
MIT Open Access Articles

User-assisted intrinsic images

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bousseau, Adrien, Sylvain Paris, and Frédo Durand. “User-assisted Intrinsic Images.”
ACM Transactions on Graphics (TOG), ACM Press, Volume 28 Issue 5, December 2009. Web.

As Published: http://dx.doi.org/10.1145/1661412.1618476

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/71855

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/71855
http://creativecommons.org/licenses/by-nc-sa/3.0/

User-Assisted Intrinsic Images

Adrien Bousseau1,2 Sylvain Paris3 Frédo Durand2

1INRIA / Grenoble University 2MIT CSAIL 3Adobe Systems, Inc.

(a) Original photograph (b) User scribbles (c) Reflectance (d) Illumination (e) Re-texturing

Figure 1: Our system relies on user indications, shown in (b), to extract from a single photograph its reflectance and illumination components
(c-d). In (b), white scribbles indicate fully-lit pixels, blue scribbles correspond to pixels sharing a similar reflectance and red scribbles
correspond to pixels sharing a similar illumination. This decomposition facilitates advanced image editing such as re-texturing (e).

Abstract

For many computational photography applications, the lighting and
materials in the scene are critical pieces of information. We seek
to obtain intrinsic images, which decompose a photo into the prod-
uct of an illumination component that represents lighting effects
and a reflectance component that is the color of the observed ma-
terial. This is an under-constrained problem and automatic meth-
ods are challenged by complex natural images. We describe a new
approach that enables users to guide an optimization with simple
indications such as regions of constant reflectance or illumination.
Based on a simple assumption on local reflectance distributions, we
derive a new propagation energy that enables a closed form solu-
tion using linear least-squares. We achieve fast performance by in-
troducing a novel downsampling that preserves local color distribu-
tions. We demonstrate intrinsic image decomposition on a variety
of images and show applications.

Keywords: computational photography, intrinsic images,
reflectance-illumination separation

1 Introduction

Many computational photography tasks such as relighting, mate-
rial alteration or re-texturing require knowledge of the lighting and

materials in the scene. Unfortunately, in a photograph, illumina-
tion and reflectance are conflated through complex interaction and
the separation of those components, called intrinsic images [Bar-
row and Tenenbaum 1978], has long been an open challenge. A
pixel can be seen as the per-color-channel product of an illumina-
tion component, also called shading, and a reflectance component,
also called albedo. Given a single image, the problem is severely
ill-posed: a dark-yellow pixel can come from, e.g., a white material
illuminated by a dark yellow light, or from a dark-yellow material
illuminated by a bright white light.

In this paper, we introduce a new image decomposition technique
that relies on sparse constraints provided by the user to disam-
biguate illumination from reflectance. Figure 1(b) illustrates these
indications that can correspond to pixels of similar reflectance, sim-
ilar illumination, or known illumination. Central to our technique
is a new propagation method that estimates illumination from lo-
cal constraints based on a few assumptions on image formation and
reflectance distributions. In particular, we reduce the number of
unknowns by assuming that local reflectance variations lie in 2D
subspaces of the RGB color space. Although this simplification
requires color images and cannot handle cases such as a black-and-
white checkerboard texture, we show that it can handle a broad class
of images with complex lighting. In order to enable fast and accu-
rate solution, we also introduce a novel downsampling strategy that
better preserves the local color distributions of an image and en-
ables rapid multigrid computation. Finally, we illustrate the benefit
of our image decomposition with image manipulations including
reflectance editing and re-lighting.

To summarize, this paper makes the following contributions:
• we describe a user-assisted method to perform intrinsic image
decomposition from a single image.
• we introduce a novel energy formulation that propagates user
edits based on the local reflectance color distribution.
• we propose a new downsampling scheme that enforces the
preservation of color distributions at reduced image resolutions.

1.1 Related Work

The decoupling of reflectance from illumination was introduced by
Barrow and Tenenbaum [1978] as intrinsic images. The reflectance
describes how an object reflects light and is also often called albedo.
The illumination corresponds to the amount of light incident at a
point (essentially irradiance). Although it is often refered to as
shading, it includes effects such as shadows and indirect lighting.

Physically-based inverse rendering, such as Yu and Malik [1998],
seeks to invert the image formation model in order to recover the
lighting conditions of a scene, but requires known geometry.

Using several images of the same scene under different illumina-
tions, Weiss [2001] proposes a method to estimate a reflectance im-
age along with the illumination map of each input image. This ap-
proach has then been extended by Liu et al. [2008] to non-registered
image collections in order to colorize black-and-white photographs.
The use of varying illumination has also been applied to shadow re-
moval in a flash/no-flash setup by Agrawal et al. [2006].

Due to its inherent ill-posedness, decomposition of intrinsic images
from a single image cannot be solved without prior knowledge on
reflectance and illumination. Based on the Retinex theory [Land
and McCann 1971], Horn [1986] assumes that reflectance is piece-
wise constant while illumination is smooth. This heuristic allows
for the recovery of a reflectance image by thresholding the small
image gradients, assumed to correspond to illumination. Sinha and
Adelson [1993] discriminate illumination from reflectance edges
based on their junctions in a world of painted polyhedra: T junc-
tions are interpreted as reflectance variations, while arrow and Y
junctions correspond to illumination. Tappen et al. [2005] rely on a
classifier trained on image derivatives to classify reflectance and il-
lumination gradients. Despite these heuristics and classifiers, many
configurations of reflectance and illumination encountered in natu-
ral images remain hard to disambiguate. Shen et al. [2008] propose
to enrich these local approaches with non-local texture constraints.
Starting from a Retinex algorithm, their texture constraints ensure
that pixels that share similar texture will have the same reflectance.

A large body of work has been proposed for the specific problem of
shadow removal, either automatically [Finlayson et al. 2002; Fin-
layson et al. 2004] or based on user interaction [Mohan et al. 2007;
Wu et al. 2007; Shor and Lischinski 2008]. The common idea of
these methods is to identify shadow pixels, either via boundary de-
tection or region segmentation. Once shadows are detected, they
can be removed by color correction or gradient domain filtering.
These methods focus on cast shadow removal with clear bound-
aries, while we also target the removal of smooth shading where
the boundary between lit and shaded regions cannot be delimited.
Note that although the approach of Finlayson et al. [2002; 2004]
relies on the estimation of an illumination-free image, this image is
grayscale and does not represent the true reflectance.

Intrinsic images decomposition is also related to other image de-
compositions. Matting algorithms [Chuang et al. 2001; Levin et al.
2008] aim to separate the foreground and background layers of an
image along with their opacity based on user indications. User-
assisted approaches have been proposed to separate reflections from
a single image [Levin and Weiss 2007]. Automatic decompositions
have been introduced to restore pictures corrupted by haze [Fattal
2008], and to perform white balance of photographs taken under
mixed lighting [Hsu et al. 2008]. Although all these methods do
not directly target the extraction of illumination from a single im-
age, our energy formulation is inspired by the matting Laplacian
used in the work of Levin et al. [2007] and Hsu et al. [2008]. We
rely on a similar assumption that, in natural images, material colors
lie on subspaces of the RGB space [Omer and Werman 2004].

1.2 Overview

Our decoupling of illumination and reflectance is based on user-
provided constraints and a new propagation model. The user can
use sparse strokes to mark parts that share the same reflectance or
where illumination does not vary, in particular at material bound-
aries. The user also needs to provide at least one fixed illumination
value to solve for global scale ambiguity.

Based on the assumption that reflectance values are low-rank in lo-
cal windows, we derive a closed-form equation that depends only
on illumination. Adding the user constraints, we can solve a linear
least-square system that provides the illumination. Reflectance is
simply inferred by a division.

Our least-square solution works best with local windows of medium
sizes, which raises computational challenges. We have found that
standard multigrid approaches yield unsatisfactory results in our
case, because traditional downsampling operators do not respect lo-
cal color distributions. We introduce a new downsampling scheme
for techniques like ours that rely on local color distributions. We
show that it enables dramatic speedup and achieves high accuracy.

2 Reflectance-Illumination Decomposition

We first detail our assumptions about the observed image, in par-
ticular the fact that reflectance colors are locally planar. We show
how it leads to a quadratic energy where illumination is the only
unknown, and where user constraints can easily be included.

Image Formation Model As commonly done, we assume that the
interaction between light and objects can be described using RGB
channels alone. We focus on Lambertian objects and a single light
color, although we show later that these hypotheses can often be
alleviated in practice to handle colored light.

With this model, the observed color at a pixel is:

I = s L ∗R (1)

where s is the illumination, a non-negative scalar modeling the in-
cident light attenuation due to factors such as light travel, occlusion
and foreshortening, L is the RGB color of the light, ∗ denotes per-
channel multiplication, and R is the material RGB reflectance that
describes how objects reflect light. For clarity, we assume that the
light is white, (or equivalently that the input image is white bal-
anced). This means L = (1, 1, 1)T and Equation 1 becomes:

I = sR (2)

2.1 Low-Rank Structure of Local Reflectance

Our objective is to retrieve the illumination s and the RGB compo-
nents of R at each pixel. The difficulty is that Equation 2 provides
only three equations, one per RGB channel. In addition, there is a
scale ambiguity between illumination and reflectance, that is, if R0

and s0 are a valid decomposition, then kR0 and s0/k are also valid
for any scalar factor k > 0.

We overcome the ill-posedness of the problem by a local low-rank
assumption on reflectance colors. We are inspired by a variety of
recent studies that show structure and sparsity in the distribution of
colors in natural scenes. In particular, Omer and Werman [2004]
show that the set of reflectance colors is sparse, which led to practi-
cal matting [Levin et al. 2008] and white balance [Hsu et al. 2008]
techniques.

We build on this strategy and assume that, locally, the reflectance
colors are low rank. Specifically, we assume that they lie in a 2D
plane that does not contain the origin (black) in RGB space (Fig-
ure 2). They need not span a full plane and can, for example, consist
of a single color or a color line. We acknowledge that this restriction
prevents us from treating cases where only luminance variations oc-
cur, for example a black-and-white checkerboard, but it enables a
practical algorithm that achieves satisfying results on a broad range
of natural scenes as demonstrated by our results. In particular, this
configuration encompasses cases such as colored textures, constant
color objects (1 point in RGB space), edges between two objects (2
points), and T junctions (3 points).

local reflectance plane

constant illumination planes

a
green red

blue

Figure 2: Planar reflectance assumption. We assume that re-
flectance variations lie locally in a plane in color space. Pixels in
planes parallel to the reflectance have constant illumination (Eq. 3).

From this planar reflectance assumption, there exists a 3D vector a
such that the reflectance values satisfy:

a ·R = 1 (3)

Using Equations 2 and 3, we get

a · I = s. (4)

We have transformed the original equation with a product of un-
knowns into an equation that is linear in the unknowns a and s. We
further show that we can eliminate a and directly solve for illumina-
tion s. Note also that, locally, there is no scale ambiguity anymore
since R0 and kR0 cannot both be part of the same reflectance plane
unless k = 1 (Eq. 3).

2.2 Reduction to Illumination Alone

We now seek to eliminate a and obtain an equation on s alone. We
will then solve this equation in a least-squares fashion to account
for user constraints and model deviations. We follow an approach
inspired by the work of Levin et al. [2008] in the context of image
matting. In a nutshell, we apply our low-rank assumption to all
local windows (of e.g. 5× 5 pixels) and assume that a is a constant
over a window. We seek to minimize (s − a · I)2 at each pixel of
a window. Note that a pixel participates in many windows and that
the unknowns are shared between those local energy terms. This
overlap between windows is what enables information propagation.
We can eliminate a from the equations because of the redundant
information from the pixels in a window.

Energy Based on Local Windows For a pixel i, we formulate
the following energy over its neighboring pixels in a local win-
dowWi:

ẽ(s,ai) =
X

j∈Wi

(sj − ai · Ij)2 (5)

We add a regularizer to this energy so that the minimum is always
well defined. Indeed, if there is a vector b such that b · Ij = 0 for

all j ∈ Wi, then we have ẽ(s,ai) = ẽ(s,ai + kb) for any real
k. Such ambiguity occurs in common cases such as objects with
constant reflectance R0 for which any b orthogonal to R0 yields
b · Ij = b · sjR0 = 0. We address this with a regularizing term:

e(s,ai) =
X

j∈Wi

(sj − ai · Ij)2 + εa2
i (6)

where we choose ε small so that it has an influence only in ambigu-
ous cases (ε = 10−6 in our implementation). Summing over the
image, we obtain the energy:

E(s,a) =
X

i

e(s,ai) =
X

i

» X
j∈Wi

(sj −ai · Ij)2 + εa2
i

–
(7)

However, both s and a are unknown in the above equation. We
follow a similar strategy to Levin et al. [2008] and show that a can
be expressed as a function of s. We will see, however, that in our
case the model is linear and not affine as with matting.

Illumination as Only Variable We rewrite Equation 6 in matrix
form with two vectors Si and Ai, a matrix Mi, n the number of
pixels inWi = {j1 . . . jn}, and I r, Ig, Ib and ar, ag, ab being the
RGB components of I and a respectively:

e(s,ai) =

266666664

0BBBBBB@

sj1

...
sjn

0
0
0

1CCCCCCA
| {z }

Si: (n+3)×1

−

0BBBBBBB@

I r
j1 Ig

j1
Ib

j1
...

...
...

I r
jn

Ig
jn

Ib
jn√

ε √
ε √

ε

1CCCCCCCA
| {z }

Mi: (n+3)×3

0@ar
i

ag
i

ab
i

1A

| {z }
Ai: 3×1

377777775

2

(8)

For a fixed illumination s̄, we have e(s̄,ai) = (S̄i−Mi Ai)
2 which

is a classical linear least-square functional with Ai as unknowns.
The minimizer is given by: Amin

i = (MT
i Mi)

−1MT
i S̄i. With this

result, we rewrite the local energy as a function of the illumination
only:

f(Si) =
“
Si −Mi(M

T
i Mi)

−1MT
i Si

”2

(9)

Using the matrix Ni = Id −Mi(M
T
i Mi)

−1MT
i with Id the iden-

tity matrix, we obtain the global energy that is a function of the
local illumination vectors {Si} only:X

i

(NiSi)
2 =

X
i

ST
i N

T
i Ni Si (10)

This defines a functional in which each illumination value s appears
in several local vectors Si. To obtain a formula where each variable
appears only once, we regroup all the s values into a large vector S
that has as many elements as pixels. Then, we rearrange the terms
of the NTN matrices into a large matrix L. Each time the si and
sj variables interact in Equation 10, this contributes to the (i, j)th

element of L with the element of the corresponding NTN matrix1:

L(i, j) =
X

k | (i,j)∈Wk

NT
kNk(ik, jk) (11)

where ik and jk are the local indices of i and j inWk. With L, we
obtain the least-square energy that represents our image-formation
model based on local reflectance planes:

F (S) = STL S (12)

1Source code is provided as supplemental material

green

blue
s = 1

s = 0.75

a

window {5,6}
green

blue
s = 1

s = 0.5

a

window {2,3}
green

blue

s = 0.75

s = 0.5

a

window {4,5}
green

blue

s = 1

a

window {1,2}
green

blue

s = 0.5

a

window {3,4}

fixed s = 1 fixed s = 1

constant illumination constant reflectance

pixel 2pixel 1 pixel 3 pixel 4 pixel 5 pixel 6

{
{

{
user

strokes

image I

a vectors
and local

reflectance
subspaces

Figure 3: We illustrate how our optimization scheme behaves on a 1D image. The orange a vectors define the local reflectance subspaces
(lines in this example, planes on normal 2D images). The iso-illumination lines are shown with gray dotted lines. The a vectors are not
explicitly computed by our optimization scheme. They are displayed for visualization purposes. Each window contains 2 pixels. Each pixel
belongs to two windows, which constrains the reflectance subspaces. In addition, the user has specified the strokes shown above the pixels.
The two end pixels are fixed to s = 1, which constrained the isoline s = 1 to go through them. The second pixel is constrained to have
the same illumination as the first one. This fully defines the isoline s = 1 in the first window. In the second window, the isoline s = 1 is
constrained by the second pixel. Since there is no constraint on the third pixel, the reflectance subspace is defined by the optimization process
in order to minimize the least-squares cost. The third window with the pixels 3 and 4 is also fully determined by the optimization. The fourth
window is partially constrained by the fifth pixel that has a constrained reflectance which defines its illumination relatively to the sixth pixel.
The fifth and last window is fully constrained by the fixed illumination and constant reflectance strokes.

Discussion By assuming a constant a vector in each window,
we seek an illumination function s that can be locally expressed as
a linear combination of the RGB channels. Even though each win-
dow has its own a vector, the choice of these vectors is constrained
because the windows overlap. For instance, if we consider a pixel
i0 that belongs to two windows with vectors a1 and a2 respectively,
the illumination si0 at i0 should minimize both (si0−a1 ·Ii0)2 and
(si0 − a2 · Ii0)2, which couples the a1 and a2 vectors and ensures
information propagation across windows (Figure 3).

2.2.1 User Strokes

We propose 3 types of tools so that the user can specify local cues
about the reflectance and illumination. In this section we detail how
these constraints are integrated in our energy formulation, while a
typical interactive session is described in section 4. The first tool
is a constant-reflectance brush (figure 4(a)). If two pixels share the
same reflectance R0, then I1 = s1R0 and I2 = s2R0 that leads to
s1I2 = s2I1. We define a least-square energy function at a pixel i
covered by a reflectance stroke BR

i :

z(BR
i)
X
j∈BR

i

(siIj − sjIi)
2 (13)

where z(·) is a normalization factor that ensures that strokes have
an influence independent of their size, z(B) = 1/|B| with |B| the
number of pixels in B. For convenience, if there is no stroke on i,
we define B = ∅ and z(B) = 0. We sum over the image to obtain:

UR(s) =
X

i

z(BR
i)
X
j∈BR

i

(siIj − sjIi)
2 (14)

We also provide a constant-illumination brush (figure 4(b)) to the
user to indicate regions with constant s values. Between a pair
of pixels, this means s1 = s2, which translates into the energy
(s1 − s2)2. At the image level, this gives:

US(s) =
X

i

z(BS
i)
X
j∈BS

i

(si − sj)2 (15)

where BS
i is a constant-illumination stroke covering i and z is the

same normalization factor as in the previous case.

Finally, we define a fixed-illumination brush (figure 4(c)) so that the
user can specify absolute illumination values that are used as hard
constraints in our optimization. In practice, we use this brush only
to indicate fully lit pixels. These areas can be easily recognized by
users. We do not use this brush for intermediate illumination values
which would be harder to estimate for users. Formally, the brush
defines a set C of pixels which illumination values are fixed, that is
for all i ∈ C, si = t̄i with t̄i the user-specified value at pixel i. For
instance, t̄ = 1 for fully lit regions.

2.2.2 Constrained Least-square System

We combine the functional modeling the reflectance subspaces with
the user-driven to obtain the following optimization:

arg mins F (s) + w
ˆ
UR(s) + US(s)

˜
(16)

such that ∀i ∈ C, si = t̄i

where w controls the importance of the strokes. In practice, we use
w = 1 to give equal importance to our image model and to the
user cues, which yields consistently satisfying results. Equation 16
defines a constrained least-square optimization since each term is a
quadratic function of s. A minimizer can be obtained using clas-
sical linear solvers. For small neighborhoods Wi, the system is
sparse. As an example, for 3×3 windows the Lmatrix (Eq. 12) has
only 25 non-zero entries per pixel and the overhead of the brushes
is negligible. But for large neighborhoods, L is less sparse and the
computation becomes expensive. Section 3 describes a multiscale
scheme adapted to our problem.

2.3 Colored Illumination

Although our method is derived under the assumption that illu-
mination is monochromatic, that is, s is a scalar, we found that
it is able to cope well with colored illumination. In this case,
the illumination is a RGB vector s = (sr, sg, sb)T and our im-
age formation model becomes: I = s ∗ R where ∗ denotes

(a) Input scribbles (b) a vectors (c) Reflectance (d) Illumination

Figure 4: (a) The user can specify pixels sharing a constant reflectance (blue), a constant illumination (red), or a fixed illumination (white).
Each type of scribble is represented with a single color for illustration purpose, while in our implementation strokes of similar color share
the same constraint. (b) Visualization of the a vectors that vary across the image to fit the user constraints. (c,d) Resulting reflectance and
illumination.

per-channel multiplication. We use the previously described op-
timization method to compute each illumination component sepa-
rately. The only difference is how we interpret the user strokes.
For the channel c ∈ {r, g, b}, the constant reflectance energy be-
comes:

P
i z(B

R
i)
P

j∈BR
i

`
sc

iI
c
j − sc

jI
c
i

´2 and the constant illumi-

nation energy:
P

i z(B
S
i)
P

j∈BS
i

`
sc

i − sc
j

´2. Using these new def-
initions, we minimize Equation 16 for each RGB channel.

(a) User (b) Reflectance (c) Illumination (d) White
scribbles balanced

Figure 5: Our illumination estimation is robust to colored illumina-
tion (c). Mapping the estimated colored illumination to gray level
and multiplying back with reflectance results in a white balanced
image (d).

3 Distribution-Preserving Downsampling

The energy formulation described in the previous section relies on
color distributions over local windows. However, to capture the
color distribution of a textured reflector, the size of the window
must be at least as big as the pattern. For example, in Figure 6
the blue lines are constrained as reflectance variations by a user
scribble, but are interpreted as illumination variations away from
the scribble because a 3 × 3 window does not cover two lines at a
time (first row). 7× 7 windows are required in order to capture the
blue line texture away from the scribble (second row).

Unfortunately, large windows imply a less sparse least-square sys-
tem and higher memory and computation costs. This suggests the
use of multiresolution approaches such as multigrid, but we have
found that standard methods perform poorly in our case. This is
because the downsampling they rely on does not respect color dis-
tributions. For example, nearest neighbor or even bicubic interpola-
tion can quickly discard colors that do not appear in enough pixels
(Figure 8, first and second row). We introduce a new downsampling
scheme that does not focus on SSD error but seeks to faithfully pre-
serve the set of colors in a region.

Our new distribution-preserving downsampling is based on two key
ideas. First, rather than define the computation of low-resolution

pixels one at a time, we consider blocks of low-resolution pixels,
because we need multiple pixels to capture a distribution of colors.
That is, we downsample high-resolution blocks ofw×w pixels into
blocks of v × v pixels (typically from 4× 4 to 2× 2). Second, we
select the best representatives of the color distribution of a block
using clustering.

We integrate this downsampling scheme in a multigrid solver and
show that coarse-level results can be upsampled accurately by up-
sampling the a vectors rather than the illumination itself. This re-
quires explicitly extracting the per-window a values, but this is easy
given s.

3
×

3
w

in
do

w
7
×

7
w

in
do

w

input I a vectors reflectance R illumination s
(contrast incr.)

Figure 6: A 3 × 3 window does not capture the color variations
away from the scribble (red pixels). A 7×7 window ensures a better
propagation of the a vectors modeling the reflectance planes.

Downsampling Our scheme downsamples large w×w windows
into small v × v windows such that w = pv with w, v, and p inte-
ger numbers. In this configuration, each pixel in the low-resolution
image corresponds to p× p high-resolution pixels. First, we divide
the input image intow×w blocks and extract v2 representative col-
ors in each block with the K-means algorithm. Then, we rearrange
these v2 pixels into a v × v block. To preserve image structure,
we test all the possible layouts and select the one that minimizes
L2 distance with the original image. The comparison between this
downsampling scheme and standard nearest neighbor and linear
downsampling is illustrated in Figure 7. We use our downsampled
image I↓ to compute illumination and reflectance as described in
Section 2.

Original
image

w x w
block

v representative
colors

2 v x v
block

Downsampled
image

K-means ordering

(a) K-means downsampling

(b) Nearest neighbor (c) Linear
downsampling downsampling

Figure 7: For a downsampling factor p, we use K-means cluster-
ing to extract v2 representative colors of each w × w image block.
These representative colors are then ordered to form the downsam-
pled image (a). In comparison, nearest neighbor (b) looses the
green and gray color information, while linear downsampling (c)
produces a loss of contrast.

Upsampling Full-resolution illumination and reflectance could
be obtained with standard upsampling scheme, but generic tech-
niques ignore our image formation model. We leverage the planar
reflectance structure to derive a high-quality and computationally
efficient upsampling method. First, we use Equation 8 to compute
the a↓ vectors at low resolution. Then, we upsample these vec-
tors using bilinear interpolation to obtain high-resolution a↑. Fi-
nally, we compute the high-resolution illumination s↑ using the
reflectance planes defined by a↑, that is: s↑ = a↑ · I. Levin et
al. [2008] describe a similar approach to speed up their matting al-
gorithm. The high-resolution reflectance R↑ is then computed as
R↑ = I/s↑. Figure 8 (third row) illustrates the benefits of this
strategy for textured surfaces: 3 × 3 windows are used on a down-
sampled input to compute a decomposition that closely match the
solution obtained with 7×7 windows at fine resolution. In compar-
ison, nearest neighbor (first row) and linear downsampling (second
row) incorrectly include the blue lines in the illumination.

Multigrid Solver To further improve the performances of the lin-
ear solver, we apply the above multi-resolution approach recur-
sively, in the spirit of multigrid algorithms [Briggs et al. 2000]. The
idea behind multigrid methods is to efficiently solve for the low
frequency components in a low resolution version of the domain,
and refine the high frequency components at higher resolutions. In
practice, we pre-compute a pyramid of the image at multiple scales
using our distribution-preserving scheme that reduces 4 × 4 win-
dows into 2 × 2 blocks. We compute the corresponding L matrix
at each level (Eq. 12). We also cache the results of the K-means
downsampling. When the user adds scribbles, we use this informa-
tion to propagate the constraints in the pyramid at virtually no cost.
At run time, we follow a coarse-to-fine strategy. The solution at a
given level is upsampled to the next level and refined with a few
Gauss-Seidel iterations. We iterate this scheme until we reach the
finest resolution. Combining our distribution-preserving downsam-
pling and smart upsampling, even the coarsest level yields a good
approximation of the final solution. We use this property to provide
early visual feedback to the user by directly upsampling the solution
of the first pyramid level using the method described in the previous
paragraph. The rest of the pyramid is processed in the background.
With our unoptimized C++ implementation on dual-core 3 GHz PC,
a 800 × 600 image requires 20 seconds to precompute the L ma-
trices (this happens only once), visual feedback is available within
a second and fully converged result after about 15 seconds. Table 2
details the computation time for the images in this paper.

Since we use a standard least-square approach, one could use an
optimized solver such as the GPU-based method of Buatois et
al. [2007] or McCann and Pollard [2008] to further speed up the
computation.

N
ea

re
st

ne
ig

hb
or

L
in

ea
r

K
-m

ea
ns

downsampled a↓ vectors reflectance R↑ illumination s↑
input I↓ (contrast incr.)

Figure 8: Multi-resolution strategy. We approximate large win-
dows at fine resolution as small windows in a coarse version of
the image. Nearest neighbor downsampling and linear downsam-
pling fail to preserve the color variations at coarse resolution. Our
K-means scheme preserves the blue and yellow color variations,
leading to a better approximation of the reflectance plane.

4 Results and Applications

Inputs The energy derivation described in section 2 assumes lin-
ear image values. When dealing with JPEG inputs (Figure 14), we
approximate linear images by inverting the gamma, although this
inversion can be sensitive to quantization and saturation. For these
reasons, most of the results in this paper have been generated from
RAW images, that provide linear values. Moreover, the 16 bit depth
of RAW images allows a greater accuracy in dark areas of the im-
age when computing reflectance as R = I/s. This is true for any
intrinsic image method.

User Interactions In a typical session, a user starts by specify-
ing a few fixed-illumination strokes in order to fix the global scale
ambiguity between bright objects in shadow and dark objects in
light. The resulting initial solution can then be iteratively refined by
adding constant-reflectance and constant-illumination strokes. In
theory, only one fixed-illumination stroke is enough to numerically
solve the gobal scale ambiguity. However, if the scene contains dis-
connected components, for example a subject in front of a distant
background, each component needs a fixed stroke since the illumi-
nation information cannot be propagated. For example in Figure 4,
one fixed-illumination scribble is required for the pink flower, and
one for the green leaves because these two regions form different
connected components that do not share a similar reflectance or a
similar illumination.

The fixed-illumination brush is often applied over the brightest
points of objects, which are easy to identify for a human oberver.
An inaccurate fixed illumination value only introduces a global
scaling factor over connected color regions, which still produces a
plausible result. The constant-reflectance and constant-illumination
strokes are most effective when applied to regions with complemen-
tary variations, e.g. using the constant-illumination brush across
reflectance edges often significantly improves the result. Similarly,
the constant-reflectance brush is effective when applied over inter-
reflections and other colored lighting variations. Our video illus-
trates these intermediate steps.

Figure 9 illustrates how the per-pixel error evolves with the num-
ber of strokes, computed from ground truth data with two sets
of strokes scribbled by different users. Because no method ex-
ists to obtain ground truth decompositions from color photographs,
we created a synthetic scene inspired by Figure 1 and computed
a global illumination solution (Figure 11). Typically, the fixed-
illumination strokes drastically reduce the error by fixing global
ambiguities, while the constant-reflectance and illumination strokes
correct small, but visually important, local errors. The two different
sets of strokes quickly converge to decompositions that differ only
by a global scaling factor.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Er
ro

r

Number of strokes

Fixed illumination
brush

Constant illumination
or reflectance brush

Figure 9: Per-pixel error computed from a ground truth synthetic
image, for two different sets of scribbles. Fixed illumination scrib-
bles quickly produce a good estimate (10 first strokes), while con-
stant illumination or reflectance scribbles are used to refine the re-
sult. The remaining error is due to the global scaling factor that
has been over or under estimated.

Our approach is robust to small variations in scribble placement and
value, which makes it easy to use. To assess this, we have computed
several results where we have randomly moved the scribbles up to
15 pixels and randomly changed the fixed illumination values up to
5%. All the results look equally plausible with objects appearing
slightly brighter or darker, and remain usable in graphics applica-
tions (see results in supplemental materials). Table 1 reports the
average per-pixel error for various scribble alterations on the syn-
thetic image of Figure 11. While the amount of user scribbles re-
quired is comparable to other approaches [Levin et al. 2004; Levin
et al. 2008], an important difference is that, in our approach, most
of the scribbles do not require the users to specify numerical val-
ues. Instead, user only indicates similarity between reflectance or
illumination, which is more intuitive to draw. Table 2 details the
number of strokes for the examples in this paper.

Intrinsic Decompositions Figure 10 illustrates the intrinsic im-
age decomposition that our method produces for a colorful pho-
tograph. In comparison, a luminance computation produces dif-

Scribbles Per-pixel
error (%)

Fixed-illumination values set to ground truth values 2.28
Fixed-illumination values set to 1 5.98
Fixed-illumination values set to ground truth values,
position randomly altered up to 15 pixels 7.12
Fixed-illumination values set to ground truth values
randomly altered up to 5% 5.19

Table 1: Average per-pixel error computed from a ground truth
synthetic image with randomly altered scribbles.

Res. User Matrix Solving
strokes (s) (s)

Baby (fig. 1) 533× 800 58 20.64 11.93
Flower (fig. 4) 750× 500 15 18.21 7.87
Clown (fig. 10) 486× 800 33 18.83 9.53
St Basile (fig. 14) 800× 600 81 23.29 14.56
Paper (fig. 14) 750× 500 36 18.17 9.2

Table 2: Resolution, number of scribbles and computation time
for matrix pre-computation and solving for the results of this pa-
per. Note that we use the coarse level of the pyramid to display an
approximate solution after 1 second (cf. text for detail).

ferent values for light and dark colors. We compare our approach
with Tappen et al.’s [2005] algorithm in Figure 14 and in our sup-
plementary materials. This method combines a Retinex classifier
based on chromaticity variations and a Bayesian classifier trained
on graylevel images. The result of these classifiers is a binary map
that labels the image gradients as reflectance or illumination. The
final reflectance and illumination images are reconstructed using a
Poisson integration on each color channel. The main limitation of
this automatic approach is that a binary labelling cannot handle ar-
eas where both reflectance and illumination variations occur, such
as in highly textured areas, along occlusion boundaries or under
mixed lighting conditions. In Figure 11 we show a similar compar-
ison on ground truth data from a synthetic image. The information
specified by the user together with our propagation algorithm allow
us to extract fine reflectance and illumination, but our planar re-
flectance assumption prevents us from considering the black pixels
of the eyes as reflectance. Because Tappen’s method is automatic,
there is a remaining scale ambiguity over the reflectance and illu-
mination after Poisson reconstruction. We fix the brightest point of
the illumination to a value of 1 in Figure 11(c) but the estimated
illumination is still darker than the ground truth. The refletance in
Figure 11(c) is not uniform because occlusion edges that are classi-
fied as reflectance also contain illumination variations.

Figure 16 compares our method with the automatic approach of
Shen et al. [2008]. While their texture constraints greatly improve
the standard Retinex algorithm, posterization artifacts are visible in
the reflectance image due to the clustering that imposes that pix-
els of the same texture receive the same reflectance. Increasing the
number of clusters reduces posterization but also reduces the bene-
fit of the texture constraints. As any automatic approach, the result
cannot be corrected in case of failure, such as in the St Basile im-
age where different regions of the sky receive different reflectance.
Moreover, their method cannot handle colored illumination.

Reflectance Editing One of the simplest manipulations offered
by intrinsic images is editing one of the image component (re-
flectance or illumination) independently from the other. Figure 1(e)
and 12 give examples of reflectance editing inspired by the re-
texturing approach of Fang and Hart [2004]. We use a similar
normal-from-shading algorithm to estimate the normals of the ob-

(a) Input (b) Our method (c) Naive luminance (d) Tappen’s method

Figure 12: Our approach (b) produces illumination maps that are more accurate than luminance (c) for re-texturing textured objects. On
this highly textured image, the automatic classifier of Tappen et al.[2005] cannot decompose reflectance and illumination properly (d), which
impacts the result of the manipulation.

(a) Input (b) Naive (c) Illumination (d) Reflectance
luminance

Figure 10: While a naive luminance computation produces lower
values for dark colors (b), our approach provides a convincing es-
timation of illumination (c) and reflectance(d).

jects. Textures are then mapped in the reflectance image and dis-
placed according to the normal map. We finally multiply the edited
reflectance image by the illumination image to obtain a convincing
integration of the new textures in the scene. While Fang and Hart
obtained similar results using the luminance channel of the image,
our illumination represents a more accurate input for their algorithm
and other image based material editing methods [Khan et al. 2005]
when dealing with textured objects (Figure 12).

Relighting Once reflectance and illumination have been sepa-
rated, the scene can be relighted with a new illumination map. Fig-
ure 13 illustrates this concept with a simple yet effective manipu-
lation. Starting from a daylight picture, we invert the illumination
image to create a nighttime picture. Although this simple operation
is not physically accurate, we found that it produces convincing re-
sults on architectural scenes because the areas that do not face the
sun in the daylight image are the ones that are usually lit by night
(interiors and surfaces oriented to the ground). We refine the result
by adding a fake moon and mapping the gray level illumination to
an orange to purple color ramp.

R
efl

ec
ta

nc
e

Il
lu

m
in

at
io

n

(a) Ground truth (b) Our method (c) Tappen’s method
from a single image from a single image
and user scribbles

Figure 11: Comparison with ground truth data from a synthetic im-
age. Compared to the automatic method of Tappen et al.[2005] (c),
our user assisted approach produces finner results, but interprets
the black pixels of the eyes as shadow (b).

Discussion Although we found that our method works well in
most cases, we acknowledge that similar to many inverse prob-
lems, the results can be sensitive to the input quality. JPEG arti-
facts and noise can become visible if one applies an extreme trans-
formation to the illumination or reflectance, especially since JPEG
compresses color information aggressively. For instance, inverting
the illumination as in Figure 13 can reveal speckles on strongly
compressed images. Over-exposure and color saturation are other
sources of difficulty since information is lost. For instance, the
clown in Figure 10 contains out-of-gamut colors that have been
clipped by the camera. As a consequence, some residual texture
can be discerned in the illumination component. Existing methods
share all of these difficulties that are inherent to the intrinsic image
decomposition problem. In Figure 15, we compare our result with
Weiss’ technique [2001]. Even with 40 images taken with a tripod
and controlled lighting, illumination variations remain visible in the
reflectance component, which is the opposite bias of our method.

(a) Original image (b) Nighttime relighting

Figure 13: From a daylight picture (a), we invert the illumination
and add a fake moon to create a nighttime picture (b). Note however
that the process reveals saturation and blocky artifacts from the
JPEG compression. Original image by Captain Chaos, flickr.com.

5 Conclusions

We have described a method to extract intrinsic images based on
user-provided scribbles. It relies on a low-rank assumption about
the local reflectance distribution in photographs. This allows us to
compute the illumination as the minimizer of a linear least-square
functional. We have also presented a new downsampling scheme
based on local clustering that focuses on preserving color distribu-
tions. Our method can handle complex natural images and can be
used for applications such as relighting and re-texturing.

Acknowledgments

We thank Laurence Boissieux for creating the synthetic scene (Fig-
ure 11), and Sara Su for recording the voice-over. We are grateful
to Marshall Tappen for sharing his code and to Li Shen and Ping
Tan for running their algorithm on our images. Finally, we thank
the anonymous reviewers and the MIT/ARTIS pre-reviewers for
their constructive feedback and comments. This work was partially
funded by an NSF CAREER award 0447561, by the MIT-Quanta T
Party and by the INRIA Associate Research Team “Flexible Ren-
dering”. F. Durand acknowledges a Microsoft Research New Fac-
ulty Fellowship and a Sloan Fellowship.

References

AGRAWAL, A., RASKAR, R., AND CHELLAPPA, R. 2006.
Edge suppression by gradient field transformation using cross-
projection tensors. In CVPR, 2301–2308.

BARROW, H., AND TENENBAUM, J. 1978. Recovering intrinsic
scene characteristics from images. Computer Vision Systems, 3–
26.

BRIGGS, W. L., HENSON, V. E., AND MCCORMICK, S. F. 2000.
A multigrid tutorial (2nd ed.). Society for Industrial and Applied
Mathematics.

BUATOIS, L., CAUMON, G., AND LÉVY, B. 2007. Concurrent
number cruncher: An efficient sparse linear solver on the gpu.
In High Performance Computation Conference.

CHUANG, Y.-Y., CURLESS, B., SALESIN, D. H., AND SZELISKI,
R. 2001. A bayesian approach to digital matting. In CVPR.

FANG, H., AND HART, J. C. 2004. Textureshop: Texture synthesis
as a photograph editing tool. ACM TOG (proc. of SIGGRAPH
2004) 23, 3, 354–359.

FATTAL, R. 2008. Single image dehazing. ACM TOG (proc. of
SIGGRAPH 2008) 27, 3.

FINLAYSON, G. D., HORDLEY, S. D., AND DREW, M. S. 2002.
Removing shadows from images. In ECCV.

FINLAYSON, G. D., DREW, M. S., AND LU, C. 2004. Intrinsic
images by entropy minimization. In ECCV, 582–595.

HORN, B. K. 1986. Robot Vision. MIT Press.

HSU, E., MERTENS, T., PARIS, S., AVIDAN, S., AND DURAND,
F. 2008. Light mixture estimation for spatially varying white
balance. ACM TOG (proc. of SIGGRAPH 2008) 27, 3.

KHAN, E., REINHARD, E., FLEMING, R., AND BÜLTHOFF, H.
2005. Image-based material editing. ACM TOG (proc. of SIG-
GRAPH 2005) 24, 3, 148.

LAND, E. H., AND MCCANN, J. J. 1971. Lightness and retinex
theory. Journal of the optical society of America 61, 1.

LEVIN, A., AND WEISS, Y. 2007. User assisted separation of re-
flections from a single image using a sparsity prior. IEEE Trans.
PAMI 29, 9, 1647–1654.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. ACM TOG (proc. of SIGGRAPH 2004) 23,
3, 689–694.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2008. A closed-
form solution to natural image matting. IEEE Trans. PAMI.

LIU, X., WAN, L., QU, Y., WONG, T.-T., LIN, S., LEUNG, C.-
S., AND HENG, P.-A. 2008. Intrinsic colorization. ACM TOG
(proc. of SIGGRAPH Asia 2008) 27, 5.

MCCANN, J., AND POLLARD, N. S. 2008. Real-time gradient-
domain painting. ACM TOG (Proc. of SIGGRAPH) 27, 3.

MOHAN, A., TUMBLIN, J., AND CHOUDHURY, P. 2007. Editing
soft shadows in a digital photograph. IEEE Computer Graphics
and Applications 27, 2, 23–31.

OMER, I., AND WERMAN, M. 2004. Color lines: Image specific
color representation. In CVPR, 946–953.

SHEN, L., TAN, P., AND LIN, S. 2008. Intrinsic image decompo-
sition with non-local texture cues. In CVPR.

SHOR, Y., AND LISCHINSKI, D. 2008. The shadow meets the
mask: Pyramid-based shadow removal. Computer Graphics Fo-
rum (Proc. of Eurographics) 27, 3.

SINHA, P., AND ADELSON, E. 1993. Recovering reflectance and
illumination in a world of painted polyhedra. In ICCV, 156–163.

TAPPEN, M. F., FREEMAN, W. T., AND ADELSON, E. H. 2005.
Recovering intrinsic images from a single image. IEEE Trans.
PAMI 27, 9.

WEISS, Y. 2001. Deriving intrinsic images from image sequences.
In ICCV, 68–75.

WU, T.-P., TANG, C.-K., BROWN, M. S., AND SHUM, H.-Y.
2007. Natural shadow matting. ACM TOG 26, 2, 8.

YU, Y., AND MALIK, J. 1998. Recovering photometric properties
of architectural scenes from photographs. In ACM SIGGRAPH
98, 207–217.

(a) User scribbles (b) Our reflectance and illumination (c) Tappen’s reflectance and illumination
from a single image and user scribbles from a single image

Figure 14: Comparison with the automatic approach of Tappen et al.[2005]. St Basile Cathedral image by Captain Chaos, flickr.com.

(a) User scribbles (b) Our reflectance and illumination (c) Weiss’ reflectance and illumination
from a single image and user scribbles from 40 images

Figure 15: Comparison with the multiple image approach of Weiss[2001].

(a) Shen’s reflectance (b) Shen’s illumination
from a single image from a single image

Figure 16: Comparison with the automatic approach of Shen et al.[2008]. St Basile Cathedral image by Captain Chaos, flickr.com.

