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Abstract: We demonstrate magnetic field assisted, (sub)THz quantum cascade laser operating 
above 200K. This is achieved through the application of strong magnetic fields which provide an 
additional lateral confinement in order to suppress non-radiative intersubband scattering. 
©2009 Optical Society of America 
OCIS codes: (140.3070) Infrared and far-infrared lasers; (140.5965) Semiconductor lasers, quantum cascade; (230.5590) 
Quantum-well, -wire and -dot devices; (250.5960) Semiconductor lasers  
 

A quantum cascade structure is a general concept of an optoelectronic device (laser, LED, frequency mixer, or 
detector) based on a cascade of radiative transitions between size-quantized energy levels in a multi-quantum-well 
structure. Today, Quantum Cascade Lasers (QCLs) are the only semiconductor devices operating from the mid-
infrared (MIR) to the THz range of frequencies. The motivation to push QCLs to longer wavelengths and to higher 
operational temperatures is driven by their potential for remote sensing and imaging, spectroscopy, and 
communications. THz QCLs now cover the frequency range from 1.2 THz to 5 THz, though cryogenic cooling is 
still required [1]. Progress towards the realization of sub-THz and/or high temperature QCL’s operation becomes 
exceedingly difficult because it requires the necessary population inversion between closely spaced electronic 
subbands (1 THz ~ 4 meV) to be achieved.  

The similar energy and size scales of spatial and magnetic confinements allows the application of an 
external magnetic field to be an experimental tool to control processes that determine the performance of QCLs – 
quantum confinement and intersubband relaxation [2]. A magnetic field changes the 2D parabolic energy dispersion 
of each size-quantized subband )(knε  into a set of discrete, equidistant, 0D-like, Landau levels (LLs), 

( ) cnNn NE ωε h21, ++=  , separated by the cyclotron energy */ meBc hh =ω , where n is the subband index, N 
is the LL index, B is the magnetic field, and m* is the electron effective mass. As a result, both radiative and non-
radiative transitions are either reduced or resonantly enhanced by the inelastic (LO-phonon assisted) or (quasi)-
elastic (interface roughness, acoustical phonons, or impurities) scattering between different LL states |n,N>. Here 
we exploit this approach of “Landau level engineering” to explore the ultimate limits of THz QCL operation. 
 We studied GaAs/Al0.15Ga0.85As THz QCLs based on “resonant-phonon” design scheme [3]. The optical 
and electrical characteristics (current density J, voltage/period V, optical power P as well as emission spectra) were 
recorded as a function of the magnetic field applied perpendicular to the plane of the quantum wells.  

At B=0 T and designed bias of ~53mV/period (Fig. 1a), the laser transition takes place between levels |6> 
and |5> ( E6,5 ≈ 13 meV or 3.1 THz ) followed by a fast, LO-phonon assisted relaxation towards the triplet ground 
states:|3>, |2>, and |1>. At strong enough magnetic fields, it becomes possible to increase voltage bias above 
60 mV/period. Here the separation of levels |5> and |4>,and levels |8>, |7>, and |6> is possible while maintaining a 
large dipole-matrix element, resulting in the possibility for different laser transitions. Applying appropriate electrical 
bias and magnetic field, we achieved laser emission in an unprecedented range of frequencies from 0.68 THz to 
3.33 THz (Fig. 1b). In a narrow range of magnetic fields about 20 T, we observed strong dual-frequency lasing 
(0.97 THz and 3 THz) that originates from the simultaneous emission from two cascaded optical transitions in each 
QCL period. The detailed description of different magnetic field assisted lasing regimes can be found in ref. 4. 
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Fig. 1. (a) Conduction band diagram and squared wavefunctions at 53mV/period, zero B-field operational bias. Levels 3,2,1 are 8,7, 6 for the next 
period. (b) Spectral coverage of the QCL device with increasing voltage bias and magnetic field (bottom curve 54.9mV/period, 13T; top curve 
88.4mV/period, 25T).  The inset shows the QCLs spectral extremes: 0.68THz (69.9mV /period, 31.2T) and 3.33THz (63.9mV/period, 19T). (c,d) 
Temperature dependence of P(J) at two enhanced lasing positions at 19.3T and 31T.  1THz lasing has been omitted from the 19.3T curves for 
visual clarity. 

Finally, we measured the temperature dependence of QCL emission (Fig.1c,d). Magnetic field assisted 
lasing continues up to 215K for 1 THz emission (31T), and 225K for 3 THz (19.3T). This is the longest wavelength, 
the widest spectral coverage, and the highest operational temperatures of any single THz solid state laser to date 
[1, 4]. Furthermore, these results demonstrate that additional lateral quantum confinement (i.e. a quantum box), is a 
route to higher temperature operation for THz QCLs. 
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