
MIT Open Access Articles

Clui: A Platform for Handles to Rich Objects

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Pham, Hubert et al. "Clui: A Platform for Handles to Rich Objects." Proceedings of the
25th annual ACM Symposium on User Interface Software and Technology - UIST’12, October 7–
10, 2012, Cambridge, Massachusetts, USA.

As Published: http://dl.acm.org/citation.cfm?
id=2380116&CFID=529955150&CFTOKEN=85797049

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/72037

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72037
http://creativecommons.org/licenses/by-nc-sa/3.0/

Clui: A Platform for Handles to Rich Objects
Hubert Pham, Justin Mazzola Paluska, Robert C. Miller, and Steve Ward

MIT CSAIL
Cambridge, MA 02139

{hubert, jmp, rcm, ward}@mit.edu

ABSTRACT
On the desktop, users are accustomed to having visible han-
dles to objects that they want to organize, share, or manipu-
late. Web applications today feature many classes of such ob-
jects, like flight itineraries, products for sale, people, recipes,
and businesses, but there are no interoperable handles for
high-level semantic objects that users can grab. This pa-
per proposes Clui, a platform for exploring a new data type,
called a Webit, that provides uniform handles to rich objects.
Clui uses plugins to 1) create Webits on existing pages by
extracting semantic data from those pages, and 2) augment-
ing existing sites with drag and drop targets that accept and
interpret Webits. Users drag and drop Webits between sites
to transfer data, auto-fill search forms, map associated loca-
tions, or share Webits with others. Clui enables experimen-
tation with handles to semantic objects and the standards that
underlie them.

Author Keywords
Cloud; handles; semantic web

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces - Graphical user interfaces.

INTRODUCTION
As web applications become more popular, it is important to
consider the need for and design of visual handles to rich
objects on the cloud. Sophisticated web applications today
feature an expanding class of objects that users want to ma-
nipulate, like flight itineraries, financial accounts, real estate,
restaurants, messages, products for sale, and people. While
primitive data types on the web (e.g., text, images, links, and
pages) might describe those objects, there are no visual han-
dles to high-level, semantically-rich objects for users to grab.
Such handles would enable users to efficiently organize, find,
and share structured information. For example, a user look-
ing for flights on AA.com could drag and drop a prospective
itinerary to other sites to search for competing flights (e.g.,
on kayak.com), along with related services, like hotel rooms
(e.g., on hotels.com) and car rentals (e.g., on alamo.com).
The user could then share that handle to ensure friends are
on the same itinerary.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

Figure 1. Clui appears as a pane in the browser and is shown here hold-
ing several Webits, visual handles to objects on the web.

Without standardized handles to rich data types, each appli-
cation that requires them must implement its own handles,
which invites inconsistency and poses challenges for inter-
operability across sites. For example, Google Docs features
document handles in its document list, which differ from and
are not interoperable with Microsoft Office 365’s Sharepoint
document handles. Similarly, representations of people on
Facebook are different from those in GMail. The lack of a
generic representation for rich data objects limits what data
users may transfer between different web applications; hence,
user data tends to remain in silos.

Our hypothesis is that in a web-centric environment, users
need a new kind of handle that is generic and designed to
represent an evolving set of semantically rich objects. Such
handles would 1) enable a simple, direct, and consistent in-
terface for data representation and transfer across the web,
and 2) foster new interactions not yet possible with the cur-
rent web or desktop. For example, handles would allow a
user shopping for a tablet device to drag products of interest
directly from retailers, like amazon.com or apple.com, to his
workspace as he shops, and then drag those products to an
online spreadsheet to organize and compare various dimen-
sions (e.g., screen resolution, price, storage size, etc). The
user might also drag items to price comparison services. Han-
dles could capture representations of people, allowing a con-
ference program committee chair to drag a paper submission
into a group of peers that come from GMail contacts, and then
drag that bundle into a conference management system to as-
sign that paper to review to those people. The chair might
also drag a group containing all program committee mem-
bers to a web service that generates a list of names, photos,
and affiliations for inclusion in the conference web site.

To explore such interactions, this paper proposes Clui, a plat-
form for experimenting with handles and the workspaces that

support them. Clui’s primary contributions are:

• an extensible data type, called a Webit, that provides uni-
form handles to rich resources, and

• the Clui platform, a browser extension for experimenting
with Webits and Webit-aware workspaces.

In a Clui-enabled system, users interact directly with Web-
its by dragging and dropping or copying and pasting them to
transfer resources between sites. In contrast to typical web
URIs, which point to resources, Webits contain an extensi-
ble set of associated metadata for the resources they repre-
sent. For example, Webits may bundle metadata associated
with people (e.g., name, email, address, photo), goods for
sale (e.g., price, description, ratings), electronic documents
(e.g., authors, title, provenance), and so on.

Clui offers several mechanisms to inject Webit support into
existing webpages: 1) by automatically generating them for
primitive resources like HTML snippets, links, and images,
2) via a flexible plugin system to augment existing web pages
to produce or accept Webits, and 3) through library functions
that web developers call to add “native” support for Webits in
their web applications.

As a platform, Clui enables experimentation with handles to
semantic objects and the data transfer standards that underlie
them. In order to test the feasibility and interoperability of
Webits, we have built a variety of Clui plugins that augment
existing webpages with the ability to generate and consume
Webits. We have also built a Webit-aware workspace called
Sheets, which appears as a pane below the browser tab, that
provides users with a local surface to collect Webits, inspect
them, and transfer them between sites (Figure 1).

This paper explores several claims about Webits and verifies
those claims by illustration of workflows and examples. The
summarized claims are: that Webits can represent a wide
range of high-level concepts of interest to users; that they
make interaction consistency across sites possible and ease
common tasks; and that Webits, with the Clui platform, are
easy to create and consume on existing web pages.

The next section is an overview of related work. Following
that, we describe Webits in further detail and show various
scenarios in which they are useful. We then describe an early,
informal user study to obtain a sense of Clui’s potential use-
fulness; that study informs the current design of Clui. Next,
we highlight the platform’s design and then discuss our ex-
perience developing on the platform. We then conclude with
future work.

RELATED WORK
Several areas of previous work inspire Clui.

Web Clipping & Scraping
Many web clipping and note taking packages, such as Ever-
note [3], Microsoft OneNote [9], Zotero [14], list.it [32], and
Clipmarks [2], aim to help users organize various snippets
of text, images, and references found on the web (or else-
where). The emphasis of these packages is to provide a dig-
ital home for scraps of information [16] as well as tools for

their long-term organization and retrieval. Clui differs from
these projects by focusing on the use of handles to rich ob-
jects, rather than just primitive data types, and by focusing on
information transfer instead of organization.

Clui is similar to projects that detect and create structured
data in documents and clipboards, like Citrine [29], Apple
Data Detectors [27], and Microsoft’s Live Clipboard [7]. Clui
differs by providing user-visible handles. Data sharing work-
flows in those projects, like Citrine’s ability to paste struc-
tured data into forms and spreadsheets, inspire some of Clui’s
workflows.

Greasemonkey [5] enables users to install JavaScript scripts
to alter specific web pages. Clui plugins are similar in that
they assumes plugin writers to be expert programmers.

Projects that empower users to clip and scrape structured
content from the web typically need to provide interfaces
that semi-automate the process of scraping. For example,
Dontcheva et al.’s work [18, 17] explores visual techniques
that enable users to extract and relate structured content
across different sites as a means to summarize and collect
information. Fujima et al. [21] explore tools that enable users
to construct new interfaces that bridge data between elements
clipped from existing pages. Yahoo Pipes [13] provide a sim-
ilar service that enables users to compose new data flows of
content found across the web. Vegemite [25] describes tech-
niques to 1) import web data into spreadsheets via direct ma-
nipulation and 2) generate scripts (by observing user action)
to run on each row of the data table. d.mix [22] enables de-
velopers to obtain code snippets of functionality by clipping
representative elements on a webpage. The visual approach
of scraping-by-clipping, as proposed in these projects, would
improve the development process for Clui plugin authors.
The techniques for relating structured content across sites, as
discussed in Dontcheva’s work, would enable users (or ulti-
mately the system) to merge related Webits found across the
web. Techniques reported in Vegemite would be useful for
automatically mapping Webit metadata fields to spreadsheet
columns.

Piggy Bank [23] scrapes pages open in the user’s browser
and generates structured data. However, Piggy Bank’s aim is
to enable users to subsequently browse and query that data
within the browser via a Piggy Bank-generated web page.
Clui focuses less on allowing users to inspect structured data
and more on the interactions for transferring structured data
from site to site. Since Piggy Bank is also implemented as
a browser extension, it would be fruitful to leverage Piggy
Bank as a library within Clui.

Microformat standards [8] enable site authors to embed se-
mantic data within their pages. We imagine that Clui may
someday automatically generate Webits on sites with micro-
data without requiring plugins for those pages.

Desktop Studies
A few common themes emerge from many studies on the tra-
ditional desktop, e.g., Malone’s in 1983 [26], Barreau and
Nardi’s in 1995 [15], Ravasio et al. in 2004 [28], and Katifori
et al. in 2008 [24]. Barreau and Nardi first observed that users

place three types of information on the desktop: ephemeral,
working, and archival. The studies agree that the desktop is
commonly used for temporary storage, such as a staging area
for downloads or uploads, and as a device for reminding users
of impending tasks. They also agree that archiving resources
(e.g., to tidy the desktop) is difficult because doing so in-
volves classifying each resource, a cognitively difficult task.
As such, users tend to put off archiving, leading to desktop
clutter. All studies agree that users naturally arrange desktop
icons in meaningful, spatial arrangements, such as clustering
similarly themed resources together, to aid efficient retrieval.
These studies suggested that Clui’s initial workspace proto-
type should borrow from the spatial elements of the desktop.

While studies like these should certainly inform the design
of Webit-aware workspaces, we believe that there are some
notable differences between traditional desktops and work-
spaces for Webits. For example, in web-centric workflows (as
envisioned by browser-only OSes, like Chromium OS [1]),
data scraps not only come from the web but also ultimately
return there (e.g., by posts to blogs, tweets, or services that
curate and organize content). This suggests that local work-
spaces for Webits might need to prioritize temporary manage-
ment rather than long-term retrieval.

Web Authorization Protocols
Cross-site authorization protocols, such as OAuth 2.0 [10],
provide mechanisms to enable users to share data between
sites. Such protocols rely on site operators to set up path-
ways between each other before users can transfer data; as
such, inter-vendor pathways are likely to be limited in num-
ber and driven by business incentives. From the user’s per-
spective, the use of these protocols suffers drawbacks in vis-
ibility. For example, when users are prompted to share their
data with some external service, they must typically agree to
share whole classes of the data (e.g., all their contacts, pho-
tos, emails) rather than specific items. Once they agree, there
is usually little visibility to alert the user when data is trans-
ferred, as it occurs out-of-band, directly between the vendors’
systems. In contrast, Clui enables a vendor-neutral approach
in which users have fine grained control of the data they wish
to share through direct manipulation.

USER INTERFACE
This section overviews Webits, outlines the interaction model
that they offer, and describes several scenario workflows.

A Webit is a user-manipulable handle to a collection of rich
objects on the web. A Webit bundles properties about the
objects that it represents. For example, Webits can provide
handles to people, capturing names, contact information, ad-
dresses, and so on. Webits can also provide handles to places,
like restaurants (bundling addresses, ratings, menus, hours of
operation) or apartments for rent (bundling the monthly rent,
address, photographs). A Webit may contain other Webits,
so a flight itinerary Webit might contain a set of Webits to
provide handles to passengers, the flight segments, and the
origin and destination cities, while a Webit that represents a
trip might embed flight itinerary Webits as well as Webits for
hotel and car reservations. The set of objects that Webits may

represent is extensible by leveraging existing semantic web
technologies to express and interpret object metadata.

User Interaction Model
All Webit workflows in Clui involve three fundamental op-
erations: discovering Webits on a web page, manipulating
Webits in a local workspace, and transferring Webits back
to the web. Webits appear as icons that, when clicked, re-
veal a panel containing metadata properties that describe the
Webit. Users typically interact with Webits by dragging them
from web pages into a temporary workspace and then drag-
ging them to (other) web applications to share the informa-
tion contained within the Webits. Workspaces are pluggable,
and we designed a simple one, called Sheets. Sheets features
a chronological notebook (or scrapbook) metaphor, without
collections or hierarchy.

Users discover Webits in one of two ways. A web page may
explicitly expose Webits to the user, e.g., as a Webit icon to
be dragged. Alternatively, the web page may embed Webits
inside other draggable elements, such as a picture of a prod-
uct. To aid discoverability, Clui visually highlights available
Webits on command. Clui also displays tooltips during drags
to help the user predict the outcome of a drop.

To enhance the consistency of Webit actions across web sites,
Clui provides three interface features:

Graceful Degradation Dragging a Webit to a web page re-
sults in the Webit being uploaded in its entirety, without
loss of information. For example, when dragging Webits
to rich-text input boxes, e.g. GMail’s message composi-
tion window or a Google Docs document, Clui pastes the
same iconic representation of the Webit the user dragged
and embeds all of the associated metadata, so that it may
be dragged by other users (e.g., when they see the Webit in
a received email message).

When it is not possible to represent Webits as icons, e.g.,
when pasting a Webit into a plain-text input box, Clui
pastes a short description of the Webit as well as a glob-
ally dereferenceable identifier for that Webit.

When the data is rendered later (e.g., in this example, as a
tweet), Clui restores the iconic version of the Webit (Fig-
ure 4) by dereferencing the Webit’s identifier.

Customizable Drop Behavior Clui enables web applica-
tions or plugins to modify the default drop behavior and
provides hooks so that those apps may specify tooltips to
describe the altered behavior. For example, when drag-
ging a Webit representing a person onto the “To” field of
an email composition form, Clui pastes the person’s email
address rather than the person’s name.

Webit Metadata Transparency A Webit combines many
attributes that describe the represented object. Users may
override what is pasted by inspecting the Webit’s metadata
panel and dragging the desired piece of metadata. For ex-
ample, the user may paste a friend’s homepage URI by
dragging the “Homepage” field in the metadata panel.

These three features play key roles in user workflows, shown
in the example scenarios below.

Scenario 1: Finding An Apartment
Jack is looking for a new apartment and roommates. He
searches sites like craigslist.org for potential leads. A plugin
generates a Webit on each page that represents an apartment,
capturing metadata like the cost of the monthly rent, the loca-
tion of the apartment, the landlord’s contact information, and
the description of the property (Figure 2). To keep track of a
promising apartment, he drags the apartment’s Webit into his
Clui workspace. After collecting a few candidate apartments,
Jack drags the Webits to Google Maps, which, with the help

Figure 2. A Craigslist plugin generates an inline Webit to represent the
apartment for rent. The Webit contains embedded Webits that represent
the contact person and location of the apartment, as shown in the inset.

Figure 3. Dragging a Webit to Google Maps maps the location data
present within that Webit.

of an installed Google Maps plugin that parses dropped Web-
its for locations to search, maps the locations of the apart-
ments he likes (Figure 3). When he chooses the apartment
in the best location, Jack composes an email to the landlord.
Rather than typing the address, Jack drops the apartment’s
Webit onto the “To” field, which pastes the email address
of the landlord. Finally, Jack advertises for roommates by
sharing the Webit with his friends over email, Facebook, and
Twitter. While the Twitter input box for tweets only accepts
plain-text, Clui pastes enough context such that those who
view the tweets will see an inline, draggable Webit (Figure 4),
assuming they have Clui installed.

Scenario 2: Organizing a Reading Group
Sarah organizes a weekly reading group. She selects papers
from the ACM Digital Library (DL) and emails a group mem-
ber of her choosing to lead the discussion. To obtain contact
details, Sarah opens the discussant’s Facebook profile page.
Pages on Facebook may contain many possible Webits em-
bedded in existing elements; she presses the Clui “Show Web-
its” button, as shown in Figure 7 to visually highlight the el-
ements that have associated Webits. After finding the appro-
priate colleague, she drags in the picture of the discussant to
Clui.

Figure 4. Even though some services, like Twitter, accept and store only
plain-text input, they can still embed Webits with dereferenceable Web-
it identifiers. Clui can later re-create interactive Webits in the viewer’s
browser.

Next, Sarah opens the ACM DL page for the paper up for
discussion to gather its bibliographic information, abstract,
PDF, and so on. Sarah drags just the image thumbnail for the
paper, which represents a Webit containing all the metadata
for that paper, including a cache of the PDF file. Figure 6
shows the resulting Webit and some of the metadata captured
by the ACM plugin.

Sarah opens GMail to send the paper details to the discussant
and other participants. Sarah may drag the Webit that rep-
resents the paper directly into the message body to share the
paper and all of its metadata. However, to provide context,
she pastes a copy of the abstract by dragging the “Abstract”
item in the metadata panel into the email.

In both of the scenarios above, Webits improve efficiency in
several ways. Bundling relevant bits of information into one
handle alleviates the need for users to manually parse, copy,
and paste those bits from site to site. Sharing Webits keeps
that information intact for the recipient. Plugins that cus-
tomize the behavior of Webits when dropped in various con-
texts can scan for and paste the relevant data types, without
requiring the user to hunt for that information.

Scenario 3: Booking a Trip
Mary is shopping for flights. She first visits AA.com and
enters the origin and destination airports, along with the rel-
evant dates. After perusing several options, she finds an
itinerary that is potentially satisfactory, but she still wants to
comparison shop in case there are cheaper alternatives. The
AA.com plugin generates a Webit that represents her candi-
date itinerary, so before leaving AA.com, she drags that Webit
to her Clui workspace.

Mary opens kayak.com to find alternative flights. Rather
than re-enter the airports and dates, she drags the Webit
from AA.com into the kayak.com form, which auto-fills the
relevant fields with the help of a kayak.com Webit plugin
(Figure 5). In contrast to browser auto-fill features that fill
already-visited forms with values cached from previous sub-

Figure 5. Dragging Webits onto a form auto-fills its inputs. Here, a
Kayak.com plugin inspect the metadata in an itinerary Webit and maps
it to form elements.

missions, Webits enable users to auto-fill forms with new val-
ues as well as auto-fill never-before-seen forms.

Scenario 4: Shopping
Previous scenarios illustrate the use of plugins to enable ex-
isting pages to create and process Webits. This scenario illus-
trates an example of a web application that natively consumes
and generates Webits.

Jim is shopping for camera equipment to start a new photog-
raphy business with a business partner. As Jim shops various
vendors, e.g., amazon.com and newegg.com, he drags Webits
of products, produced either natively or with the help of Clui
plugins, from these vendors into his Clui workspace. To share
his selections with his partner, Jim uses a shared shopping
cart service, which is independent of any vendor. The shop-
ping cart natively understands Webits; when he drags Webits
to the page, it displays and can sort relevant parameters for
each product, as shown in Figure 8, along with product de-
scriptions, as shown in Figure 9.

When done, Jim clicks a button to generate a Webit that rep-
resents the cart, housing the individual Webits within. Jim
shares that Webit with his partner, who may inspect and pur-
chase the cart.

Figure 6. Webits capture metadata that may be dragged and dropped.

Figure 7. The “Show Webits” button helps
users discover Webits that are embedded
in existing page elements.

Figure 8. The “Webit Cart” understands
Webits natively; thus, it can directly ex-
tract Webit data and change tooltips.

Figure 9. Since the “Webit Cart” under-
stands Webits natively, it can also render
information embedded in the Webits.

PRELIMINARY STUDY
We designed Clui using an iterative process. First, we built
a simple prototype called Vapor that supports the drag and
drop of only text, links, and images. We ran a pilot user study
using Vapor to gain feedback on what kinds of interactions
users expect when dragging and dropping web resources. We
discovered that users of Vapor needed handles to rich data
types rather than just primitive ones, informing our design of
the Clui platform.

Vapor Prototype and User Study
Vapor displays a drag-and-drop zone like Sheets. Vapor cre-
ates primitive Webits that capture the resource (i.e., a text
snippet, link, or image) and two pieces of provenance meta-
data: the URL of the item (for images and links) and the URL
of the page containing the item.

We conducted an informal pilot study, consisting of seven
volunteers within our university computer science laboratory,
to get a general sense of how users may use Vapor in typical
workflows. After demonstrating features of Vapor in a brief
tutorial, we asked each subject to carry out an early version of
the “reading group” scenario using Vapor and observed their
usage.

User Feedback
In the reading group task, participants needed to compose
an email with paper abstracts and titles, gathered from non-
adjacent text snippets on ACM Portal pages, along with the
URI of the relevant Portal pages. Some participants imme-
diately dragged abstract and title snippets from the page into
Vapor, while others habitually relied on using the operating
system clipboard, repeatedly switching back and forth be-
tween GMail and the Portal page. Ultimately, subjects who
initially used the clipboard realized that they could use Vapor
to gather all the information first and proceeded to do so.

Every subject successfully completed the tasks without ma-
terial intervention or help. In their feedback, participants be-
lieved that Vapor would work well for their daily workflows,

especially tasks that involved gathering resources first, fol-
lowed by an aggregation or synthesis process. Participants
noted that Vapor alleviated the need to repeatedly context-
switch between browser tabs, as a clipboard-based workflow
necessitates. Subjects also noted that they especially liked
the visible nature of Vapor, and likened it to a powerful cross
between a desktop and clipboard.

All subjects noted that spatial element of Vapor was impor-
tant, and often clustered related Webits into groups, reinforc-
ing earlier findings [15, 28]. Many participants noted that
they enjoyed the “freedom” that Vapor affords, especially for
collecting and “quickly organizing” (spatially) different in-
formation scraps throughout a task. Subjects approved of the
fact that Vapor was part of the browser, instead of being in the
area behind the browser (like the traditional desktop), with
some citing quicker access and constant visibility. However,
subjects did resize the visible area of Vapor (to make it larger
or smaller). Some suggested that they might keep a separate
browser window open, dedicated to displaying Vapor full-
screen, while others preferred Vapor to be more “integrated”
with and customized to the current, active tab.

Vapor often needs to upload resources to the web, which in-
troduces variable network delays into user operations. We
observed that users expect drag and drop operations to be “in-
stant”; without adequate feedback (e.g., the status of the file
upload process when users dragged a file into GMail), some
users were confused when nothing appeared to happen imme-
diately. This observation hinted that general visibility was an
important requirement to address.

Design of Clui
Vapor’s primitive Webits do not capture extensible metadata,
so unlike the Clui reading group scenario in the previous sec-
tion, in Vapor users must manually drag individual snippets of
text. This observation suggested that users actually need more
than just an easier way to collect web snippets; they also need
a way to access and transfer objects with all of the associated

metadata bundled. The need to collect related information in-
spires the current design of Clui Webits as handles for rich
semantic objects.

ARCHITECTURE
Clui is composed of three components: the core platform,
plugins, and the workspace (Figure 10). The core provides
common library code, notably for storage and rendering of
Webits, and coordinates data flow between plugins and the
workspace. Workspaces (e.g., Sheets) implement the user-
facing interface and are pluggable. Only one workspace may
be active at a time. There are two types of plugins. Web
plugins add Webits to existing web pages by scraping those
pages for metadata. They also augment drop targets on web
pages with functionality to accept and parse dropped Web-
its. Presentation plugins translate classes of Webit metadata
into user-friendly representations in the metadata panel. Any
number of plugins may be in use at any given time. The core
is the only fixed component of Clui, but it is relatively small.
Workspaces and plugins may evolve independently.

The Clui core reacts to two main types of events: browser
page load events and user import events. When a page loads,
the browser sends Clui a page load event which causes the
core platform to call the onPageLoad(document) function of
each relevant Web plugin. The plugin’s onPageLoad imple-
mentation modifies the page to facilitate drag and drop and in-
formation scraping. onPageLoad may optionally return a con-
text object which is used to enable scraping of asynchronously
loaded content.

Users import data into the Clui workspace by dragging it in
from the web or copying it to the clipboard. Clui also cre-
ates Webits to represent downloaded files, which may be later
dragged to the web to upload the associated files. When users
import resources into Clui, the browser sends an event to the
core platform, which forwards the event to the workspace, al-
lowing the workspace to either handle or filter the event. If
the workspace accepts the import, it asks the core to create a
Webit from the event. In response, the core allocates storage
for the new Webit object, assigns the Webit an identifier, and
calls the appropriate import function on all relevant Web plu-
gins. For example, for dropped resources, the core calls the
onDrop(objectId, event, context) function on each plugin, passing
in the Webit’s identifier, the drop event, and any context the
plugin returned in its onPageLoad function.

The remainder of this section elaborates Clui’s use of the
HTML5 Drag and Drop API, the internal representation of
Webits, the plugins architecture, and system limitations.

HTML5 Drag and Drop
The primary way in which Clui interacts with web pages is
through the HTML5 Drag and Drop API [6]. The API speci-
fies a set of events to track and handle drags (using dragstart,
dragenter, and dragleave events) and drops (drop events). All
drag and drop events carry a DataTransfer structure that con-
tains a list of MIME-typed representations for the item being
dragged. For example, the DataTransfer for a text snippet holds
a text/html representation containing an HTML string as well
as a text/plain one containing the string without markup.

Workspace

Core

Clui Web

Plugins

onDrop
onClipboardCopy
onDownload

HTML5 DnD
 DataTransfer

Figure 10. Components of and dataflow between Clui and the web.

Web pages and browser extensions may add their own custom
MIME types to the DataTransfer. During the lifetime of a sin-
gle drag and drop gesture, all associated drag and drop events
share the same DataTransfer object, allowing handlers fired on
drag events to populate the DataTransfer with data that is con-
sumed by drop handlers. In the context of Clui, when a page
loads, a Web plugin’s onPageLoad function adds drag event
handlers to draggable elements. These handlers augment the
DataTransfer object with new Clui-specific MIME types that
represent Webit metadata. On a drop into the Clui workspace,
those additional MIME types are then interpreted by plugins’
onDrop handlers to append the metadata to the Webit.

Webits
Clui represents a Webit as an immutable collection contain-
ing a Webit UUID, a representation of the Webit’s user-facing
icon, the Webit’s metadata, and browser-specific metadata
(like default DataTransfer MIME types to embed).

Webits leverage existing semantic web technologies, like es-
tablished vocabularies, ontologies, and the Resource Descrip-
tion Framework (RDF) [12], to express and interpret meta-
data for the objects they represent. Vocabularies and ontolo-
gies are extensible, so Webits, in principle, can describe any-
thing for which a vocabulary exists or can be defined. Webits
embed metadata by encoding it as RDF/JSON [11], enabling
sites receiving Webits to immediately interpret those state-
ments without additional dereferencing.

A system like Clui only works when sites can interpret Webit
metadata—that is, if sites understand a common vocabulary
and associated semantics for a given resource. Establishing a
standard for each resource type takes time and experimenta-
tion. However, Webits can embed multiple descriptions, us-
ing different vocabularies, each contributed by different plug-
ins, thus increasing the chance that a website will understand
one of the descriptions. In providing a user interface handle
that abstracts away representations of semantic data, Webits
offer an adoption path that enables vocabulary experimenta-
tion while supporting interoperability.

Clui provides JavaScript library support for 1) developers
who wish to add native Webit support to their websites, and 2)
plugin authors who wish to add functionality to websites that
they do not control. There are two concrete representations
of Webits: an internal JavaScript object representation, used
within plugin and website JavaScript code, and an external
JSON-serialized representation, used as the wire-format (em-
bedded in the DataTransfer) for transferring Webits between

web sites and Clui. The internal JavaScript object representa-
tion gives developers full programmatic access to the Webit,
including helper methods for extracting RDF statements and
generating an iconic representation of the Webit.

Clui uses both the JSON-serialized Webit as well as the Webit
identifier to reliably upload Webits to sites for sharing. In or-
der to make the Webit identifier globally dereferencable, Clui
uploads the JSON-serialized Webit to a cloud-based Webit
sharing service; the sharing service identifies the Webit with
a URI of the form webit://UUID. When users drop Webits onto
conventional form elements as a means to share those Webits
(e.g., in a new email or blog post composition), Clui first at-
tempts to display an iconic representation of the Webit in the
target element when possible, and embed the JSON-serialized
representation in a manner invisible to the user. For example,
when dropping Webits onto a GMail message body that the
user is composing, Clui inserts HTML that renders the iconic
representation of the Webit and embeds its associated serial-
ized data inside an HTML attribute. When displaying Webits
inline on page elements is impossible (e.g., inside plain-text
boxes), Clui pastes a human-readable representation of the
Webit, along with a dereferencable link to the stored Webit.

When Clui encounters a Webit on a website, it first attempts
to read the associated JSON-serialization, if an embedded one
exists. If that succeeds, Clui regenerates the Webit icon and
makes it draggable. Otherwise, Clui searches for the associ-
ated webit:// identifier and dereferences it for rendering.

Web Plugins
Web Plugins fulfill two roles: they 1) augment pages when
those pages are loaded, e.g., to implement specialized be-
havior for Webits dropped onto targets, and 2) generate RDF
metadata for new Webits, typically by page scraping. Web
plugins declare regular expressions on URIs to indicate the
web pages that they are able to handle.

Plugins generally augment or scrape data on web pages by
operating on known DOM elements, e.g., by using XPaths.
Typically, plugin authors would use a web debugger to select
relevant DOM elements and obtain the associated XPaths.

Plugins must wait for elements to load before augmenting or
scraping them. Operating on static web pages, in which all el-
ements are loaded before the DOM load event fires, is straight-
forward: plugins inspect, augment, or scrape the page in their
onPageLoad function. However, many sites load content asyn-
chronously or in response to user action. As an extreme ex-
ample, when loading certain GMail or Facebook pages, the
browser may execute JavaScript that programmatically builds
the document asynchronously. In such cases, the browser
fires the load event once the bare DOM loads, prompting the
onPageLoad functions to execute, even though the user-facing
page has not fully loaded.

Clui provides hooks to handle changes to document title or
location URI (through the onTitleChange and onLocationChange
plugin functions), as web pages that lazily construct whole
documents typically change the document title and add frag-
ment identifiers to the current location URI once page con-
struction completes. One caveat is that plugins need to grace-

fully handle spurious title changes. When this technique fails,
e.g. due to pages that do not modify the title or URI, plugins
can handle asynchronously loaded resources by responding
to DOMSubtreeModified events or by polling.

Plugins that scrape or augment DOM elements are inherently
brittle and prone to breaking as sites change. While tools
that feature visual techniques for clipping and scraping (e.g.,
[17, 18]) may help ease the development burden of updating
plugins, the most resilient approach is for web authors to di-
rectly publish semantic data. Web site authors may use the
Clui API to create Webits and specify the semantic data in
RDF/JSON. In the future, we imagine that web site authors
could instead just embed microdata within their pages, from
which Clui could automatically generate Webits.

Presentation Plugins
Presentation plugins interpret RDF statements and generate
user-visible handles to the metadata. Each Presentation plu-
gin handles a specific class of metadata, e.g., people, prod-
ucts, provenance, or location, and produces a set of key/value
pairs shown to the user, e.g., in the metadata panel of Clui’s
workspace. Unlike Web plugins, which are site-specific, Pre-
sentation plugins work with metadata from any site as long
as it matches the plugin’s RDF vocabularies. In practice, this
allows multiple Presentation plugins to extract metadata from
a single Webit, enabling the extraction of (e.g.) location and
contact information from a single set of RDF statements.

Limitations
When sharing Webits, Clui preserves the information by em-
bedding it inside the drop site, but when that is not possible,
Clui must paste a webit://UUID pointer and upload the Webit
to a sharing service. One potential limitation is scalability
of the sharing service, although existing services (e.g., paste-
bin.com) already provide Internet-scale pastebins for text and
photos.

Another concern is the security and privacy associated with
uploading Webits to such services. Currently, nothing pre-
vents unauthorized access to uploaded Webits, though that
could be addressed by storing Webits on personal storage
servers with adequate access control. Additionally, Webits
may contain sensitive information that is opaque or hidden to
users. For example, a Webit representing a purchased flight
itinerary might contain Webits for credit card accounts and
billing addresses. A user that shares the itinerary Webit with
colleagues (or on a blog) may be unaware that he is also shar-
ing sensitive data. Future work must address this limitation,
e.g., by improving the visibility of embedded Webits.

Webits on web pages currently do not degrade gracefully
for users without Clui installed. Those users either see an
icon that they cannot drag or a webit://UUID link they can-
not dereference. One improvement is to use a dereferenca-
ble URI that conventional browsers can load (e.g., http://clui-
project.org/webit/UUID). That URI could load a web page that
displays a user-friendly description of the Webit and an invi-
tation to install Clui.

Web Plugin LoC Comments

facebook.js 390 Scrape. Async. Background fetch of email
address.

amazon.js 323 Scrape.
craigslist.js 317 Scrape and Augment (to add Webit icon).
acmdl.js 306 Scrape. Async. Background fetch of associ-

ated PDFs and EndNote bibliographic data.
provenance.js 288 Scrape.
newegg.js 285 Scrape.
reddit.js 275 Scrape. Save permalink of entries and back-

ground fetch of linked pictures.
aa.js 218 Scrape.
tooltip.js 199 Augment (general tooltip implementation).
gmail.js 188 Augment (to specially handle Webits

dropped in To/Cc/Bcc fields). Async.
kayak.js 183 Augment (to add Webit drop zone to auto-

fill form).
gmaps.js 118 Augment (to extract location data from

Webits).
webit uri.js 62 Augment (to display Webits inline).
twitter.js 49 Augment (to display Webits in Tweets).
gdocs.js 30 Augment (to override tooltips). Async.

Table 1. Properties of Web plugins. Entries labeled Async indicate sites
that load asynchronously. LoC means lines of code.

To inspect a Webit’s metadata, users currently must drag the
Webit to the workspace first. Future work will enable users to
inspect metadata inline on web pages containing Webits.

EXPERIENCES WITH CLUI
We implemented Clui as a cross-platform browser extension
for Mozilla Firefox. As a browser extension, Clui can thus
1) appear as a central component available in all browser tabs
and windows and 2) intercept user interactions with web page
elements. We evaluate Clui’s flexibility by reporting on our
experience developing plugins to create Webits on various
sites. Table 1 lists our Web plugins and Table 2 our Presenta-
tion plugins.

Provenance Plugin
One way we evaluated Clui’s flexibility is by how much func-
tionality is implementable as plugins rather than as built-in
code to the core platform. One feature of Vapor, the initial
prototype, is that it automatically captures provenance of re-
sources (e.g., the URI of the resource and the URI of the
page containing that resource) dragged into the workspace.
A plugin-based implementation of provenance capture, as op-
posed to being a fixed component in Clui’s core, enables the
feature to evolve independently. Our plugin captures prove-
nance by inspecting the dropped DOM element and the asso-
ciated document object.

Tooltips Plugin
Another example of implementing “core” functionality in
plugins is the tooltips feature that displays previews of pasted
data. The tooltip plugin modifies web pages to add user-
visible DOM nodes that function as tooltips. When the plu-
gin is called to handle a new loaded web page, it augments
various standard drop targets (e.g., HTML input boxes, text-
areas, file upload zones) to display the appropriate tooltips
when the user hovers over each respective target.

Presentation Plugin LoC Typical Metadata

publication.js 65 Title, Authors, Journal, doi
product.js 58 Vendor, Price, Ratings
realestate.js 56 Rent, Size, Number of Bedrooms
provenance.js 54 URL, Context, Snippet Text
person.js 45 Name, Email, Homepage, Phone Number
itinerary.js 44 Origin, Destination, Dates, Travelers
social bookmark.js 37 Comments, Permalink
location.js 35 Area, City, Country

Table 2. Properties of Presentation plugins, including the typical meta-
data that they parse. LoC means lines of code.

The tooltips plugin also demonstrates communication be-
tween plugins, as other plugins (and web pages) must be able
to override the default preview text. For example, when drag-
ging Webits representing people over GMail’s input boxes for
specifying message recipients, the Clui GMail plugin over-
rides the tooltip preview text to display the associated email
addresses.

Background Loading: Facebook, Reddit, & ACM Plugins
For additional flexibility, plugins may also obtain data from
pages other than the page with the Webit. Clui provides rou-
tines to make network requests in the background, as well as
higher-level routines that load other webpages (in an invisible
iframe) and return the associated DOM nodes. This enables
plugins to follow links on the loaded page, invoke API calls
on web services, or even load other pages for scraping.

For example, when users drop a person’s thumbnail from
Facebook into Clui, the Facebook plugin must attempt to ob-
tain that person’s email address, even if it is not displayed
on the current page. The Facebook plugin inspects the URI
of any page associated with the person, extracts the person’s
Facebook numeric ID, and scrapes contact information from
the associated profile page fetched in the background. An-
other example is the Reddit plugin, which targets the social
news site; the plugin detects news items that are pictures and
automatically fetches the high resolution images. Finally,
with the ACM Digital Library (DL), scraping bibliographic
data is trivial given a paper’s EndNote file, which is not ini-
tially visible on the DL page. The ACM DL plugin down-
loads and parses the EndNote file to create Webits.

Asynchrony: GMail and Facebook Plugins
Several sites load resources asynchronously, e.g., GMail and
Facebook. The plugins for those sites use the onTitleChange
hook to detect when the page contents change dynamically,
prompting them to inspect the DOM to, e.g., find form el-
ements and override tooltips. As Table 1 suggests, imple-
mentation effort is independent of asynchrony but instead is
commensurate with the complexity of scraping.

Data Interoperability and Presentation
When users drag a Webit representing a person from Face-
book to a recipient field in GMail, the GMail plugin over-
rides default behavior and pastes the person’s email address.
The GMail plugin inspects Webits dropped into various fields
and must infer whether those Webits represent people. To
promote data interoperability, the Facebook and GMail plu-
gins respectively produce and interpret metadata adhering to

the RDF Friend-of-a-Friend [4] specification, which defines a
standard vocabulary for describing people.

Presentation plugins (Table 2) demonstrate another example
of interoperability. Though Webits may originate from dif-
ferent sources and embed multiple Webits, Presentation plu-
gins can each interpret the parts of Webits that it understands.
For instance, the products plugin interprets Webits that come
from different vendors, like amazon.com and newegg.com.
Similarly, the real estate, person, and location plugins parse
metadata relevant to each in apartment Webits.

CONCLUSION AND FUTURE WORK
This paper introduces the Clui platform and Webits as inter-
operable handles to high-level semantic objects on the web,
like real estate, flight itineraries, and products. Clui features
plugins for creating and interpreting Webits on existing web
pages, as well libraries for web site developers to add native
Webit support.

Natural extensions for Clui include Webits that represent live
information (e.g., stock prices or weather), visual tools for
plugin authors, and site-agnostic plugins that interpret micro-
data. We also hypothesize that having handles to semantic ob-
jects enables new interactions. For example, a user might pur-
chase the contents of a shopping cart Webit filled with prod-
uct Webits by dragging it to a web application that accepts
Webit carts and Webits representing locations for the ship-
ping address. The application could then inspect the Web-
its and use APIs exported by individual retailers to purchase
the associated products. Such interactions need not be lim-
ited to web pages, but may occur directly on local, Webit-
aware workspaces. For example, in addition to holding Web-
its, workspaces could also provide handles to actions that op-
erate on specific kinds of Webits. A “purchase” action, when
applied to product Webits, could prompt for additional Webits
to complete the transaction.

Clui is an apt platform for future work in exploring new work-
space models that manage Webits. For example, with Clui,
we imagine it possible to adapt conventional interfaces, like
the traditional desktop area, file system model, or even com-
mand line interface, for use with resources in the cloud. How-
ever, we suspect that the cloud demands alternative work-
space models, such as ones that promote sharing (e.g., [19,
30, 33]) or capture user context to aid resource finding (e.g.,
[20, 31]). Furthermore, Webits and their workspaces might
also provide new approaches for improving consistency in
common tasks, like access control specification, which sites
today each handle differently. Webit-aware workspaces could
bridge those differences; for example, workspaces could con-
sistently represent access control lists on different sites as a
Webit containing people Webits, which users manipulate to
affect a resource’s access.

The cloud’s arrival as a dominant application platform de-
mands new user interfaces that leverage its advantages. Clui
enables experimentation with handles to semantic objects and
the standards that underlie them. We view Clui as a step
towards future web environments that offer greater interface
uniformity via consistent and interoperable handles.

ACKNOWLEDGMENTS
This work is sponsored by the T-Party Project, a joint research
program between MIT and Quanta Computer Inc., Taiwan.

REFERENCES
1. Chromium OS. http://www.chromium.org/chromium-os.

2. Clipmarks :: Add-ons for firefox.
https://addons.mozilla.org/en-US/firefox/addon/clipmarks/.

3. Evernote. http://www.evernote.com/.

4. The friend of a friend project. http://www.foaf-project.org/.

5. Greasemonkey.
https://addons.mozilla.org/addon/greasemonkey/.

6. HTML5 drag and drop.
http://www.w3.org/TR/html5/dnd.html.

7. Live clipboard - wiring the web. http://liveclipboard.org/.

8. Microdata — HTML standard.
http://www.whatwg.org/specs/web-apps/current-work/multipage/
microdata.html#microdata.

9. Microsoft OneNote 2010.
http://office.microsoft.com/en-us/onenote/.

10. OAuth 2.0. http://oauth.net/2/.

11. RDF JSON.
http://docs.api.talis.com/platform-api/output-types/rdf-json.

12. RDF/XML syntax specification (Revised).
http://www.w3.org/TR/rdf-syntax-grammar/.

13. Yahoo pipes: Rewire the web.
http://pipes.yahoo.com/pipes/.

14. Zotero. http://www.zotero.org/.

15. Barreau, D., and Nardi, B. A. Finding and reminding:
file organization from the desktop. ACM SIGCHI
Bulletin (July 1995).

16. Bernstein, M., Van Kleek, M., Karger, D., and schraefel,
m. c. Information scraps: How and why information
eludes our personal information management tools.
ACM TOIS (2008).

17. Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen,
M. F. Relations, cards, and search templates:
user-guided web data integration and layout. In ACM
UIST (2007).

18. Dontcheva, M., Drucker, S. M., Wade, G., Salesin, D.,
and Cohen, M. F. Summarizing personal web browsing
sessions. In ACM UIST (2006).

19. Fass, A., Forlizzi, J., and Pausch, R. MessyDesk and
MessyBoard. In ACM DIS (2002).

20. Freeman, E., and Gelernter, D. Lifestreams: a storage
model for personal data. ACM SIGMOD Record (1996).

21. Fujima, J., Lunzer, A., Hornbæk, K., and Tanaka, Y.
Clip, connect, clone: combining application elements to
build custom interfaces for information access. In ACM
UIST (2004).

http://www.chromium.org/chromium-os
https://addons.mozilla.org/en-US/firefox/addon/clipmarks/
http://www.evernote.com/
http://www.foaf-project.org/
https://addons.mozilla.org/addon/greasemonkey/
http://www.w3.org/TR/html5/dnd.html
http://liveclipboard.org/
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#microdata
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#microdata
http://office.microsoft.com/en-us/onenote/
http://oauth.net/2/
http://docs.api.talis.com/platform-api/output-types/rdf-json
http://www.w3.org/TR/rdf-syntax-grammar/
http://pipes.yahoo.com/pipes/
http://www.zotero.org/

22. Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R.
Programming by a sample: rapidly creating web
applications with d.mix. In ACM UIST (2007).

23. Huynh, D., Mazzocchi, S., and Karger, D. Piggy bank:
Experience the semantic web inside your web browser.
Web Semantics: Science, Services and Agents on the
World Wide Web (Mar. 2007).

24. Katifori, A., Lepouras, G., Dix, A., and Kamaruddin, A.
Evaluating the significance of the desktop area in
everyday computer use. In ACHI (2008).

25. Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T. A.
End-user programming of mashups with vegemite. In
ACM IUI (2009).

26. Malone, T. W. How do people organize their desks?:
Implications for the design of office information
systems. ACM TOIS (1983).

27. Nardi, B. A., Miller, J. R., and Wright, D. J.
Collaborative, programmable intelligent agents.
Commun. ACM (Mar. 1998).

28. Ravasio, P., Schär, S. G., and Krueger, H. In pursuit of
desktop evolution: User problems and practices with
modern desktop systems. ACM TOCHI (June 2004).

29. Stylos, J., Myers, B. A., and Faulring, A. Citrine:
providing intelligent copy-and-paste. In ACM UIST
(2004).

30. Sun, Y., and Greenberg, S. Places for lightweight group
meetings. In ACM GROUP (2010).

31. Van Kleek, M., Bernstein, M., Karger, D. R., and
schraefel, m. c. Gui — phooey!: the case for text input.
In ACM UIST (2007).

32. Van Kleek, M., Bernstein, M., Panovich, K., Vargas,
G. G., Karger, D. R., and schraefel, m. c. Note to self:
examining personal information keeping in a lightweight
note-taking tool. In ACM CHI (2009).

33. Voida, S., Edwards, W. K., Newman, M. W., Grinter,
R. E., and Ducheneaut, N. Share and share alike:
exploring the user interface affordances of file sharing.
In ACM CHI (2006).

	INTRODUCTION
	RELATED WORK
	Web Clipping & Scraping
	Desktop Studies
	Web Authorization Protocols

	USER INTERFACE
	User Interaction Model
	Scenario 1: Finding An Apartment
	Scenario 2: Organizing a Reading Group
	Scenario 3: Booking a Trip
	Scenario 4: Shopping

	PRELIMINARY STUDY
	Vapor Prototype and User Study
	User Feedback
	Design of Clui

	ARCHITECTURE
	HTML5 Drag and Drop
	Webits
	Web Plugins
	Presentation Plugins
	Limitations

	EXPERIENCES WITH CLUI
	Provenance Plugin
	Tooltips Plugin
	Background Loading: Facebook, Reddit, & ACM Plugins
	Asynchrony: GMail and Facebook Plugins
	Data Interoperability and Presentation

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

