
MIT Open Access Articles

Piezoelectric transducer based miniature catheter for 
ultrahigh speed endoscopic optical coherence tomography

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Tsai, Tsung-Han et al. “Piezoelectric Transducer Based Miniature Catheter for 
Ultrahigh Speed Endoscopic Optical Coherence Tomography.” Proc. SPIE 7889, 788919 (2011). © 
2011 Copyright SPIE

As Published: http://dx.doi.org/10.1117/12.875815

Publisher: SPIE

Persistent URL: http://hdl.handle.net/1721.1/71929

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/71929


 

 

Piezoelectric Transducer Based Miniature Catheter for Ultrahigh 
Speed Endoscopic Optical Coherence Tomography 

 
Tsung-Han Tsai1, Benjamin M. Potsaid1,2, Martin Kraus1,3, Jonathan J. Liu1, Chao Zhou1,  

 Joachim Hornegger3, and James G. Fujimoto1 
 

1Department of Electrical Engineering & Computer Science and  
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 

2Advanced Imaging Group, Thorlabs, Inc., Newton, NJ 
3Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen, Germany 

 
Abstract 
We developed a piezoelectric transducer (PZT) based miniature catheter with an outer diameter of 3 mm for 
ultrahigh speed endoscopic optical coherence tomography (OCT) using Fourier domain modelocked (FDML) 
laser at a 480 kHz axial scan rate. The miniaturized PZT bender actuates a fiber to provide high scanning 
speed. The side-viewing probe can be pulled back for a long distance to acquire three-dimensional (3D) 
dataset covering a large area on the specimen. Operating with a high speed data acquisition (DAQ) system, 
OCT imaging with 6.5 mm imaging range, 10 μm axial resolution, 20 μm lateral resolution, and frame rate of 
480 frames per second (fps) is demonstrated. 
 
Introduction 
Optical coherence tomography (OCT) performs micrometer-scale, cross-sectional imaging by measuring the echo time 
delay of the backscattered light[1]. Internal body imaging was enabled by the development of fiber-optics based OCT 
endoscopes[2, 3]. In vivo endoscopic OCT imaging is very challenging because fast optical scanning must be 
implemented inside a small imaging probe.  Many scanning mechanisms have been realized in catheter based endoscopic 
OCT systems, such as rotating a fiber micro-prism module at the proximal end[2, 4-6], swinging the distal fiber tip by a 
galvanometric plate[7], swinging the cantilever fiber by piezoelectric actuators[8, 9], and scanning the beam using 
microelectromechenical systems[10-13]. Although these endoscopic OCT imaging techniques potentially can achieve 
very high imaging speed, to date, none of them has been demonstrated over 100 fps due to other hardware limitations 
such as the speed of rotation for the optics or limitations in the OCT acquisition rate. Recently record imaging speeds 
have been demonstrated in a microscopy system using multiple scanning spots and a buffered Fourier domain 
modelocked (FDML) laser [14].  However ultrafast imaging speeds have not yet been demonstrated endoscopically.    

In this paper we demonstrate a piezoelectric transducer (PZT) based miniature catheter with an outer diameter of 
3mm for ultrahigh speed endoscopic OCT imaging. The combination of miniaturized PZT bender and cantilever fiber 
has the advantage of large deflection with low driving voltage, ease of adjustment of the scanning frequency, and 
flexibility to implement the slow scan methods to achieve three-dimensional imaging. The side-viewing probe can be 
pulled back over a long distance to acquire three-dimensional (3D) datasets covering a large area on the specimen. A 480 
kHz axial scan rate from an FDML laser provides high frame rate while maintaining sufficient lines per frame. Using a 
high speed data acquisition (DAQ) system, ultrahigh speed endoscopic OCT imaging can be achieved and large volume 
datasets can be acquired in seconds. 
 
Methods 

Figure 1 shows the schematic diagram of the PZT based catheter design. A tapered PZT bender with length of 15 
mm and width tapered from 1.5 mm to 0.95 mm was used to deflect the fiber. UV cured epoxy was used to fix the fiber 
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at the distal end of the PZT bender to support cantilever vibration. The fiber tip was angle cleaved with 8 degree to 
reduce backreflection. The scanning fiber tip is imaged onto the tissue with a GRIN lens of 0.25 pitch (N.A. = 0.46) and 
1.8 mm diameter. The working distance and the focus spot size are adjustable by changing the distance between the fiber 
tip and the GRIN lens. A micro-prism with size of 1mm x 1mm was glued on the distal end of the GRIN lens to reflect 
the laser beam to the side.  In this study, the lateral scanning range of the imaging beam is about 2.5mm with the PZT 
bender driven with a voltage of 25 V (peak to peak). A thin holder is used to fix the PZT bender and a torque coil with 
2.2 mm outer diameter. The torque coil can translate in a slow scan driven by a motor at the proximal end of the catheter. 
The inlet shows the photo of the prototype probe. 

 

 
Figure 1. Schematic diagrams of the PZT probe and the photo of the prototype probe. 

 
In this study, two FDML lasers were used to demonstrate the high speed OCT imaging. Fig. 2 (A) shows a 

schematic of the double-buffered FDML laser for the endoscopic OCT system[4].  The laser is a ring resonator geometry 
with two optical isolators (ISO), a semiconductor optical amplifier (SOA) as the gain medium, and a tunable filter (FFP-
TF) in a cavity.  The FFP-TF is driven with a sinusoidal waveform at 58.9 kHz, synchronous to the optical round-trip 
time of the 3,452 m long cavity. Two copies of the backward sweeps are extracted at evenly-spaced points within the 
cavity using 80/20 and 70/30 fiber-optic splitters. These copies are again split, copied, time delayed by 4 μs, and 
recombined in the external buffering stage. The average output power after the booster amplifier was 60mW. Fig. 2 (B) 
shows the output spectra of the FDML laser. The central wavelength is ~1315 nm. The total tuning range of the spectrum 
is 175 nm, with an 112 nm full width half maximum (FWHM).  Fig. 2 (C) shows the instantaneous fringe trace from a 
Mach-Zehnder interferometer. The duration of each sweep is 4 μs. The duty cycle of the laser sweeps are almost 100%. 
The 3 copies of the sweeps are almost identical. Fig. 2 (D) shows a schematic of the triple-buffered FDML laser for the 
endoscopic OCT system.  Similar to the 240 kHz FDML laser shown in Fig. 2 (A), the FFP-TF is driven with a 
sinusoidal waveform at 59.8 kHz, synchronous to the optical round-trip time of the 3,436 m long cavity. Two copies of 
the backward sweeps are extracted at evenly-spaced points within the cavity using 80/20 and 70/30 fiber-optic splitters. 
These copies are again split, copied, time delayed by 4μs, and recombined in the external buffering stage. To achieve 
effective sweep rate of 480 kHz, an additional external buffering stage is added to again double the effective sweep rate 
of the FDML laser. The average output power after the booster amplifier was 40 mW. Fig. 2 (E) shows the output spectra 
of the FDML laser. The central wavelength is ~1315nm. The total tuning range of the spectrum is 150 nm, with an 80 
nm full width half maximum (FWHM).  Fig. 2 (F) shows the instantaneous fringe trace from a Mach-Zehnder 
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interferometer. The duration of each sweep is 2 μs. The duty cycle of the laser sweeps are almost 100%. The 7 copies of 
the sweeps are almost identical. 
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Figure 1. (A) Schematic diagrams of the 240 kHz double-buffered FDML laser. (B) Optical spectrum of the 240 
kHz laser. (C) Interferometric trace of the  240 kHz  laser from the Mach-Zehnder interferometer. (D) Schematic 
diagrams of the 480 kHz double-buffered FDML laser. (E) Optical spectrum of the 480 kHz laser. (F) 
Interferometric trace of the 480 kHz laser from the Mach-Zehnder interferometer. 
 

The ultrahigh speed OCT imaging system can acquire large datasets with only a few second acquisition times. In 
order to support datasets greater than the 4 Gigabyte, the instrument control computer used a 64 bit operation system. 
The high speed A/D card can sample up to 400 MSPS at 14 bit resolution. A custom user interface and data acquisition 
software was developed in C++ to coordinate instrument control and enable user interaction. Improved imaging 
performance was obtained by modifying a commercially available 350 MHz InGaAs dual balanced detector to increase 
the transimpedance gain by 2X and reduce the bandwidth to 200 MHz. The imaging system thus can achieve up to 16 
mm imaging range with 480 kHz axial scan rate and 480 frames per second with 500 lines per frame. 

 
Results 
The axial and transverse resolutions using this catheter are 10 μm and 20 μm respectively using the 240 kHz FDML laser, 
and 12 μm and 20 μm respectively using the 480 kHz FDML laser. 3D-OCT datasets were acquired by pulling back the 
catheter with 2mm/s pull-back speed. Using this high speed imaging system, one 8 Gigabyte dataset can be acquired in 8 
seconds, corresponding to a 16mm pull-back range and ~4,000 frames. By increasing the pull-back speed of the catheter, 
the imaging range can be even larger. Figure 3 shows in vivo 3D volumetric OCT dataset from a human finger with 240 
kHz axial line rate. Figs. 3 (A) and (B) show the 3D rendering and the en face view of the finger. Figs. 3 (C) and (D) 
show cross-sectional images along the fast scan direction during the pull back and Fig. 3 (E) shows the cross-sectional 
image along the pull back direction. The stratum corneum, sweat ducts, and fingerprint ridges can be clearly delineated. 
With higher line rate, one OCT image can include more lines with the same imaging frame rate, which can improve the 
image quality and show more features in the tissues. Figure 4 shows an example OCT images from the finger with 480 
kHz axial line rate. Fig. 4 (A) and (B) show the en face view of the finger at different imaging depth. Sweat ducts can be 
seen distributed on the surface of the finger. Fig. 3 (C) shows the cross-sectional image along the fast scan direction 
during the pull back and Fig. 3 (E) shows the cross-sectional image along the pull back direction. Fig. 3 (D) shows the 
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3D rendering of the dataset. With twice more pixels in the cross-sectional image, more detail structures can be clearly 
distinguished in the finger. 

Figure 5 shows an example 3D dataset of the freshly excised human colon. Fig. 5 (A) shows the en face view of the 
colon at the depth of 250 μm, where the distributed crypt structure can be clearly seen. Figs. 5 (B) and (C) show the 
cross-sectional images along the PZT scan direction and pull-back direction, respectively. In fig. 5 (C), the lamina 
propria layer can be distinguished underneath the epithelium layer with crypt structure, showing deep penetration range 
of this imaging system. In this dataset, a 2 mm x 6.5 mm x 1.65 mm volumetric dataset was recorded in 3.25 seconds 
with 1,531 frames in total, demonstrating the high speed, large-area imaging, and dense sampling capability of the 
imaging system.  

 

 
Figure 3. 3D volumetric OCT images from a human finger using 240 kHz FDML laser. (A) 3D rendering. (B) En 
face view through fingerprint ridges. (C-D) Cross-sectional images at different time points during the pull back. (E) 
Cross-sectional images along the pull back direction. Scale bar: 500μm. 
 

 
Figure 4. 3D volumetric OCT images from a human finger using 480 kHz FDML laser. (A) En face view through 
fingerprint ridges.3D (B) En face view 500 μm deeper than (A). (C) Cross-sectional image in the fast scan 
direction. (D) 3D rendering. (E) Cross-sectional image along the pull back direction. Scale bar: 500 μm. 
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Figure 5. 3D volumetric OCT images from a fresh excised human colon using 480 kHz FDML laser. (A) En face 
view of the colon at the depth of 300 μm. (B) Cross-sectional image in the fast scan direction. (C) Cross-sectional 
image along the pull-back direction. Scale bar: 500 μm. 
 

In conclusion, we developed a PZT based miniature catheter with an outer diameter of 3mm for ultrahigh speed 
endoscopic OCT using an FDML laser at 240 and 480 kHz axial scan rate. OCT imaging with up to 6.5 mm imaging 
range, 10 μm axial resolution, 20μm lateral resolution, and frame rate of 480 fps is demonstrated. The miniaturized PZT 
bender not only can achieve high scanning speed but allows integration with different slow scan mechanisms, providing 
a variety of imaging patterns for different endoscopic applications.  
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