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In the cat or primate primary visual cortex (V1), normal vision
corresponds to a state where neural excitation patterns are driven
by external visual stimuli. A spectacular failure mode of V1 occurs
when such patterns are overwhelmed by spontaneously generated
spatially self-organized patterns of neural excitation. These are ex-
perienced as geometric visual hallucinations. The problem of iden-
tifying the mechanisms by which V1 avoids this failure is made
acute by recent advances in the statistical mechanics of pattern for-
mation, which suggest that the hallucinatory state should be very
robust. Here, we report how incorporating physiologically realistic
long-range connections between inhibitory neurons changes the
behavior of a model of V1. We find that the sparsity of long-range
inhibition in V1 plays a previously unrecognized but key functional
role in preserving the normal vision state. Surprisingly, it also
contributes to the observed regularity of geometric visual halluci-
nations. Our results provide an explanation for the observed spar-
sity of long-range inhibition in V1—this generic architectural
feature is an evolutionary adaptation that tunes V1 to the normal
vision state. In addition, it has been shown that exactly the same
long-range connections play a key role in the development of
orientation preference maps. Thus V1’s most striking long-range
features—patchy excitatory connections and sparse inhibitory con-
nections—are strongly constrained by two requirements: the need
for the visual state to be robust and the developmental require-
ments of the orientational preference map.

evolution ∣ fluctuations

The primary visual cortex, V1, represents external stimuli as
patterns of neural excitation. In the normal state, patterns

of excitation on V1 are driven by sensory stimuli generated in
the retina mapped to V1 from the visual field by the retinocortical
map (1, 2). Patterns seen as visual hallucinations arise in excep-
tional circumstances when external stimuli are overwhelmed
by internally generated spontaneous patterns of neural excitation.
This situation occurs when the circuit parameters governing the
dynamics of V1 are changed, for example, through the influence
of psychotropic drugs that may act in part through effectively
weakening cortical inhibition (3). The mechanism governing
spontaneous pattern formation has been shown in previous
studies to be closely related to that of diffusion driven pattern
formation in chemical and other biological systems, known as
the Turing mechanism (4–6). Compelling evidence for this me-
chanism has been provided by previous studies that have shown
that precisely the four basic classes of geometric visual hallucina-
tions (or form constants) and no others, commonly reported by
subjects (7), follow directly from the Turing mechanism and spon-
taneous symmetry breaking of the basic approximate symmetries
of V1 associated with translation and orientation preference (6).
Here we show that V1 is specially configured to avoid the forma-
tion of visual hallucinations and remain stable under typical op-
erating conditions in the visual state. Together with recent reports
of developmental plasticity in V1 (8), and the apparent univers-

ality of the self-organizing principles behind the structure of its
orientation columns (9), our results imply strong constraints on
the key features and evolution of its global architecture at inter-
mediate length scales.

We analyze and compare two classes of model for the spatio-
temporal dynamics of neural excitation in V1. The first model is
subject to network connections that are similar to the real V1
network, whereas the second model represents a family of a priori
physiologically plausible alternative network structures. We show
that the alternative network structures substantially degrade
normal visual function, thereby illuminating the functional advan-
tages of the network structure actually realized in V1. Similar
approaches have been successfully applied to other robust
phenomena in biology, such as embryonic pattern formation (10),
bistable genetic switching (11), and the generation of temporal
oscillations of gene expression (12). In these cases, the require-
ment that the network dynamics robustly preserve some function
under variation of parameters or noise led naturally to the elu-
cidation of key features such as the coupling of positive and ne-
gative feedback loops to generate robust oscillations in the level
of gene expression (12). We will show that the requirement that
V1 activation be primarily driven by external sensory stimuli
strongly constrains the topology of its connections by allowing
only sparse long-range inhibition. This feature of V1 is well-
established empirically (13), but has not yet been explained. In
other parts of the cortex where the function is presumably differ-
ent, there is some evidence that sparse long-range connections do
exist that provide some lateral disinhibition (14, 15). By combin-
ing this requirement with the recent experimental confirmation of
calculations that predict that long-range interactions between V1
neurons are essential for stabilizing the development of orienta-
tional preference maps (9), we obtain sufficient constraints on V1
network structure to strongly constrain the character of its long-
range connections.

Geometric visual hallucinations arise through a variant of the
Turing mechanism for pattern formation (4). In V1, spatial pat-
terns arise when the range of local excitatory to inhibitory con-
nections (E–I) is sufficiently longer than the range of excitatory to
excitatory (E–E) connections. Thus when there is a local burst of
excitation, the longer-ranged connections to inhibitory neurons
contain the burst. Fluctuations of activity are then confined over
some characteristic length scale, leading to spatial pattern forma-
tion. The difference in length scale of E–E connections versus
E–I connections results in an effective “Mexican hat” potential
if inhibitory neurons are integrated out, exactly as required for
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the successful development of a stable orientation preference
map (9).

Model
We model each local hypercolumn using the most general possi-
ble wiring, consistent with the physiological separation of excita-
tory and inhibitory neurons. Alternatively, the local structure can
be viewed as many copies of a simplified version of the Douglas–
Martin canonical microcircuit (16). This microcircuit is shown
schematically in Fig. 1A.

We now introduce a model of V1 as a two-dimensional lattice
of canonical microcircuits. To capture the lattice structure, we dis-
tinguish two length scales. The first length scale is local and is the
one on which canonical microcircuits, each of which has a width
of approximately 100 μm, interact with their neighbors. We model
this local scale as comprising all the approximate 10 microcircuits
in one V1 hypercolumn (1). Based on neuroanatomical data, our
model includes excitatory and inhibitory connections between all
microcircuits within a hypercolumn (17).

The second length scale is longer ranged. On this length scale,
hypercolumns are coupled together by patchy excitatory connec-
tions. These connections have a range of approximately 4 mm
with axonal arbors every 1 mm or so (18). Thus they are between
hypercolumns. If we take the lattice spacing between individual
microcircuits to be L mm, then the spacing between hypercol-
umns is

ffiffiffi
a

p
L mm where a is the number of microcircuits per

hypercolumn. Thus the connections between differing lattice sites
support a mixture of both local and nonlocal or lattice scale ex-
citation and inhibition. These couplings are as shown in Fig. 1.
For even longer-ranged connections, which would provide a third
length scale, the best evidence to date (19) suggests that they are
small world (20). However, in this paper, we do not consider their
effects. The model presented here is a special case of that intro-
duced to analyze the formation of geometric visual hallucinations
(6). As we note later, it is also closely related to a model of the
cortex introduced to study the development of stable orientation
preference maps (9, 21).

These assumptions yield variants of the Wilson–Cowan equa-
tions (22) for local density of neural excitation of excitatory (φ)
and inhibitory (ψ) neurons (see SI Text). On length scales much
greater than the lattice scale, the Wilson–Cowan equations
reduce to the partial differential equations

∂tφ ¼ −αEφþ ð1 − φÞf E½sEI � ∂tψ ¼ −αIψ þ ð1 − ψÞf I ½sII � [1]

with currents given by

sE ¼ wEEð1þ g1EEΔÞφ − wEIð1þ g1IΔÞψ þ hE

sI ¼ wIEð1þ g1IEΔÞφ − wIIð1þ g1IΔÞψ þ hI: [2]

The functions f I and f E are sigmoidal and capture the saturating
response of neurons to external stimuli. The symbol Δ represents
the continuous Laplacian in two dimensions. The matrix W cap-
tures the local synaptic interactions as in Fig. 1A; for example, wIE
denotes the synaptic weight of E–I connections. The parameters
g1ij are effective length scales of the indicated connections, and we
take gEI ¼ gII ¼ gI . For the purposes of this study of spontaneous
pattern formation, external stimuli h are set to zero. Although
most of the key conclusions of the present work are analytical,
typical simulation parameters are wEE ¼ 1.3 with all other
w ¼ 1, αI ¼ αE ¼ 0.1. The lattice scale spacing is taken in units

of
ffiffiffiffiffiffiffi
g1EE

q
. Previously cited neuroanatomical data (13) indicates

that g1I ≪ g1IE.

Results
Provided couplings that promote excitation, such as wEE, are suf-
ficiently large compared to relaxation and inhibitory couplings,
Eq. Eq. 1 with lattice scale effects neglected (g1ij ¼ 0), support
a stable fixed point at nonzero excitation levels of both excitatory
and inhibitory neurons. When such effects are restored, normal
vision corresponds to a stable homogeneous steady state. Failure
of normal vision to geometric visual hallucinations occurs when
the homogeneous steady state becomes unstable to spatially in-
homogeneous perturbations, leading to regular pattern formation
(see Fig. 2A).

The exotic spiral structure of hallucinations reported by
patients (7) and shown in Fig. 2B arises from regular pattern
formation through the retinotopic map. The retinotopic map
transforms coordinates of excitation on V1 into visual field coor-
dinates through an approximate logarithmic conformal map, as
demonstrated experimentally in ref. 2. When regular patterns
are subjected to a logarithmic conformal map, they are trans-
formed into logarithmic spiral patterns, implying that regular
pattern formation on V1 results in the logarithmic spiral patterns
observed in geometric visual hallucinations (5).

In the full model above, with g1I∕g1EE ≪ 1 as physiologically
motivated, geometric hallucinations occur when

g1I
g1EE

>
wEE½αI þ f I þ ð1 − ψÞf 0IwII �

wEIð1 − ψÞf 0IwIE
þO

�
g1I
g1EE

�
; [3]

where all functions, derivatives, and concentrations of firing in-
hibitory neurons are evaluated at the homogeneous fixed point
(see SI Text). Such conditions may possibly be achieved through
the effects of hallucinogenic drugs (5, 7).

How would V1 behave if extensive lattice scale I–I connections
were present? This extensive lattice scale inhibition means that
inhibitory activity in one microcircuit suppresses inhibition in
distant microcircuits, leading to more excitatory activity in the
distant site: I–I connections tend to enhance negatively corre-
lated fluctuations in activity. We introduce such connections by
relaxing the requirement that g1I ≪ g1IE. Linear stability analysis
shows that a sufficient condition for the normal visual state to
be unstable to spontaneous spatial order is

g1I
g1EE

>
ð1 − φÞf 0EwEE

ð1 − ψÞf 0IwII
[4]

(see ref. 23). The right-hand side of the above inequality is typi-
cally less than one for reasonable parameters. Because, in the

A B

Fig. 1. (A) Simplified Douglas–Martin microcircuit. The blue circle corre-
sponds to inhibitory neurons, and the red circle to excitatory neurons. Simi-
larly, excitatory connections are shown as red arrows from their source and
inhibitory connections as blue arrows. Inputs to the microcircuit vary and are
not shown. (B) Simplified representation of patchy connections between
hypercolumns in V1. Each hypercolumn is represented by a circle, with both
E–E and E–I connections between hypercolumns indicated by red arrows.
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absence of fine tuning, the existence of extensive lattice scale I–I
connections requires the left-hand side of inequality 4 to be Oð1Þ
or greater (to avoid dangling axons between hypercolumns), we
can conclude that the requirement that V1 represent visual sti-
muli through patterns of excitation is incompatible with such
I–I connections. Only with fine tuning could such I–I connections
be constructed so as to not generate spontaneous spatial order.
Because changing conditions in the brain make such fine tuning
impossible, the organization of V1 for robust visual function re-
quires that lattice scale I–I connections be sparse. Experimental
support for this statement is provided by data on the connections
made by a special class of inhibitory cells called large basket cells
(LBC), which have long axons and so can provide lattice scale
inhibition (14): A recent count (13) of the number of lattice scale
inhibitory synapses found on V1 LBC indicates that such connec-
tions are sparse compared with the number of lattice scale exci-
tatory synapses found on such neurons and on V1 pyramidal
neurons.

The spatial structures that occur in the presence of extensive
lattice scale I–I coupling differ from those observed in geometric
visual hallucinations and contrast with the usual scenario by
which a single characteristic length scale emerges from a pat-

tern-forming process. In such a case, the homogeneous steady
state is typically unstable for some bounded region of wave vec-
tors greater than zero. Surprisingly, in the case of lattice scale I–I
connections, the instability occurs for all spatial frequencies
greater than some threshold, so that the long wavelength approx-
imation breaks down (see SI Text). These effects originate in the
suppressive nature of inhibition, captured in the negative sign
of the Laplacian for inhibitory connections in Eq. 2. Laplacian
operators with positive signs are associated with signals from
excitatory neurons. When the long-range connections are primar-
ily from excitatory neurons, the overall sign of the Laplacian is
positive, and the dynamics are those associated with normal dif-
fusion: spatial smoothing if primarily excitatory neurons are ex-
cited at long ranges, and Turing patterns if primarily inhibitory
neurons are excited at long ranges. When the long-range connec-
tions primarily are associated with inhibitory neurons, the overall
sign of the Laplacian is negative, leading to reverse diffusion.
Reverse, or backward diffusion, has exactly the opposite effect
of normal diffusion. Where normal diffusion leads to smoothing
of excitations, reverse diffusion leads to clumping of excitations at
ever shorter length scales (see Fig. 3). These dynamics rely on the
unusual spatial distribution of I–I connections. When an inhibi-
tory neuron fires, connected inhibitory neurons at distant lattice
sites become less active, allowing excitatory neurons at that site
to become more active. Meanwhile, the level of excitation at the
original lattice site may be maintained by local feedbacks with
excitatory neurons. Close to each of these sites, excitatory activity
is suppressed via short range I–E or E–I connections, unless E–E
connectivity is strong enough to counteract the overall effect.
This local feedback leads to increasingly incoherent local excita-
tions, with activity patterns nearby lattice sites less strongly cor-
related. If the long-range connections in the network are
dominated by I–I connections, then increasingly localized clump-
ing of excitations results.

Recent theoretical studies of Turing patterns in reaction-diffu-
sion systems have shown that intrinsic and extrinsic noise en-
hances the stability of Turing patterns (24–26) through an
extension of the quasi-cycle mechanism of McKane and Newman
(27, 28). If such results were to hold for pattern formation in V1,
achieving robust visual function would be very difficult. We have
investigated the effects of noise on the dynamics of our model of
V1 and found that, when lattice scale I–I connections are sparse,
noise does not enlarge the set of parameters that support pat-

Fig. 2. (A) Turing pattern of neural excitation in visual cortex coordinates.
(B) The same pattern represented in visual field coordinates (i.e., in the co-
ordinates that a patient undergoing geometric visual hallucinations would
see). The logarithmic map between visual field and V1 is responsible for
the dramatic logarithmic spiral structure of the hallucination. Although
the image shown here is from computation, its qualitative features are very
similar to those reported by patients (7). Figure generated with the para-
meters indicated in the text plus g1

IE ¼ 6.5, g1
II ¼ 0.1 with all other g1

ij ¼ 1.

A

B

Fig. 3. Schematic representation of how long-range inhibition leads to
instability in strips of visual cortex. An excess of excitatory over inhibitory
activity is indicated in red and the converse in blue. A illustrates dynamics
with normal visual cortex architecture, where long-range inhibition is forbid-
den. These dynamics are analogous to normal diffusion. The upper row
shows an initial distribution of activity and the lower row shows the evolu-
tion of this distribution at a later time. The spatial distribution of activity is
smoothed. B illustrates dynamics with added long-range inhibition, whose
dynamics are analogous to backward diffusion. The upper row shows the
same initial distribution of activity, and the lower row shows the evolution
of this distribution at a later time. Under reverse diffusion, the spatial
distribution of activity becomes less smooth, leading to short length scale
spatial structures.
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terns. However, when extensive lattice scale I–I coupling is intro-
duced, fluctuation-induced “quasi-patterns” incompatible with
normal visual function are generated (see SI Text). A further func-
tional role of forbidding such connections may then be avoidance
of quasi-pattern generation. We also note that the Turing patterns
that do occur in our model of the visual cortex with realistic con-
nectivity are deterministic and highly regular. This behavior is in
contrast to most Turing systems, where quasi-patterns dominate
and substantial fluctuations in the patterning are expected (24–
26). However, it was shown in ref. 29 that Turing patterns gen-
erated by noise can be pinned to an underlying lattice provided
by the lattice scale patchy E–E connections described earlier. The
lack of extensive lattice scale inhibitory connections contributes
to the stability of such a pinning, and helps to explain, for exam-
ple, why subjects report seeing geometric visual hallucinations
that are highly regular (7).

It should be noted that, although the model we present in
Eqs. 1 and 2 is highly simplified, the results are based only on
the elementary features of the bifurcation structure of the model.
It is well known that the bifurcation structure of models in
statistical mechanics and dynamical systems is sensitive to only
primitive, detail-independent considerations such as symmetry,
fluctuations, range of interaction, and spatial dimension (30, 31).
Thus it can be expected that the results will be largely unchanged
in more detailed models of V1, which include other standard for-
mulations, such as integrodifferential equations (5) and versions
where the lattice structure is explicitly considered.

Discussion
Results on the development of the orientational preference map
(9, 21) can be combined with our work to constrain the evolution

of several of the basic features of the network anatomy of V1. In
refs. 9 and 21, it was shown that, for the orientational preference
map of V1 to develop correctly, a lattice scale Mexican hat inter-
action is required—i.e., short-range amplification and long-range
suppression. To achieve this in a two-population excitatory-inhi-
bitory model, either long-range inhibition or long-range E–I con-
nections must dominate long-range activation of excitatory
neurons. Because our work suggests that extensive lattice scale
inhibitory connections are detrimental for normal vision, the only
network structure that is consistent with both of these results
must have only sparse lattice scale inhibitory connections, and
the lattice scale E–I connections must have greater effective
range than the lattice scale E–E connections. However, to avoid
hallucinations, the lattice scale E–I range must not greatly exceed
the local E–E range. These V1 circuit properties apply to both the
avoidance of hallucinations in normal vision and to the develop-
ment of orientation preference maps. In fact, both connectivity
properties deal with exactly the same problem: breaking the sym-
metry of translation and orientation preference.

In summary, in V1 the lattice scale network’s most elementary
features—patchy excitatory connections and sparse inhibitory
connections—are completely constrained by two considerations:
the need for the visual state to be robust and the developmental
requirements of the orientational preference map.
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