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We study the vibrational spectra of one-dimensional statically compressed granular crystals (arrays of elastic
particles in contact) containing light-mass defects. We focus on the prototypical settings of one or two spherical
defects (particles of smaller radii) interspersed in a chain of larger uniform spherical particles. We present
a systematic measurement, using continuous noise, of the near-linear frequency spectrum within the spatial
vicinity of the defect(s). Using this technique, we identify the frequencies of the localized defect modes as a
function of the defect size and the position of the defects relative to each other. We also compare the experimentally
determined frequencies with those obtained by numerical eigenanalysis and by analytical expressions based on
few-site considerations. These approximate analytical expressions, based on normal-mode analysis, are found to
be in excellent agreement with numerics for a wide range of mass ratios. We also observe that the experimentally
measured frequencies of the localized defect modes are uniformly upshifted, compared to the numerically and
theoretically predicted values.
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Introduction. Defect modes in crystals have long been
studied in the realm of solid-state physics [1,2]. The presence
of defects or “disorder” is known to enable localized lattice
vibrations, whose associated frequencies have been measured
in the spectra of real crystals (see Refs. [1,3] and references
therein). More recently this study has been extended to
superconductors [4] and electron-phonon interactions [5],
among others. Similar phenomena have also been observed
in nonlinear systems, including photonic crystals [6], optical
waveguide arrays [7–9], dielectric superlattices (with em-
bedded defect layers) [10], and micromechanical cantilever
arrays [11].

Granular crystals are nonlinear systems composed of
densely packed particles interacting through Hertzian contacts
[12–15]. These systems present a remarkable ability to tune
their dynamic response from linear to strongly nonlinear
regimes [13]. This has allowed the exploration of nonlinear
waveforms such as traveling waves [13–16] and discrete
breathers [17]. Granular crystals have also been proposed for
several engineering applications, such as energy absorbing
layers [18–20], sound scramblers [21], and acoustic lenses [22]
and rectifiers [23].

The presence of defects in statically uncompressed (or
weakly compressed) granular chains excited by impulsive
loading has been studied in a number of previous works that
have reported the existence of dynamic responses such as the
fragmentation of waves, anomalous reflections, and energy
trapping [18–20,24–29]. In this paper we study the response of
strongly compressed granular crystals, with one or two defects,
excited by continuous signals. We measure the near-linear
frequency response of the system and reveal localized modes
due to the presence of defects. We report that the number of
localized modes generically mirrors of the defects, and note
that the frequencies of such modes depend on (1) the ratio of the
defect mass to the mass of the particles in the uniform chain, (2)
the relative proximity of multiple defects, (3) the geometric and
material properties of the particles composing the crystal, and

(4) the static load. Finally, we compare our experimental find-
ings with numerical computations and with theoretical analysis
approximating the behavior of a few sites in the vicinity of the
defect(s) and analyzing the normal modes thereof.

Experimental setup. We assemble one-dimensional (1D)
granular crystals, similar to those described in Refs. [17,30],
composed of N = 20 statically compressed stainless steel
spherical particles (316 type, with elastic modulus E =
193 GPa and Poisson ratio νb = 0.3 [31]), as shown in Fig.
1(a). The chain is composed of uniform particles of (measured)
radius R = 9.53 mm and mass M = 28.84 g, except for one
(or two) light-mass stainless-steel defect particles. The spheres
are held in a 1D configuration using four polycarbonate bars
(12.7 mm diameter) that are aligned by polycarbonate guide
plates. The defect particles, which are of smaller radii than
the rest of the particles of the chain, are aligned with the axis
of the crystal using polycarbonate support rings. Dynamic
perturbations are applied to the chain by a piezoelectric
actuator (Piezomechanik PST 150/5/7 VS10) mounted on
a steel cube (which acts as a rigid wall). The particles are
statically compressed by a load of F0 = 20 N. The static
load is applied using a soft spring, of stiffness 1.24 kN/m,
which is compressed between the last particle in the chain
and a second steel cube bolted to the table. The applied static
load is measured by a calibrated load cell placed between
the spring and the steel cube. We measure the dynamic force
signals of the propagating waves with custom-made force
sensors consisting of a piezoelectric disk embedded inside
two halves of a stainless steel particle with radius R = 9.53
mm. The sensor particles are carefully constructed to resemble
the mass, shape, and contact properties of the other spherical
particles [18,21,32,33].

Theoretical model. We consider the 1D inhomogeneous
crystal of N beads as a chain of nonlinear oscillators [13]:

mnün = An[�n + un−1 − un]p+−An+1[�n+1+un−un+1]p+ ,

(1)
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FIG. 1. (Color online) (a) Schematic diagram of the experimental
setup for the homogeneous chain with a single-defect configuration.
(b) Experimental transfer functions (as defined in the “single defect”
section) for a granular crystal with a static load of F0 = 20 N and a
defect bead of mass m = 5.73 g located at site ndef = 2. Blue (dark
gray) [red (light gray)] curves correspond to the transfer function
obtained from the force signal of a sensor particle placed at n = 4
[n = 20]. The diamond marker is the identified defect mode. The
triangle marker is the identified upper acoustic cutoff mode. The
vertical black dashed (solid) line is the theoretically predicted defect-
mode frequency (acoustic band cutoff frequency).

where [Y ]+ denotes the positive part of Y (which signifies that
adjacent particles interact only when they are in contact), un is
the displacement of the nth sphere (where n ∈ {1, . . . ,N})
around the static equilibrium, mn is the mass of the nth
particle, and the coefficients An depend on the exponent p

and the geometry or material properties of adjacent beads. The
exponent p = 3/2 represents the Hertz law potential between
adjacent spheres [12]. In this case, An = 2E

3(1−ν2) (
Rn−1Rn

Rn−1+Rn
)1/2,

and the static displacement obtained from a static load F0 is
�n = (F0/An)2/3 [12,13], where Rn is the radius of the nth
particle.

In order to study the linear spectrum of the inhomogeneous
granular crystal, we linearize Eq. (1) about the equilibrium
state under the presence of the static load. This yields the

following linear system [17,34,35]:

mnün = Kn(un−1 − un) − Kn+1(un − un+1) , (2)

where Kn = 3
2A

2/3
n F

1/3
0 . Following Ref. [34], we simplify

Eq. (2) to the eigensystem:

− ω2Mu = �u, (3)

where M is a N × N diagonal matrix with elements Mnn =
mn, and u is the displacement vector. � is a N × N tridiago-
nal matrix with elements �mn = −[Kn + (1 − δnN )Kn+1]δmn

+ Knδmn−1 + Kn+1δmn+1, where δ is the Kronecker
delta and we consider left-fixed and right-free boundary
conditions. We derive the right-free boundary assumption
from the low stiffness of the static compression spring
[Fig. 1(a)] as compared to the stiffness of the particles in
contact.

Single defect. In this section, we study 1D granular crystals
that are homogeneous except for one light-mass defect bead
at site ndef, as shown in Fig. 1(a). The presence of the single
light-mass defect generates a localized mode centered at the
defect site, which we will refer to as the defect mode.
The defect-mode amplitude decays exponentially away from
the defect site, and its frequency fd is such that fd > fc,

where fc = 1
2π

√
4KRR

M
is the upper cutoff frequency of the

acoustic band of the homogeneous host crystal (where KRR =
3
2A

2/3
RRF

1/3
0 is the linear stiffness of the contact between two

beads with radius R). The spatial profile of this mode consists
of adjacent particles oscillating out of phase (see inset in
Fig. 2). As the radius of the defect bead becomes smaller, the
difference between fd and fc becomes larger, while the defect
mode becomes more spatially localized [34]. We observe
that for the granular crystals studied here, with radii ratios
of r

R
< 0.7, the defect mode involves the motion of up to

approximately three beads, i.e., the displacements of the beads
at n � ndef + 2 and n � ndef − 2 are negligible. Because in
this range of radii ratio the motion of the particles can be
accurately approximated by three beads, we consider the
particles at n = ndef ± 2 as fixed walls, in order to find an
analytical approximation for the frequency of the defect mode.
Solving for the eigenfrequencies of this reduced three-bead
system, we find that the mode corresponding to the out of phase
motion can be analytically approximated as the following:

f3bead = 1

2π

√
2KRrM + KRRm + KRrm +

√
−8KRrKRRmM + [2KRrM + (KRR + KRr )m]2

2mM
, (4)

where KRr = 3
2A

2/3
Rr F

1/3
0 is the linear stiffness of the contact

between a defect bead and a bead of radius R, and m is the
mass of the defect particle.

We conduct experiments to identify the frequency of the
defect mode in granular crystals with a single light-mass defect
as shown in Fig. 1(a). We place the defect particle at site
ndef = 2 (close to the actuator) so that the energy applied by the
actuator at the defect-mode frequency will not be completely

attenuated by the uniform crystal (which acts as a mechanical
frequency filter) before it arrives at the defect site. Because
of the localized nature of the defect mode, placing a defect
particle (of radius r � 7.14 mm) at site ndef = 2 or further
into the chain makes nearly no difference on the frequency of
the defect mode. For instance, for a defect particle of radius
r = 7.14 mm, we numerically calculate [using Eq. (3)] the
difference in the defect-mode frequency for the cases where
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FIG. 2. (Color online) Frequency of the defect mode, with the
defect bead placed at ndef = 2, as a function of mass ratio m/M .
Solid blue line (dark gray, closed diamonds) corresponds to exper-
iments, solid black line (open diamonds) to numerically obtained
eigenfrequencies [see Eq. (3)], and green dashed line (light gray, x
markers) to the analytical prediction of the three-bead approximation
[see Eq. (4)]. The error bars account for statistical errors on the
measured frequencies and are ±2σ . Inset: The normalized defect
mode for m

M
= 0.2.

a defect particle is placed at site ndef = 2 or ndef = 10, to be
3 Hz. Conversely, because of the presence of the fixed bound-
ary and the larger localization length of the defect mode, for a
defect particle of r = 8.73 mm, we calculate the difference in
defect-mode frequency, between sites ndef = 2 and ndef = 10,
to be 68 Hz. The defect particles are stainless-steel spheres of
smaller radii, r = [3.97,4.76,5.56,6.35,7.14,7.94] mm, and
measured masses of m = [2.08,3.60,5.73,8.54,12.09,16.65]
g, respectively. We experimentally characterize the linear spec-
trum of this system by applying low-amplitude (approximately
200 mN) bandwidth-limited noise (3–25 kHz for the two
smallest defect particles, and 3–15 kHz otherwise) via the
piezoelectric actuator. We calculate the transfer functions,
specific to the sensor location, by dividing the power spectral
density (PSD) of the measured force-time history by the PSD
of the input signal, and normalizing this ratio by its average
level in the 3–8 kHz range (corresponding to the acoustic
band). We embed sensors in particles at sites n = 4 and 20. In
Fig. 1(b) we show the transfer functions for the granular crystal
with defect radius r = 5.56 mm. We denote the experimentally
measured acoustic band cutoff frequency by the triangular
marker (found by identifying the last peak in the acoustic band)
and defect-mode frequency as the diamond marker on the n =
4 transfer function. The vertical lines denote the theoretically
determined upper cutoff frequency of the acoustic band and
the defect frequency [Eq. (4)]. The presence of the defect mode
can be clearly identified in the vicinity of the defect (at n = 4)
but is not visible far from the defect (at n = 20).

We repeat the process of measuring the transfer function
and identifying the defect-mode frequency 16 times, and
reassemble the crystal after each repetition. In Fig. 2 we
plot the average frequency of the 16 experimentally identified
defect modes as a function of the mass ratio m

M
(blue [dark

gray] solid line connecting the closed diamonds). We also
plot, for comparison, the defect frequency predicted by the

analytical expression of Eq. (4) (green [light gray] dashed line
connecting the crosses), and the numerical eigenanalysis of
Eq. (3) corresponding to the experimental setup (black solid
line connecting the open diamonds). The error bars on the
experimental data are ±2σ , where σ is the standard deviation
of the identified defect frequencies over the 16 repetitions.
Comparing the analytical three-bead approximation with the
numerical eigenfrequencies, we find an excellent agreement
for mass ratios of m

M
< 0.6. Comparing the experimental data

with the numerics, we find an upshift of 5%–10%, similar to
the upshift observed in Refs. [17,30]. For the r = 5.56 mm
defect, the average experimental defect-mode frequency is
f

exp
d = 13.59 kHz, and the average experimental cutoff fre-

quency is f
exp
c = 8.36 kHz. In comparison, the theoretical

three-bead approximation gives a defect-mode frequency of
f 3bead

d = 12.84 kHz and the eigenproblem of Eq. (3) gives
a defect-mode frequency of f num

d = 12.85 kHz, while the
analytically calculated cutoff frequency was fc = 8.02 kHz.

Possible reasons for these upshifts have been identified in
Refs. [17,30] and the references therein, such as error in the
material parameters, nonlinear elasticity, surface roughness,
dissipative mechanisms, and misalignment of the particles.
Nevertheless, it is clear from Fig. 2 that the functional
dependence of the relevant frequencies on the mass ratio (of
defect to regular beads) is accurately captured by our analytical
and numerical results.

Two defects. We study granular crystal configurations with
two identical light-mass defects to better understand the effects
of increasing heterogeneity on the spectral response of the
system. We can expect that two light-mass defects placed
far from each other in a granular crystal (sufficiently outside
this localization length) would have similar frequencies and
mode shapes that are independent of the presence of the other
defect. However, as the two defect particles are brought closer
together (within the localization length), each mode influences
the other. This results in the creation of two defect modes at dif-
ferent frequencies: one with the defect particles moving out of
phase, and the other with the defect particles moving in phase.
For the case of nearest-neighbor identical defects, our theoret-
ical analysis can be extended by using a four-particle analogy.
In this case, using the notation s1 = KRr (M + m) + KRRm,
s2 = −4KRrKRRMm + [KRRm + KRr (M + m)]2, s3 = s1 +
2KrrM and s4 = −4[2KrrKRR + KRr (2Krr + KRR)]Mm +
[2KrrM + KRRm + KRr (M + m)]2, we obtain the following
frequencies:

f
(1)
4bead = 1

2π

√
1

2Mm
(s1 ± √

s2), (5)

f
(2)
4bead = 1

2π

√
1

2Mm
(s3 ± √

s4). (6)

The two highest frequencies correspond to the linear defect-
mode frequencies. Naturally, this analytical approach can be
extended to more distant defects, although we do not present
such algebraically intensive cases here.

In Fig. 3 we show the behavior of two r = 5.56 mm defects
in a N = 20 particle granular crystal under F0 = 20 N static
load, where the first defect is at site k = ndef1 = 2 and the
second defect is at a variable position between site l = ndef2 =
3 and l = ndef2 = 6. We use the same experimental method
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FIG. 3. (Color online) (a) Experimental transfer functions for a
granular crystal with two defect beads of mass ratio m

M
= 0.2 located

at ndef = 2 and ndef = 3 (in contact). The blue (dark gray) [red (light
gray)] curve corresponds to the transfer function obtained from the
force signal of a sensor placed at n = 4 [n = 20]. (b) Frequencies
of the defect modes as a function of the distance between them. The
solid line denotes experimental data, the dashed line the numerically
obtained eigenfrequncies, and the x markers the frequencies from
the analytical expressions of Eqs. (5) and (6). (c, d) The normalized
defect-mode shapes corresponding to the defect modes identified in
(a) with frequency of the same marker type.

as in the single-defect case except now we use a noise range
between 3–20 kHz and we place the first sensor at n = l + 1.
We show the experimentally determined PSD transfer function
for the case of l − k = 1 in Fig. 3(a), with sensors at site
n = 4 (blue [dark gray]) and n = 20 (red [light gray]). As
described in Ref. [34], the existence of two separate defect
modes, for the case where the defect particles are adjacent to
each other (l − k = 1), depends on the mass ratio of the defect
particles to those of the rest of the crystal. Here the mass ratio
is such that two modes are present, as can be seen in the blue
(dark gray) curve in Fig. 3(a). The two distinct modes, which
we denote by the open square and closed circular markers,
have frequencies above the acoustic band. The square markers
denote the mode with defect beads moving out of phase,
and the closed circular marker corresponds to the mode with
defect particles moving in phase, as shown by the numerically
calculated eigenmodes in Fig. 3(c) and 3(d), respectively [34].
In Fig. 3(b), we plot the experimentally determined frequencies
of both modes as a function of the interdefect particle distance
(l − k). The solid blue (dark gray) lines are the experimental

data, and the dashed black lines are the frequencies obtained
from solving the eigenvalue problem of Eq. (3). The green
(light gray) x markers denote the frequencies calculated with
Eqs. (5) and (6), for the l − k = 1 case. It is evident that the
analytical results agree closely with the numerically calculated
eigenfrequencies. We see close qualitative agreement between
the experimental data and the numerical predictions, but also
the same systematic upshift as observed in the single-defect
case and [17,30]. From Fig. 3(b), we can see that as the defects
are placed three or more particles apart, the frequencies of
the defect modes converged to approximately the same value,
which suggests that the defects respond independently of each
other.

Conclusions. We studied the response of statically com-
pressed granular crystals containing light-mass defects. We
made a systematic measurement of their near-linear spectra
using continuous noise excitation. We demonstrated that such
chains support localized modes with frequencies above that of
their acoustic band cutoff, using approximate few-bead analyt-
ical calculations, numerics, and experiments. We observed a
uniform upshift of the experimentally determined defect-mode
frequencies, as compared to the numerically and theoretically
predicted values, and offered a number of plausible causes of
this feature. The analytical expressions are based on a normal
mode analysis of a few-bead system. We should highlight
here that a distinctive feature of a linear granular lattice is
that the presence of one or more impurities induces mass
and stiffness defects at the same time (as opposed to the
more commonly tackled case of, e.g., purely mass defects).
Furthermore, analogous arguments to the ones presented
herein could be followed and applied to other branches of
physics including phononic and photonic crystals, especially
so in the less frequently tackled case of multiple defects. We
also described how the number of supported localized modes
depends on the number of defects, while their frequencies
depend on the interdefect distance, on the ratio m

M
of defect

to regular masses (and the geometric or elastic properties of
the beads), and on the static load. This study furthers our
understanding of the interplay of disorder and discreteness
in discrete systems and provides an important framework for
future studies of the nonlinear dynamics of granular crystals
containing defects, and its reported results may be directly
relevant to the design of granular crystals for applications
involving vibrational energy trapping.
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