
Massachusetts Institute of Technology

16.410 Principles of Automated Reasoning
and Decision Making

Problem Set #6 Due in class and online: Session 13

Constraint Satisfaction Problems

Objectives

In this problem set we examine the solution to constraint satisfaction problems
(CSPs). A CSP involves finding a consistent set of assignments for a set of variables,

, where each variable, , takes its values from a domain of values, . The
variable assignments are constrained to satisfy a set of constraints between some or all
of the variables. In this problem set, we restrict ourselves to binary constraints, which
constrain two variables.

10 ...,, −nXX iX iD

We begin with a set of short-answer questions that cover basic concepts. Then, we

proceed to a number of coding exercises, in which you implement a number of constraint
processing algorithms in Java. The algorithms are to be tested on a set of problems of
different sizes, in order to evaluate their relative performance.

As with all programming problem sets you will be expected to provide, in addition to

your software, a set of junit tests, a main method that demonstrates the software applied
to the problems specified in the problem set, and a document explaining the design of
your solution and the results obtained from it.

Readings
Lecture notes L10 and L11.
AIMA Chapter 5.

Problem 1 – Backtracking on a Four-variable Problem
(25 points)

In this problem, we consider a very simplified situation in which there are only four
variables: A, B, C and D, and each of them have only two legal values, which we will
write as: A1, A2 (for variable A), B1, B2 (for variable B), C1, C2 (for variable C) and

D1, D2 (for variable D). Binary constraints between variable pairs are expressed as a set
of legal assignments:

ABC : {(A1, B1) (A2, B1)}
ACC : {(A1, C1) (A2, C2)}
BDC : {(B1, D1)}
CDC : {(C2, D1)}
BCC : no constraint
ADC : no constraint

We say that “an assignment is generated'' every time a variable in the problem gets a

new (candidate) assignment. We assume that the variables are examined in alphabetical
order and the values in numerical order. Below, we ask you to solve this problem using
pure backtracking and also by using backtracking with forward checking. Stop when a
valid solution is found.

The search tree for this problem is given below. Each node (except the root) is
labeled with the value involved in the assignment; the variable is the first letter of the
value. Your answers will consist of a space-separated sequence of values corresponding
to assignments as they are generated during the search. For example, {A1 B1}, etc.

Root

A1 A2

B2

C2C1

D2D1D2D1

B1

C2C1

D2D1D2D1

B2

C2C1

D2D1D2D1

B1

C2C1

D2D1D2D1

6.1.1 – Using pure backtracking, how many assignments are made before the answer is
found?

What is the assignment sequence?

6.1.2 – Using backtracking with forward checking, how many assignments are made
before the answer is found?

What is the assignment sequence?

Problem 2 – CSP True/False (25 points)

Please indicate whether the following statements are true or false.

6.2.1 - Constraint propagation, with no search, will find a satisfactory way to color all
planar maps with four colors, if such a coloring exists.

6.2.2 – Given a constraint graph with edges and d values per domain, constraint
propagation takes

e
()2edO arc tests for a single pass through all of the arcs in the graph.

6.2.3 – In backtracking with forward checking, after assigning a value to a variable, does
the search loop needs to test the new assignment against past assignments.

6.2.4 – A backtracking search that performs a full constraint propagation after each
assignment in place of forward checking generally results in an answer that uses fewer
arc-tests than search with forward-checking only.

6.2.5 – A dynamic variable ordering heuristic based on domain size is generally an
effective strategy to speed up solving CSP.

6.2.6 – A dynamic value ordering heuristic, which measures the influence of neighboring
variables, is generally an effective strategy to speed up solving a CSP, when all the
answers are desired.

6.2.7 – If constraint propagation leaves all variables with non-empty domains, there is at
least one solution.

6.2.8 – If constraint propagation leaves at least one variable with an empty domain, there
is no solution.

6.2.9 – If constraint propagation leaves all variables with singleton domains, there is a
unique solution.

6.2.10 – If constraint propagation leaves some variable with more than one value in its
domain, there is not a single unique solution.

6.2.11 – Backtracking with forward checking never explores more possible variable
assignments than pure backtracking.

6.2.12 – Backtracking with forward checking never tests more constraint arcs than pure
backtracking.

Background for Problems 3 and 4
For problems 3 and 4, you will implement backtracking algorithms for solving CSP’s.

The implementation will be general, so that it will be usable for a wide variety of
problem types. However, you will test your implementation on a specific kind of CSP:
the N-queens problem.

You are provided with a number of classes that will help you get started. The class
CSP is used to represent the CSP problem, and also has methods for the backtracking
algorithms, which you will write. The class CSP is supported by the classes
CSP_Variable, CSP_Domain, and CSP_Constraint. These classes, along with CSP,
provide a general CSP solver framework. Aspects of these classes are then specialized
for particular problem types, such as N-queens.

Class CSP

This class is used to represent a CSP problem, and also has methods for solving it.
Recall that a CSP is represented by a set of variables, a domain for the variables, and a set
of constraints. Thus, the CSP class has elements variables, domain, and constraints.
The class also has constructor, initialize, and print methods, which must be overridden in
a class that inherits from CSP. Finally, the class has methods backtrack, and
backtrack_fc, for solving the CSP, using, respectively, backtrack search, and backtrack
search with forward checking.

You will implement the method backtrack in problem 3, and the method backtrack_fc

in problem 4. Note that these methods are to be implemented at the level of the CSP
abstraction, in terms of the classes CSP, CSP_Variable, CSP_Domain, and
CSP_Constraint. The implementation of these methods should not contain code specific
to a particular type of CSP, such as N-queens.

Class CSP_Variable

The class CSP_Variable represents a single variable in a CSP. The class has elements
domain, from_arcs, and to_arcs. In this problem, we will limit ourselves to binary
constraints that are directional. Thus, from_arcs is the set of constraints that have the
variable as its “input” variable, and to_arcs is the set of constraints that have the variable
as its “output” variable. The class also defines basic methods for accessing and
modifying domain values, and for checking consistency.

Class CSP_Constraint

The class CSP_Constraint represents a single CSP constraint. It has elements for
input variable and output variable. It also has a constructor that initializes these elements.

Class CSP_Domain
The class CSP_Domain represents a domain for a variable. It has a list of domain values,
and an accessor method that retrieves them.

The N-Queens Problem
You will test your backtrack algorithm implementations on an N-Queens problem.

Although the backtrack and backtrack_fc methods will be coded in a problem-
independent manner, you will need to implement some code specific to the N-Queens
problem. In particular, you will implement the arc consistency check method for an N-
Queens problem constraint.

For this problem, the goal is to place N queens on an NxN chess board so that no
queen can capture another. Thus, no two queens can share a common row, column, or
diagonal. We will use the following representation for this type of problem.

- The variables are the rows where queens are to be placed. Each queen is

identified with a column of the board. This automatically ensures that the
queens will not share columns.

- The variable domains are the available row indices.

- The constraints between the variables are that the corresponding queens do not
share a row or diagonal.

Class NQueens

The class NQueens, which extends CSP, represents an NQueens CSP. It contains
initialize and print methods, which we provide. These will help you get started, and
provide guidance for other aspects of the implementation that are specific to the NQueens
problem.

Class NqueensVariable
 The class NQueensVariable, which extends CSP_Variable contains element col
which indicates the (constant) column position for the variable. The constructor
initializes this element and the domain.

Class NQueensDomain

The class NQueensDomain, which extends CSP_Domain, has a constructor that
initializes the domain elements.

Class NQueensConstraint
For the class NQueensConstraint, which extends CSP_Constraint, you will provide the
implementation for the method consistent, which checks whether the constraint is
consistent. This method should retrieve the current domains of the input and output
variables of the constraint. If it cannot find any combination of input and output values
that are consistent, the method should return false. Otherwise, it should return true.

Problem 3 – Backtracking Implementation (25 points)

Implementation
 Please implement the backtrack method of the CSP class. As stated previously,
these methods are to be implemented at the level of the CSP abstraction, in terms of the
classes CSP, CSP_Variable, CSP_Domain, and CSP_Constraint.

 To support the backtrack method, please implement the consistent method of the
NQueensConstraint class. As stated previously, this method should retrieve the current
domains of the input and output variables of the constraint. If it cannot find any
combination of input and output values that are consistent, the method should return
false. Otherwise, it should return true.

 The lecture slides provide a description of the backtrack search algorithms. Please
refer to these slides when implementing the backtrack method.

Testing
The class CSPTop provides a main method as an entry point. This initializes an

NQueens problem of specified size and solves it, printing out the domains before and
after the solution.

Test your implementation of backtrack for sizes 5, 10, and 15. What is the number of
consistency checks for each? What is the largest problem size that can be solved in about
a minute?

Problem 4 – Backtracking with Forward Checking
Implementation (25 points)

Implementation
In this problem, you will augment your backtrack algorithm with forward checking,

by implementing the algorithm backtrack_fc. The classes and algorithms should be
similar to those for the backtrack algorithm. The primary change should be to add a call
to a forward checking method from the backtrack method. This will require management
of variable domain pruning and restoration during backtracking, as described in the
lecture notes.

Testing
Test your implementation of backtrack_fc on problems with sizes 5, 10, 20, and 30.

What is the number of consistency checks for each? What is the largest problem size that
can be solved in about a minute?

16.413 Students Only
The pseudocode provided in the lecture for backtracking with forward checking uses

an approach in which variable domains are copied in order to preserve the domains prior
to pruning, so that they can be restored when backtracking. Discuss advantages and
disadvantages of this approach. Propose an alternative approach, that does not use
copying, and discuss its advantages and disadvantages.

For optional extra credit (25 points), implement this approach.

Problem 5: Time
Please let us know the amount of time it took you to complete this problem set.

	Problem Set #6 Due in class and online: Session 13
	Objectives
	Readings
	Problem 1 – Backtracking on a Four-variable Problem (25 poin
	Problem 2 – CSP True/False (25 points)
	Background for Problems 3 and 4
	The N-Queens Problem

	Problem 3 – Backtracking Implementation (25 points)
	Implementation
	Testing

	Problem 4 – Backtracking with Forward Checking Implementatio
	Implementation
	Testing

	Problem 5: Time

