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Abstract. We present an algorithmic approach to solving the problem
of chromatic entropy, a combinatorial optimization problem related to
graph coloring. This problem is a component in algorithms for optimizing
data compression when computing a function of two correlated sources at
a receiver. Our genetic algorithm for minimizing chromatic entropy uses
an order-based genome inspired by graph coloring genetic algorithms, as
well as some problem-specific heuristics. It performs consistently well on
synthetic instances, and for an expositional set of functional compression
problems, the GA routinely finds a compression scheme that is 20-30%
more efficient than that given by a reference compression algorithm.
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1 Introduction

Chromatic entropy is a combinatorial optimization problem closely related to
graph coloring, though it is much less well known because of its relative lack
of applications. However, it has recently appeared in information theory as the
bottleneck in a particular method of encoding data from two correlated sources.
Specifically, a solution to chromatic entropy would allow the implementation of
an improved scheme for data compression of correlated sources used as inputs
to a function [1].

Chromatic entropy is known to be NP-hard, as shown by Cardinal et al. [2].
Given that this problem cannot be solved efficiently in theory, it is natural to
consider finding solutions using genetic algorithms. In this paper, our goal is
to introduce the problem and describe a genetic algorithm (GA) tailored to
its specifics. In Section 2 we present the background on functional compression
necessary to understand the application, then discuss the problem of chromatic
entropy. Because our GA borrows heavily from previous algorithms for solving
graph coloring, we proceed to briefly survey some of the relevant GA graph color-
ing literature. In Section 3, we describe the design choices for our GA. Section 4
analyzes the performance of the algorithm on synthetic probabilistic graphs and
on graphs derived from certain instances of the functional compression problem,
showing that the algorithm performs favorably on both. Section 5 concludes and
discusses future work.
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2 Background

2.1 Definitions

We use the standard definition of entropy throughout this paper.

Definition 1. Let X be a discrete random variable with probability density func-
tion p that can take values xi for 1 ≤ i ≤ n. The entropy of X is given by

H(X) = −
n∑

i=1

(p(xi) log2 p(xi)) (1)

Conditional entropy will also be used frequently and is not quite a trivial
extension of basic entropy.

Definition 2. Let X and Y be discrete random variables, with a joint distribu-
tion p(x, y), conditional distributions p(x|y) and p(y|x), and marginal distribu-
tions p(x) and p(y). If X can take values xi for 1 ≤ i ≤ n and Y can take values
yj for 1 ≤ j ≤ m, we define the conditional entropy H(X|Y ) as follows:

H(X|Y ) =
m∑

j=1

(p(yj)H(X|Y = yj)) =
m∑

j=1

(
p(yj)

(
−

n∑
i=1

(p(xi|yj) log2 p(xi|yj))

))
(2)

This can be thought of as an average of the conditional entropies H(X|Y = yj)
weighted according to the probability that Y = yj .

In addition to entropy, we require the notion of a coloring in a discrete,
edge-node graph.

Definition 3. Let G = (V,E) be an undirected graph over the vertex set V with
edge set E. A k-coloring of G is an assignment of “colors” to vertices of G using
k colors such that no two adjacent vertices have the same color. More formally,
we partition the vertices into k disjoint sets Ci such that if x1, x2 ∈ Ci, then
(x1, x2) /∈ E.

Note that throughout this work, the graphs we are using are simple, undi-
rected graphs. Henceforth, any graph not otherwise specified is simple and undi-
rected.

2.2 Functional Compression Basics

Doshi et al. provide in [1] the main information-theoretic results relevant to
the efforts of this paper. We provide a brief summary here of the key concepts
presented in their paper.

Consider two correlated sources of data, X and Y , separated from each other
and X separated from a decoder. Figure 1 shows the basic setup: we wish to
encode the data from X in order to compute a function f(X, Y ) without loss at
the decoder, and we want this encoding to be as efficient as possible. In the case
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where f(X, Y ) = (X, Y ) (i.e. when we want to be able to recover both X and
Y directly), the well-established rate result is the Slepian-Wolf bound described
in [3]. The theorem of [3] treats the more general problem when both X and Y
are separate from the decoder, and states that X and Y can be sent at rates R1

and R2 satisfying R1 > H(X|Y ), R2 > H(Y |X), and R1 + R2 > H(X, Y ). In
our specific problem, when Y is available at the decoder, the optimal rate for the
transmission of X is the conditional entropy of X given Y , H(X|Y ). Achieving
this rate entails sending X using a more efficient encoding by taking advantage
of its correlation with Y , knowing that the decoder can use its knowledge of Y
to disambiguate the transmitted data. In the literature, this problem is known
as the problem of functional compression with side information.

Fig. 1. The functional compression problem when Y is available as side information at
the decoder.

This analysis so far has ignored the fact that we are computing f(X, Y ) at
the decoder, rather than reporting the two values directly. If f is a many-to-
one function, we can do significantly better than the Slepian-Wolf bound. As
an example taken from [1], consider when X and Y are integers and f is the
function X + Y (mod 4). Regardless of how large X and Y might be, it is
sufficient to encode only the last two bits of each, rather than the entire integer.
The Slepian-Wolf bound only optimizes the rate by taking advantage of the
correlation between the two random variables; it does not take advantage of the
properties of the function to further increase the efficiency of the encoding.

In general, it is not this simple to use our knowledge of f to improve our
encoding. To analyze a given f , we construct something called the confusability
graph.

Definition 4. The confusability graph for X given Y , f , and p(X, Y ) is a graph
G = (V,E) where V contains a vertex vx for each value x that X can take
and E contains an edge between vx1 and vx2 if x1 and x2 are confusable. Two
values of X are confusable if for some y ∈ Y , p(x1, y) > 0, p(x2, y) > 0, and
f(x1, y) 6= f(x2, y).

This definition is slightly easier to grasp if one considers the complement of the
graph. If two nodes are not confusable (i.e. there is no edge between them in
the confusability graph), then for all possible values y of the random variable
Y , either p(x1, y) = 0 or p(x2, y) = 0 (we can disambiguate the two values
based on the fact that one of them can never appear with the given y), or
f(x1, y) = f(x2, y) (they yield the same value under the function, so there is no
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need to disambiguate them). See Section 4.1 for an example of using these rules
to construct a confusability graph.

By this definition, two nodes that are disconnected on the confusability graph
can safely be given the same encoding, since knowing Y and knowing that X
takes one of these two values is all that we require to compute the value of f .
This extends beyond pairs of nodes to independent sets of nodes. By coloring
the confusability graph, we partition it into color classes, each of which is an
independent set. To transmit a particular value, we can simply transmit the
name of the color class that contains that value, without ambiguity as to what
the value of f(X, Y ) will be. Using a Slepian-Wolf encoding on the distribution
over the color classes yields a valid encoding scheme for the problem. This rate is
precisely the conditional chromatic entropy of the confusability graph of X given
Y , which we define mathematically in the next section. However, intuitively, this
is appropriately analogous to the case when f(X, Y ) = (X, Y ), for which the
rate bound is the conditional entropy H(X|Y ). By coloring we have augmented
the Slepian-Wolf method to compress data based not only on the correlation
between X and Y , but on the properties of the function f , as captured by the
confusability graph.

2.3 Chromatic Entropy

Armed with this intuition about the method, we can rigorously define chromatic
entropy. Chromatic entropy is defined for simple graphs that have an associated
probability distribution p over the set of nodes (i.e.

∑
vi∈V p(vi) = 1). We use

the following definition from [2]:

Definition 5. Let G = (V,E) be a graph with a probability distribution p of a
random variable X over the vertices and k color classes Ci. Set pCi

=
∑

v∈Ci
p(v);

this represents the probability that a vertex of G chosen according to p falls in
the ith color class. The chromatic entropy of G given p and C is

Hχ
G(C,X) = −

k∑
i=1

pCi
log2(pCi

) (3)

Essentially, this is the entropy associated with the probability distribution φ over
the color classes Ci, where φ(Ci) =

∑
v∈Ci

p(v).
Körner showed in [4] that by minimizing this quantity for a high enough

“power” of a confusability graph, we can achieve an arbitrarily close approxima-
tion to the optimal rate for the case when we are transmitting a single value X
to the decoder and the function f(X) depends only on X, which is a simplified
version of our compression problem with Y removed. Doshi et al. [1] extended
this result to the side information case, where we have a conditional distribution
p(X|Y ) rather than a univariate distribution. They define a quantity called con-
ditional chromatic entropy, which by analogy with the definition of conditional
entropy in Section 2.1, is given to be

Hχ
G(C,X|Y ) =

∑
y∈Y

p(y)Hχ
G(C,X|Y = y) (4)
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This conditional chromatic entropy is the optimal rate for encoding of X. It
represents a rate optimized by taking advantage of both the correlation between
the signals X and Y and the properties of the function.

For a discussion of the relationship between chromatic entropy and standard
entropy, we refer the reader to Alon and Orlitsky’s work in [5].

Heuristics Given that the sum can be decomposed this way, it is helpful to
consider heuristics for minimizing chromatic entropy motivated by the univariate
chromatic entropy problem, as this is much easier to analyze than the conditional
chromatic entropy problem.

Intuition suggests that reducing the number of colors also reduces chromatic
entropy, but while this is a good heuristic, it is not necessary true that the
coloring yielding the minimum chromatic entropy is a minimum coloring. This
is proven in full depth by Cardinal et al. in [2], but we present here a simple
example inspired by their proof. Consider the graph shown on the left in Figure 2.
The graph is 3-colorable, and is clearly not 2-colorable by the existence of a 3-
clique. Up to symmetries of vertices and color classes, there are only two three-
colorings: {1, 6}, {2, 5}, {3, 4} (shown in Figure 2, middle) and {1, 5, 6}, {2, 4},
{3} (not shown). The first 3-coloring contains three color classes all with equal
probability mass, and Hχ

G = 1.5849. For the second 3-coloring, we can compute
the chromatic entropy as follows:

Hχ
G = −0.616 log2 0.616− 0.333 log2 0.333− 0.05 log2 0.05 = 1.1745 (5)

Fig. 2. Example graph to demonstrate that minimum colorings do not always yield
minimum chromatic entropy values. One of the possible three-colorings and the optimal
four-coloring are also shown.

However, the four-coloring with color classes {1}, {2}, {3}, and {4, 5, 6}
(Figure 2, right) has Hχ

G = 0.8476. This example demonstrates that, as with
the general entropy function, chromatic entropy is minimized when the terms
in the entropy sum are as “uneven” as possible. The fourth color class pro-
vided “flexibility” to make the distribution φ over the color classes more uneven
([0.85, 0.05, 0.05, 0.05] as opposed to [0.6166, 0.3333, 0.05]) thereby reducing the
entropy.
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One heuristic inspired by this example is to attempt to find independent sets
with high probability mass and establish these as color classes, the idea being to
unbalance the distribution as much as possible. There is another sense in which
concentrating probability mass is beneficial: Lemma 2 of [2] tells us that, given
a choice of color classes to assign a node to, chromatic entropy is increased the
least by adding the node to the color class with the highest probability. This
follows from the concavity of f(x) = −x log(x) in the entropy function. These
two principles should inform our GA design in order to take full advantage of
the problem structure.

Although we now know generally how to best distribute mass within color
classes, we still do not know how many color classes to use. Theorem 6 in [2]
states that the number of colors in a coloring that minimizes chromatic entropy
for a particular graph cannot be bounded by any function of the number of colors
in a minimum coloring for that graph, even for very specific, well-behaved types
of graphs. Fortunately, there is a sense in which minimizing the number of color
classes minimizes the chromatic entropy, as captured by the following lemma.

Lemma 1. Given a graph G with distribution p and coloring C, if color classes
C1 and C2 can be merged without violating the rules of coloring, then the coloring
C ′ = {C1 ∪C2, C3, ..., Ck} has strictly lower chromatic entropy than the original
coloring C.

The proof follows directly from the definition of chromatic entropy, so we omit it.
Because there are only constrained situations under which increasing the number
of color classes decreases the chromatic entropy, minimizing the number of color
classes is a powerful heuristic for minimizing chromatic entropy.

2.4 Genetic Algorithms for Graph Coloring

The connections between graph coloring and chromatic entropy indicate that a
GA for one might be effectively adapted to the other, if the fitness function were
to be changed appropriately. We can draw inspiration from the genomes used
to solve graph coloring problems. Each individual in the population encodes a
coloring, and in this sense chromatic entropy poses an interesting challenge be-
cause, for some representations, only a small fraction of the potential individuals
encode legal colorings. The most naive representation might be to have a genome
of length n for an n-node graph, and have each position store the color for the
corresponding node. However, a mutation or crossover operation applied to an
individual that represents a legal coloring will frequently produce an individual
that represents an illegal coloring. In [6], Dorne and Hao successfully use this
genome to solve graph coloring by taking their fitness function to be the number
of edges that violate the coloring constraints. Their approach, though interest-
ing, only works for a fixed number of colors, so it is unsuitable for chromatic
entropy.

Eiben et al. [7] use a GA to minimize the number of violated coloring con-
straints, in order to find a valid k-coloring for a fixed k. They use a so-called
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“order-based” representation. Each individual in the population is a permuta-
tion of the vertices of the graph in question. An individual is “decoded” into a
coloring using a greedy algorithm as follows: the nodes are iteratively colored in
the order specified by the permutation, and at each iteration, the current node
is colored using the lowest-numbered color possible given the partial coloring
of the graph. This genome admits a number of sensible mutation and crossover
operators and every potential individual corresponds to a valid coloring. The re-
verse is not true: certain non-minimal colorings cannot be created by this greedy
method. However, via a proof we omit for brevity, the optimal solution is assured
to be attainable.

Sivanandam et al. [8] also use an order-based representation but their GA
uses a different greedy algorithm for decoding. Their decoding introduces many
more color classes than the decoding from [7]. For our problem this correlates
with chromatic entropy values that are relatively high. We have elected to use
the PX crossover of [8].

3 Algorithm Design

3.1 Genome and Objective

We use the order-based representation from [7] and [8] for our genome, as this
sidesteps the issue of what to do when an invalid coloring is produced. For
decoding, we use the greedy color assignment algorithm of [7] per Section 2.4.

Our objective is to minimize conditional chromatic entropy as defined in
Section 2.3, given by

Hχ
G(C,X|Y ) =

∑
y∈Y

p(y)Hχ
G(C,X|Y = y) (6)

Given a coloring (or a permutation that we decode into a coloring), we can
evaluate this function directly given that we know the topology of the graph and
the joint distribution.

Because we cannot derive a minimum objective value to use as a stopping
condition, we run the GA for a fixed number of generations and report the best
observed individual after these runs.

3.2 Mutation

For our mutation operator, we use the swap operator as described in Eiben et
al. [7], which randomly swaps two adjacent vertices. We fix a mutation rate
inversely proportional to the number of the vertices in the graph so as to swap
a constant number of pairs of vertices in expectation. This parameter was tuned
experimentally for each class of graphs that we considered. We also investigated
varying the distance of the swap: rather than swapping two adjacent nodes, which
may hardly change the overall coloring, we considered all pairs of nodes that are
separated by a distance d, for fixed d. Experiments confirmed our intuition that
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increasing d increased the amount of change the mutation operator induced.
Higher swap distances were more likely to cause shakeups in the color classes,
and they generally increase the number of color classes. However, this difference
did not propagate to a difference in the performance of the GA. The performance
difference between mutation operators with different swap distances is dwarfed
by the variation among GA trials. Therefore, we fixed the swap distance at one
and proceeded to examine crossover operators.

3.3 Crossover

We considered one crossover operator, the PX operator described in [8]. This
operator produces a child by reordering a subset of the nodes in the first parent
according to their order in the second parent. In our experiments, we observed
that using PX appears to improve performance slightly, though again, the vari-
ance between individual samples is much more significant than this effect. How-
ever, the added computational cost of this operator is fairly small, so in light of
the potential performance improvement, we incorporated the PX operator into
our GA.

4 Results

4.1 Performance on Sample Problem Instances

In order to study the effectiveness of the overall functional compression scheme,
we must start with a joint distribution and function of two variables, create the
confusability graph, and compare the encoding from functional compression with
the basic Slepian-Wolf encoding of the two correlated sources. Figure 3 shows
a simple example of constructing a confusability graph from a table of function
and probability values.

(a) (b)

Fig. 3. Example function f and joint distribution p over two random variables X and
Y , each of which takes values in the set {1, 2, 3}. The figure shows the confusability
graph of X given Y . There is an edge between X = 1 and X = 3 because they are
confusable when Y = 1, but no other pair of X values is confusable.
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Intuitively, the algorithm will be much more effective when there are rela-
tively few edges in the graph and many nodes can be given the same coloring. We
generated joint distributions and functions that would yield confusability graphs
with varying edge densities. The density of a confusability graph becomes quite
high if the function takes a wide range of values and most combinations of X
and Y occur with positive probability. This fact follows from the definition of
the confusability graph. Therefore, we used {0, 1}-valued functions and joint
distributions with many “holes” (i.e. (x, y) pairs that occur with probability 0).

We randomly generate each joint distribution as follows: first, we set a pa-
rameter δ ∈ [0, 1] to indicate the probability that a given entry in the table
should be nonzero, then we choose each entry to be zero or nonzero according to
this probability, and finally we normalize the table such that all nonzero entries
are equiprobable and sum to one. If δ is set to a higher value, the graph will be
denser, since the joint distribution is less helpful in allowing us to disambiguate
values. The function table was generated in a similar fashion, with a parameter
ε ∈ [0, 1] chosen to be the probability that a given f(x, y) would be 1. The most
dense graph possible is achieved by ε = 0.5, since a biased choice of function
values will cause more of the (X, Y ) pairs to be equal. By adjusting these pa-
rameters, we were able to create graphs of essentially any density for which we
know f(x, y) and p(x, y).

Fig. 4. Graph of the performance of the GA relative to the Slepian-Wolf bound for fifty
15-node and fifty 100-node graphs of varying edge densities, with 5 trials run on each

graph. The y-axis shows the averaged values of
H

χ
G

(C,X|Y )

H(X|Y )
for each graph, the fractional

improvement over the Slepian-Wolf bound given by the best coloring C discovered by
the GA. Error bars representing the standard deviation are shown for the 100-node
graphs; in the 15-node case, the GA discovered identical (presumably optimal) values
in all trials for all but two of the graphs.
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In Figure 4, we display our results on graphs of varying densities created
using this scheme, using for each graph a GA of 200 individuals iterated for 50
generations. We compare the encoding rate achieved by the GA (i.e. the lowest
chromatic entropy value we could find) to the Slepian-Wolf bound, which can
be thought of as the chromatic entropy of the graph where every node is colored
differently. For high densities, it is difficult to garner much improvement, as we
need to use many relatively small color classes when coloring the graph. However,
for low densities, we can improve on the Slepian-Wolf bound by 30% or more,
which translates to a 30% reduction in the amount of data that needs to be
transmitted in the original problem.

4.2 Performance on Random Graphs

Though these graphs do represent a simple class of problem instances that are
theoretically appropriate, our particular method of constructing functions and
joint distributions might be somehow restricting the range of instances we are
considering. We would like to be able to demonstrate our algorithm’s perfor-
mance in a general setting and argue that it will do well at minimizing chro-
matic entropy for any given graph. To do this, we will construct graphs of all
densities with completely random structures (i.e. all edges are have an equal,
fixed probability of being included), and then experiment with a range of prob-
ability distributions on the nodes. Although these graphs will generally have no
particular interpretation in the context of functional compression in which edge
structure is linked to the joint distribution, it does allow us to convince ourselves
of our algorithm’s viability for applications other than confusability graphs.

We generated random 100-node graphs of various densities using Culberson’s
graph generator, described in [9]. In the generation of these graphs, edges are
included or not included independently and with a fixed probability, so graphs
produced in this manner will have no special structure. We then attached sensible
joint distributions to these graphs. We induce an ordering on the n vertices and
define a random variable X that takes values over the vertices v1, ..., vn. We also
define a random variables Y that takes values y1, ..., yn not associated with the
vertices. Our joint distribution over these is as follows:

P (xi, yj) ∝ exp
{
−1

2

[
i− n

2
, j − n

2

] [ s −cs
−cs s

] [
i− n

2
, j − n

2

]T}
(7)

s > 0 and c ∈ (0, 1) in the inverse covariance matrix term are constants so that we
can tune the degree of variance and covariance in the parameters, respectively.
The motivation behind this was to create distributions with varying degrees
of correlation between Xi and Yj in order to evaluate the GA on a variety of
instances.

We will compare the GA performance to a heuristic and random search. The
heuristic is a deterministic method that is independent of the any ordering of
the nodes in the graph. Its goal is to maximize probability mass on high-entropy
color classes as much as possible because this frequently minimizes chromatic
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entropy. It greedily colors the nodes in the graph in descending order of marginal
probability mass P (X). To each node, it assigns the color whose color class has
the highest current weight in terms of P (X) and that admits a legal coloring.
The random search examines as many random individuals in the search space
as the GA evaluated for fitness over an entire run, and returns the best among
these.

Experiments showed that the performance of the GA relative to the heuristic
and random search was independent of the covariance matrix, so we fix s = 4
and c = 0.5. We know from Section 4.1 that density is an important factor for
the performance of the algorithm.

We fixed the number of individuals in the population at 200 and the number
of generations at 50, to maintain consistency with the experiment in Section 4.1.
The results are shown in Figure 5. Both the GA and random search consistently
outperform the heuristic. In addition, we see that the GA consistently does
modestly better than random search, with Wilcoxon sign-rank tests yielding p-
values of less than 2× 10−6 for every graph under investigaton. Given the small
marginal computational cost to implement the machinery of the GA, we prefer
the GA to the random search.

(a) Averaged GA vs averaged
RAND on graphs of varying
density

(b) Thirty trials of GA vs
RAND on each of five graphs of
density 0.5

Fig. 5. (a) shows the performance of the GA and RAND relative to the heuristic for
100-node random graphs of varying edge densities. Each point represents the average
performance of the given method on the graph averaged over 30 trials, with error bars

showing the standard deviation. The y-axis shows
H

χ
G

(CResult,X|Y )

H
χ
G

(CHeuristic,X|Y )
for each graph, the

fractional improvement in chromatic entropy for the coloring found by the method over
the chromatic entropy of the heuristic coloring. Wilcoxon sign-rank tests established the
statistical significance with a p-value of less than 2×10−6 for each point. (b) compares
GA and RAND more closely to show that GA almost always performs better than
RAND across multiple trials and multiple graphs of the same density, and therefore
we are justified in using averages on one graph to contrast the two.
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5 Conclusion

In this paper, we implemented a GA to minimize conditional chromatic entropy
for a given graph with a joint probability distribution over its vertices. The GA
employs an order-based representation combined with a greedy coloring heuris-
tic. We applied this algorithm to the problem of functional compression with
side information, wherein the minimization of the conditional chromatic entropy
of a confusability graph supports approximation of the optimal encoding rate.
This scheme allowed us to improve Slepian-Wolf encodings by around 30% for
relatively sparse confusability graphs, and furthermore, the algorithm routinely
outperformed random search and a very inexpensive heuristic.

Future work along a theoretical avenue to pursue is fitness landscape analy-
sis. Chromatic entropy is an interesting problem in that there is something of a
continuous nature to it as a result of having a probability distribution over the
vertices. Changes in the color class assignments of very low probability vertices
have correspondingly small effects in the overall chromatic entropy calculation.
This could yield a fitness landscape that is atypical of combinatorial optimiza-
tion problems, which could in turn suggest even better algorithms to solve it
efficiently.
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