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We consider a general class of quantum gravity-inspired, modified gravity theories, where the Einstein-

Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to

scalar fields with standard kinetic energy. This class of theories includes Einstein-Dilaton-Gauss-Bonnet

and Chern-Simons modified gravity as special cases. We analytically derive and solve the coupled field

equations in the post-Newtonian approximation, assuming a comparable-mass, spinning black hole binary

source in a quasicircular, weak-field/slow-motion orbit. We find that a naive subtraction of divergent piece

associated with the point-particle approximation is ill-suited to represent compact objects in these

theories. Instead, we model them by appropriate effective sources built so that known strong-field

solutions are reproduced in the far-field limit. In doing so, we prove that black holes in Einstein-

Dilaton-Gauss-Bonnet and Chern-Simons theory can have hair, while neutron stars have no scalar

monopole charge, in diametrical opposition to results in scalar-tensor theories. We then employ

techniques similar to the direct integration of the relaxed Einstein equations to obtain analytic expressions

for the scalar field, metric perturbation, and the associated gravitational wave luminosity measured at

infinity. We find that scalar field emission mainly dominates the energy flux budget, sourcing electric-type

(even-parity) dipole scalar radiation and magnetic-type (odd-parity) quadrupole scalar radiation, correct-

ing the General Relativistic prediction at relative �1PN and 2PN orders. Such modifications lead to

corrections in the emitted gravitational waves that can be mapped to the parameterized post-Einsteinian

framework. Such modifications could be strongly constrained with gravitational wave observations.

DOI: 10.1103/PhysRevD.85.064022 PACS numbers: 04.30.Db, 04.25.Nx, 04.50.Kd

I. INTRODUCTION

The validity of Einstein’s theory in the strong-gravity
regime will soon be put to the most stringent tests yet,
through the observation of gravitational waves (GWs) from
compact object binary inspirals [1–3]. Such waves carry
detailed information about their source and the underlying
gravitational theory in play. This information is primarily
encoded in the evolution of the GW frequency, which in
turn depends directly on the rate of energy transported
away from the binary [4]. In general relativity (GR), this
transport is performed exclusively by GWs. In modified
gravity theories, however, additional (scalar, vectorial, or
tensorial) degrees of freedom can also carry energy and
angular momentum away as they propagate.

Calculating how gravitational waves are corrected in
modified gravity theories can be a gargantuan task as the
modification can increase the number of propagating de-
grees of freedom and the nonlinearity of the equations that
control their propagation. For example, the amount of
energy-momentum transported away from a binary system
must be computed both from the GWs excited by the
corresponding sources, as well as any additional waves
associated with extra degrees of freedom [5]. The sources
that drive such waves can depend both on derivatives of the
metric perturbation and the extra degrees of freedom,
which, in turn, are specified by the solution to their own

equations of motion. The situation worsens if these are
nonlinearly coupled, e.g. a scalar field equation of motion
that depends on the metric tensor, whose evolution in turn
depends on derivatives of the scalar field.
Such calculations, however, are feasible if one treats any

GR deviations as small deformations [6], which can be
formalized through the small-coupling approximation, a
common technique in perturbation theory to isolate physi-
cally relevant solutions in higher-derivative theories [7–9].
This is a reasonable approximation given that GR has
passed a large number of tests, albeit in the weak-gravity
regime. Even in the GW regime, signals will slowly tran-
sition from sampling weak fields to moderately strong
fields during a full binary inspiral. The strongest GW
events will not be able to sample anywhere close to the
Plank regime, where one would expect completely new
physics. The largest gravitational fields experienced by
binaries occur when these merge, and even then, the metric
curvature cannot exceed m�2, where m is the total mass of
the binary. Earth-based detectors, such as LIGO [10],
VIRGO [11], and KAGRA (used to be called LCGT)[12],
and future space-borne detectors, such as LISA [13], will
only be able to sample gravitational fields up to this
strength.
Of the plethora of modified gravity theories, we choose

to focus on a general class that is characterized by the
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addition of quadratic curvature invariants to the action,
coupled to scalar fields with standard kinetic terms (see
e.g. Eq. (1). Such theories are motivated from loop quan-
tum gravity [14,15] and heterotic string theory [16], arising
generically upon four-dimensional compactification in the
low-energy limit. Disjoint subclasses of quadratic theories
reduce to Einstein-Dilaton-Gauss-Bonnet (EDGB) theory
[17,18] and Dynamical Chern-Simons (CS) modified grav-
ity [19,20].

From a phenomenological standpoint, such quadratic
gravity theories are also interesting as strawmen to study
small deviations from GR. This is because the new qua-
dratic terms are always small relative to the Einstein-
Hilbert term when considering merging binaries. In such
systems, the minimum radius of curvature is always larger
than the new scale introduced by the scalar fields. If this
were not the case, astrophysical observations would al-
ready have constrained quadratic gravity deviations.

Quadratic gravity introduces an equation of motion for
the scalar field and modifies the metric field equations. The
former is a driven wave equation, whose sources are qua-
dratic curvature invariants. The latter contains new terms
that depend on the product of the scalar field and its
derivatives with the Riemann tensor, Ricci tensor, Ricci
scalar and their derivatives. As such, one might worry that
higher-derivative terms in the field equations could render
the system unstable. One must remember, however, that the
action is a truncation (at quadratic order in the present
case) of an effective theory derived by integrating out
heavy degrees of freedom contained in a more complete
theory. Since we truncate the effective action, its validity is
limited only to leading-order in the coupling parameters.
Accounting for higher-order terms in the coupling would
require the inclusion of higher-order terms (cubic, quartic,
etc.) in the action [8]. Therefore, the modified field equa-
tions should not be considered as an exact system, but
rather as an effective one.

Given the above and using the small-coupling approxi-
mation, the field equations become driven differential
equations for the metric deformation and the scalar field.
The source of the latter depends only on derivatives of the
GR metric perturbation, while the source of the former
depends both on the GR metric perturbation and the scalar
field. We solve these equations in the post-Newtonian (PN)
limit, where, in particular, we consider comparable-mass,
spinning black hole (BH) binaries (electromagnetically
uncharged), spiraling in a quasicircular orbit. This forces
the driven differential equations into driven wave equa-
tions, which can be studied with PN techniques [21–27]
and then solved via retarded Green function methods.

A complication arises when attempting to solve these
equations, as one must choose a prescription to describe
BHs and neutron stars (NSs). In standard PN theory and up
to a certain high PN order, one can choose a point-particle
prescription, essentially because the exterior gravitational

field of a compact object is the same as that induced by a
point-particle. In modified quadratic gravity, however, both
nonspinning [28] and spinning [6], strong-field BH solu-
tions differ from that generated by simple point particles
with a mass-monopole and a current-dipole moment; BHs
in these theories have additional scalar multipole moments.
(See [29,30] for similar discussions on NSs in CS gravity.)
One can take these effects into account by constructing an
effective point-particle source that reproduces known,
strong-field solutions to leading order in the weak-field
region, sufficiently far away from the compact objects.
With this effective point-particle prescription, we can
then evaluate the source of the driven wave equations
and analytically solve them to find the radiative part of
the scalar field and metric perturbation.

Executive Summary of Results

Given the length of this paper, let us summarize the main
results. We have devised a framework in the small-
coupling approximation to solve for compact binary in-
spirals in modified quadratic gravity theories. One of the
key ingredients in this framework is the calculation of
effective source terms that allow us to use the point-particle
approximation even for theories where such approximation
is not valid. We applied this to modified quadratic gravity
to find that both NSs and BHs have scalar hair, which leads
to dipolar emission. EDGB and CS gravity are exceptions,
where although BHs retain scalar monopole and dipole
charges, respectively, NSs shed the scalar monopole
charge. Therefore, BHs in EDGB generically contain di-
polar GW emission, while CS gravity leads to modified
quadrupolar emission.
The presence of scalar monopole and dipole hair, and, in

particular, the flux of energy-momentum carried by this
hair, leads to a modification in the rate of change of the
binary’s binding energy. The even-parity sector of the
theory leads to scalar hair, which modifies the energy
flux at �1PN order relative to the GR quadrupole flux.
Of course, such a modification is proportional to the cou-
pling parameter of the theory, which is assumed small. The
odd-parity sector leads to dipole hair for spinning BH
binaries, which modifies the energy flux at 2PN relative
order. If the BH binary components are nonspinning, they
have no dipole hair but the binary orbital interaction gen-
erates a modification in the energy flux that enters at
relative 7PN order. Figure 1 shows the energy flux carried
by the even-parity scalar field (long dashed line), odd-
parity scalar field (dot-dashed for spinning binaries, and
short dashed line for nonspinning binaries), and the GR
quadrupole flux (solid line) as a function of orbital velocity.
Observe that when one assumes that BHs are nonspinning,
the scalar emission is greatly suppressed.
These energy flux corrections translate into changes to

the waveform observables. We explicitly calculate these
and map them to the parametrized post-Einsteinian (ppE)
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framework [29,30]. Using the results of Cornish et al. [30]
we estimate that GWobservations could constrain the new
length scale introduced in quadratic gravity (related to the
coupling constants of the theory) to roughly the BH hori-
zon scale. With a typical Ad. LIGO stellar-mass BH in-
spiral observation, one should be able to constrain the
even-parity sector to roughly Oð10Þ km. With a typical
LISA extreme-mass ratio inspiral (EMRI) observation,
one should be able to constrain the odd-parity sector to
roughly Oð100Þ km. Such projected constraints are much
stronger than current Solar System bounds [31–33,70].

This paper is organized as follows: Section II describes
the action that will be considered in this paper and reviews
the associated modified field equations and the scalar field
equation of motion. Section III expands the field equations
in the small-deformation approximation. Sections IVand V
study the scalar field and metric deformation evolution,
analytically solving the modified field equations.
Section VI computes the energy flux carried by the scalar
field and the metric deformation. Section VII considers the
impact that such fluxes would have on gravitational wave-
form phase. Section VIII concludes and points to future
research.

We have deferred many details of the computational
techniques to the appendixes. Appendix A shows the NSs
in EDGB theory have no scalar monopole charge.
Appendix B discusses specific integration techniques.
Appendix C estimates the order of the metric correction
from the regularized contribution for nonspinning BHs in
the odd-parity sector of the modified theory. Appendix D
discusses particular integrals that appear when solving the
field equations.

Henceforth, we follow mostly the conventions of
Misner, Thorne and Wheeler [5]: Greek letters stand
for spacetime indices; Latin letters in the middle of the
alphabet i; j; . . . , stand for spatial indices only. Parenthesis,
square brackets, and angled brackets in index lists denote
symmetrization, antisymmetrization, and the symmetric
and trace free (STF) operator, respectively. Capital Latin
letters usually refer to a multi-index, such as xQ ¼ xijk...,
where xijk... ¼ xixjxk . . . . Partial derivatives are denoted
with @iA ¼ A;i ¼ @A=@xi, while covariant derivatives are

denoted with the nabla riA, for any quantity A.
Deformations are labeled with the order-counting parame-
ter &. Finally, we use geometric units, where G ¼ c ¼ 1,
except when denoting the order of certain terms in the
PN approximation. Throughout, we performed analytic
calculations with the XTENSOR package for
MATHEMATICA [34,35].

II. MODIFIED GRAVITY THEORIES

In this section, we introduce the class of modified grav-
ity theories that we study, by writing down its action and
equations of motion. We then proceed to define the small-
deformation approximation more precisely.

A. ABC of quadratic gravity

Consider the following 4-dimensional effective action:

S �
Z

d4x
ffiffiffiffiffiffiffi�g

p f�Rþ �1f1ð#ÞR2 þ �2f2ð#ÞR��R
��

þ �3f3ð#ÞR����R
���� þ �4f4ð#ÞR����

�R����

� �

2
½r�#r�# þ 2Vð#Þ� þLmatg: (1)

Here, g stands for the determinant of the metric g��. R,

R��, R����, and
�R���� are the Ricci scalar and tensor, the

Riemann tensor and its dual [36], respectively, with the
latter defined as1 �R�

��� ¼ ð1=2Þ"����R�
��� and with

"���� the Levi-Civita tensor. The quantity Lmat is the
external matter Lagrangian, # is a field, (�i, �) are cou-
pling constants, and � ¼ ð16�Þ�1. This action contains all
possible quadratic, algebraic curvature scalars with run-
ning (i.e. nonconstant) couplings, where we assumed that
all quadratic terms are coupled to the same field. All other
quadratic curvature terms are linearly dependent, such as
the Weyl tensor squared.
The theory defined by the action above is different from

fðRÞ theories on several counts. First, fðRÞ theories depend
only on the Ricci scalar, while the action above depends on
the Ricci tensor, the Riemann tensor, and a dynamical field
#. Second, fðRÞ theories are usually treated as exact, while
the action presented above is an effective theory, truncated
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FIG. 1 (color online). Comparison of the energy flux carried
by scalar fields of even-parity (dashed red), odd-parity and
sourced by spinning BHs (blue dot-dashed) and odd-parity and
sourced by nonspinning BHs (short dashed) relative to the GR
prediction (solid black) as a function of orbital velocity. We here
consider a quasicircular, BH inspiral with ðm1; m2Þ ¼ ð8; 20ÞM�,
normalized spins Ŝi1 � jSi1j=m2

1 ¼ �Ŝi2 � �jSi2j=m2
2 perpen-

dicular to the orbital plane, jSiAj ¼ m2
A and coupling constants

	3 ¼ 6:25� 10�3 ¼ 	4.

1This definition is correct, in agreement with [36], and fixing
an inconsequential typo in [37].
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to quadratic order in the Riemann tensor. The consequence
of this is insisting on the use of order-reduction in the field
equations, where we treat all quantities that depend on �i

perturbatively. Such order reduction then leads to the ab-
sence of additional polarization modes [37,38], such as the
longitudinal scalar mode that arises in fðRÞ theories.

The field equations of dynamical quadratic gravity
can be obtained by varying the action with respect to all
fields. For simplicity, we restrict attention to coupling
functions fið#Þ that admit the Taylor expansion fið#Þ ¼
fið0Þ þ f0ið0Þ# þOð#2Þ about small #, where fið0Þ and
f0ið0Þ are constants, and we assume that the asymptotic
value of# at spatial infinity vanishes. Let us further reab-

sorb fið0Þ into the coupling constants �ð0Þ
i � �ifið0Þ and

f0ið0Þ into the constants �ð1Þ
i � �if

0
ið0Þ. Equation (1) then

becomes S ¼ SGR þ S0 þ S1:

SGR �
Z

d4x
ffiffiffiffiffiffiffi�g

p f�RþLmatg; (2)

S0�
Z
d4x

ffiffiffiffiffiffiffi�g
p f�ð0Þ

1 R2þ�ð0Þ
2 R��R

��þ�ð0Þ
3 R����R

����g;
(3)

S1 �
Z

d4x
ffiffiffiffiffiffiffi�g

p f�ð1Þ
1 #R2 þ �ð1Þ

2 #R��R
��

þ �ð1Þ
3 #R����R

���� þ �ð1Þ
4 #R����

�R����

� �

2
½r�#r�# þ 2Vð#Þ�g; (4)

where clearly SGR is the Einstein-Hilbert plus matter ac-
tion. Notice that S0 defines a GR correction that is de-

coupled from #. The term proportional to �ð0Þ
4 can not

affect the classical field equations since it is topological,
i.e. the second Chern form, so we have omitted it.

Similarly, if �ð0Þ
i are chosen to reconstruct the Gauss-

Bonnet invariant, ð�ð0Þ
1 ; �ð0Þ

2 ; �ð0Þ
3 Þ ¼ ð1;�4; 1Þ�GB, then

these will not modify the field equations. On the other
hand, S1 defines a modification to GR with a direct (non-
minimal) scalar field coupling, such that as the field goes to
zero, the modified theory reduces to GR. We here restrict

attention to the case �ð0Þ
i ¼ 0. From this point forward, we

will drop the superscript from �ð1Þ
i .

The action above defines a class of modified gravity
theories that contains well-known GR extensions. For ex-
ample, when �4 ¼ � 1

4�CS and all other �i ¼ 0, quadratic

gravity reduces to dynamical CS gravity, where �CS is the
CS coupling parameter (see e.g. [36]). Alternatively, when
�4 ¼ 0, while ð�1; �2; �3Þ ¼ ð1;�4; 1Þ�EDGB, quadratic
gravity reduces to Einstein-Dilaton-Gauss-Bonnet theory
(see e.g. [18]). Both of these theories are motivated from
fundamental physics; they unavoidably arise as low-energy
expansions of heterotic string theory [39–42]. Dynamical
CS gravity also arises in loop quantum gravity when the

Barbero-Immirzi parameter is promoted to a field in the
presence of fermions [43–45].
Variation of the action with respect to the metric yields

the modified field equations:

G�� þ �1#

�
H ð0Þ

�� þ �2#

�
I ð0Þ
�� þ �3#

�
J ð0Þ

�� þ �1

�
H ð1Þ

��

þ �2

�
I ð1Þ
�� þ �3

�
J ð1Þ

�� þ �4

�
Kð1Þ

�� ¼ 1

2�
ðTmat

�� þ Tð#Þ
�� Þ;

(5)

where we have defined the shorthands2

H ð0Þ
�� � 2RR�� � 1

2g��R
2 � 2r��Rþ 2g��hR; (6a)

I ð0Þ
�� � hR�� þ 2R����R

�� � 1
2g��R

��R��

þ 1
2g��hR�r��R; (6b)

J ð0Þ
�� � 8R��R���� � 2g��R

��R�� þ 4hR�� � 2RR��

þ 1
2g��R

2 � 2r��R; (6c)

H ð1Þ
�� � �4ðrð�#Þr�ÞR� 2Rr��#

þ g��½2Rh# þ 4ðr�#Þr�R�; (6d)

I ð1Þ
�� � �ðrð�#Þr�ÞR� 2r�#rð�R�Þ� þ 2r�#r�R��

þ R��h# � 2R�ð�r�r�Þ#
þ g��ðr�#r�Rþ R��r��#Þ; (6e)

J ð1Þ
�� � �8ðr�#Þðrð�R�Þ� �r�R��Þ þ 4R����r��#;

(6f)

Kð1Þ
�� � �4ðr�#Þ"��
ð�r
R�Þ

� þ 4ðr��#Þ�Rð�
�
�Þ
�;

(6g)

where r� is the covariant derivative, r�� � r�r�, and

h ¼ r�r� is the d’Alembertian operator. The # field’s

stress-energy tensor is

Tð#Þ
�� ¼ �

�
ðr�#Þðr�#Þ � 1

2
g��ðr�#r�# � 2Vð#ÞÞ

�
:

(7)

Variation of the action with respect to # yields the #
equation of motion:

�h# � �
dV

d#
¼ ��1R

2 � �2R��R
�� � �3R����R

����

� �4R����
�R����: (8)

Notice that when the spacetime is curved by some mass
distribution, the right-hand side will be proportional to this
density squared.
The parity of the field # can be inferred from its equa-

tion of motion. Since terms of the form R2 are even-parity,

2This corrects an error in Eq. (5b) of [28].
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while terms of the form R����
�R���� are odd-parity, the

field # is of mixed parity. Note however that the even- and
odd-parity couplings tend to have different origins from an
underlying theory. In this paper we will consider the even-
and odd-parity cases separately.

The inclusion of dynamics for the # field in the action
guarantees that the field equations are covariantly
conserved without having to include any additional con-
straints, i.e. the covariant divergence of Eq. (5) identically
vanishes, upon imposition of Eq. (8). This is a consequence
of the action being diffeomorphism invariant. Such invari-
ance is in contrast to the preferred-frame effects present in
a nondynamical theory [19], i.e. in the theory defined by
the action in Eq. (4) but with � ¼ 0. In the latter, the field
# must be prescribed a priori. Moreover, the theory re-
quires the existence of an additional constraint [the right-
hand side of Eq. (8) to vanish], which is an unphysical
consequence of treating # as prior structure [46,47].

Before proceeding, let us further discuss the scalar field
potential Vð#Þ. This potential allows us to introduce addi-
tional couplings, such as a mass term, to drive the evolution
in Eq. (8). However, there are reasons one might restrict
such a potential. If the mass is much larger than the inverse
length scale of the system that we consider, the effect of
such a field on the dynamics of binaries is strongly sup-
pressed. To the contrary, if the mass is much smaller, the
presence of mass does not give any significant effects.
Therefore we cannot expect to observe the effects of a
finite mass without fine-tuning. No mass term may appear
in a theory with a shift symmetry, which is an invariance
under # ! # þ const. Such theories are common in 4D,
low-energy, effective string theories [39,40,42,48,49], such
as dynamical CS and EDGB. For these reasons, and be-
cause the assumption makes the resulting equations ana-
lytically tractable, we will henceforth assume Vð#Þ ¼ 0.

B. Small deformations

The ‘‘unreasonable’’ accuracy of GR to explain all
experimental data to date suggests that it is an excellent
approximation to nature in situations where the gravita-
tional field is very weak and velocities are very small
relative to the speed of light. GW detectors will be sensitive
to events in situations where the field is stronger than ever
previously sampled. This, however, does not imply that
GWs will ever sample the Planck/string regime, where one
could expect large deviations from GR.

We will here be interested in binary compact object
coalescences up until the binary reaches the innermost
stable circular orbit (ISCO). Even during merger, the larg-
est curvature that GWs will sample will be limited to the
scale determined by the horizon sizes, proportional tom�2.
Such scales are far removed from high-energy ones, like
the electroweak one, as GW detectors will not be sensitive
to mergers of compact objects with masses below a solar
mass. Even then, however, GWs can and will probe the

strong field, which has not been tested before. One is then
justified in modeling GWs that may contain deviations
from GR as small deformations.
The small-deformation scheme is also appealing for

theoretical reasons. As mentioned earlier, the theories we
consider are effective, valid only up to the truncation order.
There are higher-order terms that we have here neglected
in the action, such as cubic and quartic curvature combi-
nations. Thus, one should not treat these theories as exact
nor insist on solving the equations of motion to higher
orders in �i. If this is desired, then higher-order curvature
terms should also be included in the action.
One might be worried that such effective theories are

unstable, since they lead to field equations with derivatives
higher than second order. Such derivatives could lead to
instabilities or ghost modes if the Hamiltonian is not
bounded from below. Linearization in the coupling pa-
rameter, however, has the effect of recasting the field
equations in Einstein form with an effective stress-energy
tensor that depends on the GR solution, thus stabilizing the
differential equations [7]. Linearization removes modes
besides the two that arise in GR [37,38].
Small deformations can be treated similarly to how one

models BH perturbations. That is, we expand the metric as

g�� ¼ gGR�� þ &h�� þOð&2Þ; (9)

where the GR superscript is to remind us that this quantity
is a GR solution, while h�� is a metric deformation away

from GR. The order-counting parameter & is kept around
only for book-keeping purposes and is to be set to unity in
the end.
Applying such an expansion to Eq. (8), one finds

�h# ¼ ��iSðR2
GRÞ þOð&Þ; (10)

where SðR2
GRÞ stands for all source terms evaluated on the

GR background gGR��. The solution to this equation will

obviously scale as # / �i=�. Applying the decomposition
and expansion of Eq. (9) to Eq. (5) in a vacuum, one finds

G��½h��� ¼ ��i

�
C��½#; gGR��� þ 1

2�
Tð#Þ
�� ½#�; (11)

where the Oð&0Þ terms automatically vanish, as gGR�� sat-

isfies the Einstein equations, and we have grouped mod-

ifications into the tensor C��. This tensor and T
ð#Þ
�� are to be

evaluated on the GR metric and act as sources for the
metric deformation. Notice that, as a differential operator
acting on h��, the principal part of these differential equa-

tions continues to be strongly hyperbolic, as it is still given
by theG�� differential operator, with the higher derivatives

inC�� and the T
ð#Þ
�� acting as sources. Given this, the metric

deformation is proportional to �i � �2
i =ð��Þ, which is our

actual perturbation parameter.
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Proper perturbation or deformation parameters should
be dimensionless, but the �i are dimensional. The dimen-
sions of � and �, of course, depend on the choice of
dimensions for the scalar field. We here take the viewpoint
that # is dimensionless, which then forces � to be dimen-
sionless as well as �, and � to have dimensions of length
squared. Then, the deformation parameter � has units of
length to the fourth power, which is why we define the
dimensionless

	i � �i=m
4 ¼ Oð&Þ; (12)

as our proper deformation parameter. One could choose
different units for the scalar field, but in all cases one
arrives at the conclusion that 	i is the proper deformation
parameter [6].

III. EXPANSION OF THE FIELD EQUATIONS

Let us decompose the GR metric tensor into a flat
background plus a metric perturbation:

gGR�� ¼ ��� þ h��: (13)

We emphasize here that throughout this paper, h�� denotes

the metric perturbation in GR while h�� is the metric

deformation away from GR.
In expanding the modified field equations, we will also

find it useful to define the standard trace-reversed metric
perturbation in GR as

�h�� � ��� � ffiffiffiffiffiffiffiffiffiffiffiffiffi�gGR
p

g
��
GR: (14)

In particular, notice that when the background is flat �h�� ¼
h�� � 1

2h��� and h�� ¼ �h�� � 1
2
�h��� to linear order in

GR. We also define the deformed trace-reversed metric
perturbation as

�h �� � ð��� � ffiffiffiffiffiffiffi�g
p

g��Þ � �h��: (15)

The harmonic gauge condition reduces to �h��
;� ¼ 0 and

�h��
;� ¼ 0. Throughout this paper, we only study the GR

deformation up to Oð�i=�Þ for # and Oð	iÞ for h��.

A. Scalar field

The evolution equation for the scalar field at leading
order in the metric perturbation becomes

h�# ¼ ��1

�

�
1

2�

�
2
T2
mat � �2

�

�
1

2�

�
2
T��
matT

mat
��

� 2�3

�

�
h��;��h

�½�;��� þ h��;��h
�½�;���

�

� 2�4

�

����h��;��h�

½�;��
�; (16)

with relative remainders of OðhÞ. Here, 
���� is the Levi-
Civita symbol with convention 
0123 ¼ þ1, and we have
used the harmonic gauge condition.

B. Metric perturbation

Let us now perturb the metric field equations [Eq. (5)]
about & ¼ 0. The deformed metric wave equation at linear
order in h�� becomes

�

2
h�

�h�� ¼ �1#
~H ð0Þ

�� þ �2#~I ð0Þ
�� þ �3# ~J ð0Þ

��

þ �1
~H ð1Þ

�� þ �2
~I ð1Þ
�� þ �3

~J ð1Þ
��

þ �4
~Kð1Þ

�� � 1

2
�Tmat

�� � 1

2
Tð#Þ
�� ; (17)

where the tensors on the right-hand side are given by

~H
ð0Þ
�� ¼ �4

�
h�

½�;��
��� � ���h�h�

½�;��
�

�
; (18)

~I ð0Þ
�� ¼ h�h�½�;��

� �h�h
�
½�;��� � 2h�

½�;��
���

þ ���h�h�
½�;��

�; (19)

~J ð0Þ
�� ¼ 4

�
�h�h�½�;��

� �h�h
�
½�;��� � h�

½�;��
���

�
;

(20)

~H ð1Þ
�� ¼ �8h�

½�;��
�ð�#;�Þ � 4h�

½�;��
�#;��

þ 4���

�
2h�

½�;��
��#

;� þ h�
½�;��

�h�#
�
; (21)

~I ð1Þ
�� ¼ �2h�

½�;��
�ð�#;�Þ � 2ðh�½�;ð���Þ

� � h�½�;ð���Þ
�Þ#;�

� 2ðhð�½�Þ;���
� þ h�½�;ð���Þ�Þ#;�

� 2ðh�½�;ð��
�#;�Þ� � h�½�;ð��

�#;�Þ�Þ
þ ���f2h�½�;����#;� þ ðh�½�;��� � h�

½�;���Þ#;��g
þh�#

�
hð�

�
;�Þ� �

1

2
h�h�� � 1

2
h;��

�
; (22)

~J ð1Þ
�� ¼ �8

�
h�½�;ð���Þ

� þ h�½�;ð���Þ
� � 1

2
h;��

�

þ 1

2
h�h��

;�

�
#;� þ 4

�
h�½�;��� � h�½�;���

�
#;��;

(23)

~Kð1Þ
�� ¼ #;�

;����"
����ðh�½�;��� þ h�½�;���Þ

� 2#;�"��
�h
�
½�

;�

�� þ ð� $ �Þ; (24)

whereh� is the d’Alembertian of flat spacetime, h ¼ h�
�,

and Tð#Þ
�� is given as

Tð#Þ
�� ¼ �ð#;�#;� � 1

2���#;�#
;�Þ: (25)

The quantity �Tmat
�� stands for the perturbation to the

energy-momentum tensor for matter. Even when dealing
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with BHs, �Tmat
�� � 0 because we treat BHs as distribu-

tional point particles and their trajectories are generically
modified atOð&Þ. However, in this paper we concentrate on
the dissipative sector of the theory only, and not on mod-
ifications to the shape of the orbits (conservative dynam-
ics). The latter does modify the GW phase evolution [6,28],
as we discuss in Sec. VIII.

The evolution equation for the metric perturbation takes
on the same form (a sourced wave equation) as that for the
scalar field. The source terms in both of these equations
depend on the GR metric perturbation, which we here
assume to be that of a compact binary quasicircular inspiral
in the PN approximation, i.e. moving at small velocities
relative to the speed of light and producing weak gravita-
tional fields. We provide explicit expressions for the GR
metric perturbation in the subsequent subsection.

C. Post-Newtonian metric and trajectories

In this subsection, we provide explicit expressions for
the linear metric perturbation in GR that we use to evaluate
all source terms. We are here interested in a binary system,
composed of two compact objects with masses m1 and m2

and initially separated by a distance r12 � b. The objects’
trajectories can be parameterized via

x 1 � xi1 ¼ þm2

m
b½cos!t; sin!t; 0�; (26)

x 2 � xi2 ¼ �m1

m
b½cos!t; sin!t; 0�; (27)

where m � m1 þm2 is the total mass and where we have
assumed they are located on the x-y plane. Throughout this
paper, vectors are sometimes denoted with a boldface. We
also define

x 12 � xi12 ¼ xi1 � xi2; (28)

n 12 � ni12 ¼ ðxi1 � xi2Þ=b; (29)

n A � niA ¼ ðxi � xiAÞ=rA; (30)

where we follow the conventions of [27], with

rA � jxi � xiAj: (31)

We further assume these objects are on a quasicircular orbit

with leading-order angular velocity ! ¼ ð1=bÞðm=bÞ1=2
and orbital velocity v ¼ ðm=bÞ1=2. The orbital separation
b is assumed constant, as its time-evolution is driven by
GW emission at high-order in v=c.

The GR spacetime metric for such a binary is expanded
as in Eq. (13). In the near-zone, the metric perturbation is
given by

h00 ¼ 2U1 þ ð1 $ 2Þ þOðv4Þ; (32)

h0i ¼ �4V1i þ ð1 $ 2Þ þOðv5Þ; (33)

hij ¼ 2U1�ij þ ð1 $ 2Þ þOðv4Þ; (34)

where OðvAÞ stands for an ðA=2ÞPN remainder, i.e. a term
of Oððv=cÞAÞ, and the notation þð1 $ 2Þ means that one
should add the same terms with the labels 1 and 2 inter-
changed. The potentials UA and VAi with A ¼ ð1; 2Þ are
defined as

UA ¼
Z �0

A

jx� x0jd
3x0; VAi ¼

Z �0
Av

0
Ai

jx� x0j d
3x0; (35)

where �A and vi
A � _xiA are the density and the center of

mass velocities of the respective objects, with the overhead
dot standing for time differentiation. Field variables asso-
ciated with a prime, e.g. �0

A, are to be evaluated at x
0. In the

point-particle limit, the metric becomes

h00 ¼ 2m1

r1
þ ð1 $ 2Þ; (36)

h0i ¼ � 4m1

r1
vi
1 þ ð1 $ 2Þ; (37)

hij ¼ 2m1

r1
�ij þ ð1 $ 2Þ; (38)

with remainders of relative Oðv2Þ. We have kept the PN
leading terms in the metric that are proportional tomA only,
but higher-order terms can be found in [50], while terms
proportional to the spin of each BH can be found in [51].

IV. SCALAR FIELD EVOLUTION

In this section, we solve the evolution equation for the
scalar field both for field points in the far and near zones, as
defined in Sec. IVA. The former will allow us to evaluate
the energy flux carried by the scalar field at infinity, while
the latter will be essential to find effective source terms that
reproduce the known strong-field solutions and to solve the
evolution equations for the metric deformation.

A. Zones

As shown in Fig. 2, let us decompose the geometry into
three regions: an inner zone (IZ), a near zone (NZ) and a far
zone (FZ); see e.g. [52–54] for further details. The IZs are
centered at each object with radii RIZ. These radii are
defined as the boundary inside which either Tmat

�� � 0 or the

usual PN approximation breaks down due to strong-gravity
effects. We here take them to be sufficiently larger thanmA

and much less than b. The NZ is centered at the binary’s
center of mass with radiusRNZ and excluding the IZs. This
radius is defined as the boundary outside which time-
derivatives cannot be assumed to be small compared with
spatial derivatives due to the wavelike nature of the metric
perturbation. We here take this boundary to be roughly
equal to �GW, where �GW denotes the GWwavelength. The
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FZ is also centered at the binary’s center of mass, but it
extends outside RNZ.

One can only apply the PN formalism when the gravi-
tational field is weak and velocities are small. When we
deal with strong-field sources like BHs and NSs, therefore,
one can use the PN scheme in the NZ and FZ only. In the
IZs, one may not be able to use PN theory, since the
gravitational field may be too strong. In this case, we
have to asymptotically match our PN solution in the NZ
with the strong-field solutions valid in the IZs, inside some
buffer regions that overlap both NZ and each IZ (see
Refs. [21,55,56] for a description of how to carry this out
in GR). The strong-field solution for BHs was found in
Refs. [6,28] in the class of theories considered here.

B. Near-zone solutions

Since the NZ is in the weak-field regime, we can apply
the PN formalism to compact binary systems. Let us con-
sider the even- and odd-parity sectors separately.

1. Even-parity sector

The evolution equation for the even-parity sector is

h�# ¼ �64�2 �1

�
�2 � 64�2 �2

�
�2

� 2�3

�

�
h��;��h

�½�;��� þ h��;��h
�½�;���

�
; (39)

with � � �1 þ �2 and remainders of Oðh3Þ.
First, let us consider weakly gravitating objects, i.e. not

BHs or NSs, in which case the PN expansion is valid also in
the IZ. By substituting the GR PNmetric of Eqs. (32)–(34),
the NZ solution to the above wave equation at leading PN
order becomes

#¼16�
�1

�

Z
M

�02 d3x0

jx�x0jþ16�
�2

�

Z
M

�02 d3x0

jx�x0j
þ 1

�

�3

�

Z
M
ð2U0

;ijU
0
;ijþh�U

0h�U
0Þ d3x0

jx�x0j ; (40)

again with remainders of Oðh3Þ, with U � U1 þU2 and
M denoting the constant-time, NZþ IZ hypersurface. We
can safely neglect the contribution from the FZ, since the
falloff of the source term is sufficiently fast.
The solution in Eq. (40) can be simplified by integrating

by parts several times and using that hU ¼ �4�� and

hjx� x0j�1 ¼ �4��ð3Þðx� x0Þ to obtain

# ¼ 16�
�1

�

Z
M

�02 d3x0

jx� x0j þ 16�
�2

�

Z
M

�02 d3x0

jx� x0j
þ 48�

�3

�

Z
M

�02 d3x0

jx� x0j
� 8

�3

�

Z
M

�0U0
;i

�
1

jx� x0j
�
;i
d3x0

� 4
�3

�

Z
M

U0
;iU

0
;i�

ð3Þðx� x0Þd3x0: (41)

Expanding this solution in terms of particles 1 and 2,
we arrive at

# ¼ #self þ #cross; (42)

with

#self ¼ 16�

�
ð�1 þ �2 þ 3�3Þ

Z
M

�02
1

d3x0

jx� x0j
� 8

�3

�

Z
M

�0
1U

0
1;i

�
1

jx� x0j
�
;i
d3x0

� 4
�3

�
U1;iU1;i þ ð1 $ 2Þ; (43)

and

#cross ¼ �8
�3

�

�Z
M
ð�0

1U
0
2;i þ �0

2U
0
1;iÞ

�
1

jx� x0j
�
;i
d3x0

þU1;iU2;i

�
: (44)

#self is the part of # that can be evaluated by consid-
ering a single object only, while #cross is the part that
depends on the fields of both bodies.
The integrals that define both #self and #cross have sup-

port in the IZs only, and thus, the NZ integral operator is
homogeneous (source-free). When we discuss the NZ be-
havior of fields associated with compact objects, such as
BHs or NSs, we cannot directly evaluate such IZ integrals.
These are derived under the assumption that the PN ex-
pansion is valid everywhere, which fails for compact ob-
jects in the IZs. Instead, we need to determine these
homogeneous solutions through asymptotic matching.

FIG. 2. We consider three zones, inner zone (IZ), near zone
(NZ) and far zone (FZ). The IZs are centered at each object and
their radii RIZ satisfy RIZ � b. The NZ is centered at the
center of mass of the two bodies and the radius RNZ satisfies
RNZ � �GW, where �GW is the GW wavelength.
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Before doing so, it is helpful to study the meaning of each
term for weakly gravitating objects.

Neglecting the size of the weakly gravitating objects, the
first term in Eq. (43) in the NZ is evaluated as

Z
M

�02
1

d3x0

jx� x0j 	
1

r1

Z
M

�02
1 d

3x0; (45)

with remainders of relativeOðm=rÞ, while the second term
becomes

Z
M

�0
1U

0
1;i

�
1

jx� x0j
�
;i
d3x0

	 ni1
r21

Z
M

�0
1U

0
1;id

3x0

¼ �ni1
r21

Z
M

�1ðx0Þ
�Z

M
�1ðyÞ x0i � yi

jx0 � yj2 d
3y

�
d3x0 ¼ 0:

The last equality can be shown by exchanging the integra-
tion variables.3 Thus, one can approximate #self as

#self ¼ q1
r1

� 4
�3m

2
1

�r41
þ ð1 $ 2Þ; (47)

with the scalar monopole charge defined by

qA � 16�

�
ð�1 þ �2 þ 3�3Þ

Z
IZ
�02
A d

3x0; (48)

with A ¼ ð1; 2Þ. Here we put IZ to the integral to empha-
size that the integration can be restricted to both IZs
because the integrand is localized.

The first term in Eq. (47) represents the monopole field
around object 1. These monopole fields give the leading
PN contribution in the NZ unless both monopole charges
q1 and q2 vanish. This is indeed the case in EDGB theory,
where ð�1; �2; �3Þ ¼ ð1;�4; 1Þ�EDGB. We will later show
that this cancellation does really survive even if we con-
sider NSs. If this cancellation occurs, the higher-order
terms of Oðm2=r2Þ in the expansion of Eq. (45) become
the dominant contribution to #. The second term in
Eq. (47) is a much higher PN order compared with the
first term and hence subdominant in the NZ.

Let us now consider #self for compact objects, where the
IZ integrals must be treated carefully. Since the PN expan-
sion is no longer valid in the IZ, one cannot use the simple
extrapolation of the above result. In Sec. IVC, we match
the NZ solution to the one obtained for isolated BHs in the
strong-field [6,28]. We will not discuss the matching for
NSs in this paper, but the order of magnitude estimate

qA ¼ X3
i¼1

qi;A ¼ X3
i¼1

�i

�
O
�
m2

A

R3
A

�
(49)

should still be valid, where RA is the radius of the Ath NS.
When �1 þ �2 þ 3�3 ¼ 0, the cancellation observed in
the weakly gravitating objects may still persist even for
NSs. However, the cancellation will not in general be
exact, except for the EDGB subcase. In EDGB theory,
the NS scalar monopole charge vanishes independently
of the equation of state. Mathematically speaking, this is
because the monopole charge is given by the integral
of the Gauss-Bonnet invariant R2

GB � R2 � 4R��R
�� þ

R����R
����, which vanishes for any simply connected,

asymptotically flat geometry. A more explicit proof is
given in Appendix A.
Let us now return to the #cross contribution and consider

first weakly gravitating objects. To evaluate Eq. (44), one
can use point-particle expansions of the potentials and the

density, i.e. �A ¼ mA�
ð3Þðx� xAÞ and UA ¼ mA=rA.

Simple substitution leads to

#cross	8
�3m1m2

�m4

�
m4

�
nj1
r21

nj2
r22
þnj12

b2
nj2
r22
�nj12

b2
nj1
r21

�
þO

�
m5

r5

��
:

(50)

The first term in parentheses comes from the term U1;iU2;i

in Eq. (44). The remaining two terms come from the
integral in Eq. (44). The second and third terms in paren-
theses look like scalar dipole moments for bodies 2 and 1,
respectively. However, a Taylor expansion about the center
of mass of each body, shows that the 1=r2A piece of #cross

cancels, which implies that there is no scalar dipole.
Let us now consider #cross for compact objects. As

discussed in the previous paragraph, one might expect a
scalar dipole charge induced by the acceleration of object 1
due to the gravitational field of object 2 [ / U2;iðx1Þ]. In
GR, however, acceleration is understood as geodesic mo-
tion in a perturbed geometry. The deviation of the local
geometry from the unperturbed isolated geometry origi-
nates due to tides, and this is a relative 4PN effect. This is
much smaller than the scalar monopole charge contribution
from #self .
To summarize, the dominant contribution to # comes

from the monopole charge associated with each object,
which depends on its internal structure.

2. Odd-parity sector

In the odd-parity case, the scalar field evolution
equation is

h�# ¼ � 2�4

�

����h��;��h�

½�;��
�; (51)

plus terms of Oðh3Þ. Again, we first consider weakly
gravitating objects. At leading PN order, the above
equation becomes

3In fact, this integral vanishes to all orders in x. This is because
ð�1U1;iÞ;i is spherically symmetric, and thus, when it acts as a
source to a wave equation, the solution should either scale as 1=r
or it should vanish identically. We have here shown that there is
no 1=r part.
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h�# ¼ 2�4

�

ijkðh00;mihk0;jm þ h0l;jmhkl;imÞ

¼ �32
�4

�

ijkU;imVk;jm; (52)

with remainders of relative Oðv2Þ. As in the even-parity
case, we write the solution to this wave equation as

# ¼ #self þ #cross; (53)

where

#self ¼ 8

�

�4

�

ijk

Z
M

U0
1;imV

0
1k;jm

d3x0

jx� x0j þ ð1 $ 2Þ;
(54)

and

#cross ¼ 8

�

�4

�

ijk

Z
M

U0
1;imV

0
2k;jm

d3x0

jx� x0j þ ð1 $ 2Þ:
(55)

Let us first consider self-interaction terms #self .
Integrating by parts several times, we find

#self ¼ �16
�4

�

ijk

�Z
M

�0
1V

0
1k;j

�
1

jx� x0j
�
;i
d3x0

þ
Z
M

U0
1;i�

0
1v

0
1k

�
1

jx� x0j
�
;j
d3x0

þ
Z
M

U0
1;iV

0
1k;j�

ð3Þðx� x0Þd3x0 þ ð1 $ 2Þ
�
; (56)

where we have used the relations hU1 ¼ �4��1,hVk
1 ¼

�4��1v
k
1 and hjx� x0j�1 ¼ �4��ð3Þðx� x0Þ. The third

term vanishes when we take the point-particle limit,4 i.e.

�A ¼ mA�
ð3Þðx� xAÞ, UA ¼ mA=rA and VAi ¼ mAvAi=rA.

Let us evaluate the first and the second terms in the NZ.
Keeping only the leading PN term in the NZ, we find

#self ¼ 16
�4

�

ijk

n1;i
r21

Z
M

�0
1ðV 0

1k;j�U0
1;jv

0
1kÞd3x0 þ ð1$ 2Þ

¼ n1;i
r21

�ð1Þ
i þð1$ 2Þ; (57)

where we have defined

�ðAÞ
i � 32

�4

�

ijk

Z
IZ
�0
AV

0
Ak;jd

3x0: (58)

This leading-order PN term in #self represents a magnetic-
type dipole.

As in the even-parity case, to extend this result to

compact objects we have to determine the value of �ðAÞ
i

by matching the NZ solution in Eq. (57) to a strong-field
solution. This will be carried out in Sec. IVC for the BH
case. For NSs, we just present an order of magnitude
estimate based on a simple extrapolation of weakly grav-
itating results:

�i
ðAÞ ¼

�4

�
O
�
mAS

i
A

R3
A

�
; (59)

where SiA is the spin angular momentum of the object.
Following the procedure in Appendix A, we can show
that NSs cannot have scalar monopole charge in the dy-
namical CS case.
Next, we consider the cross term #cross in the weakly-

gravitating case. Integrating by parts several times, we find

#cross ¼�16
�4

�

ijk

�Z
M

�0
1V

0
2k;j

�
1

jx� x0j
�
;i
d3x0

þ
Z
M

U0
1;i�

0
2v

0
2k

�
1

jx� x0j
�
;j
d3x0

þ
Z
M

U0
1;iV

0
2k;j�

ð3Þðx� x0Þd3x0 þ ð1$ 2Þ
�
: (60)

One can take the point-particle limit of this expression
without any trouble to obtain

#cross ¼ �16
�4m1m2

�m4

ijkv12k

�
�
m4

�
ni12n

j
1

r21b
2
þ ni12n

j
2

r22b
2
þ ni1n

j
2

r21r
2
2

�
þO

�
m5

r5

��
:

(61)

These terms are of relativeOðv5Þ compared to the leading-
order term of #self .
As for compact objects, the results found in the even-

parity case also apply here. Terms proportional to 1=r2A in
the above expression suggest that each object has a dipole
component induced by the companion. When we expand
this expression around rA � b, however, the terms pro-
portional to 1=ðr2Ab2Þ cancel each other, as in the even-
parity case, leading to no induced dipole moment. Even if
this were not the case, however, the corrections to the
dipole moment would be a higher order than the contribu-
tions from #self .
To conclude, the dominant contribution to # is clearly

that of #self given in Eq. (57), which again depends on the
structure of the source and thus violates the effacement
principle.

C. Matching near-zone and strong-field solutions and
finding the effective source terms

In alternative theories of gravity, the point-particle limit
is not always valid and the multipole moments of compact

4The vanishing of this term is a general consequence of the
symmetry of the system. The source term contains an 
ijk

symbol, which must be contracted with other vectors to produce
a scalar. We here have only two possible vectors to contract with,
i.e. the velocity vi

1 and the unit vector ni1 from object 1. Hence,
any contraction with the Levi-Civita symbol should vanish.
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objects may depend on the internal structure of the source.
In the previous subsections, we found that the dominant
contributions to the scalar field come from self-interaction
terms, which in turn depend on certain structure constants.
In this subsection, we determine these constants by match-
ing the # solution to that of an isolated BH.

1. Even-parity sector

In the even-parity case, the monopole charges q1 and q2
in Eq. (47) must be determined by matching to a BH
solution. An isolated BH sources a scalar field [28], whose
leading PN behavior is

#YS ¼ 2�3

�m2
A

mA

rA
: (62)

Matching this solution to the NZ solution of Eq. (47) we
obtain

qA ¼ 2�3

�mA

: (63)

Notice that this monopole charge does not depend on
(�1, �2), as for pure BH spacetimes, these coupling con-
stants appear in combination with the Ricci scalar and
tensor, which vanishes. This is to be contrasted with the
NS case, in which qA depends on �1 and �2 as well as �3

and vanishes in EDGB theory. Interestingly, BHs do not
have scalar hair in more traditional (Brans-Dicke type)
scalar-tensor theories, while NSs do possess them. This
situation is reversed in EDGB theory.

The matching carried out above dealt with the monopole
part of #. That is, we have ignored any tidal deformation of
either BH induced by its binary companion. In BH pertur-
bation theory, one can calculate the deformation of the
isolated BH metric to find that it depends on the sum of
electric and magnetic tidal tensors, leading to a metric
deformation that scales as ðr1=bÞ2ðm2=bÞ for r1 � b
[52–54,57–59]. Thus, in the IZ of object 1, tidal deforma-
tions lead to corrections of Oðm3=b3Þ, which are much
smaller than the effects considered here. Therefore, it
suffices in this section to consider an isolated BH when
matching the scalar fields.

With this at hand, we can now treat BHs in even-parity,
quadratic modified gravity as delta function sources of
matter energy density, and with effective scalar charge
density

�# ¼ qA�
ð3Þðx� xAÞ: (64)

In the PN expansion such sources reproduce the BH solu-
tion found by Yunes and Stein [28] at leading order.

Let us make a few observations about the effective
source term approach. First, notice that the scalar field
diverges as mA ! 0, which violates the small-coupling
approximation. This is related to the fact that as one shrinks
a BH, the radius of curvature at the horizon also goes to

zero, probing increasingly shorter length scales. When the
small-coupling approximation is violated, one can no lon-
ger neglect the scalar field’s stress-energy tensor and the
(H ��, I��, J ��,K��) tensors that would dominate over

the Einstein tensor. Of course, one cannot take this limit
seriously, as we are considering here a low-energy effective
theory, which is missing higher-curvature terms that would
need to be included. Notice also that this is different from
the behavior of scalar fields in traditional scalar-tensor
theories, where the scalar field vanishes in the mA ! 0
limit.

2. Odd-parity sector

In the odd-parity case, the dipole charges of the respec-
tive objects in Eq. (57) are to be determined by matching
against the appropriate BH solutions. An isolated nonspin-
ning BH in the odd-parity case does not support a scalar
field. By contrast, a spinning BH does, and in the slow-
rotation limit, neglecting higher-order PN corrections, it is
given by [6]

#YP ¼ � 5

2

�4

�r2A
niA


i
A; (65)

where 
A � SiA=m
2
A is the normalized spin angular mo-

mentum vector of the Ath BH. Matching this solution to the
NZ #self in Eq. (57), we obtain

�i
A ¼ 5

2

�4

�

i
A: (66)

With this at hand, we can now treat BHs in odd-parity,
quadratic modified gravity as distributional sources of
matter energy density and effective scalar charge density

�# ¼ ��i
A�

ð3Þðx� xAÞ;i:
In the PN expansion, such sources reproduce the BH
solution found by Yunes and Pretorius [6] at leading order.
Let us make a few observations about this solution. First,

notice that the pseudoscalar dipole charge is well-behaved
in the limit mA ! 0, because there is a maximum BH spin
j
i

Aj< 1. Second, notice that in the j
i
Aj ! 0 limit, this

dipole charge vanishes, which is a consequence of
Birkhoff’s theorem holding in CS gravity [36,46,47].
Namely, nonspinning BHs in CS theory are the same as
BHs in GR (i.e. Schwarzschild BHs). Therefore, in this
case the point-particle limit is well-justified and the metric
deformation or the scalar field does not depend on the
internal structures of nonspinning sources.

D. Far-zone field point solutions

Let us assume that we have the wave equation

h�# ¼ �ðt; xÞ; (67)

where � denotes the source term. The far-zone field point
solution to this wave equation is given as [60,61]
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#FZ ¼ � 1

4�

X1
m¼0

ð�1Þm
m!

@M

�
1

r

Z
M

�ðu; x0iÞx0M
�
; (68)

with u � t� r. By using u;i ¼ �ni and by keeping only
terms proportional to 1=r, the above solution reduces to

#FZ ¼ � 1

4�

1

r

X1
m¼0

1

m!

@m

@tm

Z
M

�ðu; x0iÞðnjx0jÞmd3x0:

(69)

Here, the region M denotes the hypersurface of t� r ¼
const. In the following, we apply these formulas to the
even- and odd-parity cases separately.

1. Even-parity sector

Following the discussion in Sec. IVB, the evolution
equation for the scalar field is dominantly

h�# ¼ �4�q1�
ð3Þðx� x1Þ þ ð1 $ 2Þ: (70)

From Eq. (69), this wave equation can be solved as

#FZ ¼ 1

r

X
m

1

m!

@m

@tm

Z
M

q1�
ð3Þðx0 � x1Þðnjx0jÞmd3x0

þ ð1 $ 2Þ: (71)

The m ¼ 0 term gives

#FZ ¼ q

r
; (72)

where we have defined the total scalar monopole charge
q � q1 þ q2. Recall that this monopole charge q refers to
the scalar field, and not to an electromagnetic one. For
a BH binary or a NS binary in a quasicircular orbit, q
only changes during merger, as mass is carried away in
radiation. Thus, monopole radiation is inefficient and
suppressed.

For the m ¼ 1 case, we find

#FZ ¼ _Din
i

r
; (73)

where we have defined the total scalar dipole moment as

Di � q1x
i
1 þ q2x

i
2: (74)

When we evaluate this for circular orbits, we find

#FZ ¼ 1

r

�
q1

m2

m
� q2

m1

m

�
v12in

i; (75)

where we have defined the relative velocity vk
12 � vk

1 � vk
2.

The m ¼ 1 term clearly leads to dipole radiation in the
FZ, which is less relativistic than GR quadrupole radiation,
becoming stronger at smaller velocities. Of course, this
term is proportional to the coupling constants of the theory,
which are assumed much smaller than one. Reference [28]
failed to recognize such dipolar emission because they
considered the motion of test particles that had no scalar

charge. We cannot think of any mechanism that would
suppress such dipolar radiation.

2. Odd-parity sector: spinning bodies

As in the previous section, the evolution equation for the
scalar field is dominantly

h�# ¼ 4��i
1�

ð3Þðx� x1Þ;i þ ð1 $ 2Þ: (76)

By using Eq. (68), the far-zone field point solution is
obtained as

#FZ ¼ � X1
m¼0

ð�1Þm
m!

@M

�
1

r

Z
M

�i
1�

ð3Þðx0 � x1Þ;ix0Md3x0

þ ð1 $ 2Þ
�
: (77)

When m ¼ 0 there is obviously no contribution to the
scalar field. When m ¼ 1,

Z
M

�ð3Þðx� x1Þ;ixjd3x ¼ ��ij; (78)

and thus

#FZ ¼ �in
i

r2
þ _�in

i

r
; (79)

with �i � �1i þ�2i. Notice that we recover the solution
of Yunes and Pretorius [6] for the first term of the above
equation with�i

A given as in Eq. (66). These terms will not
strongly radiate because _�i is nonvanishing only for spin-
precessing systems. Even then, such radiation would be
suppressed by the ratio of the orbital time scale to the
precession time scale.
The m ¼ 2 contribution, by contrast, depends on the

much shorter orbital time scale. We look for terms of
Oðr�1Þ since they are the only ones that contribute to the
energy flux at infinity. Keeping in mind that the function
being differentiated depends on retarded time, we can
rewrite Eq. (77) as

#FZ ¼ � 1

r

X
m

1

m!

@m

@tm

Z
M

�i
1�

ð3Þðx0 � x1Þ;iðnkx0kÞmd3x0

þ ð1 $ 2Þ: (80)

When m ¼ 2, we have that

�i
1

Z
M

�ð3Þðx� x1Þ;ixpxqd3xþ ð1 $ 2Þ ¼ �2�pq; (81)

where the pseudotensor quadrupole moment (not to be
confused with �i�j) is defined as
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�ij � xði1�
jÞ
1 þ xði2�

jÞ
2 : (82)

The m ¼ 2 contribution becomes

#FZ ¼ 1

r
€�ijn

ij ¼ � 1

r
!2�ijn

ij; (83)

where the final equality is evaluated on a circular orbit.
Notice that such a scalar field will strongly radiate because
�ij depends on the orbital time scale.

3. Odd-parity sector: nonspinning bodies

When both objects are nonspinning, the self-interaction
terms produced by the effective source identically vanish.
One is then left with the source term constructed from the
product of the gravitational fields of objects 1 and 2. These
terms will be proportional to m1m2. As we will see, there
are many contributions that turn out to vanish upon NZ
integration. For pedagogical reasons, we will show here
explicitly how this happens and eventually arrive at con-
tributions that do not vanish.

The evolution equation for the scalar field to leading
PN order is

h�#FZ ¼ �32
�4

�

ijkm1m2v12k

�
1

r1

�
;im

�
1

r2

�
;jm

; (84)

where we substituted the NZ metric components in the
point-particle approximation. The leading-order term of
the solution to this differential equation, i.e. the m ¼ 0
term in the sum of Eq. (69), is evaluated as

#FZ ¼ 8

�

�4

�
m1m2
ijk

vk
12

r

Z
M

�
1

r1

�
;im

�
1

r2

�
;jm

d3x

¼ �16
�4

�
m1m2
ijk

vk
12

r
@ð1Þi @ð2Þj @ð1Þm @ð2Þm Y ¼ 0: (85)

Here we integrated over the NZþ IZ hypersurface M
without taking any care of the strong-gravity region in
the IZs. One can easily show that the contribution from
the IZs is not large in the present case. In the second line,
we replaced partial derivatives with respect to xi acting
on 1=rA with (minus the) particle derivatives with respect
to xiA:

@

@xi
! � @

@xiA
� �@ðAÞi ; (86)

with A ¼ ð1; 2Þ. We commuted these particle derivatives
with the integral, and finally obtained a typical NZ
integral, discussed in Appendix B. From Eq. (B4), we
know that Y ¼ b, and by taking all particle derivatives,
the last equality is established.

We could have inferred that the m ¼ 0 term in the sum
does not contribute for nonspinning BHs without any

explicit calculations. The argument here is similar to that
in footnote 4. Possible vectors to contract with the Levi-
Civita symbol include the velocities vi

A and the unit vectors
niA, but not spin vectors SiA, as we here consider nonspin-
ning BHs. In particular, for them ¼ 0 case, there cannot be
any FZ vectors ni present. Thus, all vectors that can be
contracted onto the Levi-Civita symbol must lie in the
same orbital plane and this obviously vanishes. This argu-
ment should be true at all PN orders.5

Let us then consider the next-order term. This will arise
from the leading-order source term [right-hand side of
Eq. (84)] with m ¼ 1 in the NZ sum:

#FZ ¼ 8

�

�4

�

m1m2

r
np
ijkv

k
12

@

@t

Z
M

�
1

r1

�
;im

�
1

r2

�
;jm

xpd3x

¼ �16
�4

�

m1m2

r
np
ijkv

k
12

@

@t
@ð1Þi @ð2Þj @ð1Þm @ð2Þm Yp;

(87)

where we have used Eq. (B3), which defines Yp. By

direct evaluation, one can show that this term also
identically vanishes. The first nonvanishing contribution
coming from an m ¼ 1 term must then be Oðv3Þ
smaller than the ordering of the m ¼ 0 term.
Finally, let us consider the ðnextÞ2-order term. This can

arise only from the leading-order source term with m ¼ 2
in the NZ sum:

#FZ ¼ 4

�

�4

�

m1m2

r
npq
ijk

@2

@t2
vk
12

�
Z
M

�
1

r1

�
;im

�
1

r2

�
;jm

xpxqd3x

¼ �8
�4

�

m1m2

r
npq
ijk

@2

@t2
vk
12@

ð1Þ
i @ð2Þj @ð1Þm @ð2Þm

�
�
Yhpqi þ 1

3
�pqS

�
; (88)

which simplifies to

#FZ ¼ 16
�4

�

1

r

�m�m

b

ijknip!

2vk
12n

jp
12; (89)

where we have defined the mass difference �m � m1 �m2

and the symmetric mass ratio � � m1m2=m
2. We have

here used Kepler’s law and expanded the STF tensors.
This is the dominant FZ behavior of the scalar field, which
as we see is much suppressed relative to the odd-parity
solution we found for spinning BHs.

5One may think that one can construct a vector that does not
lie in the orbital plane by taking the cross product of two vectors
that lie on this plane, e.g. n12 � v12. However, since GR is parity
even, such a vector cannot be present in the PN metric.

POST-NEWTONIAN, QUASICIRCULAR BINARY . . . PHYSICAL REVIEW D 85, 064022 (2012)

064022-13



E. Summary of this section

Let us summarize the results found so far for later use. In
the even-parity case, generically at least one of the binary
component objects will have a scalar monopole charge.
Since the scalar field excitation due to the induced mono-
pole is dominant, we neglect all the other less important
contributions. Weakly gravitating objects need not have a
scalar monopole charge if �1 þ �2 þ 3�3 ¼ 0, and BHs
have no scalar monopole charge if �3 ¼ 0. In EDGB
theory, NSs have no scalar monopole charge. In the odd-
parity case, the dominant contribution is the magnetic-type
scalar dipole moment induced by spins. Generically, astro-
physical objects will possess spin, but we will continue to
include nonspinning results to compare with previous
work.

In the NZ, we can parametrize the leading PN terms of
the scalar field as

#NZ ¼ A

ra1b
b
þ B

rc1r
d
2

þ ð1 $ 2Þ; (90)

where (A, B, a, b, c, d) are given in Table I and for
compactness of the Table we define

�pq
NZ � �16

�4

�
�m2
pqsv

s
12: (91)

In the FZ, we can parametrize the scalar field as

#FZ ¼ C

r
; (92)

where C is also given in Table I and we define

�pq
FZ � 16

�4

�
�m�m

!2

b

qjkv

k
12n

jp
12 : (93)

V. METRIC EVOLUTION

In this section, we solve the evolution equations for the
metric deformation in the FZ, so that we can calculate the
gravitational energy flux at infinity. Since we can always

take the transverse-traceless gauge in the FZ, we write �h as
h below. Note that throughout, we use the Newtonian
relationship v2 ¼ m=b (and similarly for the acceleration).
This relationship must be corrected at higher PN order or at
Oð&Þ. As we mentioned earlier, here we do not take into
account the corrections to the orbital motion due to the
conservative force at Oð&Þ. These conservative effects do

not interfere at Oð&Þ with the radiative effects that we are
concerned with in this paper. Therefore the corrections to
the GW waveform become a simple summation of these
two different types of effects.
For the FZ field points, the solution to the metric

deformation equation of motion [Eq. (17)] can be read
from Eq. (69):

hij ¼ � 8

r

X1
m¼0

1

m!

@m

@tm

Z
M

~Cijðnkx0kÞmd3x0 þOðr�2Þ;

(94)

where we have defined the source term as

~Cij ¼ �1ð# ~H ð0Þ
ij þ ~H ð1Þ

ij Þ þ �2ð#~I ð0Þ
ij þ ~I ð1Þ

ij Þ
þ �3ð# ~J ð0Þ

ij þ ~J ð1Þ
ij Þ þ �4

~Kð1Þ
ij � 1

2
Tð#Þ
ij : (95)

Notice that this corresponds to an IZþ NZ integration for
FZ field points, where we have neglected the FZ integra-
tion because it is subdominant.
The integrals presented above have to be carried out also

in the IZ, where the PN expansion is not valid anymore. In
GR, however, such divergences can be ignored, using a
regularization scheme. Since both the true solution and an
appropriately regularized solution satisfy the field equa-
tions in the NZ, their difference due to the IZ contribution
is only through a homogeneous solution. Such homoge-
neous solutions are regular in the NZ and FZ, but can be
divergent in the IZ. They are characterized by the multipole
moments of the respective objects, which can be deter-
mined by studying tidal perturbations around a strongly
gravitating object. One can then perform matching of the
metric solution, as for the scalar solution, but the metric
matching is beyond the scope of this paper. In what fol-
lows, we only consider the regularized contribution, fol-
lowing Hadamard partie finie (FP) regularization [62]. We
comment more on the divergent contribution at the end of
this section.

A. Even-parity sector

Let us focus on the metric perturbation in the even-parity
sector first. The leading-order term both in the PN and 1=r
expansion at infinity is formally given by

hij ¼ hTij þ hJij ; (96)

TABLE I. Scalar field parameters, as defined in Eqs. (90) and (92). The quantities q1 and �i
1

are defined in Eqs. (63) and (66), while �pq
NZ is defined in Eq. (91). The quantities Di and �i are

defined in Eqs. (74) and (77), while �pq
FZ is given in Eq. (93).

A B C a b c d

Even-parity q1 0 _Din
i 1 0 - -

Odd-parity, Spins �i
1n

i
1 0 €�in

ij 2 0 - -

Odd-parity, No spin �pq
NZn

p
12n

q
1

1
2�

pq
NZn

p
1n

q
2 �pq

FZn
pq 2 2 2 2
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hTij �
4

r

Z
M

Tð#Þ
ij d3x; (97)

hJij � � 8�3

r

Z
M

~J ijd
3x; (98)

where we have defined ~J ij � # ~J ð0Þ
ij þ ~J ð1Þ

ij . The source

terms ~H �� and ~I�� do not contribute to this expression

since they identically vanish in the NZ where R�� ¼ 0.

We can estimate the order of magnitude of both hJij and

hTij as follows:

hTij �O
�
�
m

r
v�2#2

�
¼ 	3

m

r
v2 �Oð1Þ; (99)

hJij �O
�
�3

m2

m

r
v4#

�
¼ 	3

m

r
v2 �Oðv4Þ: (100)

Here we factored out v2 in the final expressions, since the
GR leading quadrupolar field is also proportional to v2.
Clearly, the dominant contribution comes from Eq. (99).

Let us now make this computation more precise.
The stress-energy tensor will contain self-interactions of
the form #A;i#A;j and cross terms of the form #1;i#2;j. The

former case leads to divergent integrals, which must be
determined by strong-field matching, so we do not consider
them here. Let us concentrate on the latter, which take the
form

Tð#Þ
ij ¼ �

�
#;i#;j � 1

2
�ij#;�#

;�

�
(101)

	 �q1q2

�
2

�
1

r1

�
;ði

�
1

r2

�
;jÞ
� �ij

�
1

r1

�
;k

�
1

r2

�
;k

�
; (102)

which sources the metric perturbation

hij ¼ 4

r

Z
M

Tð#Þ
ij d3x;

¼ � 4�

r
�q1q2ð2@ð1Þi @ð2Þj b� �ij@

ð1Þ
k @ð2Þk bÞ þ ð1 $ 2Þ;

¼ � 16�

r
�
q1q2
b

nij12; (103)

where we used an integration formula for the triangle
potential given in Appendix B. We can see that this cor-
rection is 0PN relative to the radiative metric perturbation
in GR, just as we predicted in Eq. (99). However, this
correction turns out to be still smaller in the energy flux
than the dipole scalar radiation, which gives a �1PN
correction.

B. Odd-parity sector

We now focus on the odd-parity sector, for which the
solution is given by the term proportional to �4 in Eq. (94),
namely,

h ij ¼ hTij þ hKij ; (104)

hK
ij � � 8�4

r

Z
M

~Kð1Þ
ij d

3x: (105)

The stress-energy contribution hTij is the same as in

Eq. (103).
The K contribution to Eq. (104) is more involved. The

leading-order behavior of the K tensor is

~Kð1Þ
ij ¼ _#;k
jklh00;il þ _#;k
jlmðhim;lk þ hlk;imÞ

þ #;kl
jlmðhi0;mk þ hmk;i0 � hk0;im � him;k0Þ
� #;k
iklð2h0½m;j�lm � 2 _hl½j;m�m � _h00;jlÞ
� 2 _#
iklhk½j;m�lm þ ði $ jÞ: (106)

Other terms are of higher PN order. By substituting hij ¼
h00�ij into Eq. (106), and using 
jklh

��;kl ¼ 
jkl#;kl ¼ 0,

we get

~Kð1Þ
ij ¼ 2 _#;k
jklh00;il � 2#;km
jklh0½m;i�l

� 2#;k
jklh0½m;i�lm þ 2#;k
jkl _h00;il þ ði $ jÞ:
(107)

The ~Kij term in Eq. (104) is then a sum of four terms,

namely,

hKij ¼ X4
n¼1

hðnÞij ; (108)

where we have defined

hð1Þij ¼ � 16�4

r

Z
M

_#;k
jklh00;ild
3xþ ði $ jÞ; (109)

h
ð2Þ
ij ¼ þ 16�4

r

Z
M

#;km
jklh0½m;i�ld3xþ ði $ jÞ; (110)

hð3Þij ¼ þ 16�4

r

Z
M

#;k
jklh0½m;i�lmd3xþ ði $ jÞ; (111)

h
ð4Þ
ij ¼ � 16�4

r

Z
M

#;k
jkl _h00;ild
3xþ ði $ jÞ: (112)

When we substitute the PN metric into the above terms,
the right-hand sides depend on the velocity vectors vi

A

(which depend on time only). The field # is given in
Eq. (90) and its derivative can be computed simply
from that equation. Since this field is a NZ one, it
depends on time through the positions of the objects,
which implies that its time derivative can be converted
into a spatial derivative via @tfðr1Þ ¼ �vi

1@ifðr1Þ.
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Let us begin by making a simple order of magnitude
estimate of how large the regularized contribution is. For
this, it suffices to look at Eqs. (99) and (109):

hTij �O
�
�
m

r
v�2#2

�
; (113)

hKij �O
�
�4

m2

m

r
v5#

�
: (114)

The # field here is that of the NZ, and hence

hTij � 	4
m

r
v2 �Oð
2v4 þ �
v9 þ �2v14Þ; (115)

hKij � 	4
m

r
v2 �Oð
v7 þ �v12Þ; (116)

where 
 stands for the magnitude of 
i
1 and 
i

2. From this
analysis, hTij is clearly larger for rapidly spinning objects,

leading to a 2PN effect.
For the nonspinning case, one might expect the K

contribution to lead to a 6PN effect, but as we explain in
Appendix C, these leading-order effects actually vanish.
This cancellation can also rather easily be seen by integrat-
ing by parts in Eqs. (109)–(112). After discarding bound-
ary terms (taking into account the boundary term is
equivalent to adding homogeneous solutions, correspond-
ing to deformed multipole moments of compact objects),
we obtain expressions of the form 
jkl#h00;kl..., which

obviously vanishes by the antisymmetry of the Levi-
Civita tensor. We carry out a more careful analysis in
Appendix C, where we explicitly show that the leading
and first sub-leading order terms vanish.6 The first non-
vanishing term is then of Oðv2Þ smaller than the order of
magnitude estimates in Eqs. (115) and (116), leading to
7PN and 4.5PN contributions at Oð
0Þ and Oð
1Þ,
respectively.

Since the largest contribution seems to arise for spinning
BHs from the hTij term, let us consider this in more detail.

Two possible contributions are generated here: one that
depends only on self-interaction terms, and one that de-
pends on the cross-interaction. The former leads to diver-
gent integrals, which need to be matched from strong-field
solutions, and we do not consider these here. The latter
leads to the metric deformation

hTij ¼ � 4�

r
��k

1�
l
2ð2@ð1Þik @

ð2Þ
jl Y � �ij@

ð1Þ
pk@

ð2Þ
pl YÞ þ ð1 $ 2Þ

¼ 8��

rb3
f2�ði

1�
jÞ
2 � 12nði12�

jÞ
1 ðnk12�2kÞ

þ 3nij12½5ðnk12�1kÞðnl12�2lÞ ��1k�
k
2�g þ ð1 $ 2Þ;

(117)

which is clearly of the order predicted in Eq. (115), i.e. 2PN
order relative to GR. This is of the same order as the energy
flux correction carried by the pseudoscalar radiation.

C. Multipole moments

In this subsection, we discuss the additional contribution
from the IZs, which enter as additional homogeneous
solutions in the NZ and FZ, These contributions are homo-
geneous in the sense that they arise from sources that have
support only in the IZs, and thus they vanish in the NZ and
FZ [see e.g. the discussion prior to Eq. (45)]. The homoge-
neous solutions are characterized by the mass and current
multipole moments of the strong-field bodies, which must
be determined by matching to strong-gravity solutions in
the IZ. When we solve the nonlinear equations of motion
iteratively, the source terms in general can be classified
into two pieces: a self-interaction part and a cross-
interaction part, as in the case of # in Sec. IV. The
cross-interaction part is sourced by the companion, while
the self-interaction part is not.
The self-interaction part is rather easy to handle because

matching involves only a single isolated object. As de-
scribed in Sec. IVB, these self-interaction terms can be
thought of as homogeneous solutions that have support
only in the IZ. As such, in the small-coupling approxima-
tion, they satisfy homogenous field equations that take
Einstein form. If the spin of the object is neglected, the
only possible linear perturbation to such a homogeneous
solution that is compatiblewith asymptotic flatness is a shift
of the body’s mass (in the 1=r piece of the (t, t) and diagonal
parts of the metric). In essence, this is a consequence of
Birkhoff’s theorem, which holds for homogeneous solu-
tions. Such a shift is consistent with the strong-field, non-
spinning BH solution in EDGB theory found in [28]. In that
case, the mass shift is simply mA ! ð49=80Þ	3mA.
For spinning objects, one expects there to be higher

multipole moments in the strong-field solution. However,
one should be able to absorb current dipole moment mod-
ifications by a redefinition of the spin parameter, while the
mass dipole moment will be absorbed by the redefinition of
the position of the center of mass. Therefore, the leading-
order corrections that survive are the mass quadrupole
moment, which produces a metric perturbation in the NZ
proportional to 1=r3. As we will see, when we consider FZ
solution, there is an additional factor of v2 that enters.
Therefore, contributions to the energy flux from the

quadrupole or higher multipole moments are at least 3PN
order relative to that from the GR quadrupole formula. We
will later find that corrections to the energy flux due to
scalar radiation appear at�1PN and 2PN relative order for
the even- and odd-parity cases, respectively. Hence, the
contributions from the multipole moments that we dis-
cussed here are definitely smaller than those introduced
by scalar radiation in the even-parity case, and at most, the
same order in the odd-parity case.

6In Appendix C, we only show this for nonspinning BHs, but a
similar calculation can be performed for spinning BHs to Oð
Þ.

YAGI et al. PHYSICAL REVIEW D 85, 064022 (2012)

064022-16



Let us take a look at spinning BHs in the odd-parity
sector in more detail. AtOð
Þ there is freedom in adding a
homogeneous solution proportional to 1=r2 in the h0i
component. This corresponds to a freedom in shifting the
Kerr parameter measured at infinity. Reference [6] set this
homogeneous solution to zero so that there is no shift in the
Kerr parameter. At Oð
2Þ, there should be corrections
proportional to 1=r3 in hij which shifts the quadrupole

moment. Since there is no parameter in the Kerr geometry
that can absorb this correction in the quadrupole moment,
this 1=r3 correction cannot be eliminated.

The effective source term that reproduces this correction
should look like

hhij ¼ �4�Q1uiujð�kl � 3Ŝ1;kŜ1;lÞ�ð3Þðx� x1Þ;kl
þ ð1 $ 2Þ; (118)

where QA ¼ Oð	4mAa
2
AÞ and ŜA;k � SiA=m

2
A is a unit spin

angular momentum vector. The solution of this wave equa-
tion at Oð1=rÞ is given by

hij ¼ 1

r

X1
m¼0

1

m!

@m

@tm
uiujð�kl � 3Ŝ1;kŜ1;lÞQ1

�
Z
M

�ð3Þðx� x1Þ;klðn 
 xÞmd3xþ ð1 $ 2Þ: (119)

The leading-order contributions at m ¼ 0 (2PN) and
m ¼ 1 (2.5PN) vanish, leading to the first nonzero con-
tribution at m ¼ 2

h ij ¼ O
�
1

r
Q!2v2

�
¼ 	4

m

r
v2 �Oð
2v6Þ; (120)

which is 3PN relative to GR. Therefore, the self-
interacting correction in the metric at Oð
2Þ is smaller
compared to the corrections in the energy flux carried by
the scalar field and the metric field with regularized
modification.

The cross-interaction part is more complicated. In this
case, we have to consider the induced multipole moments
due to the presence of the secondary object. Thus, even if
we consider nonspinning objects, higher multipole mo-
ments might be induced. Another important difference is
that neither the mass monopole nor the spin dipole can be
simply absorbed by a redefinition of the mass and spin of
each object. This is because the shifts of these multipole
moments depend on the orbital parameters, such as sepa-
ration b. Notice, however, that the effects of the secondary
object propagate only through the scalar field or the gravi-
tational tidal force.

The order of magnitude of the former scalar field effect is
more complicated to estimate and it depends on the situ-
ation. In the even-parity case, # sourced by the secondary
body at the position of the primary body is proportional to
1=b. In EDGB theory, since# has shift symmetrywithin the
context of the classical theory, the effects are suppressed by

the gradient of the field, i.e. they are proportional to 1=b2. In
the odd-parity case, there is again shift symmetry and the
monopole scalar charge is absent. Because of these two
reasons, the suppression is proportional to 1=b3 in CS
theory. These suppressions will be sufficient to conclude
that the effects are relatively at least 1PN and 3PN in the
even and odd-parity cases, respectively, which is smaller
than the effects induced by scalar radiation.
In the odd-parity nonspinning case, the latter gravita-

tional tidal force dominates over the scalar propagation
effect. To calculate this tidal force properly requires
asymptotic matching between the IZ solution and a
strong-field, perturbed Schwarzschild solution in CS
gravity. Perturbations of the Schwarzschild spacetime
can be decomposed as a sum over electric and magnetic
tidal tensors (see e.g. [58]). The former scale as 1=b3ð1þ
vþ v2 þ . . .Þ, while the latter scales as v=b3ð1þ vþ
v2 þ . . .Þ [54]. Such tidal deformations will induce gravi-
tational waves that will scale as the second-time derivatives
of the electric and magnetic quadrupole deformations,
i.e. they will scale as !2=b3ð1þ vþ v2 þ . . .Þ and
!2v=b3ð1þ vþ v2 þ . . .Þ. In GR, the leading-order effect
is induced by the electric quadrupole moment and it scales
as!2=b3, a 5PN order effect. In CS, we expect themagnetic
quadrupole moment to provide the leading-order deforma-
tion, and at the level of energy flux, this couples to the GR
metric perturbation produced by the radiative current quad-
rupole moment, leading to 6PN correction. This interpreta-
tion seems to be consistent with the results of Pani, et al.
[63] which suggest that this scales as a 6PN order effect.

VI. ENERGY FLUX

The inspiral of a compact binary system is controlled by
the system’s change in binding energy and angular mo-
mentum. The binding energy changes according to the
dissipation of energy carried by all dynamical fields, which
here includes the metric perturbation and the scalar field.
The stress-energy tensor (SET) associated with each field
quantifies the density and flux of energy and momentum.
The energy loss is calculated as the integral of the energy
flux through a 2-sphere of radius r in the limit r ! 1 and
in the direction of the sphere’s outward unit normal ni.

That is, for some field’ (be it hij, hij, or #) with SET Tð’Þ
�� ,

_E ð’Þ ¼ lim
r!1

Z
S2r

hTð’Þ
ti nii!r2d�; (121)

where the angle brackets with subscript ! stand for orbit
averaging.
The total energy flux can be ordered in powers of & as

_E ¼ _EGR þ &� _EþOð&2Þ: (122)

The GR energy flux _EGR is given by the GR metric pertur-
bation only, without any contributions from the scalar field
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at Oð&0Þ, as there is no scalar field in GR. For circular
orbits, this is

_E GR ¼ � 32

5
�2v10: (123)

The Oð&Þ correction, � _E, can be decomposed into

� _E ¼ � _Eð#Þ þ � _EðhÞ; (124)

where the first term is the scalar field contribution and the
second term is the contribution of the deformed metric
perturbation.

The scalar field contribution is calculated with the SET
given by Eq. (7):

� _Eð#Þ ¼ � lim
r!1

Z
S2r

h _#ni@i#i!r2d�: (125)

Since we are taking the r ! 1 limit, # must be that valid
in the FZ.

The metric deformation contribution to the energy flux is
slightly more subtle. This modification to the GR flux can
have three distinct sources: (i) the effective SET in terms of
hij and hij may be functionally different, but as shown in

[38], this is not so for the class of theories we consider
here7; (ii) The orbital equations of motion, and the asso-
ciated relationsm=b ¼ v2 and! ¼ v3=m, might be modi-
fied at Oð&Þ, as was partially calculated in [28]; (iii) The
generation mechanism of the FZ metric perturbation is
modified, i.e. the radiative part of the metric perturbation
is deformed. We consider here only the dissipative mod-
ifications introduced by (iii), as (ii) would require an
analysis of the equations of motion, which is beyond the
scope of this paper.8

Letting H�� ¼ h�� þ &h�� þOð&2Þ, the effective SET
of GWs is given by [38]

TðHÞ
�� ¼ 1

32�
hHTT

��;ð�H
��
TT;�Þi�; (126)

where the angle brackets with a subscript � stand for a
quasilocal average over several wavelengths and TT stands
for the transverse-traceless projection

HTT
ij ¼ �ij;klHkl; �ij;kl ¼ PikPjl � 1

2
PijPkl; (127)

with Pij ¼ �ij � nij the projector onto the plane perpen-

dicular to the line from the source to a FZ field point.
Expanding this SET in orders of &, the Oð&0Þ part leads to
_EGR, while the Oð&Þ part is

TðhÞ
�� ¼ 1

16�
hhTT��;ð�h��TT;�Þi�; (128)

which leads to

� _EðhÞ ¼ 1

16�
lim
r!1

Z
S2r

hhhTT��;ðth��TT;iÞi�nii!r2d�: (129)

As before, the h�� and h�� are those valid in the FZ.

A. Scalar field correction to the energy flux

1. Even-parity sector

In the even-parity case, #FZ is dominated by the dipole
component [Eq. (73)], which we repeat here for conve-
nience: #FZ ¼ _Din

i=r, where Di is the NZ dipole given in
Eq. (74). This is inserted into the energy loss formula,
Eq. (125). Since the FZ scalar field depends on retarded
time, both time and spatial derivatives can be written as
time derivatives of the NZ moments. This gives

� _Eð#Þ ¼ ��
Z
S21
h €Di

€Djn
iji!d� ¼ � 4�

3
�h €Di €Dii!;

(130)

which for circular orbits gives

� _Eð#Þ ¼ � 4�

3
�!4jDj2 ¼ � 4�

3

�

m4
ðm2q1 �m1q2Þ2v8:

(131)

Note that here, as before, the m ! 0 limit diverges,
because the effective theory breaks down on short length
scales and & � 1 is violated.
When the compact bodies are BHs, their scalar mono-

pole charges are given by Eq. (63), qA ¼ 2�3=ð�mAÞ,
which then leads to

� _Eð#Þ ¼ � 1

3
	3

1

�2

�m2

m2
v8: (132)

Comparing this with the GR energy flux, we find

� _Eð#Þ
_EGR

¼ 5

96
	3

1

�4

�m2

m2
v�2; (133)

7Reference [38] showed that the TT gauge exists in quadratic
gravity as r ! 1. Any non-TT propagating mode that is sourced
in the NZ vanishes in the FZ at all orders. This is in contrast to
scalar-tensor theories in the Jordan frame, where the scalar
‘‘breathing’’ mode is present in the metric. This difference
comes from the way the metric deformation and the scalar field
couple in the field equations. In the quadratic gravity case, #
does not multiplyG�� in the field equations (the Einstein-Hilbert
sector of the action is unmodified), while the opposite is true in
scalar-tensor theories in the Jordan frame. Therefore, in the
former h�� and # decouple in the r ! 1 limit and there is no
breathing mode. In contrast, in the latter the coupling between
h�� and # remains in the limit r ! 1, leading to a nonvanishing
breathing mode and a modification to the effective SET.

8The distinction between (ii) and (iii) can be ambiguous at
higher PN order, because how the orbital parameters are modi-
fied depends on the gauge choice. However, as long as we
impose the harmonic gauge condition on both GR and the
deformed metric perturbations, we do not have to worry about
this gauge issue at least up to next-to-leading PN order.
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a relative�1PN effect. That is, the energy lost to the scalar
field due to dipole radiation would enter as a lower-order in
v effect than the energy loss in GR. If one takes the limit
m2 ! 1 while keeping (m1, v) fixed, then the above ratio
scales as m�4

1 ; i.e. the energy flux ratio is sensitive to the
smallest horizon scale of the system. The effect is of a
similar size for comparable stellar-mass binary and EMRI
system. A SMBH-SMBH binary experiences the smallest
effect.

2. Odd-parity sector: spinning bodies

The scalar field#FZ is here dominated by the quadrupole
component [Eq. (83)], which we repeat here for conve-
nience #FZ ¼ €�ijn

ij=r ¼ �!2�ijn
ij=r, where the quad-

rupole tensor �ij is defined in Eq. (82). Inserting this into

the energy loss formula [Eq. (125)] gives

� _Eð#Þ ¼ ��
Z
S21
h�:::ij�:::klnijkli!d�;

¼ � 4�

15
�h½2�:::ij�:::ij þ ð�:::iiÞ2�i!: (134)

Let us evaluate this for quasicircular orbits with non-
precessing spins. The third time derivative of the quadru-
pole tensor �ij becomes

�
::: ij ¼ b�3ðm1v

ði
12�

jÞ
2 �m2v

ði
12�

jÞ
1 Þ; (135)

and the total energy flux is

� _Eð#Þ ¼ � 5

48
	4½ ��2 þ 2hð �� 
 v̂12Þ2i!�v14; (136)

where v̂12 is the unit vector in the direction of the relative

velocity and the dimensionless quantity �� is defined as

�� i � m2

m

1Ŝ

i
1 �m1

m

2Ŝ

i
2: (137)

Notice that � _Eð#Þ in Eq. (136) is finite in the EMRI limit.
Note also that when both spins are perpendicular to the

orbital plane, �� is as well, and the second term of � _Eð#Þ
vanishes. Comparing Eq. (136) with GR,

� _Eð#Þ
_EGR

¼ 25

1536
	4

1

�2
½ ��2 þ 2hð �� 
 v̂12Þ2i!�v4; (138)

hence scalar radiation in the odd-parity sector is clearly a
relative 2PN effect. This effect was not included in the
work of Pani et al. [63], who found a 7PN correction, since
their simulations did not include spins. If one takes the
limit m2 ! 1 while keeping (m1, v) fixed, then the above
ratio scales as m�2

1 m�2
2 ; i.e. the energy flux ratio is sensi-

tive to the geometric mean of the two horizon scales in the
system. This implies that the effect is greatest for compa-
rable stellar-mass binaries.

3. Odd-parity sector: nonspinning bodies

The odd-parity #FZ in Eq. (89) can be used to evaluate
the energy loss in Eq. (125):

� _Eð#Þ ¼ �256�	4�m
2�2

�
m

b

�
8 Z

S21
d�½@tð
ijknipvk

12n
jp
12Þ�2

¼ �256�	4�
2 �m

2

m2

�
m

b

�
10 Z

S21
d�ð
ijknipvkp

12n
j
12Þ2

¼ � 64

15
	4�

2 �m
2

m2

�
m

b

�
12
: (139)

Compared to the GW radiation in GR [Eq. (123)], this
scalar radiation becomes

� _Eð#Þ
_EGR

¼ 2

3

�m2

m2
	4v

14; (140)

which shows that this is a relative 7PN effect. In contrast
with the cases of even-parity and odd-parity with spins, this
effect is dominantly controlled by the total mass, rather
than the mass ratio. The effect is greatest for a system of
stellar-mass BHs.
The above result can be compared to numerical calcu-

lations recently performed by Pani et al. [63]. They esti-
mated the effect of scalar radiation in dynamical CS
gravity [36] for nonspinning, circular EMRIs. They nu-
merically solved the master perturbation equations on a
Schwarzschild background to obtain the time evolution of
the scalar field and the metric perturbation, caused by a
nonspinning point-particle. Figure 3 compares their results
to ours, found in Eq. (140). Observe that the numerical
results of Pani et al. are in excellent agreement with our
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Pani, et. al.
PN result

FIG. 3 (color online). Comparison of Eq. (140) to the numeri-
cal results of Pani et al. [63]. The latter can be mapped to the
generic quadratic gravity action of Eq. (4) by letting �4 ¼
��CS=4, which then implies that 	4 ¼ �	CS=16. We here
used 	4 ¼ 6:25� 10�3, which is equivalent to their parameter
	CS ¼ 0:01. Observe that at low velocities, in the regime where
the PN approximation is valid, the two curves agree.
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post-Newtonian calculation, which extends it to compa-
rable mass-ratios (notice the factor of �m=m).

B. Metric deformation correction to the energy flux

For the even-parity case, the correction to the energy
flux that arises from the deformation to the gravitational
metric perturbation is at least of 0PN order relative to GR.
This is a higher PN order compared to the scalar dipole
radiation found in Sec. VIA 1, and thus, we will not con-
sider it further.

For the odd-parity case with spinning BHs, one of the
leading contribution comes from the metric correction

sourced by Tð#Þ
ij , which is given in Eq. (117). Inserting

this metric perturbation into Eq. (129), the energy flux
correction relative to GR becomes

� _EðhÞ
_EGR

¼ 75

16

	4
�

1
2hŜi1Ŝj2ð2v̂12

ij � 3n12hijiÞi!v4; (141)

which is of relative 2PN order, just as the contribution due
to scalar radiation in Eq. (138). Notice that both the metric
deformation and scalar field corrections to the energy flux
are of Oð
2Þ, but the latter is larger by a factor of Oð��1Þ.

We expectOð
Þ corrections to the energy flux due to the
metric deformation to be higher PN order. For very slowly
spinning binaries, however, they may give larger correc-
tions compared to the Oð
2Þ 2PN ones presented here.

In the odd-parity sector with nonspinning objects, the
regularized contributions to the metric deformation can
only provide energy flux corrections of at least 7PN order.
However, as explained in Sec. VC, we expect that match-
ing strong-field solutions to the nonregular NZ ones may
generate 6PN corrections in the energy flux, similar to
those found by Pani et al. [63].

VII. IMPACT ON GRAVITATIONALWAVE PHASE

How do all these modifications to the energy flux affect
the GW observable? To answer this question, we compute
the Fourier transform of the phase of the GW response
function in the stationary phase approximation (SPA),
where we assume the GW phase changes much more
rapidly than the GW amplitude [64].

We begin by parameterizing all the corrections to the
energy flux that we have studied so far via the following
power law:

_E ¼ _EGRð1þ AvaÞ; (142)

where (A, a) are summarized in Table II for the four
different sectors considered.

With the generic energy flux parameterization, the orbi-
tal phase for a quasicircular inspiral becomes

�ðFÞ ¼
Z F dE

d!

�
dE

dt

��1
!d!

¼ �GRðFÞ
�
1þ 5

a� 5
Að2�mFÞa=3

�
; (143)

where F and ! ¼ 2�F are the linear and angular orbital

frequency,�GR ¼ �1=ð32�Þð2�mFÞ�5=3 is the GR orbital

phase and Eð!Þ ¼ �ð�=2Þðm!Þ2=3 is the binary’s binding
energy to Newtonian order. Recall here that m ¼ m1 þm2

is the total mass of the binary, while � ¼ m1m2=m is the
reduced mass and � ¼ �=m is the symmetric mass ratio.
Equation (143) is not valid when a ¼ 5 (a 2.5PN correc-
tion), as then the integrand becomes proportional to !�1,
which leads to a log term.
Before we compute the Fourier phase, we must first

define t0, the time at which the stationary phase condition
is satisfied Fðt0Þ ¼ f=2, where f is the GW frequency.
This condition can be solved to yield

t0 ¼ t0;GR

�
1� 8

8� a
Að�mfÞa=3

�
; (144)

where t0;GR is the GR t0. Again, this expression is not valid
at a ¼ 8, because once more the correction to t0ðfÞ would
be a log term.
With this at hand, we can now compute the Fourier

phase in the SPA:

�GW ¼ 2�ðt0Þ � 2�ft0

¼ �GR

�
1� 40

ða� 5Þða� 8ÞA�
�a=5ð�MfÞa=3

�
;

(145)

where�GR�ð3=128Þð�MfÞ�5=3, and whereM¼�3=5m
is the chirp mass. Again, these expressions are not valid
when a ¼ 5 or a ¼ 8, for the reasons described above.
The corrections to the GW phase found here map di-

rectly to the parameterized post-Einsteinian (ppE) frame-
work [29]. In that framework, one postulates that modified
gravity theories affect the Fourier phase of the GW re-
sponse function in the SPA via

�
ppE
GW ¼ �GR þ �ppEð�MfÞbppE ; (146)

where (�ppE, bppE) are ppE parameters. We see that this is

identical to the corrections introduced by a change in the
energy flux, with the mapping

TABLE II. Coefficients of the relative energy flux.

Sector A a

Even-parity 5
96 	3

1
�4

�m2

m2 �2

Odd-parity, Spins (#) 25
1536 	4

1
�2 ½ ��2 þ 2hð �� 
 v̂12Þ2i!� þ4

Odd-parity, Spins (h) 75
16 	4

1
� hSi1Sj2ð2v̂12

ij � 3n12hijiÞi! þ4

Odd-parity, No spin 2
3 	4

�m2

m2 þ14
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�ppE ¼ � 15

16

A

ða� 5Þða� 8Þ�
�a=5; bppE ¼ a� 5

3
:

(147)

This is not surprising, as the ppE framework was in part
motivated by studying power-law (in velocity) modifica-
tions to the energy flux and the binding energy [29].

We have then found that a large number of energy flux
corrections associated with extra gravitational and scalar
field emissions can be mapped to the ppE framework. In
the even-parity case, the leading-order frequency exponent
bppE ¼ �7=3, while in the odd-parity case bppE ¼ �1=3,

unless the binary is nonspinning in which case bppE ¼ þ3.

The results found in this paper could help in the general-
ization of the ppE framework to more generic quasicircular
inspirals. The original framework considered only non-
spinning, equal mass inspirals, while recently Cornish
et al. [30] generalized it to nonspinning, unequal mass
systems through A ! A�c. In this paper we have found
that A does not only depend on a simple power law of �,
but also on the mass difference �m=m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�
p

and on
combinations of the spins. For single detections, however,
such a generalization is not needed as one only measures a
single number, �ppE, and one cannot extract the dependen-

cies on �, �m=m, and the spins.
Although we currently lack any GW detections, we

can still estimate the projected constraints that such detec-
tions would place on quadratic gravity. According to
Table II, the even-parity sector leads to the strongest
deviations from GR, since a is the most negative.
Therefore, we consider EDGB theory, ð�1; �2; �3; �Þ ¼
ð1;�4; 1; ��1

EDGBÞ�EDGB, as a simple subcase of the even-

parity sector. Let us first imagine that we have detected a
GW with Ad. LIGO and signal-to-noise ratio (SNR) of 20
that is consistent with GR and that originates from a non-
spinning BH binary with masses ðm1; m2Þ ¼ ð6; 12ÞM�.
Given such a detection, Cornish et al. [30] estimated the
projected bound j�ppEj & 5� 10�4 for bppE ¼ � 7

3 , which

implies j�EDGBj1=2 & 4� 105 cm. Let us now assume that
we have detected a GW with LISA classic with an SNR
of 879 and still consistent with GR, but that originates from
a nonspinning BH binary with masses ðm1; m2Þ ¼
ð106; 3� 106ÞM� at z ¼ 1. Given such a detection,
Cornish et al. [30] estimated a bound on j�ppEj & 10�6

for the same value of bppE as before, which leads to

j�EDGBj1=2 & 1010 cm. In both cases, notice that these
projected bounds are consistent with the small-coupling
requirement 	i � 1; i.e. saturating the projected Ad. LIGO
and LISA constraints we have 	Ad:LIGO � 3� 10�2 and
	LISA � 10�5 for those particular binary systems, which
is clearly much less than unity.

Comparing these results with the current constraint ob-

tained by the Cassini satellite, j�EDGBj1=2<8:9�1011 cm
[33], we see that Ad. LIGO and LISA could constrain
�EDGB much more strongly. Unfortunately, it seems

difficult to put constraints on EDGB with binary pulsar
observations, since NSs have no scalar monopole charge in
this theory. We emphasize again that this is opposite to the
expectation from scalar-tensor theories, in which NSs have
scalar monopole charges while BHs do not. Finally, one
cannot estimate the bounds one could place on dynamical
CS gravity, since one would have to properly account for
modifications to the conservative equations of motion,
which we have not calculated here.

VIII. CONCLUSIONS AND DISCUSSIONS

We have studied the binary inspiral problem in a wide
class of quadratic gravity theories in the slow-motion,
weak-gravity regime. The structure of a compact object
in such theories affects the exterior scalar field sourced by
the object. Despite this, we can model a compact object by
an effective scalar field source characterized by its scalar
monopole and dipole moments. The scalar monopole
charge is enhanced inversely proportional to the mass of
the object, while the dipole charge is independent of the
mass for a fixed dimensionless spin parameter. With this
effective source, we then derived and solved the modified
field equations for the scalar field and metric deformation.
We find that the scalar field generically emits dipole

radiation in the even-parity sector, and quadrupole radia-
tion in the odd-parity sector. Such radiation affects the rate
of change of the binary energy at relative �1PN order in
the even-parity case and relative 2PN order in the odd-
parity case. The quadrupole contribution depends quad-
ratically on the BH spins, and thus it is suppressed for
nonspinning binaries. In that case, the odd-parity contri-
bution becomes of relative 7PN order, as found numeri-
cally in [63]. We have found excellent agreement between
their numerical results and our analytical calculations.
We have also calculated the metric perturbation in the

FZ and its associated energy flux. In the even-parity sector,
the dominant metric contribution leads to a 0PN relative
correction in the energy flux, which is smaller than the
�1PN correction induced by scalar dipolar radiation. In
the odd-parity sector and for spinning BHs, the metric
perturbation leads to a 2PN modification to the energy
flux, which is of the same order as that induced by quad-
rupolar scalar radiation. In the odd-parity sector and for
nonspinning BHs, we expect the energy flux correction due
to the metric deformation is suppressed to at least of 6PN
order, as found by Pani et al. [63].
Whether these corrections can be measured or con-

strained depends on whether they are degenerate with GR
terms in the physical observable, i.e. the waveform. A
�1PN effect cannot be degenerate, as there are no such
terms predicted in GR. A 2PN effect, however, could be
degenerate with a spin-spin interaction for quasicircular
inspirals with aligned or counter-aligned spin components.
That is, a renormalization of the spin magnitudes of
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both bodies can eliminate this 2PN effect, assuming one
truncates the waveform at that order. If higher-order PN
waveforms are used, or if the orbit is more generic (i.e. if
there is precession or eccentricity), then this degeneracy
can be broken.

We also calculated the effects of such energy flux mod-
ifications on the gravitational waveform. The waveform
phase depends sensitively on the rate of change of the
orbital frequency, which in turn is governed by the rate
of change of energy. We calculated the corrections that
would be induced in the waveform and mapped them to the
ppE framework. We then used a recent ppE study [30] to
estimate the constraints that Ad. LIGO and LISA could
potentially place on quadratic gravity theories. Given a
GW detection, we found that the magnitude of the new
length scale introduced by quadratic gravity theories (as-
sociated with a ratio of their coupling constants) could
constrain at a level controlled by the smallest length-scale
probed in the inspirals, i.e. the size of the smallest compact
object’s event horizon or surface. The best projected
bounds achievable with Ad. LIGO will thus come from
stellar-mass BH or NS inspirals, while LISA will benefit
the most from EMRIs. Since NSs have no scalar monopole
charge in EDGB theory, this theory cannot be constrained
from binary pulsar observations. This property is diamet-
rically opposite to scalar-tensor theories where BHs have
no hair.

There are several possible avenues for future work.
Since we here mainly considered corrections due to the
dissipative sector of the theory, one possibility is to calcu-
late the nondissipative corrections that would modify the
binding energies (here, we mean both gravitational and
scalar binding energies) and the equations of motion. There
are two effects that should be accounted for: new scalar-
scalar forces and metric deformations. Let us consider the
former first. In the even-parity case, compact objects have
an associated scalar monopole charge, and thus, there is an
additional scalar force with a 1=r potential that should lead
to a relative 0PN non-dissipative correction in the equa-
tions of motion. Similarly, in the odd-parity case, a spin-
ning compact body possesses a current dipole charge, and
hence, dipole-dipole interactions should arise. Since the
dipole potential is proportional to 1=r2, while the dipole
charge couples to the first derivative of the potential, the
binding energy and the equations of motion should be
corrected at relative 2PN order.

Another nondissipative modification is induced by de-
formations of the background metric tensor. In the even-
parity sector, such corrections enter at relative 0PN order,
as found by Yunes and Stein [28]. In the odd-parity sector,
there is no metric deformation for isolated nonspinning
BHs, but for spinning ones at Oð
Þ, there is a correction
proportional to r�4 to the (t, i) components [6], which then
leads to a 4.5PN correction in the equations of motion
when we consider boosted BHs. At Oð
2Þ, there should

be a correction in the quadrupole moment compared to the
Kerr BH, leading to a 2PN correction relative to GR. This
then implies the following: (i) in the even-parity case, the
conservative corrections to the equations of motion do not
affect the leading-order modification to the waveforms,
since this is dominated by the �1PN scalar radiation
effect; (ii) in the odd-parity case, the conservative correc-
tions from the metric deformation can be neglected at
Oð
Þ, but those due to the metric deformation at Oð
2Þ
and the scalar-scalar force will contribute at the same order
as the effect calculated here. A complete analysis of the
waveform observable would thus require the calculation of
such a scalar-scalar, conservative effect.
Another possibility could be to study modified quadratic

gravity in the context of BH perturbation theory. This
would be a tremendous effort that would have to be split
into separate parts. First, one would have to find an ana-
lytic, strong-field solution for arbitrarily fast rotating BHs
in quadratic gravity. This has only been found in the slow-
rotation limit both in the even-parity [28] and odd-parity
sectors [6]. Once this is accomplished, one would have to
study the evolution of metric perturbations away from this
solution. Such evolution equations would have to be de-
coupled in terms of some master function to derive
Teukolsky-like master equations. Finally, with these equa-
tions at hand, one would have to solve them numerically,
when the perturbations are sourced by a small object in a
tight orbit. Such an analysis would be interesting because
one would be able to derive not only the corrections to the
energy flux carried out to infinity, but also that which is
absorbed by the BH horizons and which we ignored in
this paper.
A final follow-up would be to study how NS solutions

are modified in quadratic gravity [65,70] and how the
energy flux from NS binaries is modified. This could
then lead to direct constraints on quadratic gravity theories
from double binary pulsar observations. Such constraints
could be stronger, relative to current Solar System con-
straints, as they could potentially provide constraints of
roughly the order of magnitude of the NS radius. Of course,
in the case of EDGB theory or dynamical CS gravity, these
constraints might not be stronger as NSs have no scalar
monopole charge in such theories.
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APPENDIX A: THE BALDING OF NEUTRON
STARS IN EDGB GRAVITY

In this appendix, we consider the scalar field equation in
EDGB gravity for isolated NSs. Integrating the evolution
equation, we find

Z ffiffiffiffiffiffiffi�g
p

h#d4x /
Z ffiffiffiffiffiffiffi�g

p
R2

GBd
4x; (A1)

where we have defined the Gauss-Bonnet invariantR2
GB �

R2 � 4R��R
�� þ R����R

����. Since the Gauss-Bonnet

combination is a topological invariant, the right-hand
side identically vanishes for any simply connected, asymp-
totically flat spacetime. Moreover, since we are consider-
ing isolated NSs, these must be stationary, and so the time
integration can be removed.

With all of this and using Stokes’ theorem, Eq. (A1)
becomes

Z ffiffiffiffiffiffiffi�g
p ð@i#ÞnidS ¼

Z ffiffiffiffiffiffiffi�g
p ð@r#ÞdS ¼ 0; (A2)

where ni is the radial unit vector and the integral is per-
formed over the 2-sphere at spatial infinity. Notice thatffiffiffiffiffiffiffi�g
p � r2, while the scalar field must decay at infinity for

it to have a finite energy.
Equation (A2) does not vanish at spatial infinity for all

scalar field solutions, i.e. if we model # ¼ #n=r with #n a
constant, then Eq. (A2) leads to the unique solution
#n ¼ 0. This is a physicists’s proof that the EDGB
scalar field cannot have scalar monopole charge for a
spherically symmetric NS. Similarly, one can show that
NSs cannot have scalar monopole charge in dynamical CS
gravity; the proof laid out above carries through with the
replacement R2

GB ! �RR, since �RR is also a topological

invariant.

APPENDIX B: INTEGRATION TECHNIQUES

In this appendix, we provide some useful integration
techniques. When computing near-zone integrals, we are
faced many times with integrals of the form

Z
d3x

xhLi
r1r2

: (B1)

When the point-particle approximation is valid, such near-
zone integrals can be Hadamard regularized by keeping
only the finite part. Let us then define [66]

YhLiðx1; x2Þ ¼ � 1

2�
FPB¼0

Z
d3xj~xjB xhLi

r1r2
; (B2)

to be evaluated in the near zone and where FPB¼0 stands for
the finite part operator (in the limit B ! 0) and j~xj is an
analytic continuation factor [66]. The solution to this in-
tegral is

YhLi ¼ b

lþ 1

Xl
q¼0

xhL�Q
1 xQi

2 : (B3)

The first few YhLi are simply

Y0 ¼ Y ¼ b; Yi ¼ b

2
ðxi1 þ xi2Þ; (B4)

Yhiji ¼ b

3
ðxhiji1 þ xhi1 x

ji
2 þ xhiji2 Þ; (B5)

Yhijki ¼ b

4
ðxhijki1 þ xhij1 xki2 þ xhi1 x

jki
2 þ xhijki2 Þ: (B6)

The solution to the YhLi integral can also be derived by

using certain Poisson integral identities [61]:

Pðf;ig;iÞ ¼ � 1

2
½fgþ Pðfg;iiÞ þ Pðgf;iiÞ �BpðfgÞ�;

(B7)

where we have defined

PðfÞ � 1

4�

Z
M

fðt; x0Þ
jx� x0jd

3x0; (B8)

and the boundary term is

BpðgÞ� 1

4�

I
@R

�
gðt;x0Þ
jx�x0j@

0
r ln½gðt;x0Þjx�x0j�

�
r0¼R

R2d�0:

(B9)

As usual, we retain only those terms that are independent
of the boundary R.
Finally, there is yet another type of integral that com-

monly appears in near-zone integration:

Z
M

d3x0

jx0 � x1jjx0 � x2jjx0 � xj : (B10)
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Let us then define the so-called triangle potential [67]

G ðx1; x2; x3Þ � 1

4�

Z
M

d3x0

jx0 � x1jjx0 � x2jjx0 � x3j :
(B11)

It is a bit of a miracle that the above integral has the
closed-form solution GðxA; xB; xCÞ ¼ 1� ln�ðABCÞ,
with �ðABCÞ � jxA � xBj þ jxB � xCj þ jxC � xAj.

One can show that the triangle potential satisfies a set of
relations, including [67]

@ð1Þi @ð2Þi Gðx1; x2; xÞ ¼ 1

2

�
1

b

�
1

r1
þ 1

r2

�
� 1

r1r2

�
;

@ð1Þil @
ð2Þ
jl Gðx1; x2; xÞ ¼ � 1

2

�
ni1n

j
2

r21r
2
2

þ ni12n
j
2

b2r22
� nj12n

i
1

b2r21

þ 3
nhiji12

b3

�
1

r1
þ 1

r2

��
; (B12)

and more generally

@ðBÞi @ðCÞj GðABCÞ ¼ 1

�ðABCÞ2 ðn
i
AB � niBCÞðnjAC þ njBCÞ

þ 1

rBC�ðABCÞ ð�ij � niBCn
j
BCÞ; (B13)

where GðABCÞ � GðxA; xB; xCÞ.

APPENDIX C: ODD-PARITY, NONSPINNING,
REGULARIZED CONTRIBUTION IN THE

METRIC CORRECTION

We consider here the odd-parity sector for nonspinning
binaries, where, for the scalar field, the magnetic-type
dipole moment vanishes, �i

A ¼ 0, since 
A ¼ 0. For the
regularized contribution, we only need to consider the
cross-interaction terms since the isolated nonspinning BH
solution in the odd-parity case is simply the Schwarzschild

metric. The ~Kð1Þ
ij source term gives the largest contribution

and one is then left only with the pseudoscalar generated
by interaction terms, as given in Eq. (61).

The metric deformation is given by Eq. (94), the m ¼ 0
piece of which can be split as in Eqs. (109)–(112). Before
tackling each of these terms separately, let us point out that
many of them identically vanish. For example, one of the
contributions in Eq. (109) is proportional to

Iijqn � m1
jkl
Z
M

@ð1Þqnk

�
1

r1

�
@ð1Þil

�
1

r1

�
d3x

þm2
jkl
Z
M

@ð1Þqnk

�
1

r1

�
@ð2Þil

�
1

r2

�
d3x

¼ �2�m1
jkllim
2!1

@ð1Þqnk@
ð2Þ
il Yðx1; x2Þ

� 2�m2
jkl@
ð1Þ
qnk@

ð2Þ
il Yðx1; x2Þ ¼ 0: (C1)

It is critical in this calculation and in the calculations that
follow to replace the xi derivatives by particles derivatives,
i.e. derivatives with respect to xi1 and xi2.
Let us then tackle the first contribution to the dissipative

metric deformation. Equations (109)–(112) can then be
rewritten as

hð1Þij ¼ 2048�
�2
4

�

m2
1m2

r
½b!2ðI1ij þ I2ijÞ�v1nðI3ijn þ I4ijnÞ

�v2nðI5ijn þ I6ijnÞþ ði$ jÞ�þ ð1$ 2Þ; (C2)

h
ð2Þ
ij ¼ �4096�

�2
4

�

m2
1m2

r
v1½n½I3i�jn þ I4i�jn þ I5i�jn

þ I6i�jn þ ði $ jÞ� þ ð1 $ 2Þ; (C3)

hð3Þij ¼ 4096�
�2
4

�

m2
1m2

r
v1½n½I7i�jn þ I8i�jn þ ði $ jÞ�

þ ð1 $ 2Þ; (C4)

h
ð4Þ
ij ¼ �2048�

�2
4

�

m2
1m2

r
v1n½I7ijn þ I8ijn þ ði $ jÞ�

þ ð1 $ 2Þ; (C5)

where we have defined

I1ij � 
jkl
pqsn12sJ
ð1Þ
pk;q;il; I2ij � 
jkl
pqsn12sJ

ð1Þ
p;qk;il;

I3ijn � 
jkl
pqsv12sJ
ð1Þ
pkn;q;il; I4ijn � 
jkl
pqsv12sJ

ð1Þ
pn;qk;il;

I5ijn � 
jkl
pqsv12sJ
ð1Þ
pk;qn;il; I6ijn � 
jkl
pqsv12sJ

ð1Þ
p;qkn;il;

I7ijn � 
jkl
pqsv12sJ
ð1Þ
pk;q;iln; I8ijn � 
jkl
pqsv12sJ

ð1Þ
p;qk;iln;

(C6)

and

JðpÞA;B;C ¼ lim
3!p

@ð1ÞA @ð2ÞB @ð3ÞC GðABCÞ; (C7)

with A, B, C denoting the multi-index lists. We provide a
more detailed discussion of J tensors in Appendix D. One
can then show through explicit computation that the two
terms combine to give I1ij þ I2ij ¼ 0, I3ijn þ I4ijn ¼ 0,

I5ijnþI6ijn¼0, and I7ijnþI8ijn¼0. Therefore h
ð1


4Þ
ij ¼0

at leading order.
Let us now look at contributions that are smaller by

OðvÞ. Such a correction can arise from two different terms:
(i) theOðvÞ correction to the source term withm ¼ 0 in the
sum of Eq. (94), or (ii) the Oðv0Þ correction to the source
term with m ¼ 1 in the sum of Eq. (94). For case (i), the
next-order terms consist of two time derivatives and one
factor of h0i (or three time derivatives and one factor of
hij), which when combined are Oðv2Þ smaller than the

Oðv0Þ contribution shown to vanish previously. Also, the
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next-order terms in the PN metric appears at Oðv2Þ higher
relative to the leading-order terms. Finally, #NZ in Eq. (55)
expanded as in Eq. (2.27) of [60] with m ¼ 1 in the sum,
gives an OðvÞ relative contribution to @k#, but explicit
calculation shows that

#NZ ¼ 8

�

�

�
m1m2
ijk

@

@t

�
v12k

Z
M

�
1

r1

�
;il

�
1

r2

�
;jl
d3x

�

¼ 8

�

�

�
m1m2
ijk

@

@t

�
v12k@

ð1Þ
il @

ð2Þ
jl

Z
M

1

r1

1

r2
d3x

�

¼ 16
�

�
m1m2
ijk

@

@t
½v12k@

ð1Þ
l @ð2Þijl b� ¼ 0: (C8)

For case (ii), the resulting _hij contains one ni vector. The

correction to the energy flux consists of _hij multiplied by

hTTij and averaged over a 2-sphere. However, since the

leading contribution in hTTij contains even numbers of ni

vectors, the correction only contains angular integrals of
odd numbers of ni’s which vanish exactly upon integration.

Since there is no OðG3; vÞ relative contribution to @thij,

the first, nonvanishing contribution must be at least Oðv2Þ
smaller than what we computed in Eqs. (C2)–(C5), which
amounts to a 7PN correction to the energy flux carried by
the metric deformation, in the odd-parity, nonspinning
case.

APPENDIX D: EVALUATING J TENSORS

Recall that the definition of the J tensors is

JðpÞA;B;C ¼ lim
3!p

@ð1ÞA @ð2ÞB @ð3ÞC GðABCÞ: (D1)

The limit 3 ! p which appears must be taken with care.
There may be terms proportional to

lim
3!p

1

rp3
; (D2)

which have no finite part. In the evaluation of the J tensors,
only the finite part of the limit is kept. That is, a function

can be expanded as a Laurent series about these points, and
the finite part scales as ðrp3Þ0 in the limit as 3 ! p.

Another type of problematic limit is

lim
3!p

nip3 or lim
3!p

nijp3; (D3)

which does not formally exist, since it depends on the path
taken as we describe below. Parameterize the path that
particle 3 takes to the location of particle p by the con-
tinuously differentiable path �ð�Þ, with � a parameter of
path length and � ¼ 0 the location of particle p. There are
an infinite number of paths one could choose, and each can
be parameterized in two senses. Taking the limit along this
path ‘‘from below’’ (i.e. from smaller values of � to larger
values) yields

lim
3!p;��n

i
p3 ! �v̂i

�ð0Þ; (D4)

where v̂� is the tangent vector to the curve �. Taking the

limit from above, we find

lim
3!p;�þ

nip3 ! þv̂i
�ð0Þ: (D5)

The limit depends on the path’s tangent at the point of
particle p, and the direction in which the limit is taken.
Clearly, the final answer must be unique, which implies the
limit must vanish.
A unique prescription to this problem is formalized as

the Hadamard regularization [68]. This can be summarized
as follows. All possible paths are considered, with tangent
vectors v̂�. The average is then taken by integrating, e.g.

lim
3!p


 
 
 nijp3 
 
 
 ¼
Z d�ðv̂�Þ

4�

 
 
 v̂ij

� 
 
 
 : (D6)

The first few such limits, for example, are

lim
3!p

nip3 ¼ 0; (D7)

lim
3!p

nijp3 ¼
1

3
�ij: (D8)
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