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This study is an overview of network topology metrics and a computational approach to analyzing graph
topology via multiple-metric analysis on graph ensembles. The paper cautions against studying single metrics
or combining disparate graph ensembles from different domains to extract global patterns. This is because there
often exists considerable diversity among graphs that share any given topology metric, patterns vary depending
on the underlying graph construction model, and many real data sets are not actual statistical ensembles. As
real data examples, we present five airline ensembles, comprising temporal snapshots of networks of similar
topology. Wikipedia language networks are shown as an example of a nontemporal ensemble. General patterns in
metric correlations, as well as exceptions, are discussed by representing the data sets via hierarchically clustered
correlation heat maps. Most topology metrics are not independent and their correlation patterns vary across
ensembles. In general, density-related metrics and graph distance-based metrics cluster and the two groups are
orthogonal to each other. Metrics based on degree-degree correlations have the highest variance across ensembles
and cluster the different data sets on par with principal component analysis. Namely, the degree correlation, the
s metric, their elasticities, and the rich club moments appear to be most useful in distinguishing topologies.

DOI: 10.1103/PhysRevE.85.016117 PACS number(s): 89.75.Fb

I. INTRODUCTION

This paper presents an overview of network topology
metrics and a computational approach to analyzing graph
topology via multiple-metric analysis on graph ensembles. We
review two studies that use this approach and build upon them
by discussing a wider set of metrics and their correlations
in more depth. Our goal is to present examples of why it
is hard to generalize about many of the metrics studied in
the literature. Namely, studying a single measure or pulling
networks from different domains and topologies together for
statistical analysis might provide incorrect conclusions. This
is true for (at least) three reasons: (i) There often exists
considerable diversity among graphs that share any given
topology metric [1,2], (ii) patterns vary depending on the
underlying graph construction model, and (iii) many real data
sets might not represent actual statistical ensembles.

The metrics overview includes a general introduction and
discussion of correlation patterns for random graph ensembles
and real data examples. It is found that, in many cases,
distance-based metrics correlate negatively with density or
degree distribution moments. There are exceptions, in both
classical ensembles and real data. We discuss the exceptions,
the high variance metrics, and differences between ensembles.
We show that some of our real data sets do not behave
as statistical ensembles. This is an additional argument
that even combining data from the same domain can be
inconclusive.

Finally, among all topology descriptors, we find that degree-
degree correlations show the most variation across different
types of data and can be used for classification. We claim that
a multiple-metric graph ensemble approach is essential for the
basic exploration of any network topology problem. This is
intended as a reminder and reference to the ambiguity that the
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networks field faces as a multidomain field with inherently
high-dimensional problems. An extensive review of this topic
can be found in [1].

A. Challenges in analyzing network topology

The definition of network topology used here is as follows:
the configuration by which the elements of a network are
connected. There are 2n×n ways to connect n nodes, from a set
of nodes with no edges to a complete graph. Transition from
one topology to another is a discrete process accomplished by
series of edge removals and additions. While much research
has been done on random rewiring, with preserving or targeting
certain properties, there is limited work in defining distances
between topologies other than trees. The properties of metrics
defined on this space are not well understood either. A
statistical approach, by studying metric correlations, is a way
to approach this challenge computationally.

In the literature, there are generally two approaches to
analyzing topology: a construction approach and a detection
approach. The construction papers [3,4] propose algorithms
for building graphs to achieve a certain topology, or match a
set of metrics, or to replicate the topology of a real system.
The detection approach [5,6] concentrates on comparing
statistical metrics across topologies to extract similarities or
claim resemblance. In general, the second approach suffers
from nonuniqueness because many topologies can map to a
set of metrics, while the construction approach is better at
reproducing statistical properties but challenged by computa-
tion. For example, matching a graph topology by matching
subgraph distributions [4] is very effective but increasingly
hard combinatorially with increasing subgraph size. Finding
graph isomorphisms is a subproblem of motif search which
does not have a known polynomial time solution.

This paper aims to enrich the detection approach by
analyzing correlations in a large set of metrics. These metrics
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FIG. 1. Examples of network topologies discussed in the lit-
erature: (a) Erdös-Rényi graph [7], (b) general random modular
graph [10], (c) a randomized hierarchy [11], (d) spatial distribution
tree graph [12], (e) preferential attachment graph [3].

are not independent and their relationships vary depending on
the graph topology.

B. Topology notions in the literature

While there is no general classification of network topolo-
gies, there are a few popular notions. The ones presented
here are used for generating random graph ensembles for our
metrics study. Examples of their graphical representation are
shown in Fig. 1.

Random graph studies mark the beginnings of network the-
ory [7]. Random topologies are often used for benchmarking
against real data. These are topologies in which edges are
added randomly, or with additional criteria, such as having the
same degree distribution or preferentially.

Modular networks are of interest in product and process
design, and social networks. Modularity is studied in the
context of robustness, complexity and operability, and com-
munity dynamics [8]. If a system performs better by some
parameter when designed modularly rather than integrally,
then the modularity aspect can be a design consideration [9].
We analyze a random modular graph ensemble model by
Clauset [10].

Hierarchy in networks is often studied in the context
of organizations and communication in teams. Hierarchy is
used in both construction approaches [11] as a model for
building networks and in detection approaches, where the
goal could be to find evidence for hierarchical patterns. Our
statistical ensemble comes from the randomized hierarchies
parametrized model by Dodds et al. [11].

Trees and lattice structures are the backbone of hierarchies.
Trees are important in engineering applications where minimal
linking is desired. This is true for sparse grids, transportation
networks, distribution systems, and communication networks.
The example used here is of spatial distribution trees [12]
where a tree is linked to a source with varying degree of
centralization versus optimal local linking.

Scale-free topologies are originally termed networks with
power-law degree distributions (P [X > x] ≈ cx−α , as x →
∞), but the name generates some controversy, as power-law
degree distributions can correspond to various types of network
structures [13]. We use the basic preferential attachment
model [3] to study an ensemble of preferential attachment
trees, as well as a general “scale-free” random graph model by
Catanzaro et al. [14].

This is not an exhaustive list of topology notions or
models in the literature. There are variations on the above, for
example, nested hierarchies or preferential attachment models
with different fitness functions. For engineering applications,
there are models for network growth optimized for specific

performance and subject to specific constraints. Relevant terms
are highly optimized tolerance (HOT) and robust but fragile
that come from claims [15] that complex systems evolve to
perform certain functions robustly, and efficiently, but that in
itself makes them susceptible in very specific ways.

In addition to the synthetic data sets described above, we
also analyze ensembles of airline data sets and language
Wikipedias to enrich the metric analysis with real data.
These are assumed to be proper ensembles as their individ-
ual networks grow under similar economic conditions and
technological constraints.

C. Paper outline

With these notions of topology in mind, we review
two papers that present multiple-metric analysis with linear
correlation heat maps (Sec. II). Then, we present a wider
spectrum of metrics (Sec. III) and compute them for the above
classical topology ensembles as well as for five airline data
sets and one Wikipedia ensemble (Sec. IV). For each data
set, we discuss correlation patterns and how they differentiate
its particular topology. Further discussion of metric statistics
and selection of high-variance metrics is presented in Sec. V.
Conclusion and further work remarks follow in Sec. VI.

II. LITERATURE REVIEW

There are many single-metric or distributions-based net-
work topology studies. Extensive reviews of the field are
available in [16–18]. We review two relevant papers that adopt
a comprehensive metric approach.

Roy et al. [19] use a similar multiple-network-metrics
statistical approach to understand the structure of a few
biological data sets. They study 11 metrics across 32 data
sets. The metrics include number of nodes and edges and the
first three moments of the degree distribution, the betweenness
distribution, and the geodesic (shortest path) distribution. They
also create a heat map based on paired metrics correlations.
The authors conclude that the correlations are not very strong
overall, which allows them to decouple the metrics in their
model fitting. The 11 network metrics are then examined with
respect to the biological phenotypes using hierarchical linear
regression, and the most relevant network metrics are extracted
(as many as nine out of 11 for some phenotypes).

Filkov et al. [20] use a heat map and multiple-network-
metric correlations to compare networks of various topologies.
The primary goal of the paper is to test the end result of a
network growth algorithm in comparison to other well-known
topologies. The authors correlate 15 metrics, derived from
seven original metrics, including second and third distribution
moments. These are correlated across 113 real data sets
which represent systems from social, technical, and biological
domains. The authors find that the 15 metrics are not coupled
strongly and select 11 that are least correlated for further
analysis. They use principal component analysis to project both
real and synthetic data onto the first three principal components
based on these 11 metrics.

Both papers use the statistical approach of correlating
metrics across ensembles for the purposes of validation or
support of another model, but do not perform a full exploration
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of patterns in these correlations. Our intent is to study a wider
set of metrics and correlate them across larger ensembles. Our
claim is that the correlation heat map is different depending
on the type of ensemble studied. Random graphs should differ
from preferential attachment graphs, from trees or hierarchies.
Real networks should exhibit a set of unique patterns as well,
depending on their structure and function. Therefore, using
the correlations or lack thereof, across diverse data sets might
not be valid. In addition, we view topology as independent of
network size, and consider only normalized metrics.

III. THE TOPOLOGY METRICS

A. Metric selection

We analyze 21 metrics from the literature, but compute
statistics for a total of 30 metrics including second moments.
Most of these come from social science [21], while some
are from the networks literature such as degree correlations.
They are organized in six groups, which represent different
properties of the graph: degree-related, degree correlations,
geodesics-related (shortest paths), modularity, motif-related,
and spectral properties. Table I shows all metrics with their
description, nomenclature, and their normalization.

The list in Table I is not comprehensive. Other examples
are the in- and out-degree distribution moments, the radius
of a graph: the minimum eccentricity across all vertices (the
eccentricity is the maximum distance to any other vertex),
as well as third moments of all distributions. Motifs (stars
and cliques) with up to six nodes showed correlations almost
identical to the four-node motifs, so these were excluded.
Degree distribution exponents, if they exist, are not in this
list. In addition, for the real data sets, we did not consider
application-specific metrics. Depending on the objective, these
can contain more information about a network than any of the
pure graph theoretic measures. For example, for airline data,
traffic-related measures such as load factor are essential, but
are not part of this analysis.

B. Normalization

One of the key assumptions of this paper is that topology
is independent of size. A diameter of 5 can have different
implications for network of size 10 or 10 000. This is why all
metrics are normalized by some function of graph size. For
example, when normalized by the maximum possible degree
(n − 1), average nodal degree 〈k〉 is the same quantity as link
density Eq. (1). In Eq. (1) n is the number of nodes, and m is
the number of edges. This formulation is valid for undirected
graphs only.

〈k〉
n − 1

= 2m/n

n − 1
= 2m

n(n − 1)
. (1)

Most natural and engineered networks are sparse, hence the
average degree can probably be normalized by a factor much
smaller than (n − 1). Since there is no general theoretical
threshold for sparseness, and higher densities are observed
for some systems (up to 20% even for airlines), we keep to this
classic definition.

Normalization for all metrics is explained in Table I.
Variances or second moments of metric distributions are the
variances of the normalized metrics.

The need to normalize arises from the need to analyze an
ensemble of graphs with varying sizes. Suppose that the graphs
in the ensemble have number of nodes x1,x2, . . . ,xN , where N
is the size of the ensemble. Then the set of measurements for
the i th and j th metric, (μi

1, . . . μ
i
N ; μj

1, . . . μ
j

N ) are normalized

by ( μi
1

fμi (x1) ,
μi

2
fμi (x2) , . . . ,

μi
N

fμi (xN ) ) and ( μ
j

1
f

μj (x1) ,
μ

j

2
f

μj (x2) , . . . ,
μ

j

N

f
μj (xN ) ),

where fμi and fμj are normalization functions that depend on
μi and μj . Suppose all the x’s are equal, that is, the graphs in
the ensemble all have the same size. Then, the correlation
between μi and μj is independent of the normalization
functions: 1

fμi (x) (μ
i
1, . . . ,μ

i
N ) and 1

f
μj (x) (μ

j

1, . . . ,μ
j

N ). If the

x’s are different, but with a small variance, the relationships
between metrics will be affected slightly. On the other hand,
if the x’s vary significantly, not normalizing will distort the
correlations. For the synthetic data we present, all ensembles
have graphs of the same size, so there are no size effects.
In real data, however, graphs with similar topology will not
always have the same size. These correlations are discussed in
Sec. IV B.

C. Constructing correlation heat maps

Hierarchically clustered heat maps are used to represent
the pairwise correlations between metrics for every ensemble.
One ensemble, in general, is represented by a (ensemble
size) × (number of descriptors) matrix, X, which is usually
100 × 30. The columns are then converted to standard units
and correlated. The correlation matrix, which is essentially
the covariance matrix, is P = cov(XT ,X) is 30 × 30, Pi,j =
cov(Xi,Xj ), where Xi and Xj are columns of X. This matrix
is used to plot a heat map in which the rows and columns are
sorted via hierarchical clustering. We use a generic hierarchical
clustering algorithm with a (negative) correlation distance, as
we expect that two metrics will behave the same way if their
correlation profiles are similar.

An example is shown in Fig. 2. This is an ensemble of
100 Erdös-Rényi graphs, each with 1000 nodes and density of
0.0069 (0.0069 ≈ log(1000)/1000, for an ER graph a density
of log(n)/n is necessary to be almost surely connected).
The heat map reveals two clusters of metrics, densities, and
distances which are negatively correlated with each other.
Degree correlations are more decoupled but they also have
clustering patterns.

This heat-map representation is used to compare ensembles
of other graph models in Sec. IV.

D. Linearity

Most of the 30 metrics are extensively discussed in the
networks literature. The relationships between some of them
are either derived explicitly, bounded, or derived empirically.
For example, it is known that the average path length and the
diameter are related, as well as the diameter and the radius
(rG � d � 2rG). There is a direct relationship between degree
correlation and s metric [Eq. (2), [2]], as well as between
average node betweenness and average path length, derived
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TABLE I. Metric classes: degree-related, degree correlations, geodesics, modularity-related, motif counts, and spectral properties; n is the
number of nodes; m is the number of edges. All of these refer to undirected graphs only.

Metric Description Normalized by

1 〈k〉, density 2m/[n(n − 1)] Maximum possible degree (n − 1)
2 var(k), degree variance [2] Variance of the normalized degree sequence –
3 〈kn〉, average neighbor degree 1

n

∑
i{average of neighbor degrees of node i} Maximum possible degree (n − 1)

4 var(kn), average neighbor
degree variance

Variance of the average neighbor degree sequence –

5 〈C〉, average clustering
coefficient [22]

Average clustering coefficient (per node) –

6 var(C), clustering coefficient
variance

Variance of the clustering coefficient (per node) –

7 r , degree correlation [23] Pearson correlation coefficient of degrees between pairs of
linked nodes

–

8 re = |rmax-rmin|, degree
correlation elasticity [2]

The difference between the maximum and minimum
degree correlation obtained by rewiring (with
preserving degrees)

–

9 〈rc〉, rich club metric
(average) [24]

The average of the rich club metric with respect to
threshold degrees from 1 to n − 1

Normalized by the corresponding random
graph rich club metric

10 var(rc), rich club metric
variance

Variance of the rich club distribution (of rich club metrics
with threshold degrees from 1 to n − 1)

–

11 smax (s/smax), [13] The ratio between the s metric of the given graph to the
maximum possible s metric with the given degree
distribution (the s metric is the sum of the product of
nodal degrees across edges,

∑
i,j∈E kikj )

Normalized by smax

12 |smax-smin|, [2] The difference between the maximum possible s metric
and the minimum possible s metric, under
degree-preserving rewiring

Normalized by smax ⇒ |1-smin/smax|

13 μ,number of modules [8] The number of modules according to the Newman
eigenvector algorithm

Average number of nodes per module/total
number of nodes = 1/μ

14 〈wn〉, node betweenness [21] Average node betweenness Divided by the total possible number of
paths (between i and j through k)

15 var(wn), node betweenness
variance

Variance of the nodal betweenness (across nodes) –

16 〈we〉, edge betweenness [25] Average edge betweenness Divided by the total possible number of
paths (between i and j through edge e)

17 var(we), edge betweenness
variance

Variance of the edge betweenness (across edges) –

18 〈cl〉, average closeness The closeness of a node is the sum of reciprocal distances
to all other nodes

–

19 var(cl), closeness variance The variance of the closeness (across all nodes) –
20 〈l〉, average path length The average shortest path across all pairs of nodes Divided by the longest possible path (n − 1)
21 d , diameter The maximum shortest path across all pairs of nodes Divided by the longest possible path (n − 1)
22 〈dd 〉, distance distribution

mean
The mean of the frequency distribution of shortest paths –

23 var(dd ), distance distribution
variance

The variance of the frequency distribution of shortest
paths

–

24 l3, loops 3 Number of loops of size 3 (triangles) Divided by the total number of triples,
(
n

3

)

25 c4, 4-cliques Number of cliques of size 4 (complete subgraphs with 4
nodes)

Divided by the total number of 4-tuples,
(
n

4

)

26 s4, 4-stars The number of all star motifs with four nodes (one hub
and three spokes)

Divided by the total number of 4-tuples

27 G, graph energy [26] The sum of the absolute values of the eigenvalues of the
adjacency matrix

Normalized by n1.5 [27]

28 〈eC〉, average
eigencentrality [21]

The average of the maximum-eigenvalue eigenvector (of
the adjacency)

–

29 var(eC), eigencentrality
variance

The variance of the maximum-eigenvalue eigenvector –

30 a, algebraic connectivity [28] The second smallest eigenvalue of the Laplacian of the
adjacency

–

016117-4



OVERVIEW OF METRICS AND THEIR CORRELATION . . . PHYSICAL REVIEW E 85, 016117 (2012)

FIG. 2. (Color) Correlations heat map. Every metric is correlated
(via the Pearson correlation) with all others, using measurements
from an ensemble of graphs (in this case 100 Erdös-Rényi graphs with
1000 nodes and link density of 0.0069). The rows and columns are
hierarchically clustered. Clusters of densities, distances, and degree
correlations are annotated with red, blue, and purple, respectively.
For metrics nomenclature see Table I.

from the definition of node betweenness [Eq. (3); see Table I].

r(g) = s(g) − s(gc)

s
G(D)
max − s(gc)

, (2)

〈wn〉 = (n − 1)(〈l〉 − 1). (3)

A direct result from Eq. (3) is that the average nodal
betweenness is always positively correlated with the average
path length. In the normalized sense,

〈wn〉′ = 〈wn〉
n(n − 1)

, 〈l〉′ = 〈l〉
n − 1

.

Substituting these in Eq. (3) gives

〈wn〉′n(n − 1) = (n − 1)((n − 1)〈l〉′ − 1)

⇒ 〈wn〉′ = (1 − 1/n)〈l〉′ − 1/n.

So for large n, the normalized average nodal betweenness
is linearly proportional to the normalized average path length.
It is known that algebraic connectivity is bounded from below
(a � 4

nd
), and that the value in practice stays close to the

lower bound. Motif counts are proportional with density. The
higher the number of edges, the higher is the probability
of forming cliques, loops, and other motifs. Most of these
facts are confirmed by our statistical results. In Sec. IV we
discuss only the patterns at large. The more interesting pairwise
relationships are discussed in Sec. V.

Studying linear correlations of largely nonlinear relation-
ships is a major assumption. Some of the relationships are
known to be linear Eq. (3), while others are known to be
nonlinear. For example, graph energy is quadratic with link
density, but linear for small densities [27]. Not all correlations
are explained as intuitively as the relationship between density

and motif counts. Some zero correlations hide nonlinear
relationships. While this is true in general, for our data sets
the pairwise scatter plots of all metrics show that strong
correlations correspond to linear relationships, and lack of
correlation corresponds to random scatter. For the sake of
conciseness, these plots are not included.

E. Graph size, ensemble size

All graphs in this analysis are generated based on different
stochastic models, with fixed rules over repeated trials. The
fidelity of the models gets better with increasing graph size,
while the metric distribution moments converge with ensemble
size. If we assume that the first and second moments exist,
which for finite distributions (finite graph size) is true, then
by the law of large numbers the means will converge with
increasing ensemble size. Similarly, the variances converge.
The sample correlation coefficient can be expressed in terms
of the means and variances, and as such, it also converges with
increasing ensemble size.

As fidelity increases with graph size, so does computational
hardness. The most computationally intensive metrics in
Table I are the degree correlation elasticity and building a
corresponding graph with a maximum s metric, based on the
same degree distribution [13]. These have theoretical values
that are easy to compute but less precise in practice.

The ensembles in this study are comprised of 1000-node
graphs. There is no inherent limitation in producing correlation
heat maps for larger networks. If multimetric ensemble-based
analysis is relevant, for very large graphs, sample averages,
approximations, or theoretical values would have to be used.
This is especially true for motifs, if the motif size is large as
well.

IV. CORRELATION HEAT MAPS

This section discusses the heat maps of the covariance
matrices for the set of metrics in Table I, computed for both
synthetic ensembles and real data. The synthetic graph models
are inspired by those from Sec. I B. Real data comes from
various airline networks data sets and a set of graphs based on
different language Wikipedias. The aim is to emphasize that
while there are some general patterns, every model is different.
Real data-set heat maps do not resemble the classical models at
all, and the metrics are never independent, as seen in previous
work [20]. This is expected, because if real data sets approxi-
mate classical models at all, they will be either noisier instan-
tiations of pure topologies or hybrids of canonical graph types.

A. Ensembles of random graphs

Figure 3 shows clustered heat maps for six families of
random graphs: the classical Erdös-Rényi model, a modular
random graph model [10], a general random graph model with
a scale-free degree distribution [14], pure hierarchies with
random cross links [11], spatial distribution trees [12], and
preferential attachment trees.

Erdös-Rényi [Fig. 3(a)] is the most studied ensemble due
to its simplicity and asymptotic properties. The ER heat map
has two clusters of high correlation: (i) between nodal degree
distribution moments, such as density, degree variances, motif

016117-5



GERGANA BOUNOVA AND OLIVIER DE WECK PHYSICAL REVIEW E 85, 016117 (2012)

FIG. 3. (Color) Clustered heat maps of random graph ensembles; (a) the classic ER random graph; 100 graphs, 1000 nodes, p = 0.0069, also
in Fig. 2; (b) random modular ensemble; 100 graphs, 1000 nodes, four clusters, overall density 0.0069; (c) randomized hierarchies; 100 graphs,
1000 nodes, density 0.0025; (d) general preferential attachment model; 100 graphs, 1002 nodes, γ = 2.5, density 0.0096; (e) preferential
attachment trees; 100 graphs, 1000 nodes; (f) spatial distribution trees; 100 graphs, 1000 nodes, α = 0.5 [12]. For metrics nomenclature see
Table I. Clusters are annotated with red for densities, blue for distances, and purple for degree-degree correlations.

counts, and graph energy; and (ii) distance-related metrics,
such as diameter and betweenness. The two clusters are
strongly negatively correlated with each other, which is a
general pattern for most data sets in this study. Intuitively, at
higher density, distances are shorter, and vice versa. Densi-
fication and shrinking distances are discussed in [29]. Motifs
are naturally abundant with higher densities. Graph energy is
known to be linear for small densities (quadratic across the
whole density spectrum). Among the uncorrelated band of
metrics are the following: the eigenvector centrality metrics
(〈eC〉,var(eC)), modularity (μ), and the degree correlation (r).
This is not surprising as ER graphs are supposed to have nodes
of equal importance, not be modular, and have a zero degree
correlation.

The random modular ensemble [Fig. 3(b)] is designed
to have more links within modules than between modules
with some probability [10]. Comparison with the ER heat
map yields barely distinguishable differences. The degree
correlation, rather than being zero everywhere and unrecor-
related, clusters with the rich club metrics. Given that there
are modules with different node-neighbor degree profiles,
this makes sense. Furthermore, the distance distribution mean
correlates positively with the eigenvector centrality variance.

The randomized hierarchies graphs [Fig. 3(c)] have a lattice
structure with shortcuts [11]. This heat map is quite distinct
from the ER heat map. First, densities and distances are much
more decoupled and not negatively correlated. Since these
graphs have an underlying lattice structure, the distances in the

graph are largely independent of density. Shortcuts increase
density and decrease distances, but in this model this does
not occur on average everywhere in the graph [11]. Second,
correlation metrics are coupled, and some form a large cluster,
namely the degree correlation (r), the s metric elasticity
(|smax-smin|), the variance of the average degree (var(k)), and
the average neighbor degree (〈kn〉). Because in this hierarchy
nodes also have peer links to similar nodes, the rich club
coefficient associates with the same cluster. The distance
metrics correlate negatively with the degree correlations. The
farther away two nodes are, the less likely it is they will have
similar degrees and similar neighbors.

The random preferential attachment ensemble [Fig. 3(d)]
is constructed by building random graphs from a power-law
degree distribution [14]. The degree distribution exponent is
chosen to be γ = 2.5 for the entire ensemble. There are two
main distinctions that come with a skewed degree distribution.
First, in random graphs, on average, the nodal degree variance
correlates negatively with maximum s metric. That means
that high variation in degrees results in more chances of
high-to-low nodal degree edges, which does not maximize the
s metric. For this model, there is no correlation between var(k)
and smax. Due to the skewed degree distribution, the network is
quite inelastic (hard to rewire), so while there is a large degree
variance, the graph is close to its corresponding smax graph in
practice. The second distinction is that degree correlations and
distance metrics are not as decoupled, and degree correlation
itself (r) varies proportionally with distances. The shorter
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the distances, the smaller the degree correlation, indicating
higher degree variance, and more high-degree to low-degree
connections.

The two tree ensembles have pronounced metric clusters,
and wide areas of zero correlation. Because of the tree
topology, metrics such as density, clustering coefficient and its
variance, and number of loops and cliques become invariant.

The preferential attachment tree [Fig. 3(e)] has the reg-
ular density-distance groups and very decoupled degree-
degree correlations. An exception is the s metric elasticity
(|smax-smin|) which correlates positively with density-related
metrics.

The spatial distribution tree heat map [Figs. 1(d) and 3(f)]
does not have the regular density-distance clustering. Densities
are decoupled, while degree correlations cluster strongly.
Furthermore, the two elasticities, |rmax-rmin| and |smax-smin|
correlate positively with each other, which does not occur for
any other ensemble. This means that these graphs are both
not very “scale-free” in the s metric sense, and also very
elastic in terms of degree correlation. This is the opposite
of the preferential attachment trees, which are inelastic (hard
to rewire) and scale-free.

In summary, the random graph heat maps confirm that there
are prevalent metric relationships, but they do not hold in all
cases. Furthermore, even between similar topologies, varying
model parameters can result in completely different correlation
heat maps.

B. Airline networks and Wikipedia

For synthetic data, an ensemble of graphs is a set of
graphs generated with the same rules, in independent trials.
There is no real data that comes in this form. Systems
that can be modeled as networks are seen as “... naturally
occurring networks...intended to serve a single, coordinated
purpose,...but which are built over long periods of time by
many independent agents and authorities” [30]. Therefore, to
talk about topology patterns, we have to look for instances
of graphs that have grown to serve the same purpose under
similar economic conditions or technological constraints.

Our data contain an example of temporal ensembles:
monthly airline networks [31]. Monthly instances are the same
network with variations, such as seasonal patterns or growth.
Even though these graphs are not independent, for this example
they will approximate a statistical ensemble.

The first ensemble is the set of all US origin-destination
pairs for 212 months from 1990 to 2007. An origin-destination
pair is two airports connected by a flight. So this ensemble
combines all airline flights in the U.S. monthly in 212 graphs
[Fig. 4(a)]. Second, from the same data, we extract the legacy
carriers only [Fig. 4(b)]. Six airlines, operating in 2007, are
considered to have a “legacy” topology: American Airlines,
Continental, Delta, Northwest, United, and US Airways. The
third ensemble is of low-cost carriers, which are thought to
have different operations and a distinct topology [Fig. 4(c)].
The low-cost carriers are Airtran, ATA, Frontier, Jetblue,

FIG. 4. (Color) Clustered heat maps for real ensembles. (a) All US airline data monthly from 1/1990 to 8/2007 (212 networks, 429–1105
nodes); (b) six US legacy carriers summer months only from 1990 to 2007 (432 networks, 64–202 nodes); (c) six US low-cost carriers summer
months only from 1990 to 2007 (296 networks, 4–89 nodes); (d) Continental Airlines, all months from 1990 to 8/2007 (212 networks, 90–178
nodes); (e) Southwest Airlines, all months from 1990 to 8/2007 (212 networks, 31–79 nodes); (f) 82 language Wikipedia networks (1001–1065
nodes). For metrics nomenclature see Table I. Clusters are annotated with red for densities, blue for distances, and purple for degree-degree
correlations.
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Spirit, and USA3000. For the legacy and low-cost carriers
only the summer month networks from 1990 to 2007 are
considered, constructing ensembles of 432 and 296 graphs
respectively. There are fewer low-cost months because many
of these airlines are founded after 1990. Finally, to narrow
the perspective even further, we select two individual airlines:
Continental [Fig. 4(d)] and Southwest [Fig. 4(e)] and take
212 months of each airline history to make an ensemble.
Continental is chosen as a generic example of a legacy carrier,
while Southwest is chosen because it is an outlier in the
industry, with known non-hub-spoke operations.

The last ensemble is an example of a nontemporal set of
graphs: language Wikipedia networks [Fig. 4(f)].

Wikipedia can be represented as a network of hyperlinked
pages. A node is an article on a given topic, consisting of the
main article text only. A link to another page is a hyperlink
within the main text. Therefore, this graph representation
captures the article information content only. Wikipedia net-
works can be constructed for every language, because articles
contain mostly references to pages in the same language. Every
language Wikipedia evolves as pages get added and deleted.
The set analyzed here is chosen at the snapshot in time when
each language has between 1000 and 1100 pages.

For the airlines, combining all data or slicing it in legacy
and low cost, or looking at individual players, yields different
results. The entire US airline network [Fig. 4(a)] grows
from about 450 reported airports in 1990 to over 1000 in
2007. Looking at the entire period yields a high-correlation
pattern, in which only a few degree-degree correlation metrics
(r , |smax-smin|) stand out. One explanation could be that the
combined networks of all airline flights do not form a statistical
ensemble. Deeper analysis shows that the graphs in this
ensemble are of two types. The airline network prior to 2002
is twice as small (400–500 airports), and is denser, compared
to the map after 2002 (1000 airports). Interestingly, 2002 is a
transition year with intermediate size and density. This could
be due to regulation changes after 2002 or to the Bureau of
Transportation Statistics [31] reporting their data differently
after 2002. The heat maps of the two separate time periods are
similar to the legacy and low-cost data slices.

This is an additional argument that pulling data together,
even from the same domain, cannot be done without careful
investigation.

The legacy and low-cost airline heat maps are not too
different from each other [Figs. 4(b) and 4(c)]. Some regular
patterns are present, but with overall more positive correlations
merging otherwise distinct clusters. The same set of degree-
degree correlation metrics as in [Fig. 4(a)] stand out as
independent or negatively correlated with the rest.

Single-airline ensembles are most similar to the random
graph data sets. Both Continental [Fig. 4(d)] and Southwest
[Fig. 4(e)] have pronounced clusters, but they do not share
the same metrics. Southwest shows the typical density versus
distance pattern, whereas Continental has a large degree corre-
lations cluster, and more degree correlation metrics coupling
with other metrics, similar to the randomized hierarchies map
[Fig. 3(c)].

Wikipedia [Fig. 4(f)] heat maps are most decoupled among
the real data sets, and closest to trees, compared to the
random ensembles. Their early networks are thought to have

the topology of randomized hierarchies [32], but perhaps if
very sparse, they resemble trees. This argument rests on the
assumption that the graphs grow under similar conditions and
can be considered an ensemble.

To summarize, different classes of random graphs exhibit
different metric correlations and have distinct heat maps.
Erdös-Rényi graphs show two major correlation clusters of
metrics: densities and distances. Random modular graphs are
not very different from ER graphs. Preferential attachment
graphs and spatial distribution trees differ in elasticity and
scale-freeness. Airline heat maps have much more correlation
and show mixing of positive correlation between the two
general clusters of the random ensembles. Wikipedia networks
have the most independent metrics from the real data examples
and are closest to trees.

There are three main takeaways: (i) Generalization of metric
correlations over arbitrary data sets is not possible because the
patterns are ensemble specific and sometimes sample specific,
(ii) some graphs might not form an ensemble even though they
are constructed under similar conditions and rules, and (iii) the
difference between two topologies can manifest itself in only
one or a small set of measures.

To make the first point stronger, we will add that construct-
ing the comprehensive heat map by merging all data sets into a
single ensemble provides no meaningful result. The map does
not resemble the Erdös-Rényi ensemble or any of the others.

V. TOPOLOGY METRICS DISCUSSION

The heat-map representation in Sec. IV emphasizes ensem-
ble differences, and that generalization of metric relationships
can be hard to justify for real data. Detecting differences,
however, also provides useful information. The following
discussion concentrates on the metrics that vary the most across
ensembles.

Table II summarizes all data sets, with their size, variation in
number of nodes, and average degree. Based on the heat maps,
the most uncorrelated metrics are listed, along with the highest
variance metrics (top 5–6). There is significant similarity in
the last two columns across ensembles. The highest variance
metrics tend to be all degree-degree correlations. These are the
degree correlation (r), its elasticity (re), the maximum s metric
(smax), the s metric elasticity (|smax-smin|), and the rich club
distribution moments (〈rc〉, var(rc)). Algebraic connectivity (a)
and modularity (μ) also have high variance, but the variation
is within ensembles and is not helpful for classification.
Eigencentrality mean and variance (〈eC〉,var(eC)) are the
ubiquitous uncorrelated metrics. Given that these are used as
a relative node importance, it is interesting that they do not
correlate with the other centrality measures in this list. Tree
ensembles have the highest number of uncorrelated metrics,
because of the lack of loops, cliques, the constant average
degree, and zero clustering coefficient.

To compare ensembles in fewer dimensions, we project the
data onto its first three principal components and also onto
some of the highest variance dimensions. Figure 5 shows the
projections. The marginal histograms indicate the density of
points.

Figure 5 shows not only the relative position of ensembles,
but also that some sets of graphs do not behave as an
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TABLE II. Ensemble statistics with uncorrelated and highest variance metrics.

Ensemble Number of nodes Average degree Uncorrelated Highest variance
Ensemble size [mean,std] [mean,std] metrics metrics

ER classic 100 [1000, 0] [6.9, 0.11] 〈eC〉, var(eC), r a, r , μ, |smax-smin|, |rmax-rmin|, smax

ER modular 100 [1000, 0] [6, 0.11] 〈eC〉 a, μ, r , |rmax-rmin|, |smax-smin|, smax

Randomized hierarchies 100 [1000, 0] [2.50, 0.01] 〈dd〉, μ, 〈eC〉 μ, r , |rmax-rmin|, |smax-smin|, var(rc), a

General preferential attachment 100 [1002, 2.2] [9.6, 0.22] c4, 〈eC〉, var(eC) a, r , |smax-smin|, var(rc),
|rmax-rmin|, smax

Preferential attachment trees 100 [1000,0] [1.99, 0] c4, l3, 〈eC〉, 〈k〉,μ, |rmax-rmin|, r , |smax-smin|,
var(C), var(eC), 〈C〉 smax, d , var(rc)

Spatial distribution trees 100 [1000, 0] [1.99, 0] var(C), 〈eC〉, μ, 〈k〉, r , |rmax-rmin|, d ,
〈eC〉, c4, l3, 〈C〉, 〈dd〉 |smax-smin|, smax, 〈l〉

All US airlines 212 [660, 226] [12.5, 0.75] var(eC) μ, a, r , |rmax-rmin|,
var(C), 〈C〉, |smax-smin|, smax

US legacy airlines 432 [146, 26] [6.2, 1.1] μ, 〈eC〉 μ, a, 〈kn〉, r , 〈C〉, |rmax-rmin|, smax

US low-cost airlines 296 [33, 19.7] [3.1, 0.84] c4 a, μ, smax, 〈kn〉, |smax-smin|, r , 〈C〉
Southwest Airlines 212 [53, 12.6] [11, 2.7] 〈C〉, 〈eC〉 a, μ, |smax-smin|, r , smax, 〈rc〉
Continental Airlines 212 [143, 19] [4.7, 0.7] μ, 〈eC〉 μ, a, 〈kn〉, r , smax, |rmax-rmin|, 〈rc〉
Wikipedia languages 82 [1015, 16.6] [4.8, 2.0] 〈eC〉, var(eC), μ μ, smax, |rmax-rmin|, r ,

〈C〉, 〈kn〉, |smax-smin|

ensemble in the projection space. Projection onto the first
three principal component axes shows the random ensembles
clustering tightly and away from the airlines and Wikipedia.
The real data sets show much more variation. Legacy, some of
the low-cost airlines, and Continental Airlines overlap in this
space. Southwest is an outlier in all projections, while the low-
cost airlines do not cluster at all. This is the example of a set of
graphs that do not form a good ensemble. Wikipedia networks
cluster on their own. So does the all-airline data set, but in the
two partitions prior to and after 2002, as explained in Sec. IV A.

Figure 5 also shows the two most interesting projections
onto high variance metrics. The smax versus degree cor-
relation (r) plot shows the relative “scale-freeness” versus
assortativity for all ensembles. Random ensembles such as
ER, randomized hierarchies, and general scale-free graphs
have the highest degree correlation and s metric (ER graphs
centered at r = 0, as expected). Their nonskewed degree
distributions explain the higher r and the higher smax, be-
cause they have many edges connecting nodes of similar
degree.

FIG. 5. (Color) All ensembles projected onto their first three principal components and onto some of the highest-variance topology
descriptors: degree correlation (r), s metric (smax), mean rich club metric (〈rc〉), and rich club variance (var(rc)).
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All other data sets have relatively more skewed degree
distributions, are disassortatively connected (low r), and are
less scale-free in the sense defined by Li et al. [13].

As in the PCA projections, airline data sets occupy the
same part of r-smax space, except for Southwest Airlines,
the all-airline ensemble and the wide spread of low-cost
carriers. Airlines have a relatively low degree correlation
(−0.5), because of their hub-spoke structure. The Southwest
ensemble as an outlier is much closer to the random ensembles
in r-smax space. Previous research has also suggested that the
Southwest network viewed as a simple graph resembles a
random graph [32]. The combined ensemble of all airlines
forms two clusters, which is consistent for most of the 30
metrics presented here. The two clusters correspond to months
before and after 2002.

Another interesting relationship is the consistent positive
correlation of rich club mean and rich club variance (Fig. 5).
All ensembles form a line, with a distinction between random
networks and airlines. Note that the rich club distribution
is the set of rich club coefficients for all possible threshold
degrees. For networks with uniform degree distribution, where
the average degree will never be too high, the rich club
distribution will have many zeros, and the mean will be low.
These are the ER graphs, and randomized hierarchies rising
superlinearly on the plot. It is natural that if the mean is
higher, the variation is higher, because we know that the
rich club sequence is decreasing. The airlines have higher
average rich club coefficient and higher rich club variance. As
Table II shows they are much denser networks than the random
ensembles, hence there will be more links in every “rich club”
at threshold degree. This probably explains the higher variance
as well. It also indicates that airlines have rich club cores in
their networks, especially Southwest Airlines which swings
far right on this plot.

In summary, projections of all data onto lower dimensions
either via principal component analysis or onto the highest
variance metrics, confirms that the ensembles we studied can
be clustered separately, and should be analyzed separately. The
differences in their projections also confirm previously known
patterns, and reveal new facts, such as the different structure
of the entire US airline map before and after 2002. In addition,
some proposed ensembles should probably not be analyzed as
one set of data, such as the low-cost airlines.

VI. CONCLUSION

This paper presents an overview of topology metrics and
their relationships for various ensembles of synthetic and real
data. The metrics span degree distribution moments, degree-

degree correlations, graph distance metrics, and spectral
properties. The ensembles are derived from classical random
graph models such as the Erdös-Rényi model and general
preferential attachment. Real data sets include airline networks
and Wikipedia graphs. For every ensemble we compute the
set of metrics for every graph instance and compute their
pairwise correlations. The correlation matrix is represented
as a heat map, which is used to discuss general patterns in
metric relationships and key differences between ensembles.

Finally, the ensembles are projected onto the entire data’s
principal component axes and onto the highest variance met-
rics. The projections are used to discuss ensemble clustering
and proximity.

This work is a critical analysis of studying graph topology
via multiple metric analysis. It provides examples of why
various data sets should not be combined without careful
examination to study the same patterns. This includes ex-
amples of real data that has the same type and origin but
should not be analyzed as one ensemble. We show that among
the metrics we study the degree-degree correlations show the
most variation and potential for classifying different types of
graphs. In particular, the degree correlation (r), the smax and
their elasticities, as well as the rich club distribution mean and
variance (〈rc〉,var(rc)) are among the top high variance metrics
for all ensembles.

The ideas presented in this paper leave many open ques-
tions. One important question is how to analyze the topology of
a single graph from this multiple-metric view. The short answer
is that it is not possible. Correlations cannot be computed
from one data point. A single data point can be plotted
in lower dimensions against synthetic data ensembles as in
Fig. 5. Another way is to generate neighborhood ensembles,
analogous to bootstrapping, for example, from the same degree
distribution. The most precise way to construct graphs with the
same topology would be to construct random graphs not just
with the same degree sequence, but with the same distribution
of subgraphs up to a certain size [4]. We have experimented
in this direction, but leave this as future work and out of the
scope of this paper.

Finally, we think that ensemble-based statistics is a key
idea in studying topology not just for random graphs. It
can be enriched further by developing new ways to create
neighborhood ensembles, extending the set of descriptors and
attempting analysis with different correlation and statistical
approaches. The heat-map representation is convenient but
it does collapse some of the information in the distributions
being studied. Extending the computation to larger graphs and
a wider set of descriptors will provide a higher resolution view
of graph topology.
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