintchine inequalties. Let ‖·‖Cs denote the s-Schatten
norm. Recall that ‖A‖Cs = (

∑
i |σi|s)1/s, where σi is a singular value of A. The

following is due to Lust-Piquard and Pisier [18, 19].
Theorem B.3. Let s ≥ 2 and (ui) be a Rademacher or Gaussian sequence. Then

for any set of matrices {Ai}1≤i≤n,⎛⎝E

∥∥∥∥∥
n∑

i=1

uiAi

∥∥∥∥∥
s

Cs

⎞⎠1/s

≤ s1/2 max

⎛⎝∥∥∥∥∥∥
(

n∑
i=1

A∗
iAi

)1/2
∥∥∥∥∥∥
Cs

,

∥∥∥∥∥∥
(

n∑
i=1

AiA
∗
i

)1/2
∥∥∥∥∥∥
Cs

⎞⎠ .

The factor s1/2 above is not optimal. See, for example, [3] or [24, 26].
In [23], Theorem B.3 is applied twice in a clever way to obtain a Khintchine

inequality for a decoupled chaos of order 2.
Theorem B.4. Let s ≥ 2 and (ui) and (ũi) be two independent Rademacher or

Gaussian sequences. For any set of matrices {Aij}1≤i,j≤n,⎛⎝E

∥∥∥∥∥∥
∑

1≤i,j≤n

uiũjAij

∥∥∥∥∥∥
s

Cs

⎞⎠1/s

≤ 21/ssmax

(∥∥∥Q1/2
∥∥∥
Cs

,
∥∥∥R1/2

∥∥∥
Cs

, ‖F‖Cs
, ‖G‖Cs

)
,

where Q =
∑

1≤i,j≤n A
∗
ijAij and R =

∑
1≤i,j≤n AijA

∗
ij and F,G are the block matrices

(Aij)1≤i,j≤n, (A
∗
ij)1≤i,j≤n, respectively.
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For Rademacher and Gaussian chaos, higher moments are controlled by lower
moments, a property known as “hypercontractivity” [2, 8]. This leads to exponential
tail bounds by Markov’s inequality as we illustrate below. The same result appears
as Proposition 6.5 in [24].

Proposition B.5. Let X be a nonnegative random variable. Let σ, c, α > 0.

Suppose (EXs)1/s ≤ σc1/ss1/α for all s0 ≤ s <∞. Then for any k > 0 and u ≥ s
1/α
0 ,

P
(
X ≥ ekσu

) ≤ c exp(−kuα).

Proof. By Markov’s inequality, for any s > 0, P
(
X ≥ ekσu

) ≤ EXs

(ekσu)s ≤
c(σs

1/α

ekσu
)s. Pick s = uα ≥ s0 to complete the proof.

Proposition B.6. Let (ui) be a Rademacher or Gaussian sequence and C1, C2

be constants obtained from Theorem B.1 or B.2. Let {Aij}1≤i,j≤n be a set of p by p
matrices, and assume that the diagonal entries Aii are positive semidefinite. Define
M =

∑
i uiujAij and σ = C1 max(‖Q‖1/2, ‖R‖1/2, ‖F‖, ‖G‖), where Q,R, F,G are as

defined in Theorem B.4. Then

P (‖M − EM‖ ≥ eσu) ≤ (2C2np) exp(−u).
Proof. We will prove the Gaussian case first. Recall that the s-Schatten and

spectral norms are equivalent: for any A ∈ Cr×r, ‖A‖ ≤ ‖A‖Cs ≤ r1/s‖A‖. Apply
the decoupling inequality, that is, Theorem B.2, and deduce that for any s ≥ 2,

(E ‖M −N‖s)1/s ≤ C1C
1/s
2

⎛⎝E

∥∥∥∥∥∥
∑

1≤i,j≤n

uiũjAij

∥∥∥∥∥∥
s

Cs

⎞⎠1/s

.

Invoke Khintchine’s inequality, that is, Theorem B.4, and obtain

(E ‖M −N‖s)1/s ≤ C1(2C2)
1/ssmax

(∥∥∥Q1/2
∥∥∥
Cs

,
∥∥∥R1/2

∥∥∥
Cs

, ‖F‖Cs
, ‖G‖Cs

)
≤ C1(2C2np)

1/ssmax
(
‖Q‖1/2 , ‖R‖1/2 , ‖F‖ , ‖G‖

)
≤ σ(2C2np)

1/ss.

Apply Proposition B.5 with c = 2C2np and k = α = 1 to complete the proof for
the Gaussian case. For the Rademacher case, we take similar steps. First, decouple
(E‖M −N‖s)1/s using Theorem B.1. This leaves us a sum that excludes the Aii’s.
Apply Khintchine’s inequality with the Aii’s zeroed. Of course, Q,R, F,G in Propo-
sition B.4 will not contain any Aii’s, but this does not matter because A∗

iiAii and
AiiA

∗
ii and Aii are all positive semidefinite for any 1 ≤ i ≤ n and we can add them

back. For example, ‖(Aij)1≤i
=j≤n‖ ≤ ‖(Aij)1≤i,j≤n‖ as block matrices.
We conclude the paper by outlining how better constants (see Remark B.1)

can be obtained for the Gaussian case. At the start of the proof of Proposition
B.6, we can split (E‖M −N‖s)1/s into two parts, (E‖∑1≤i
=j≤n uiujAij‖s)1/s and

(E‖∑n
i=1(u

2
i − 1)Aii‖s)1/s. For the first part, decouple using Theorem B.1 with C2 =

1, then apply Theorem B.4. For the second part, note that every u2i − 1 is symmetri-
cally distributed and has zero mean. Thus, we can introduce Rademacher variables,

condition on the Gaussians, apply Theorem B.3, and pull out
(
Emaxi

∣∣u2i − 1
∣∣s)1/s.

Although this log factor is in practice smaller than the constants we have, we prefer
to avoid it by decoupling the Gaussian sum right away using [2].
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