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On-line embeddings

Piotr Indyk∗ Avner Magen† Anastasios Sidiropoulos‡ Anastasios Zouzias†

Abstract

We initiate the study of on-line metric embeddings. In such an embedding we are given a sequence
of n points X = x1, . . . , xn one by one, from a metric space M = (X,D). Our goal is to compute a
low-distortion embedding of M into some host space, which has to be constructed in an on-line fashion,
so that the image of each xi depends only on x1, . . . , xi. We prove several results translating existing
embeddings to the on-line setting, for the case of embedding into `p spaces, and into distributions over
ultrametrics.
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1 Introduction

A low-distortion (or bi-Lipschitz) embedding between two metric spaces M = (X,D) and M ′ = (X ′, D′)
is a mapping f such that for any pair of points p, q ∈ X we haveD(p, q) ≤ D′(f(p), f(q)) ≤ c·D(p, q); the
factor c is called the distortion of f . In recent years, low-distortion embeddings found numerous applications
in computer science [17, 10]. This can be, in part, attributed to the fact that embeddings provide a general
method for designing approximation algorithms for problems defined over a “hard” metric, by embedding
the input into an “easy” metric and solving the problem in there.

For some problems, however, applying this paradigm encounters difficulties. Consider for example the
nearest neighbor problem: given a set P of n points in some metric (X,D), the goal is to build a data
structure that finds the nearest point in P to a query point q ∈ X . A fundamental theorem of Bourgain [4]
shows that it is possible to embed P and the query point q into an “easy” metric space, such as `2 with
distortion log n. This, however, does not translate to an efficient approximation algorithm for the problem
for the simple reason that the query point q is not known at the preprocessing stage, so it cannot be embedded
together with the set P . More specifically, for the approach to work in this scenario we must require that we
can extend the embeddings f : P → `2 to g : P ∪ {q} → `2. We note that the aforementioned Bourgain’s
theorem [4] does not have such an extendability property.

An even more straightforward setting in which the standard notion of embeddings is not quite the right
notion comes up in the design of on-line algorithms. Often, the input considered is metric space; at each
step the algorithm receives an input point and needs to make decisions about it instantly. In order to use
the embedding method, we must require that the embedding would observe the inputs sequentially, so that
a point is mapped based only on the distance information of the points observed so far. Here is a precise
definition of the desired object.

Definition 1. An on-line embedding of an n-point metric space M = (X,D) where X = {x1, . . . xn} into
some host metric space M ′ is a sequence of functions fk for k = 1, . . . , n (possibly randomized) such that

• fk depends only on Mk, the restriction of M on {x1, . . . , xk}.

• fk extends fk−1: for each x ∈ {x1, . . . , xk−1}, fk(x) = fk−1(x). If the functions are randomized, the
extendability property means that the random bits used for fk−1 are a subset of the random bits for fk,
and when these bits between fk−1 and fk coincide the (deterministic) image of x ∈ {x1, . . . , xk−1}
is the same for these functions.

The associated distortion of the above f1, . . . , fn is the distortion of fn. If fi can be obtained algorithmi-
cally, then we say that we have an on-line algorithm for the embedding problem. We also consider on-line
embeddings into shortest-path metrics of graphs. In this case, we require that Mk is mapped into a graph
Gk, and that every Gk is subgraph of Gk+1.

In this work we investigate fundamental embedding questions in the on-line context. Can we hope, for
example, to embed a general metric space in Euclidean space in an on-line fashion? Not surprisingly, the
use of randomization is almost always essential in the design of such embeddings. It is interesting to relate
the above notion to “oblivious embeddings”. An embedding is said to be oblivious, if the image of a point
does not depend on other points. In the usual (off-line) embeddings, the image of a point may depend on all
other points. In this language, on-line embedding is some type of middle-ground between these two types
of embeddings. In particular, oblivious embeddings are a special, very restricted case of on-line embedding.
Oblivious embeddings play an important role in the design of algorithms, for example in the context of
streaming algorithms [12] or in the design of near linear algorithms that rely on embeddings [1]. Indeed,
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some of our results use oblivious embeddings as a building block, most notably, random projections and
construction of random decompositions.

1.1 Results and motivation

Embedding into `p spaces, and into distributions over ultrametrics. We start our investigation by con-
sidering embeddings into `p spaces, and into distributions over ultrametrics. These target spaces have been
studied extensively in the embedding literature.

We observe that Bartal’s embedding [2] can be easily modified to work in the on-line setting. We
remark that this observation was also made independently by Englert, Räcke, and Westermann [6]. As a
consequence, we obtain an on-line analog of Bourgain’s theorem [4]. More specifically, we deduce that any
n-point metric space with spread1 ∆ can be embedded on-line into `p with distortion O((log ∆)1/p log n).
Similarly, we also obtain an analog of a theorem due to Bartal [2] for embedding into ultrametrics. More
precisely, we give an on-line probabilistic embedding of an input metric into a distribution over ultrametrics
with distortion O(log n · log ∆).

Doubling metrics. For the special case when the input space is doubling, we give an improved on-line
embedding into ultrametrics with distortion O(log ∆). We complement this upper bound by exhibiting a
distribution F over doubling metrics (in fact, subsets of R1) such that any on-line embedding of a metric
chosen from F into ultrametrics has distortion Ω(min{n, log ∆}).

Embedding into `∞. We also consider on-line analogs of another embedding theorem, due to Fréchet,
which states that any n-point metric can be embedded into `∞ with distortion 1. We show that this theorem
extends to the on-line setting with the same distortion, albeit larger dimension. By composing our on-line
embedding into `2, with a random projection, we obtain for any α >

√
2, an on-line embedding into `∞

with distortion O(α · log n
√

log ∆), and dimension Ω(max{(log n)2/(1−1/e), n4/(α2−2)}).
On-line embedding when an (off-line) isometry or near-isometry is possible. Finally, we consider

the case of embedding into constant-dimensional `p spaces. It is well known ([18]) that for any constant
dimension there are spaces that require polynomial distortion (e.g. via a simple volume argument). It is
therefore natural to study the embedding question for instances that do embed with small distortion. When
a metric embeds isometrically into `2 or `d2, it is clear that this isometry can be found on-line. We exhibit
a sharp contrast with this simple fact for the case when there is only a near-isometry guaranteed. Using a
topological argument, we prove that there exists a distribution D over metric spaces that (1 + ε)-embed into
`d2, yet any on-line algorithm with input drawn from D computes an embedding with distortion nΩ(1/d). In
light of our positive results about embedding into `2 and a result of Matoušek [18], this bound can be shown
to be a near-optimal for on-line embeddings.

Remark 1. For simplicity of the exposition, we will assume that n is given to the on-line algorithm in
advance. We remark however that with the single exception of embedding into `∞, all of our algorithms can
be modified so work without this knowledge.

1.2 Related work

The notion of low-distortion on-line embeddings is related to the well-studied notion of Lipschitz extensions.
A prototypical question in the latter area is: for spaces Y and Z, is it true that for every X ⊂ Y , and every
C-Lipschitz2 mapping f : X → Z it is possible to extend f to f ′ : Y → Z which is C ′-Lipschitz, for C ′

1The ratio between the largest and the smallest non-zero distances in the metric space.
2I.e., a mapping which expands the distances by a factor at most C.
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Input Space Host Space Distortion Section Comments
General `p O(log n(log ∆)1/p) 2 p ∈ [1,∞]
General Ultrametrics O(log n log ∆) 2

Doubling `2 O(log ∆) 3
Doubling Ultrametrics O(log ∆) 3
Doubling Ultrametrics Ω(min{n, log ∆}) 4

(1, 2)-metric `n∞ 1 5
General `∞ 1 5 The input is drawn from a

fixed finite set of metrics.
`2 `d∞ D 5.1 d ≈ Ω(n4/(D2−2))
`∞ `∞ > 1 [21]
`d1 `d1 > 1 6

(1 + ε)-embeddable into `d2 `d2 Ω(n1/(d−1)) 6

Table 1: Summary of results.

not much greater than C? For many classes of metric spaces the answer to this question is positive (e.g., see
the overview in [16]).

One could ask if analogous theorems hold for low-distortion (i.e., bi-Lipschitz) mapping. If so, we could
try to construct on-line embeddings by repeatedly constructing bi-Lipschitz extensions to points p1, p2, . . ..
Unfortunately, bi-Lipschitz extension theorems are more rare, since the constraints are much more stringent.

In the context of the aforementioned work, the on-line embeddings can be viewed as “weak” bi-Lipschitz
extension theorems, which hold for only some mappings f : X → Z, X ⊂ Y .

1.3 Notation and definitions

For a point y ∈ Rd, we denote by yi the i-th coordinate of y. That is, y = (y1, . . . , yd). Similarly, for a
function f : A → Rd, and for a ∈ A, we use the notation f(a) = (f1(a), . . . , fd(a)). Also, we denote by
`p the space of sequences with finite p-norm, i.e., ‖x‖p = (

∑∞
i=1 |xi|p)

1/p <∞.
Consider a finite metric space (X,D) and let n = |X|. For any point x ∈ X and r ≥ 0, the ball

with radius r around x is defined as BX(x, r) = {z ∈ X | D(x, z) ≤ r}. We omit the subscript when it
is clear from the context. A metric space (X,D) is called Λ-doubling if for any x ∈ X , r ≥ 0 the ball
B(x, r) can be covered by Λ balls of radius r/2. The doubling constant of X is the infimum Λ so that X
is Λ-doubling. The doubling dimension of X is dim(X) = log2 Λ. A metric space with dim(X) = O(1)
is called doubling. A γ-net for a metric space (X,D) is a set N ⊆ X such that for any x, y ∈ N ,
DX(x, y) ≥ γ and X ⊆ ∪x∈NBX(x, γ). Let M1 = (X,D1) and M2 = (X,D2) be two metric spaces.
We say that M1 dominates M2 if for every i, j ∈ X , D1(i, j) ≥ D2(i, j). Let (X,D1) and (Y,D2) be two
metric space and an embedding f : X → Y . We say that f is non-expanding if f doesn’t expand distances
between every pair x1, x2 ∈ X , i.e., D2(f(x1), f(x2)) ≤ D1(x1, x2). Similarly, f is non-contracting if it
doesn’t contract pair-wise distances. Also we say that f is α-bi-Lipschitz if there exists β > 0 such that for
every x1, x2 ∈ X , βD1(x1, x2) ≤ D2(f(x1), f(x2)) ≤ αβD1(x1, x2).

2 Embedding general metrics into ultrametrics and into `p

In this section we will describe an on-line algorithm for embedding arbitrary metrics into `p, with distortion
O(log n·(log ∆)1/p), for any p ∈ [1,∞]. We also give an on-line probabilistic embedding into a distribution
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over ultrametrics with distortion O(log n · log ∆). Both algorithms are on-line versions of the algorithm of
Bartal [2], for embedding metrics into a distribution of dominating HSTs, with distortion O(log2 n). Before
we describe the algorithm we need to introduce some notation.

Definition 2 ([2]). An l-partition of a metric M = (X,D) is a partition Y1, . . . , Yk of X , such that the
diameter of each Yi is at most l.

For a distribution F over l-partitions of a metric M = (X,D), and for u, v ∈ X , let pF (u, v) denote
the probability that in an l-partition chosen from F , u and v belong to different clusters.

Definition 3 ([2]). An (r, ρ, λ)-probabilistic partition of a metric M = (X,D) is a probability distribution
F over rρ-partitions of M , such that for each u, v ∈ X , pF (u, v) ≤ λD(u,v)

r . Moreover, F is ε-forcing if
for any u, v ∈ X , with D(u, v) ≤ ε · r, we have pF (u, v) = 0.

We observe that Bartal’s algorithm [2] can be interpreted as an on-line algorithm for constructing prob-
abilistic partitions. The input to the problem is a metric M = (X,D), and a parameter r. In the first step of
Bartal’s algorithm, every edge of length less than r/n is contracted. This step cannot be directly performed
in an on-line setting, and this is the reason that the parameters of our probabilistic partition will depend on
∆. More precisely, our partition will be 1/∆-forcing, while the one obtained by Bartal’s off-line algorithm
is 1/n-forcing.

The algorithm proceeds as follows. We begin with an empty partition P . At every step j, each Yt ∈ P
will correspond to a ball of some fixed radius rt around a point yt ∈ Xj . Once we have picked yt, and
rt, they will remain fixed until the end of the algorithm. Assume that we have partitioned all the points
x1, . . . , xi−1, and that we receive xi. Let P = {Y1, . . . , Yk}. If xi /∈

⋃
j∈[k]B(yj , rj), then we add a new

cluster Yk+1 in P , with center yk+1 = xi, and we pick the radius rk+1 ∈ [0, r log n), according to the
probability distribution p(rk+1) =

(
n
n−1

)
1
re
−rk+1/r. Otherwise, let Ys be the minimum-index cluster in P ,

such that xi ∈ B(ys, rs), and add xi to Ys.
By Bartal’s analysis on the above procedure, we obtain the following lemma.

Lemma 1. LetM be a metric, and r ∈ [1,∆]. There exists an 1/∆-forcing, (r,O(log n), O(1))-probabilistic
partition F of M , and a randomized on-line algorithm that against any non-adaptive adversary, given M
computes a partition P distributed according to F . Moreover, after each step i, the algorithm computes the
restriction of P on Xi.

By the above discussion it follows that for any r > 0 we can compute an (r,O(log n), O(1))-probabilistic
partition of the input space M = (X,D). It is well known that this implies an embedding into `p for any
p ∈ [1,∞]. Since the construction is folklore (see e.g. [22, 9, 8]), we will only give a brief overview,
demonstrating that the embedding can be indeed computed in an on-line fashion.

For each i ∈ {1, . . . , log ∆}, and for each j ∈ {1, . . . , O(log n)} we sample a probabilistic partition
Pi,j of M with clusters of radius 2i. Each such cluster corresponds to a subset of a ball of radius 2i centered
at some point of M . For every i, j we compute a mapping fi,j : X → R as follows. For each cluster
C ∈ Pi,j we chose si,j ∈ {−1, 1} uniformly at random. Next, for each point x ∈ X we need to compute
its distance hi,j(x) to the “boundary” of the union of all clusters. For every C ∈ Pi,j let a(C), r(C) be
the center and radius of C, respectively. We can order the clusters in Pi,j = (C1, . . . , Ck), so that Ct is
created by the on-line algorithm before Cl for every t < l. For a point x ∈ X let C(x) be the cluster
containing x. Suppose C(x) = Ct. We set hi,j(x) = minl∈{1,...,t} |r(Cl) − D(x, a(Cl))|. Note that
hi,j(x) can be computed in an on-line fashion. We set fi,j(x) = si,j · hi,j(x). The resulting embedding is
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ϕ(x) =
⊕

i,j fi,j(x). It is now straightforward to verify that with high probability, for all x, y ∈ X we have
D(x, y) ·Ω((log n)1/p/ log n) ≥ ‖ϕ(x)−ϕ(y)‖p ≥ D(x, y) ·Ω((log n)1/p/ log n), implying the following
result.

Theorem 1. There exists an on-line algorithm that for any p ∈ [1,∞], against a non-adaptive adversary,
computes an embedding of a given metric into `O(logn log ∆)

p with distortion O(log n · (log ∆)1/p). Note that
for p =∞ the distortion is O(log n).

Following the analysis of Bartal [2], we also obtain the following result.

Theorem 2. There exists an on-line algorithm that against a non-adaptive adversary, computes a proba-
bilistic embedding of a given metric into a distribution over ultrametrics with distortion O(log n · log ∆).

We remark that in the off-line probabilistic embedding into ultrametrics of [2] the distortion isO(log2 n).
In this bound there is no dependence on ∆ due to a preprocessing step that contracts all sufficiently small
edges. This step however cannot be implemented in an on-line fashion, so the distortion bound in Theorem
2 is slightly weaker. Interestingly, Theorem 5 implies that removing the dependence on ∆ is impossible,
unless the distortion becomes polynomially large.

3 Embedding doubling metrics into ultrametrics and into `2

In this section we give an embedding of doubling metrics into `2 with distortion O(log ∆). We proceed
by first giving a probabilistic embedding into ultrametrics. Let M = (X,D) be a doubling metric, with
doubling dimension λ = log2 Λ.

We begin with an informal description of our approach. Our algorithm proceeds by incrementally con-
structing an HST3, and embedding the points of the input space M into its leaves. The algorithm constructs
an HST incrementally, embedding X into its leaves. The construction is essentially greedy: assume a good
HST was constructed to the points so far, then when a new point p arrives it is necessary to “go down the
right branch” of the tree so as to be at a small tree-distance away from points close to p. This is done by
letting each internal vertex of the HST of height i correspond to a subset ofM of (appropriately randomized)
radius about 2i. When p is too far from the previous centers of the balls it will branch out. The only issue
that can arise (and in general, the only reason for randomness) is that while p is too far from the centre of a
ball, it is in fact close to some of its members, and so a large expansion may occur when it is not placed in
that part of the tree. Randomness allows to deal with this, but when decisions are made online and cannot
be changed as in our case, it is not guaranteed to work. What saves the day is the fact that when a metric
has bounded doubling dimension the obtained tree has bounded degree. This is crucial when bounding the
probability of the bad event described above to happen, as at every level of the tree there could be only
constant number of possible conflicts, each with low probability.

We now give a formal argument. Let δ = Λ3. Let T = (V,E) be a complete δ-ary tree of depth log ∆,
rooted at a vertex r. For each v ∈ V (T ), let l(v) be the number of edges on the path from r to v in T . We set
the length of an edge {u, v} ∈ E(T ) to ∆ · 2−min{l(u),l(v)}. That is, the length of the edges along a branch
from r to a leaf, are ∆,∆/2,∆/4, . . . , 1. Fix a left-to-right orientation of the children of each vertex in T .
For a vertex v ∈ V (T ), let Tv denote the sub-tree of T rooted at v, and let c(v) denote the left-most leaf of
Tv. We refer to the point mapped to c(v) as the center of Tv. Let B(x, r) denote the ball centered at x with
radius r.

3See [3, Definition 8] for a definition of HST.
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We will describe an on-line embedding f of M into T , against a non-adaptive adversary. We will
inductively define mappings f1, f2, . . . , fn = f , with fi : {x1, . . . , xi} → V (T ), such that fi+1 is an
extension of fi. We pick a value α ∈ [1, 2], uniformly at random.

We inductively maintain the following three invariants.

(I1) For any v ∈ V (T ), if a point of Xi is mapped to the subtree Tv, then there is a point of Xi that is
mapped to c(v). In other words, the first point of X that is mapped to a subtree Tv has image c(v),
and is therefore the center of Tv. Formally, if fi(Xi) ∩ V (Tv) 6= ∅, then c(v) ∈ fi(Xi).

(I2) For any v ∈ V (T ), all the points in Xi that are mapped to Tv are contained inside a ball of radius
∆/2l(v)−1 around the center of Tv in M . Formally, f−1

i (V (Tv)) ⊂ B(f−1
i (c(v)),∆/2l(v)−1).

(I3) For any v ∈ V (T ), and for any children u1 6= u2 of v, the centers of Tu1 and Tu2 are at distance at
least ∆/2l(v)+1 in M . Formally, D(f−1

i (c(u1)), f−1
i (c(u2))) > ∆/2l(v)+1.

We begin by setting f1(x1) = c(r). This choice clearly satisfies invariants (I1)–(I3). Upon receiving
a point xi, we will show how to extend fi−1 to fi. Let P = p0, . . . , pt be the following path in T . We
have p0 = r. For each j ≥ 0, if there exists a child q of pj such that V (Tq) ∩ fi−1(Xi−1) 6= ∅, and
D(f−1

i−1(c(q)), xi) < α ·∆/2j , we set pj+1 to be the left-most such child of pj . Otherwise, we terminate P
at pj .

Claim 1. There exists a child u of pt, such that c(u) /∈ fi−1({x1, . . . , xi−1}).

Proof. Suppose that the assertion is not true. Let y = f−1
i−1(pt). Let v1, . . . , vδ be the children of pt. By the

inductive invariants (I1) and (I2), it follows that for each i ∈ [δ], D(f−1
i−1(c(vi)), y) ≤ ∆/2t−1. Moreover,

by the choice of pt, D(y, xi) ≤ α ·∆/2t−1 ≤ ∆/2t−2. Therefore, the ball of radius ∆/2t−2 around z in M ,
contains the δ + 1 = Λ3 + 1 points xi, f−1(c(v1)), . . . , f−1(c(vδ)). However, by the choice of pt, and by
the inductive invariant (I3), it follows that the balls in M of radius ∆/2t+1 around each one of these points
are pairwise disjoint, contradicting the fact that the doubling constant of M is Λ.

By Claim 1, we can find a sub-tree rooted at a child q of pt such that none of the points in Xi−1 has its
image in Tq. We extend fi−1 to fi by setting fi(xi) = c(q). It is straight-forward to verify that fi satisfies
the invariants (I1)–(I3). This concludes the description of the embedding. It remains to bound the distortion
of f .

Lemma 2. For any x, y ∈ X , DT (f(x), f(y)) ≥ 1
3D(x, y).

Proof. Let v be the nearest-common ancestor of f(x) and f(y) in T . By invariant (I2) we have D(x, y) ≤
D(x, f−1(c(v))) + D(y, f−1(c(v))) ≤ ∆ · 2−l(v)+2. Moreover, DT (f(x), f(y)) = 2 · ∆

∑log ∆
i=l(v) 2−i =

∆ · 2−l(v)+2 − 2. The lemma follows since the minimum distance in M is 1.

Lemma 3. For any x, y ∈ X , E[DT (f(x), f(y))] ≤ O(Λ3 · log ∆) ·D(x, y).

Proof sketch (full details in the Appendix): The distance between x and y is about 2i when they are sepa-
rated at level i. For this to happen, y must be assigned to a sibling of x at level i − 1. The probability
of assigning to any particular such sibling is O(D(x, y)/2i). It is here that we utilize the bounded-degree
property. By a union bound over all siblings at this level we get a contribution of O(Λ3) on the expected
expansion. Summing up over all log ∆ levels we get the desired bound.
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Theorem 3. There exists an on-line algorithm that against any non-adaptive adversary, given a metric
M = (X,D) of doubling dimension λ, computes a probabilistic embedding of M into a distribution over
ultrametrics with distortion 2O(λ) · log ∆.

It is well known that ultrametrics embed isometrically into `2, and it is easy to see that such an embed-
ding can be computed in an on-line fashion for the HSTs constructed above. We therefore also obtain the
following result.

Theorem 4. There exists an on-line algorithm that against any non-adaptive adversary, given a doubling
metric M = (X,D) of doubling dimension λ, computes a probabilistic embedding of M into `2 with
distortion 2O(λ) · log ∆.

Remark 2. In the off-line setting, Krauthgamer et al. [15] have obtained embeddings of doubling metrics
into Hilbert space with distortion O(

√
log n). Their approach however is based on the random partitioning

scheme of Calinescu, Karloff, and Rabani [5], and it is not known how to perform this step in the on-line
setting.

4 Lower bound for probabilistic embeddings into ultrametrics

In this section we present a lower bound for on-line probabilistic embeddings into ultrametrics. Consider
the following distribution F over metric spaces. Each space M = (X,D) in the support of F is induced by
an n-point subset of R1, with X = {x1, . . . , xn}, and D(xi, xj) = |xi − xj |. We have x1 = 0, x2 = 1,
x3 = 1/2. For each i ≥ 4, we set xi = xi−1 + bi2−i+2, where bi ∈ {−1, 1} is chosen uniformly at random.

Figure 1: The evolution of the construction of the ultrametric.

It is easy to see that for each i ≥ 3, there exist points li, ri ∈ X such that li = xi − 2−i+2, ri =
xi + 2−i+2, and {x1, . . . , xi} ∩ [li, ri] = {li, xi, ri}. Moreover, for each i ∈ {3, . . . , n− 1}, there uniquely
exists yi ∈ {li, ri}, such that {xi+1, . . . , xn} ⊂ [min{xi, yi},max{xi, yi}].

Claim 2. Let M = (X,D) be a metric from the support of F . Let f be an embedding of M into an
ultrametric M ′ = (X,D′). Then, for each i ≥ 3, there exists zi ∈ {li, ri}, such that D′(xi, zi) ≥ D′(li, ri).

Proof. It follows immediately by the fact that M ′ is an ultrametric, since for any xi, li, ri ∈ X , D′(li, ri) ≤
max{D′(li, xi), D′(xi, ri)}.

In order to simplify notation, we define for any i ≥ 4, δi = D(xi, yi), and δ′i = D′(xi, yi).

Claim 3. Let M = (X,D) be a metric from the support of F . Let f be an on-line embedding of M into an
ultrametric M ′ = (X,D′). Then, for any i ≥ 3, Pr[δ′i ≥ δ′i−1|∀j ∈ {4, . . . , i− 1}, δ′j ≥ δ′j−1] ≥ 1/2.

Proof. Assume without loss of generality that zi = li, since the case zi = ri is symmetric. By the con-
struction of M , we have that Pr[yi = zi|∀j ∈ {4, . . . , i − 1}, δ′j ≥ δ′j−1] = 1/2. If yi = zi, then
δ′i = D′(xi, zi) ≥ D′(li, ri) = δ′i−1, concluding the proof.
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Lemma 4. Let f be an on-line, non-contracting embedding ofM into an ultrametricM ′. Then, E[δ′n−1/δn−1] =
Ω(n).

Proof. Let i ≥ 4, and 1 ≤ t ≤ i − 1. By Claim 3 we have Pr[δ′i ≥ δi−t] ≥ Pr[δ′i ≥ δ′i−t] ≥ Pr[∀j ∈
{1, . . . , t}, δ′i−j+1 ≥ δ′i−j ] =

∏t
j=1 Pr[δ′i−j+1 ≥ δ′i−j |∀s ∈ {1, . . . , j − 1}, δ′i−s+1 ≥ δ′i−s] ≥ 2−t.

Therefore E[δ′n−1] ≥
∑n−1

i=3 δi · 2−n+i+1 =
∑n−1

i=3 2−i+2 · 2−n+i+1 = Ω(n · 2−n) = Ω(n) · δn−1.

Since the aspect ratio (spread) is ∆ = Θ(2n), we obtain the following result.

Theorem 5. There exists a non-adaptive adversary against which any on-line probabilistic embedding into
a distribution over ultrametrics has distortion Ω(min{n, log ∆}).

We remark that the above bound is essentially tight, since the input space is a subset of the line, and
therefore doubling. By Theorem 3, every doubling metric space probabilistically embeds into ultrametrics
with distortion O(log ∆).

5 Embedding into `∞

In the off-line setting, it is well-known that any n-point metric space isometrically embeds into n-dimensional
`∞. Moreover, there is an explicit construction of the embedding due to Fréchet. Let M = (X,D) be an ar-
bitrary metric space. The embedding f : (X,D)→ `d∞ is simply f(xi) = (D(xi, x1), D(xi, x2), . . . , D(xi, xn)).
It is clear that the Fréchet embedding does not fit in the on-line setting, since the image of any point x de-
pends on the distances between x and all points of the metric space, in particular the future points.

A similar question regarding the existence of on-line embeddings can be posed: does there exist a bi-
Lipschitz extension for any embedding into `∞. The connection with the on-line setting is immediate; it
is well-known (see e.g. [16]) that for any metric space M = (X,D), for any Y ⊂ X , and for any a-
Lipschitz function f : Y → `∞, there exists an a-Lipschitz extension f̃ of f , with f̃ : X → `∞. It seems
natural to ask whether this is also true when f and f̃ are required to be a-bi-Lipschitz. Combined with the
fact that any metric embeds isometrically into `∞, this would immediately imply an on-line algorithm for
embedding isometrically into `∞: start with an arbitrary isometry, and extend it at each step to include a new
point. Unfortunately, as the next proposition explains, this is not always possible, even for the special case of
(1, 2)-metrics (the proof appears in the Appendix). We need some new ideas to obtain such an embedding.

Proposition 1. There exists a finite metric space M = (X,D), Y ⊂ X , and an isometry f : Y → `∞, such
that any extension f̃ : X → `∞ of f is not an isometry.

Although it is not possible to extend any 1-bi-Lipschitz mapping into `∞, there exists a specific mapping
that is extendable, provided that the input space is drawn from a fixed finite family of metrics. We will briefly
sketch the proof of this fact, and defer the formal analysis to the Appendix. Consider a metric space M ′

obtained fromM by adding a point p. Suppose that we have an isometry f : M → `∞. As explained above,
f might not be isometrically extendable toM ′. The key step is proving that f is always Lipschitz-extendable
to M ′. We can therefore get an on-line embedding as follows: We maintain a concatenation of embeddings
for all metrics in the family of input spaces. When we receive a new point xi, we isometrically extend all
embeddings of spaces that agree with our input on {x1, . . . , xi}, and Lipschitz-extend the rest.

Theorem 6. Let F be a finite collection of n-point metric spaces. There exists an on-line embedding
algorithm that given a metric M ∈ F , computes an isometric embedding of M into `∞.
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5.1 Low-distortion embeddings into low-dimensional `∞

In the pursuit of a good embedding of a general metric space into low dimensional `∞ space we demonstrate
the usefulness (and feasibility) of concatenation of two on-line embeddings. In fact one of these embeddings
is oblivious, which in particular makes it on-line. Why the concatenation of two on-line embeddings results
in yet another on-line embeddings is fairly clear when the embeddings are deterministic; in the case of
probabilistic embeddings it suffices to simply concatenate the embeddings in an independent way. In both
cases the distortion is the product of the distortions of the individual embeddings. Recall that Section 2
provides us with an on-line embedding of a metric space into Euclidean space. The rest of the section shows
that the classical method of projection of points in Euclidean space onto a small number of dimensions
supplies low distortion embedding when the host space is taken to be `∞. To put things in perspective, the
classical Johnson-Lindenstrauss lemma [13] considers the case where the image space is equipped with the
`2 norm, and it is well-known that a similar result can be achieved with `1 as the image space [11, p. 92].
As we will see, `∞ metric spaces behave quite differently than `2 and `1 spaces in this respect, and while a
dimension reduction is possible, it is far more limited than the first two spaces.

The main technical ingredient we need is the following concentration result. See also [23] for a similar
analysis. The proof is given in the Appendix.

Lemma 5. Let u ∈ Rn be a nonzero vector and let α > 1 and d ≥ e2. Let y be the normalized projection
of u onto d dimensions by a Gaussian matrix as follows: y = (2/m)Ru where R is a d × n Gaussian
random matrix, i.e., a matrix with i.i.d. normal entries and m = 2

√
ln d. Then Pr [‖y‖∞/‖u‖2 ≤ 1] ≤

exp(−1
4

√
d/ ln d), and Pr [‖y‖∞/‖u‖2 ≥ α] ≤ (2/α)d1−α2/2.

With the concentration bound of Lemma 5 it is not hard to derive a good embedding for any n-point set,
as is done, say, in the Johnson Lindenstrauss Lemma [13], and we get

Lemma 6. Let X ⊂ Rn an n-point set and let α >
√

2. If d = Ω(max{(log n)2/(1−1/e), n4/(α2−2)}), then
the above mapping f : X → `d∞ satisfies ∀x, y ∈ X, ‖x− y‖2 ≤ ‖f(x)− f(y)‖∞ ≤ α‖x− y‖2 with high
probability.

By a straightforward composition of the embeddings in Theorem 1 and Lemma 6, we get

Theorem 7. There exists an on-line algorithm against any non-adaptive adversary that for any α >
√

2,
given a metric M = (X,DM ), computes an embedding of M into `d∞ with distortion O(α · log n ·

√
log ∆)

and d = Ω(max{(log n)2/(1−1/e), n4/(α2−2)}).

Remark 3. The embeddings into `∞ given in Theorems 1 and 7 are incomparable: the distortion in Theorem
1 is smaller, but the dimension is larger than the one in Theorem 7 for large values of ∆.

6 On-line embedding when an off-line (near-)isometry is possible

It is not hard to see that given an n-point `d2 metric M , one can compute an online isometric embedding of
M into `d2. This is simply because there is essentially (up to translations and rotations) a unique isometry,
and so keeping extending the isometry online is always possible. However, as soon as we deal with near
isometries this uniqueness is lost, and the situation changes dramatically as we next show: even when the
input space embeds into `d2 with distortion 1 + ε, the best online embedding we can guarantee in general
will have distortion that is polynomial in n. We use the following topological lemma from [20].

Lemma 7 ([20]). Let δ < 1
4 and let f1, f2 : Sd−1 → Rd be continuous maps satisfying
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• ‖fi(x)− fi(y)‖2 ≥ ‖x− y‖2 − δ for all x, y ∈ Sd−1 and all i ∈ {1, 2},

• ‖f1(x)− f2(x)‖2 ≤ 1
4 for all x ∈ Sd−1, and

• Σ1 ∩ Σ2 = ∅, where Σi = fi(Sd−1).

Let Ui denote the unbounded component of Rd \ Σi. Then, either U1 ⊂ U2, or U2 ⊂ U1.

Theorem 8. For any d ≥ 2, for any ε > 0, and for sufficiently large n > 0, there exists a distribution
F over n-point metric spaces that embed into `d2 with distortion 1 + ε, such that any on-line algorithm on
input a metric space chosen from F outputs an embedding into `d2 with distortion Ω(n1/(d−1)), and with
probability at least 1/2.

Proof. Let γ = 1/(α · n1/(d−1)), where α > 0 is a sufficiently large constant. Let Sd−1 denote the unit
(d − 1)-dimensional sphere, and let X be a γ-net of (Sd−1, ‖ · ‖2). That is, for any x1, x2 ∈ X , we have
‖x1 − x2‖2 > γ, and for any y ∈ Sd−1 there exists x ∈ X with ‖x− y‖2 ≤ γ. Such a set X can be always
constructed with |X| ≤ O((1/γ)d−1). We will assume for convenience (and without loss of generality) that
X contains the point (1, 0, . . . , 0).

Figure 2: A realization of Y in R3 for d = 2, and a (1 + ε)-embedding into R2.

Let t ∈ {1, 2}. We will define a metric space Mt = (Y,Dt) containing two copies of X , and a
discretization of a line segment. Formally, we have Y = ({1, 2} × X) ∪ Z, where Z = {z1, . . . , z1/γ2}.
The distance Dt : Y × Y → R≥0 is defined as follows. For each i ∈ {1, 2}, the set i × X induces a
metrical copy of X , as a subset of Rd. That is, for any p, q ∈ X we have Dt((i, p), (i, q)) = ‖p − q‖2.
Moreover, for any p, q ∈ X we have Dt((1, p), (2, q)) =

√
ε2 + ‖p− q‖22. The distance Dt induces on Z a

line metric. That is, for any zj , zk ∈ Z we have Dt(zj , zk) = |j−k| ·γ. For any zj ∈ Z, and for any p ∈ X
Dt(zj , (t, p)) = ‖p−(1+j·γ, 0, 0, . . . , 0)‖2, andDt(zj , (3−t, p)) =

√
ε2 + ‖p− (1 + j · γ, 0, 0, . . . , 0)‖22.

We first argue that for every t ∈ {1, 2}, the metric space Mt embeds into Rd with distortion 1 + ε. To
see that, consider the embedding g : Y → Rd, where for all p ∈ X , g((t, p)) = (1+ε) ·p, g((3− t, p)) = p,
and g(zi) = (1 + ε+ i · γ, 0, . . . , 0). It is straight-forward to check that the distortion of g is 1 + ε.

We define F to be the uniform distribution over {M1,M2}. It remains to show that any on-line algo-
rithm, on input a space Mt chosen from F , outputs an embedding with distortion at least Ω(n1/(d−1)), and
with probability at least 1/2. We assume that the on-line algorithm receives first in its input the points in
{1, 2} × X . Let f be the embedding computed by the algorithm. We can assume without loss of gener-
ality that f is non-contracting, and that it is c-Lipschitz, for some c ≥ 1. For any i ∈ {1, 2} let fi be the
restriction of f on {i} × X . By Kirszbraun’s theorem [14], each fi can be extended to a continuous map
f̄i : Sd−1 → Rd, that is also c-Lipschitz. If c > n1/(d−1), then there is nothing to prove, so we may assume
c ≤ n1/(d−1).

It follows by the analysis in [20] that (i) f̄1(Sd−1) ∩ f̄2(Sd−1) = ∅, (ii) for any x, y ∈ Sd−1, i ∈ {1, 2},
we have ‖fi(x)− fi(y)‖2 ≥ ‖x− y‖2 −O(c · γ), and (iii) for any x ∈ Sd−1, we have ‖f̄1(x)− f̄2(x)‖2 =

10



O(c · γ). Therefore, we can apply Lemma 7 on f̄1 and f̄2. For each i ∈ {1, 2}, let Ui = Rd \ f̄i(Sd−1). It
follows that either U1 ⊂ U2, or U2 ⊂ U1.

Observe that since the algorithm receives first {1, 2} ∪ X , and Mt is symmetric on {1} × X , {2} ×
X , it follows that PrMt∈F [U3−t ⊂ Ut] = 1/2. Let p0 = (1, 0, . . . , 0). Observe that f̄3−t(Sd−1) ⊆
B(f̄3−t(p0), c), and on the other hand ‖f(z1/γ2)− f̄3−t(p0)‖2 > 1/γ > c. We thus obtain f(z1/γ2) ∈ U3−t.
Let Z̄ be the polygonal curve in Rd obtained via affine extension of f on p0, z1, . . . , z1/γ2 . It follows that
PrMt∈F [Z̄ ∩ f̄3−t(Sd−1) 6= ∅] ≥ 1/2. Therefore, with probability at least 1/2, two points in Y that are at
distance Ω(ε) inMt, are mapped to points that are at distanceO(γc). Thus c = Ω(1/γ) = Ω(n1/(d−1)).

Acknowledgements We thank the anonymous referee for pointing out Theorem 4.
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Appendix

Proof of Proposition 1

Proof. Let X = {x1, x2, x3, x4}. Let D(x2, x1) = D(x2, x3) = D(x2, x4) = 1, and let the distance
between any other pair of points be 2. Let Y = {x1, x2, x3}. Consider an isometry f : Y → `∞, were for
each i ∈ {1, 2, 3}, f1(xi) = i, and for each j > 1, fj(xi) = 0.

Let now f̃ : X → `∞ be an extension of f . Assume for the sake of contradiction that f̃ is 1-bi-
Lipschitz. Then, f̃1(x4) must lie between f̃1(x1) and f̃1(x2), since otherwise either |f̃1(x4)− f̃1(x1)| > 1,
or |f̃1(x2)− f̃1(x1)| > 1. Similarly, f̃1(x4) must also lie between f̃1(x2) and f̃1(x3). Thus, f̃1(x4) = 2.

Since f̃ is 1-bi-Lipschitz, it follows that there exists a coordinate j, such that |f̃j(x4) − f̃j(x1)| = 2.
Since |f̃1(x4) − f̃1(x1)| = 1, it follows that j > 1. Thus, |f̃j(x4) − f̃j(x2)| = |f̃j(x4) − f̃j(x1)| = 2 >
D(x4, x1), contradicting the fact that f̃ is 1-bi-Lipschitz.
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Proof of Lemma 3

Proof. Let P x = px0 , . . . , p
x
log ∆, and P y = py0, . . . , p

y
log ∆ be paths in T between px0 = py0 = r and

pxlog ∆ = f(x), pylog ∆ = f(y) respectively. Assume that x appears before y in the sequence x1, . . . , xn. For
any i ∈ {0, . . . , log ∆− 1} we have

Pr[pxi+1 6= pyi+1|p
x
i = pyi ] ≤

∑
v child of px

i

Pr[pxi+1 = v and pyi+1 6= v|pxi = pyi ]

≤
∑

v child of px
i

Pr[D(x, f−1(c(v))) ≤ α ·∆/2i+1 < D(y, f−1(c(v)))]

≤
∑

v child of px
i

Pr
[
α ∈

[
2i+1

∆
D(x, f−1(c(v))),

2i+1

∆
D(y, f−1(c(v)))

)]

≤
∑

v child of px
i

2i+1

∆
|D(x, f−1(c(v)))−D(y, f−1(c(v)))|

≤
∑

v child of px
i

2i+1

∆
D(x, y)

= δ · 2i+1

∆
·D(x, y).

When the nearest common ancestor (nca) of f(x) and f(y) in T is pxi , we have DT (f(x), f(y)) = ∆ ·
2−i+2 − 2. Therefore

E[DT (f(x), f(y))] =
log ∆−1∑
i=0

Pr[nca(f(x), f(y)) = pxi ] · (∆ · 2−i+2 − 2)

<

log ∆−1∑
i=0

Pr[pxi = pyi and pxi+1 6= pyi+1] ·∆ · 2−i+2

≤
log ∆−1∑
i=0

δ · 2i+1

∆
·D(x, y) ·∆ · 2−i+2

= O(Λ3 · log ∆) ·D(x, y)

6.1 Proof of Theorem 6

We give a formal analysis of the on-line algorithm for embedding isometrically into `∞. Let M = (X,D)
be the input metric, with X = {x1, . . . , xn}. Let Mi denote the restriction of M on {x1, . . . , xi}.

The following Lemma is the well-known Helly property of intervals of R (see e.g. [19]).

Lemma 8 (Helly property of line intervals). Consider a finite collection of closed real intervals Λ1, . . . ,Λk.
If for any i, j ∈ [k], Λi ∩ Λj 6= ∅, then

⋂k
i=1 Λi 6= ∅.

13



The main idea of the algorithm is as follows. Each coordinate of the resulting embedding is clearly a
line metric. The algorithm will produce an embedding that inductively satisfies the property that at each step
i, for each possible line metric T dominated by Mi, there exists a coordinate inducing Mi.

The main problem is what to do with the line metrics that are dominated by Mi, but are not dominated
by Mi+1. As the next lemma explains, we can essentially replace such metrics by line metrics that are
dominated by Mi+1.

Lemma 9. Let T be a line metric on {x1, . . . , xi} dominated by Mi. Then, T can be extended to a line
metric T ′ on {x1, . . . , xi+1} dominated by Mi+1.

Proof. Consider b1, . . . bi ∈ R, such that for any j, k ∈ [i], DT (xj , xk) = |bj − bk|. For any j ∈ [i],
define the interval Λj = [bj −D(xj , xi+1), bj +D(xj , xi+1)]. Assume now that there exist j, k ∈ [i], such
that Λj ∩ Λk = ∅. Assume without loss of generality that bj ≤ bk. It follows that bj + D(xj , xi+1) <
bk − D(xk, xi+1). Since D(xj , xk) = bk − bj , it follows that D(xj , xi+1) + D(xi+1, xk) < D(xj , xk),
contradicting the triangle inequality.

We have thus shown that for any j, k ∈ [i], Λj ∩ Λk 6= ∅. By Lemma 8 it follows that there exists
bi+1 ∈

⋂i
j=1 Λj . We can now define the extension T ′ of T by DT ′(xj , xk) = |bj − bk|. It remains to verify

that T ′ is dominated by Mi+1. Since T is dominated by Mi, it suffices to consider pairs of points xj , xi+1,
for j ∈ [i]. Since bi+1 ∈ Λj , we have DT ′(xj , xi+1) = |bj − bi+1| ≤ D(xj , xi+1), which concludes the
proof.

Using Lemma 9, we are now ready to prove the main result of this section. Recall that F is a finite
collection of n-point input metric spaces. Let A be the set of all distances between pairs of points of the
spaces in F . Let S = (Φ1, . . . , ΦN ) be a sequence containing all possible line metrics on n points, that
have distances in A. For any i ≥ 0, after receiving the i first points, the algorithm maintains a sequence
Si = (Φi1, . . . , Φ

i
N ) of line metrics, such that each Φij ∈ Si is dominated by Mi. Initially, S0 = S.

We first show how to compute Si. Assume that we have correctly computed the sequence Si−1, and we
receive xi. If Φi−1

j is dominated4 by Mi, then we set Φij = Φi−1
j . Otherwise, let T be the restriction of Φij to

the first i−1 points of M . By Lemma 9 we can extend T to a line metric T ′ on {x1, . . . , xi}, dominated by
Mi. We pick T ′′ ∈ S such that the restriction of T ′′ on {x1, . . . , xi+1} is T ′, and we set Φij = T ′′. Clearly,
every Φij ∈ Si is dominated by Mi.

Let f : X → RN be the embedding computed by the algorithm. After receiving the i first points, for
each j ∈ [i], k ∈ [N ], the k-th coordinate of f(xj) is equal to the coordinate of Φik(xj).

Since for each k ∈ [N ], Φnk is dominated by M , it follows that f is non-expanding.
Moreover, observe that Sn contains all the line metrics S that are dominated by M . Thus, for each

xj ∈ X , Sn contains the metric Wj , where for each t ∈ [n], the coordinate of the image of xt is D(xt, xj).
It follows that f is non-contracting, and thus an isometry. This concludes the proof.

Proof of Lemma 5

Proof. As is standard, we will use homogeneity and the rotation invariance of the operator R to assume
without loss of generality that u = (1, 0, . . . , 0)t. It follows that ‖y‖∞ = (2/m)‖z‖∞ where z =
(z1, z2, . . . , zd)t and zi ∼ N (0, 1) for i = 1, . . . , d. Denote by ϕ(x) the probability density function of

the normal distribution e−x2/2
√

2π
and the probability distribution function Φ(x) =

∫ x
−∞ ϕ(t)dt = Pr[X ≤ x]

4Here we mean that an i-point metric dominates an n-point metric, if it dominates its restriction on the first i points.
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where X ∼ N (0, 1). We will use the well-known fact to estimate Φ (see [7, Lemma 2, p. 131])

x2 − 1
x3

ϕ(x) ≤ 1− Φ(x) ≤ ϕ(x)/x. (1)

For the left tail of the lemma, we get that

Pr[‖y‖∞ ≤ 1] = Pr[‖z‖∞ ≤ m/2] = Pr[
⋂
i

{z | |zi| ≤ m/2}] ≤ (Φ(m/2))d

= (1− (1− Φ(m/2)))d ≤ exp (−d(1− Φ(m/2)))

≤ exp
(
−d(2m2 − 8)ϕ(m/2)

m3

)
(Eqn. 1)

≤ exp

(
−de

−m2/8

m
√

2π

)
≤ exp

(
−d d

−1/2

4
√

ln d

)

= exp
(
−1

4

√
d/ ln d

)
.

We turn to bound the right tail.

Pr [‖y‖∞ ≥ α] = Pr [‖z‖∞ ≥ mα/2] = Pr

[⋃
i

{z | |zi| ≥ mα/2}

]
≤ 2d · (1− Φ(mα/2))

≤ 2d
ϕ(mα/2)
mα/2

=
4d

mα
√

2π
e−m

2α2/8 (Eqn. (1))

=
2d

α
√

2π ln d
d−α

2/2 ≤ (2/α)d1−α2/2.
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