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QUILTED FLOER TRAJECTORIES WITH CONSTANT COMPONENTS

KATRIN WEHRHEIM AND CHRIS T. WOODWARD

Abstract. We fill a gap in the proof of the transversality result for quilted Floer trajec-
tories in [6] by addressing trajectories for which some but not all components are constant.
Namely we show that for generic sets of split Hamiltonian perturbations and split almost
complex structures, the moduli spaces of parametrized quilted Floer trajectories of a given
index are smooth of expected dimension. An additional benefit of the generic split Hamil-
tonian perturbations is that they perturb the given cyclic Lagrangian correspondence such
that any geometric composition of its factors is transverse and hence immersed.

1. Introduction

Quilted Floer homology is defined for a cyclic generalized Lagrangian correspondence
L, that is, a sequence of symplectic manifolds M0,M1, . . . ,Mr,Mr+1 with M0 = Mr+1 for
r ≥ 0, and a sequence of Lagrangian correspondences

L01 ⊂ M−
0 × M1, L12 ⊂ M−

1 × M2, . . . , Lr(r+1) ⊂ M−
r × Mr+1.

For the purpose of transversality arguments we do not need any monotonicity assumptions
as in [6], so throughout we merely assume that all Lagrangian correspondences are compact.
Quilted Floer homology HF (L) can be defined as the standard Floer homology of a pair of
Lagrangians in the product manifold M−

0 ×M1 ×M−
2 × . . .×Mr, given by products of the

Li(i+1). (For even r one adds a diagonal to the sequence before making this construction.) As
such, HF (L) depends on the choice of a Hamiltonian function and almost complex structure
on this product manifold, which generically would not be of split form - i.e. induced by a
tuple of Hamiltonian functions and almost complex structures on each symplectic manifold
Mj . The quilted definition of HF (L) in [6] on the one hand generalizes this construction
by allowing a choice of widths δ = (δj > 0)j=0,...,r of the strips mapping to each Mj. On
the other hand, we claim in [6] that the quilted Floer complex can be constructed (in
particular transversality can be achieved) for Hamiltonians and almost complex structures
of split type. That is, we restrict our choice of perturbation data to a tuple of Hamiltonian
functions and a tuple of almost complex structures in the complete metric spaces

Ht(δ) := ⊕r
j=0C

∞([0, δj ] × Mj , R), Jt(δ) := ⊕r
j=0C

∞([0, δj ],J (Mj , ωj)),

where J (Mj , ωj) is the space of smooth ωj-compatible almost complex structures on Mj .
While this split form is not necessary for the strip shrinking analysis in [8], it is par-
ticularly helpful for constructing relative invariants (such as the functor associated to a
correspondence in [9]) from more complicated quilted surfaces, which cannot be inter-
preted as single surface mapping to a product manifold. Unfortunately, the transversal-
ity proof in [6] for the quilted Floer trajectory spaces for generic split perturbation data
H ∈ Ht(δ) and J ∈ Jt(δ) has a significant gap: It fails to explicitly discuss trajectories
u = (uj : R× [0, δj ] → Mj)j=0,...,r for which some but not all components are constant. This
intermediate situation is not an easy combination of the two extreme cases (all components
nonconstant, or all components constant) as we seem to claim in [6].
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Results. In Theorem 3.2 below we complete the proof of the transversality claimed in [6]
by working with a more specific set of generic split Hamiltonian perturbations which may
be of independent interest. In Theorem 2.3 and Corollary 2.4 we find a dense open subset
of Ht(δ) for any given cyclic Lagrangian correspondence such that, after perturbation by
one of those split Hamiltonian diffeomorphisms, any geometric composition of its factors is
transverse and hence immersed. Starting from such a Hamiltonian perturbation, we observe
that quilted Floer trajectories with constant components induce quilted Floer trajectories
for a shorter cyclic generalized Lagrangian correspondence, given by a localized version of
geometric composition across the constant strips. Using this point of view, we are able to
find generic sets of split almost complex structures for which quilted Floer trajectories with
constant components are regular, as well. In fact, we show that quilted Floer trajectories
with constant components are very rare as summarized in Remark 3.3 and sketched below.

Idea of Proof. A key role in the proof is played by certain families of isotropic subspaces
which arise in the proof of transversality for the universal moduli space of almost complex
structures and Floer trajectories. The elements of the cokernel of the linearized opera-
tor of the universal moduli space are tuples of −Ji-holomorphic sections ηi of u∗

i TMi for
i = 0, . . . , r with Lagrangian seam conditions determined by the tangent spaces of Li(i+1).
Ignoring Hamiltonian perturbations for simplicity, the problem of constant components oc-
curs for example when some uj is constant (with value say xj ∈ Mj) but the adjacent
components uj−1, uj+1 are non-constant. Then variations in the almost complex structures
prove vanishing of ηj−1, ηj+1, and hence ηj : R × [0, δj ] → Txj

Mj is −Jj-holomorphic with
boundary conditions in

Λj(s) := PrTxj
Mj

(

T(uj−1(δj−1,s),xj)L(j−1)j ∩ ({0} × Txj
Mj)

)

⊂ Txj
Mj,

Λ′
j(s) := PrTxj

Mj

(

T(xj ,uj+1(0,s))Lj(j+1) ∩ (Txj
Mj × {0})

)

⊂ Txj
Mj.

The spaces Λj(s),Λ
′
j(s) are isotropic spaces varying with s ∈ R, despite the fact that uj ≡ xj

is constant. We can now proceed differently in three non-exclusive cases.

(a) The easiest case is to assume that Λj(s),Λ
′
j(s) are s-independent. We may then

enlarge these isotropic spaces to constant Lagrangian subspaces and deduce that ηj

lies in the kernel of an operator ∂s + A, where A is an s-independent self-adjoint
operator and invertible (since by choice of H the generators of the Floer complex
are cut out transversally). We then deduce vanishing of ηj from the general fact
that operators of this form ∂s + A are isomorphisms.

(b) An intermediate case occurs when Λj(s) or Λ′
j(s) fails to be Lagrangian (i.e. have

maximal dimension) for some s ∈ R. For example, if L(j−1)j is the graph of a
symplectomorphisms, then the intersection Λj is trivial. We show that this case of a
quilted Floer trajectory with constant component does not occur for generic (Ji)i6=j .

(c) The most difficult case occurs when Λj(s) and Λ′
j(s) are non-constant families of

Lagrangian subspaces. We show that for generic H the locus on which such varying
Lagrangian subspaces are possible is of positive codimension in the space of boundary
values (uj−1(δj−1, s), uj+1(0, s)). Then we again exclude this case for generic (Ji)i6=j .

Thus, for generic Hamiltonian perturbations H and almost complex structures J we in
fact show a splitting property for any quilted Floer trajectory with constant components,
namely along the seam (uj(s, δj), uj+1(s, 0)) ∈ Lj(j+1) we have TLj(j+1) = Λj ×Λj+1, where
Λj ⊂ TMj is a constant Lagrangian subspace given as above, and Λj+1 is the s-dependent
projection of TLj(j+1) ∩ ({0} × TMj+1). For a precise statement see Remark 3.3.
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The arguments in case (b) and (c) crucially rely on the following interpretation of quilted
Floer trajectories with constant components as quilted Floer trajectories for a generalized
Lagrangian correspondence obtained by a local version of geometric composition. If u =
(u0, . . . , ur) is a solution with uj ≡ xj as above, then (u0, . . . , uj−1, uj+1, . . . , ur) is a quilted
Floer trajectory for the generalized correspondence (L01, . . . , L(j−1)j ◦Lj(j+1), . . . , Lr(r+1)).
We show in Theorem 2.3 that, after a generic Hamiltonian perturbation of L, any geomet-
ric composition L(j−1)j ◦ Lj(j+1) is an immersed Lagrangian correspondence. It becomes
embedded if we restrict to values in Mj near xj. Hence (u0, . . . , uj−1, uj+1, . . . , ur) can be
viewed as quilted Floer trajectory for a smooth generalized Lagrangian correspondence.

We showed in [8] that transversality for this composed correspondence implies transver-
sality for the original correspondence for sufficiently small widths δj > 0. Here we extend
this transversality to solutions with constant uj for arbitrary δj > 0 and generic perturba-
tion data H,J .

Alternative approaches. It is perhaps worth remarking that all of the correspondences
intended as applications in [6, 10, 11] fit into the easiest case (a) described above since
these Lagrangian correspondences L01 ⊂ M−

0 × M1 are quasisplit in the following sense:
The intersection (Tx0

M0 × {0}) ∩ T(x0,x1)L01 is independent of x1 and the intersection
({0}×Tx1

M1)∩T(x0,x1)L01 is independent of x0. Examples are split correspondences L0×L1,
graphs of symplectomorphisms, correspondences arising from fibered coisotropics, and the
embedded geometric composition of any two quasisplit correspondences. If all Lagrangian
correspondences are quasisplit then the simple argument in case (a) above completes the
transversality argument for the universal moduli space in [6].

Note however that one can easily construct Lagrangian correspondences that are not
quasisplit by applying a nonsplit Hamiltonian diffeomorphism of M−

0 ×M1 to a split corre-
spondence L0 × L1.

Another possibility for achieving transversality at quilted Floer trajectories with constant
components is to introduce nonsplit perturbations as in [4] and [3]. However, in order to
implement this perturbation scheme for more general relative quilt invariants, one would
have to replace each seam with seam condition Lij ⊂ Mi × Mj by a novel triple seam
condition pairing the two patches in Mi and Mj via a diagonal with one boundary of a strip
in Mi × Mj, whose other boundary has boundary conditions in Lij . In that setup we may
use non-split perturbations on the strip.

We thank Max Lipyanski for pointing out the question of constant components.

2. Hamiltonian perturbations of generalized Lagrangian correspondences

Given a cyclic generalized Lagrangian correspondence L = (Lj(j+1))j=0,...,r, widths δ =
(δj > 0)j=0,...,r, and a tuple of Hamiltonian functions H = (Hj)j=0,...,r ∈ Ht(δ), the genera-
tors of the quilted Floer complex are tuples of Hamiltonian chords,

I(L,H) :=

{

x =
(

xj : [0, δj ] → Mj

)

j=0,...,r

∣

∣

∣

∣

∣

ẋj(t) = XHj
(xj(t)),

(xj(δj), xj+1(0)) ∈ Lj(j+1)

}

.
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They are canonically identified, via x 7→ (x0(δ0), x1(0), x1(δ1), . . . , xr(δr), x0(0)), with the
fiber product

×
φ

H0
δ0

(

L01 ×φ
H1
δ1

L12 . . . ×
φ

Hr
δr

Lr(r+1)

)

:=
(

L01 × L12 × . . . × Lr(r+1)

)

∩
(

graph(φH1

δ1
) × graph(φH2

δ2
) × . . . × graph(φH0

δ0
)
)T

,

where φ
Hj

δj
is the time δj Hamiltonian flow of Hj and (. . .)T denotes the exchange of factors

M1×. . .×M0×M0 → M0×M1×. . .×M0. In this setting we proved in [6] that Hamiltonians
of split type suffice to achieve transversality for the generators. We now strengthen this
result to achieve transversality for all partial fiber products.

Convention 2.1. Here and in the following we use indices j ∈ N modulo r + 1. A pair
of indices j < j′ denotes a pair j, j′ ∈ N with j < j′ ≤ j + r + 1. A pair of indices j ⊳ j′

denotes a pair j, j′ ∈ N with j + 1 < j′ ≤ j + r + 1, that is, with at least one other index
between j and j′.

For any proper subset I ⊂ {0, . . . , r} let IC ⊂ {0, . . . , r} be its complement. Then a
consecutive pair of indices j < j′ ∈ IC (resp. j ⊳ j′ ∈ IC) denotes a pair j < j′ (resp. j ⊳ j′)
as above such that j, j′ ∈ IC and {j + 1, . . . , j′ − 1} ⊂ I.

Definition 2.2. For any pair of indices j ⊳ j′ we define the partial fiber product

Lj(j+1) ×Hj+1
L(j+1)(j+2) . . . ×Hj′−1

L(j′−1)j′

:=
(

Lj(j+1) × . . . × L(j′−1)j′
)

∩
(

Mj × graph(φ
Hj+1

δj+1
) × . . . × graph(φ

Hj′−1

δj′−1
) × Mj′

)

.

We trivially extend this notation to the case j′ = j + 1 by Ljj′ = Lj(j+1). For a general
proper subset of indices I ⊂ {0, . . . , r} we then define the partial fiber product

×I,HL :=
∏

consec. j<j′∈IC

Lj(j+1) ×Hj+1
. . . ×Hj′−1

L(j′−1)j′

to be the product of the above fiber products for each consecutive pair of indices j < j′ ∈ IC .
We view the intersection I(L,H) = ×{0,...,r},HL as the full fiber product case I = {0, . . . , r}.

Theorem 2.3. There is a dense open subset Ham∗(L) ⊂ Ht(δ) so that for every H ∈
Ham∗(L) the defining equations for ×I,HL for any I ⊂ {0, . . . , r} are transversal.

Proof. Each of the fiber products under consideration is of the following form: It is the set
of tuples (m′

0,m1,m
′
1, . . . ,m

′
r,mr+1) ∈ L01 × . . . × Lr(r+1) satisfying

(1) φHi

δi
(mi) = m′

i ∀i ∈ I.

It suffices to find a dense open subset of regular Hamiltonians for each of these problems,
since the intersection of finitely many dense open subsets remains dense and open. So we
fix some choice of I ⊂ {0, . . . , r} and consider the universal moduli Muniv space of data
(H0, . . . ,Hr,m

′
0,m1, . . . ,m

′
r,mr+1) satisfying (1), where now each Hj has class Cℓ for some

ℓ >
∑

i∈IC dimMi. It is cut out by the diagonal values of the Cℓ-map

L01 × L12 . . . × Lr(r+1) ×

r
⊕

k=0

Cℓ([0, δk] × Mk) −→
⊕

j∈I

Mj × Mj ,

(m′
0, . . . ,mr+1,H0, . . . ,Hr) 7−→ (φHi

δi
(mi),m

′
i)i∈I .
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The linearized equations for Muniv are

(2) v′i − DφHi

δi
(hi, vi) = 0 ∈ TMi ∀i ∈ I.

for vi ∈ Tmi
Mi, v′i ∈ Tm′

i
Mi, and hi ∈ Cℓ([0, δi] × Mi). The map

Cℓ([0, δi] × Mi) → T
φ

Hi
δi

(mi)
Mi, hi 7→ DφHi

δi
(hi, 0)

is surjective, which shows that the product of the operators on the left-hand side of (2) is
also surjective. So by the implicit function theorem Muniv is a Cℓ Banach manifold, and
we consider its projection to ⊕r

k=0C
ℓ([0, δk] × Mk). This is a Fredholm map of class Cℓ and

index
∑

i∈IC dimMi (in particular 0 for the full intersection I = {0, . . . , r}). Hence, by the
Sard-Smale theorem, the set of regular values (which coincides with the set of functions H =
(H0, . . . ,Hr) such that the perturbed intersection is transversal) is dense in ⊕r

k=0C
ℓ([0, δk ]×

Mk). Moreover, the set of regular values is open for each ℓ >
∑

i∈IC dim Mi. Indeed, by

the compactness of L01 × L12 . . . ×Lr(r+1), a C1-small change in H leads to a small change
in perturbed intersection points, with small change in the linearized operators.

Now, by approximation of C∞-functions with Cℓ-functions, the set of regular values in
⊕r

k=0C
∞([0, δk ]×Mk) is dense in the Cℓ-topology for all ℓ >

∑

i∈IC dimMi, and hence dense
in the C∞-topology. Finally, the set of regular smooth H is open in the C∞-topology as a
special case of the C1-openness. �

We now reformulate this Theorem by using the Hamiltonian flows of H to perturb the
Lagrangian correspondences and then applying a geometric composition in some factors.

Corollary 2.4. For H ∈ Ham∗(L) the perturbed generalized correspondence

L′ :=
(

L′ :=
(

IdMj
× φ

Hj+1

δj+1

)

Lj(j+1)

)

j=0,...,r

has the following intersection and composition properties:

(a) The generalized intersection

I(L′, 0) = (L′
01 × . . . × L′

r(r+1)) ∩ (∆M1
× . . . × ∆M0

)T

is transverse and canonically identified with I(L,H).
(b) For any proper subset I ⊂ {0, . . . , r} the partial fiber product ×I,0L

′ is cut out
transversally (and canonically identified with ×I,HL). It is a product of the trans-
verse intersections

L′
j(j+1) ×∆j+1

L′
(j+1)(j+2) . . . ×∆j′−1

L′
(j′−1)j′

:=
(

L′
j(j+1) × L′

(j+1)(j+2) . . . × L′
(j′−1)j′

)

∩
(

Mj × ∆Mj+1
. . . ∆Mj′−1

× Mj′
)

=
(

IdMj
× φ

Hj+1

δj+1
× IdMj+1

. . . × φ
Hj′−1

δj′−1
× φ

Hj′

δj′

)(

Lj(j+1) ×Hj+1
. . . ×Hj′−1

L(j′−1)j′
)

for consecutive pairs of indices j < j′ ∈ IC .
(c) By a direct generalization of [6, Lemma 2.0.5], the projection

ΠMj×Mj′
: L′

j(j+1) ×∆j+1
. . . ×∆j′−1

L′
(j′−1)j′ −→ Mj × Mj′

is an immersion onto the geometric composition L′
j(j+1) ◦ . . . ◦L′

(j′−1)j′ ⊂ Mj ×Mj′.
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We will in particular be interested in this composition near a fixed point in Mj+1 × . . .×
Mj′−1 given by the components of an intersection point in I(L′, 0). For any such point
there is a neighbourhood U ⊂ Mj+1× . . .×Mj′−1 such that the projection ΠMj×Mj′

embeds
(

L′
j(j+1) ×∆j+1

L′
(j+1)(j+2) . . . ×∆j′−1

L′
(j′−1)j′

)

∩
(

Mj × U × Mj′
)

into Mj × Mj′ . This is a

localized version of the embedded geometric composition (as studied in [6]) of the perturbed
Lagrangians. We will be using the following analogue perturbed geometric composition of
the unperturbed Lagrangian correspondences.

Definition 2.5. For a proper subset I ⊂ {0, . . . , r} and x ∈ I(L,H) we define the lo-
cally composed cyclic Lagrangian correspondence LI,H,x between the underlying manifolds

(Mj)j∈IC to be the cyclic sequence consisting of L
H,x
jj′ ⊂ Mj ×Mj′ for each consecutive pair

of indices j < j′ ∈ IC , given by

L
H,x
jj′ := ΠMj×Mj′

((

Lj(j+1) ×Hj+1
L(j+1)(j+2) . . . ×Hj′−1

L(j′−1)j′
)

∩ Ũx,j,j′
)

for Ũx,j,j′ := Mj ×Ux,j,j′ ×Mj′ , where Ux,j,j′ is a neighbourhood of
(

xj+1(0), xj+1(δj+1), . . . ,

xj′−1(0), xj′−1(δj′−1)
)

such that ΠMj×Mj′
is injective on the intersection.

Remark 2.6. Given a regular tuple of Hamiltonian functions H ∈ Ham∗(L) as in Theo-
rem 2.3 and a proper subset I ⊂ {0, . . . , r}, let δI := (δj)j∈IC and HI := (Hj)j∈IC . Then
the transversality assertions of Theorem 2.3 moreover imply that for any x ∈ I(L,H) the
intersection I(LI,H,x,HI) is transverse. It contains (xj)j∈IC , and no other points if the
neighbourhoods Ux,j,j′ are chosen sufficiently small.

In preparation for the analysis of quilted Floer trajectories with constant components,

we next study the lift from L
H,x
jj′ to Mj+1 ×Mj′−1 and its connection with the intersections

TLj(j+1)∩({0}×TMj+1) and TL(j′−1)j′∩(TMj′−1×{0}). A priori, the latter are isomorphic
to collections of isotropic subspaces of TMj+1 resp. TMj′−1 parametrized by Lj(j+1) resp.
L(j′−1)j′ . As mentioned in the introduction, a first step is to understand the locus where

these subspaces are Lagrangian, and how they may vary along L
H,x
jj′ . For that purpose we

introduce the following notation.

Definition 2.7. Let j ⊳ j′ be a pair of indices.

(a) We denote by Sjj′ ⊂ Lj(j+1) × L(j′−1)j′ the set of points q = (qj, qj+1, qj′−1, qj′) for
which

Λ(j+1)(j′−1)(q) := Tq(Lj(j+1) × L(j′−1)j′) ∩ Tq({qj} × Mj+1 × Mj′−1 × {qj′}
)

induces a Lagrangian subspace in Tqj+1
Mj+1 × Tqj′−1

Mj′−1 (with the appropriate

signs on the symplectic forms).
(b) Given moreover H ∈ Ham∗(L), x ∈ I(L,H), we denote by

Pjj′ : L
H,x
jj′ −→ Mj+1 × Mj′−1

the composition of the lift from L
H,x
jj′ to

(

Lj(j+1)×Hj+1
. . .×Hj′−1

L(j′−1)j′
)

∩Ũx,j,j′ and

the projection to the second and penultimate component, i.e. to a neighbourhood of
(xj+1(0), xj′−1(δj′−1)).

The following Proposition shows that the set Sjj′ can equivalently be defined as the
locus where the linearized Lagrangian correspondences split, and that this splitting locus is
closely related to the vanishing of DPjj′ .
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Proposition 2.8. The following holds for any pair of indices j ⊳ j′.

(a) Λ(j+1)(j′−1)(q) is Lagrangian if and only if we have splittings

T(qj ,qj+1)Lj(j+1) = Λj × Λj+1, T(qj′−1,qj′)
L(j′−1)j′ = Λj′−1 × Λj′

into Lagrangian subspaces

Λj = PrTMj

(

T(qj ,qj+1)Lj(j+1) ∩ (Tqj
Mj × {0})

)

,

Λj+1 = PrTMj+1

(

T(qj ,qj+1)Lj(j+1) ∩ ({0} × Tqj+1
Mj+1)

)

,

Λj′−1 = PrTMj′−1

(

T(qj′−1,qj′)
L(j′−1)j′ ∩ (Tqj′−1

Mj′−1 × {0})
)

,

Λj′ = PrTMj′

(

T(qj′−1,qj′)
L(j′−1)j′ ∩ ({0} × Tqj′

Mj′)
)

.

(b) The subset Sjj′ ⊂ Lj(j+1) × L(j′−1)j′ is compact.

(c) For any H ∈ Ham∗(L), x ∈ I(L,H) the linearization D(qj ,qj′)
Pjj′ : T(qj ,qj′)

L
H,x
jj′ →

TPjj′ (qj ,qj′)
(Mj+1 × Mj′−1) is trivial iff (qj,Pjj′(qj , qj′), qj′) ∈ Sjj′.

Proof. By definition, Λ(j+1)(j′−1)(q) induces the (automatically isotropic) subspace Λj+1 ×
Λj′−1 ⊂ TMj+1 × TMj′−1. It is Lagrangian iff both factors have maximal dimension,
i.e. are Lagrangian. Moreover, since TLj(j+1) is Lagrangian, maximal dimension of its
subspace Λj+1 directly implies maximal dimension of Λj, and vice versa, and analogously
with TL(j′−1)j′ . This proves (a).

The splitting conditions in (a) can be phrased as intersections having maximal dimension,
hence are preserved in a limit, so occur on a closed subset of Lj(j+1) × L(j′−1)j′ . This
shows that Sjj′ is closed, so (b) follows directly from the compactness of all Lagrangian
submanifolds involved.

Given a point (qj, qj+1, q
′
j′−1, qj′) = (qj ,Pjj′(qj, qj′), qj′) there exist q′j+1, qj+2, . . . , q

′
j′−2, qj′−1

such that (qj , qj+1, q
′
j+1, . . . , qj′−1, q

′
j′−1, qj′) ∈

(

Lj(j+1) ×Hj+1
. . . ×Hj′−1

L(j′−1)j′
)

∩ Ũx,j,j′.

Now D(qj ,qj′)
Pjj′ is the composition of the lift from T(qj ,qj′)

L
H,x
jj′ to

T(qj ,qj+1)Lj(j+1) × . . . × T(q′
j′−1

,qj′)
L(j′−1)j′

∩ Tqj
Mj × graph(dφ

Hj+1

δj+1
(qj+1)) × . . . × graph(dφ

Hj′−1

δj′−1
(qj′−1)) × Tqj′

Mj′(3)

and the projection to Tqj+1
Mj+1 × Tq′

j′−1
Mj′−1. Hence D(qj ,qj′)

Pjj′ ≡ 0 if and only if

(3) is a subset of Tqj
Mj × {0} × Tq′j+1

Mj+1 × . . . × Tqj′−1
Mj′−1 × {0} × Tqj′

Mj′ . On the

other hand, our choice of H guarantees that the projection of (3) to Tqj
Mj × Tqj′

Mj′ is

injective with Lagrangian image T(qj ,qj′)
L

H,x
jj′ . So if D(qj ,qj′)

Pjj′ ≡ 0, then both intersections

T(qj ,qj+1)Lj(j+1)∩{0}×Tqj+1
Mj+1 and T(q′

j′−1
,qj′)

L(j′−1)j′ ∩Tq′
j′−1

Mj′−1 ×{0} have maximal

dimension. As above that implies (qj ,Pjj′(qj, qj′), qj′) ∈ Sjj′. Conversely, if the latter is
true, i.e. both T(qj ,qj+1)Lj(j+1) = Λj ×Λj+1 and T(q′

j′−1
,qj′)

L(j′−1)j′ = Λj′−1 ×Λj′ are of split

form, then the intersection with the graphs in (3) cannot allow for any nonzero vectors in
Λj+1 or Λj′−1, and hence D(qj ,qj′)

Pjj′ ≡ 0. �

In the following section we will “generically“ exclude quilted Floer trajectories with con-
stant components of the following two types: Firstly, those along whose seam values we have
DPjj′ 6≡ 0 somewhere; secondly, those along whose seam values DPjj′ ≡ 0 but Λ(j+1)(j′−1)

varies. This will only leave quilted Floer trajectories with constant components, for which
transversality follows from transversality for the moduli space of the locally composed cyclic
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Lagrangian correspondence. These arguments require the following understanding of the
structure of the split form set Sjj′ , the variation of the intersection Λ(j+1)(j′−1), and the

intersection of Sjj′ with lifts of the local compositions L
H,x
jj′ .

Theorem 2.9. The following intersection properties hold for any pair of indices j ⊳ j′.

(a) For any q ∈ Sjj′ there exists an open neighbourhood Vq ⊂ Lj(j+1) × L(j′−1)j′ and

smooth functions Gn : Vq → R for n = 1, . . . , N :=
(dim Mj+dimMj′ )(dim Mj+1+dim Mj′−1)

4
such that

Sjj′ ∩ Vq =
N
⋂

n=1

G−1
n (0).

Moreover, if γ : (−ǫ, ǫ) → Sjj′ ∩
(

Mj ×{qj+1}×{qj′−1}×Mj′
)

is a smooth path with
dGn(γ) ≡ 0 for all n = 1, . . . N , then Λ(j+1)(j′−1)(γ(t)) is constant in t ∈ (−ǫ, ǫ) as
subspace of Tqj+1

Mj+1 × Tqj′−1
Mj′−1.

(b) Fix a finite open cover Sjj′ ⊂
⋃

q∈Sjj′
Vq by subsets as in (b) with Sjj′ ⊂ Sjj′ finite.

Then there is a dense open subset Hjj′(L) ⊂ Ham∗(L) such that the following holds:
For every H ∈ Hjj′(L), x ∈ I(L,H), q ∈ Sjj′, and 1 ≤ n ≤ N the function

G
H,x
q,n : V

H,x
q,n → R, (zj , zj′) 7→ Gn(zj ,Pjj′(zj , zj′), zj′) defined on the open set

VH,x
q,n :=

{

(zj , zj′) ∈ L
H,x
jj′

∣

∣ (zj ,Pjj′(zj , zj′), zj′) ∈ Vq, dGn(zj ,Pjj′(zj , zj′), zj′) 6= 0
}

is transverse to 0.

Proof. Given q = (qj , qj+1, qj′−1, qj′) ∈ Sjj′ we have splittings

T(qj ,qj+1)Lj(j+1) = Λ0
j × Λ0

j+1 ⊂ Tqj
Mj × Tqj+1

Mj+1,

T(q′
j′−1

,qj′)
L(j′−1)j′ = Λ0

j′−1 × Λ0
j′ ⊂ Tqj′−1

Mj′−1 × Tqj′
Mj′

into products of Lagrangian subspaces. With this we have Λ(j+1)(j′−1)(q) = {0} × Λ0
j+1 ×

Λ0
j′−1 × {0} and permutation of factors provides an isomorphism

Tq(Lj(j+1) × L(j′−1)j′) ∼= K0 × Λ0 with K0 := Λ0
j × Λ0

j′ , Λ0 := Λ0
j+1 × Λ0

j′−1.

Now there exists an open neighbourhood Wq ⊂ Mj × Mj + 1 × Mj′−1 × M ′
j of q that

is symplectomorphic to an open subset of K0 × Λ0 ×
(

K0 × Λ0

)∗
such that Vq := Wq ∩

(Lj(j+1) × L(j′−1)j′) corresponds to graph dF for some smooth function F : K0 × Λ0 → R,

restricted to an open subset. We will identify K0
∼= K∗

0
∼= Rk, k = 1

2(dim Mj + dim Mj′)

and Λ0
∼= Λ∗

0
∼= Rℓ, ℓ = 1

2(dim Mj+1 + dim Mj′−1) and use coordinates (x, y) ∈ K0 × Λ0.
Then the intersection Λ(j+1)(j′−1) at some point (x, y,∇K0

F (x, y),∇Λ0
F (x, y)) is spanned

by those vectors
(

0, b, 0,
(
∑ℓ

i=1 bi
∂2F

∂yi∂yl

)

l=1,...,ℓ

)

for which
∑ℓ

i=1 bi
∂2F

∂yi∂xκ
= 0 for κ = 1, . . . , k.

It is Lagrangian iff its rank is the maximal ℓ. Hence Sjj′ ∩ Vq is the zero set of

(Gn)n=1,...,N :=

(

∂2F

∂yi∂xκ

)

i=1,...,ℓ,κ=1,...,k

: Vq −→ Rℓk = RN .

For the second part of (a) we consider a path γ(t) = (x(t), 0,∇K0
F (x(t), 0), 0) given by a

smooth path x : (−ǫ, ǫ) → K0 such that ∂F
∂yi

(x, 0) ≡ 0, ∂2F
∂yi∂xκ

(x, 0) ≡ 0, and in particular
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∂yl
Gn≃(i,κ)(x, 0) = ∂3F

∂yl∂yi∂xκ
(x, 0) ≡ 0 for all l, i, κ. The latter guarantees that ∂2F

∂yi∂yl
(x(t), 0)

and hence Λ(j+1)(j′−1)(γ(t)) is independent of t.
Approaching (b), note that we may reformulate the claim as transversal intersection of

Lj(j+1) ×Hj+1
. . .×Hj′−1

L(j′−1)j′ with the zero set of G̃n(z) := Gn(zj , zj+1, z
′
j′−1, zj′) on the

open set
{

z = (zj , zj+1, z
′
j+1, . . . , z

′
j′−1, zj′) ∈ Lj(j+1) × . . . × L(j′−1)j′

∣

∣

∣

∣

(zj , zj+1, z
′
j′−1, zj′) ∈ Vq,

dGn(zj , zj+1, z
′
j′−1, zj′) 6= 0

}

.

The universal moduli space of regularity m ∈ N for this problem is the preimage of {0} ×
∆Mj+1

× . . . ∆Mj′−1
of the map

Lj(j+1) × L(j+1)(j+2) . . . × L(j′−1)j′ ×

j′−1
⊕

i=j+1

Cm([0, δi] × Mi) −→ R ×

j′−1
⊕

i=j+1

Mi × Mi

given by

(zj , . . . , zj′ ,Hj+1, . . . ,Hj′−1) 7−→
(

Gn(zj , zj+1, z
′
j′−1, zj′), (φ

Hi

δi
(zi), z

′
i)i=j+1,...,j′−1

)

.

Hence the universal moduli space is a Cm manifold if at every solution the operator

(vj , . . . , vj′ , hj+1, . . . , hj′−1) 7−→
(

dGn(vj , vj+1, v
′
j′−1, vj′), (v

′
i − DφHi

δi
(hi, vi))i=j+1,...,j′−1

)

is onto. Here surjectivity in the first component is guaranteed by the condition dG̃n(z) 6= 0,

and in the second component already hi 7→ DφHi

δi
(hi, 0) is surjective as in Theorem 2.3.

Now as before the implicit function theorem and Sard-Smale theorem, using m > dim Mj +

dim Mj′ −1 to satisfy the index condition, provide a dense subset of
⊕j′−1

i=j+1 C
m([0, δi]×Mi)

for which G̃n :
(

Lj(j+1) ×Hj+1
. . . ×Hj′−1

L(j′−1)j′
)

∩ {dG̃n 6= 0} → R is transverse to 0.

Since this contains the lift of G
H,x
q,n : V

H,x
q,n → R, we find a dense open set of regular

Hamiltonians of class Cm for any given q ∈ Sjj′, 1 ≤ n ≤ N , x ∈ I(L,H), and sufficiently

large m ∈ N. Finally, C1-small changes in H lead to small changes in intersection points and
the linearized operators, hence we obtain open dense sets of regular values, and may take
countable intersections to find a dense open subset Hjj′(L) ⊂ Ham∗(L) of regular smooth
Hamiltonians. �

3. Quilted Floer trajectories with constant components

Given a cyclic generalized Lagrangian correspondence L, widths δ, a regular tuple of
Hamiltonian functions H ∈ Ham∗(L), we now consider the Floer trajectories for some
choice of almost complex structures J = (Jj)j=0,...,r ∈ Jt(δ). For any pair x−, x+ ∈ I(L,H)
of generators and index k ∈ Z, the moduli space of quilted Floer trajectories

Mk(x−, x+;L, J) :=
{

u =
(

uj : R × [0, δj ] → Mj

)

j=0,...,r

∣

∣ (4), (5), (6), Ind Du∂J = k
}

/R

is the space modulo simultaneous R-shift of tuples of perturbed holomorphic strips

(4) ∂Jj ,Hj
uj = ∂suj + Jj

(

∂tuj − XHj
(uj)

)

= 0 ∀j = 0, . . . r,

satisfying the seam conditions

(5) (uj(s, δj), uj+1(s, 0)) ∈ Lj(j+1) ∀j = 0, . . . r, s ∈ R
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as well as uniform limits

(6) lim
s→±∞

uj(s, ·) = x±
j ∀j = 0, . . . , r.

Moreover, we fixed the index of the linearized operator – as explained in the following. By
standard local action arguments, any such solution also has finite energy, and exponential
decay analysis as in [8] shows that any solution is of Sobolev regularity W 1,p relative to the
limits for any p > 2 in the following sense: We trivially extend x±

j to maps R× [0, δj ] → Mj ,

then there exists R > 0 such that uj(±s, t) takes values in an exponential ball around x±
j (s, t)

for ±s > R, and such that for each j = 0, . . . , r

(7)
(

(s, t) 7→ exp−1
x±

j (t)
(uj(±s, t))

)

∈ W 1,p([R,∞) × [0, δj ], x
±
j

∗
TMj).

With this, the moduli space can be identified with the R-quotient of the zero set of a section
∂J : B → E of a Banach bundle, where

B :=
{

u =
(

uj ∈ W 1,p
loc (R × [0, δj ],Mj)

)

j=0,...,r

∣

∣ (5), (7)
}

,

E → B is the Banach bundle with fibers Eu = ⊕r
j=0L

p(R × [0, δj ], u
∗
jTMj), and ∂J : B → E

is the (R-invariant) Cauchy-Riemann operator ∂J(u) =
(

∂Jj ,Hj
uj

)

j=0,...,r
. In [6] we proved

that ∂J is a Fredholm section, and in the definition of the moduli space Mk(x−, x+) we fix

the Fredholm index of its linearization Du∂J : TuB → Eu. In order to achieve transversality
of the section s, we now restrict ourselves to a further dense open subset of Hamiltonian
perturbations, as constructed in Section 2.

Definition 3.1. Given a cyclic generalized Lagrangian correspondence L and widths δ, let

Hreg(L) =
⋂

j,j′

Hjj′(L) ⊂ Ht(δ)

be the intersection over all pairs of indices j ⊳ j′ of the dense open subsets of regular
Hamiltonians for some choices of covers of Sjj′ as in Theorem 2.9.

We now prove the main result.

Theorem 3.2. For any cyclic generalized Lagrangian correspondence L and any choice of
widths δ and regular Hamiltonians H ⊂ Hreg(L), there exists a comeagre1 subset Jreg(L;H) ⊂
Jt(δ) such that for all J ∈ Jreg(L;H), x± ∈ I(L,H), and k ∈ Z the Cauchy-Riemann sec-

tion ∂J : B → E defined above is transverse to the zero section.

Remark 3.3. In fact, we prove that for generic perturbation data H ⊂ Ham∗(L) and J ∈
J reg

t (L;H) any solution u ∈ Mk(x−, x+;L, J) with some constant components has split
linearized seam conditions between constant and nonconstant components in the following
sense: If ∂suj 6≡ 0 and uj+1(s, t) = xj+1(t), then T(uj(s,δj),xj+1(0))Lj(j+1) = Λj(s) × Λj+1

splits into two families of Lagrangian subspaces

Λj(s) = PrTMj

(

T(uj(s,δj),xj+1(0))Lj(j+1) ∩ (Tuj(s,δj)Mj × {0})
)

,

Λj+1 = PrTMj+1

(

T(uj(s,δj),xj+1(0))Lj(j+1) ∩ ({0} × Txj+1(0)Mj+1)
)

,

1A subset of a topological space is comeagre if it is the intersection of countably many open dense subsets.
Many authors in symplectic topology would use the term “Baire second category”, which however in classical
Baire theory [5, Chapter 7.8] denotes more generally subsets that are not meagre, i.e. not the complement of
a comeagre subset. Baire’s Theorem applies to complete metric spaces such as the spaces of smooth almost
complex structures considered here, and implies that every comeagre set is dense.
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of which the second is constant. The analogous statement holds for ∂suj ≡ 0 and ∂suj+1 6≡ 0.

Proof. Since I(L,H) has finitely many elements (due to the transversality in Theorem 2.3
and compactness of the Lagrangian correspondences), and countable intersections of comea-
gre sets are comeagre in the complete metric space Jt(δ), it suffices to consider a single pair
x± ∈ I(L,H) and indices k ≤ k0 for some fixed k0 ∈ N.

The standard universal moduli space approach, using unique continuation for each strip
separately, as discussed in the proof of [6, Thm.5.2.4.], provides a comeagre subset in Jt(L)
for which the section s is transverse at all zeros u for which ∂sui 6≡ 0 for all i = 0, . . . , r. In
addition, s is automatically transverse at any completely constant solution u ≡ x+ = x−.
It remains to consider solutions u for which a proper subset ui for i ∈ I ⊂ {0, . . . , r} of
components is constant2. A necessary condition for such solutions to exist is x−

i = x+
i for

all i ∈ I, and hence the locally composed cyclic Lagrangian correspondences LI,H,x+

=

LI,H,x−

are the same. Now note that any solution u ∈ Mk(x−, x+;L, J) with the I com-

ponents constant induces a solution (ui)i∈IC ∈ Mk((x−
i )i∈IC , (x+

i )i∈IC ;LI,H,x±

, (Ji)i∈IC )
in the moduli space of same index (see [6, 3.1.8] for the index calculation) for the lo-
cally composed correspondence. Indeed, for consecutive pairs of indices j ⊳ j′ ∈ IC we
have

(

uj(s, δj), xj+1(0), xj+1(δj+1), . . . , xj′−1(δj′−1), uj′(s, 0)
)

∈
(

Lj(j+1) ×Hj+1
. . . ×Hj′−1

L(j′−1)j′
)

∩ Ũx,j,j′. The converse is rarely true since the lifts from L
H,x±

jj′ to Lj(j+1) ×Hj+1

. . . ×Hj′−1
L(j′−1)j′ may not be constant. Part of this is encoded by the lift map Pjj′ :

L
H,x±

jj′ → Mj+1 × Mj′−1 from Definition 2.7. In the following six steps we substantiate the

intuition that Floer trajectories with constant components for which automatic transver-
sality fails are in fact nongeneric solutions. We denote by J ℓ

t (δ) the Cℓ-closure of Jt(δ) in
the topology of maps [0, δj ] × TMj → TMj.

Step 0: In preparation we need to fix some choices for each pair of indices j ⊳ j′.

Firstly, we fix a metric on each Mi. Then, since L
H,x±

jj′ is compact, we may fix an

open cover Pjj′(L
H,x±

jj′ ) ⊂
⋃

p∈Cjj′
Wp by a finite number (indexed by Cjj′ ⊂ Mj+1 ×

Mj′−1) of exponential balls Wp ⊂ Mj+1 × Mj′−1 on which exp−1
p : Wp → Bǫp(0) ⊂

Tp(Mj+1 ×Mj′−1) is a diffeomorphism. We also fix a collection of 1-dimensional subspaces

(Hm)m=1,...,dimMj+1+dimMj′−1
spanning Tp(Mj+1 × Mj′−1) for each p ∈ Cjj′.

Secondly, as in Theorem 2.9 we fix a finite open cover Sjj′ ⊂
⋃

q∈Sjj′
Vq and choose H such

that the submanifold
{

z ∈ Vq

∣

∣Gn(z) = 0, dGn(z) 6= 0
}

⊂ Lj(j+1) × L(j′−1)j′ is transverse

to L̃
H,x±

jj′ for every q ∈ Sjj′ and n = 1, . . . , N .

Step 1a : We start by reviewing the regularity of the linearized operator at solutions
without constant components, more precisely we prove the following:

For every integer ℓ > k0 there exists a comeagre subset J ℓ
1 ⊂ J ℓ

t (δ) such that for any

J ∈ J ℓ
1 the linearized operator Du∂J is surjective for all u ∈

⋃

k≤k0
Mk(x−, x+;L, J) with

no constant components.

2We call a component ui constant if ∂sui = 0, and hence ∂tui = XHi
(ui), so ui is a Hamiltonian trajectory

in t, independent of s.
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This is what the arguments of [6] actually prove. To be precise, we consider the universal
moduli problem J ℓ

t (δ) × Bnc → E|Bnc
, (J, u) 7→ ∂Ju on the open subset

Bnc :=
{

u ∈ B
∣

∣ ∂sui 6= 0 ∀i = 0, . . . , r
}

⊂ B.

This is a Cℓ section of a Banach bundle whose linearized operator at a zero ∂Ju = 0 is
(

K = (Ki)i=0,...,r, ξ
)

7→ (Du∂J)ξ −
(

KiJi∂sui

)

i=0,...,r
. Here the second summand is already

surjective by the same arguments as in [2]. Indeed, the unique continuation theorem applies
to the interior of every single nonconstant strip ui : R × (0, δi) → Mi and implies that the
set of regular points, (s0, t0) ∈ R× (0, δi) with ∂sui(s0, t0) 6= 0 and u−1

i (ui(R∪{±∞}), t0) =

{(s0, t0)}, is open and dense. So by the implicit function theorem {(J, u) | ∂Ju = 0} is

a Cℓ Banach manifold. Its projection to J ℓ
t (δ) is a Fredholm map of class Cℓ and index

IndDu ≤ k0 ≤ ℓ − 1. Hence, by the Sard-Smale theorem, the set of regular values, which

coincides with the set J ∈ J ℓ
t (δ) such that Du∂J is surjective for all solutions u, is comeagre

as claimed.

Step 1b : Next, a similar argument provides the following regularity of the linearized
operator for the locally composed cyclic generalized Lagrangian correspondences:

For every proper subset I ⊂ {0, . . . , r} such that (x−
i )i∈I = (x+

i )i∈I and every integer

ℓ > k0 there exists a comeagre subset J ℓ
1,I ⊂ J ℓ

t (δ) such that for any J ∈ J ℓ
1,I the linearized

operator Dv∂JI is surjective for all v ∈
⋃

k≤k0
Mk((x−

j )j∈IC , (x+
j )j∈IC ;LI,H,x±

, JI) with no
constant components.

The locally composed cyclic Lagrangian correspondence LI,H,x±

consists of smooth, yet
not compact, Lagrangian submanifolds. However, the compactness is not relevant for the
universal moduli space arguments. Hence as in Step 1a we find a comeagre subset of the
Cℓ-closure of ⊕j∈ICC∞([0, δj ],J (Mj , ωj)) with the transversality properties. Then we let

J ℓ
1,I be the preimage under the projection J → JI = (Jj)j∈IC .

Step 2 : In this first nonstandard step we show that for quilted Floer trajectories w.r.t.
generic almost complex structures the differential DPjj′ of the lift map from Definition 2.7
vanishes along the seams bounding constant components. More precisely:

For every integer ℓ > k0 and pair of indices j ⊳ j′ such that x−
i = x+

i for i = j +

1, . . . , j′ − 1 there exists a comeagre subset J ℓ
2,j,j′ ⊂ J ℓ

t (δ) such that for any J ∈ J ℓ
2,j,j′ and

u ∈
⋃

k≤k0
Mk(x−, x+;L, J) with uj+1, . . . , uj′−1 constant we have D(uj(s,δj),uj′ (s,0))

Pjj′ = 0

for all s ∈ R.

Given ℓ, j, j′ we set I := {j + 1, . . . j′ − 1} and start by proving an intermediate Lemma,

which asserts emptyness of the moduli spaces of quilted Floer trajectories for LI,H,x±

with
DPjj′ 6≡ 0 but a weak form of constant lifts Pjj′ at sufficiently many points along the seam.

Lemma for Step 2 : For every k ≤ k0, p ∈ Cjj′, subspace Hm ⊂ Tp(Mj+1×Mj′−1), and tu-

ple of rationals s0 < . . . < sk+1 ∈ Q there exists a comeagre subset J (p,m, s0, . . . , sk+1) ⊂

J ℓ
t (δ) such that for any J ∈ J (p,m, s0, . . . , sk+1) there exists no Floer trajectory v ∈

Mk((x−
i )i∈IC , (x+

i )i∈IC ;LI,H,x±

, JI) which satisfies Pjj′(vj(sl, δj), vj′(sl, 0)) ∈ Wp and PrHm◦

D exp−1
p ◦D(vj (sl,δj),vj′ (sl,0))Pjj′ 6= 0 for all l = 0, . . . , k+1, and moreover for l = 1, . . . , k + 1

PrHm exp−1
p (Pjj′(vj(sl, δj), vj′(sl, 0))) = PrHm exp−1

p (Pjj′(vj(s0, δj), vj′(s0, 0))).
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The proof is by a universal moduli space argument. Let B be the Banach manifold as in

the definition of Mk((x−
i )i∈IC , (x+

i )i∈IC ;LI,H,x±

, JI). Then

B′ :=

{

v ∈ B

∣

∣

∣

∣

∣

Pjj′(vj(sl, δj), vj′(sl, 0)) ∈ Wp ∀ 0 ≤ l ≤ k + 1,

PrHm ◦ D exp−1
p ◦D(vj (sl,δj),vj′ (sl,0))Pjj′ 6= 0 ∀ 0 ≤ l ≤ k + 1

}

is an open subset of B, and

s(J, v) :=



 ∂JI (v) ,

(

PrHm

(

exp−1
p (Pjj′(vj(sl, δj), vj′(sl, 0)))

)

−PrHm

(

exp−1
p (Pjj′(vj(s0, δj), vj′(s0, 0)))

)

)

l=1,...,k+1





defines a Cℓ section of the bundle E|B′ × (Hm)k+1 → J ℓ
t (δ) × B′. Its linearized operator at

a zero maps
(

K = (Ki)i=0,...,r, ξ = (ξi)i∈IC

)

to











(

Dv∂JI

)

ξ −
(

KiJi∂svi

)

i∈IC

(
(

PrHm ◦ D exp−1
p ◦D(vj (sl,δj),vj′ (sl,0))Pjj′

)(

ξj(sl, δj), ξj′(sl, 0)
)

−
(

PrHm ◦ D exp−1
p ◦D(vj (s0,δj),vj′ (s0,0))Pjj′

)(

ξj(s0, δj), ξj′(s0, 0)
)

)

l=1,...,k+1











.

Here the second summand in the first component is surjective by the same arguments as in
Step 1a, using just the freedom in K. The second component is surjective since by definition
of B′ each map

PrHm ◦ D exp−1
p ◦D(vj (sl,δj),vj′ (sl,0))Pjj′ : T(vj(sl,δj),vj′ (sl,0))L

H,x±

jj′ → Hm

is nonzero, i.e. surjective onto this one dimensional subspace, and ξ can be chosen to assume

any given tuple of values on the linearized Lagrangian correspondence TL
H,x±

jj′ at distinct

s1, . . . , sk+1 ∈ R. So by the implicit function theorem {(J, v) | s(J, v) = 0} is a Cℓ Banach
manifold. Its projection to J ℓ

t (δ) is a Fredholm map of class Cℓ and index IndDv−(k+1) =
−1. Hence, by the Sard-Smale theorem, the set of regular values is comeagre. Finally, since
the index is negative, the set of solutions for a regular J is empty, which proves the Lemma.

We now obtain a comeagre subset J ℓ
2,j,j′ ⊂ J ℓ

t (δ) by taking the countable intersec-

tion of the comeagre sets J (p,m, s0, . . . , sk+1) given by the Lemma. Then suppose by

contradiction that for some J ∈ J ℓ
2,j,j′ we have a solution u ∈ Mk(x−, x+;L, J) for

some k ≤ k0 with uj+1, . . . , uj′−1 constant but D(uj(s0,δj),uj′ (s0,0))Pjj′ 6= 0 for some s0 ∈

R. As discussed at the beginning of the proof of this Theorem, u induces a solution

v := (ui)i∈IC ∈ Mk((x−
i )i∈IC , (x+

i )i∈IC ;LI,H,x±

, J I) such that Pjj′(vj(s, δj), vj′(s, 0)) =
(uj+1(s, 0), uj′−1(s, δj′−1)) is constant in s ∈ R. Moreover, we have D(vj (s0,δj),vj′ (s0,0))Pjj′ 6=

0 for some s0 ∈ R. Since this is an open condition, we may also find s0 ∈ Q with the same
nonvanishing. Then we have Pjj′(vj(s0, δj), vj′(s0, 0)) ∈ Wp for some p ∈ Cjj′ and PrHm ◦

D exp−1
p ◦D(vj (s0,δj),vj′ (s0,0))Pjj′ 6= 0 for one of the spanning subspaces Hm ⊂ Tp(Mj+1 ×

Mj′−1). Again, these are open conditions, so we may find rational numbers s0 < s1 < . . . <
sk+1 with the same properties. This contradicts the Lemma since Pjj′(vj(sl, δj), vj′(sl, 0)) =
(xj+1(0), xj′−1(δj′−1)) = Pjj′(vj(s0, δj), vj′(s0, 0)) for l = 1, . . . , k + 1.



14 KATRIN WEHRHEIM AND CHRIS T. WOODWARD

Step 3 : Extending Step 2, we show that for quilted Floer trajectories w.r.t. generic almost
complex structures in fact the splitting condition of Proposition 2.8 on the linearized seam
conditions holds along the seams bounding constant components. More precisely:

For every integer ℓ > k0 and pair of indices j ⊳ j′ such that x−
i = x+

i =: xi for i =

j + 1, . . . , j′ − 1 there exists a comeagre subset J ℓ
3,j,j′ ⊂ J ℓ

t (δ) such that for any J ∈ J ℓ
3,j,j′

and u ∈
⋃

k≤k0
Mk(x−, x+;L, J) with uj+1, . . . , uj′−1 constant the intersection

T(uj(s,δj),xj+1(0),xj′−1(δj′−1),uj′ (s,0))
(Lj(j+1)×L(j′−1)j′)∩({0}×Txj+1(0)Mj+1×Txj′−1(δj′−1)Mj′−1×{0}

)

projects to a Lagrangian subspace Txj+1(0)Mj+1 × Txj′−1(δj′−1)
Mj′−1 that is independent of

s ∈ R.

Given ℓ, j, j′ we set I := {0, . . . , j, j′, . . . , r} and start by proving an intermediate Lemma

which asserts emptyness of the moduli spaces of quilted Floer trajectories for LI,H,x±

with
dGn 6≡ 0 but Gn = 0 at sufficiently many points along the seam. This will be relevant since
by Theorem 2.9 the split locus is locally given by the intersection of the zero sets G−1

n (0),
and since dGn ≡ 0 along a path in the split locus ensures s-independence of the Lagrangian
subspace of TMj+1 × TMj′−1 that arises from the splitting.

Lemma for Step 3 : For every k ≤ k0, q ∈ Sjj′, 1 ≤ n ≤ N , and tuple of rationals

s0 < . . . < sk ∈ Q there exists a comeagre subset J (q, n, s0, . . . , sk) ⊂ J ℓ
t (δ) such that

for J ∈ J (q, n, s0, . . . , sk) there exists no solution v ∈ Mk((x−
i )i∈IC , (x+

i )i∈IC ;LI,H,x±

, J I)
with vjj′(sl) := (vj(sl, δj),Pjj′(vj(sl, δj), vj′(sl, 0)), vj′(sl, 0)) ∈ Vq, Gn(vjj′(sl)) = 0, and

dGn(vjj′(sl)) 6= 0 for 0 ≤ l ≤ k.

Let B be the Banach manifold as in the definition of Mk((x−
i )i∈IC , (x+

i )i∈IC ;LI,H,x±

, J I)

and recall from Theorem 2.9 (b) the transversality of the function G
H,x±

q,n : V
H,x±

q,n → R,

(zj , zj′) 7→ Gn(zj ,Pjj′(zj , zj′), zj′) on the open set

VH,x±

q,n :=
{

(zj , zj′) ∈ L
H,x±

jj′

∣

∣ (zj ,Pjj′(zj , zj′), zj′) ∈ Vq, dGn(zj ,Pjj′(zj , zj′), zj′) 6= 0
}

.

Then B′′ :=
{

v ∈ B
∣

∣

(

vj(sl, δj), vj′(sl, 0)
)

∈ V
H,x±

q,n ∀ 0 ≤ l ≤ k
}

is an open subset of B and

s(J, v) :=
(

∂JI (v) ,
(

GH,x±

q,n

(

vj(sl, δj), vj′(sl, 0)
)

l=0,...,k

)

defines a Cℓ section of the bundle E|B′′ × Rk+1 → J ℓ
t (δ) × B′′. Its linearized operator at a

zero maps
(

K = (Ki)i=0,...,r, ξ = (ξi)i∈IC

)

to
(

(

Dv∂JI

)

ξ −
(

KiJi∂svi

)

i∈IC ,
(

D(vj (sl,δj),vj′ (sl,0))G
H,x±

q,n

(

ξj(sl, δj), ξj′(sl, 0)
)

l=0,...,k

)

.

As before, the second summand in the first component is surjective using just the free-
dom in K. The second component is surjective since by Theorem 2.9 (b) each map

D(vj (sl,δj),vj′ (sl,0))G
H,x±

q,n is surjective, and ξ can be chosen to assume any given tuple of

values on the linearized Lagrangian correspondence TL
H,x±

jj′ at distinct s0, . . . , sk+1 ∈ R.

So by the implicit function theorem {(J, v) | s(J, v) = 0} is a Cℓ Banach manifold and its
projection to J ℓ

t (δ) is a Fredholm map of class Cℓ and negative index IndDv −(k+1) = −1.
As before, by the Sard-Smale theorem, the set of regular values is comeagre, and for each
regular J the set of solutions is empty. This proves the Lemma.
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We now obtain a comeagre subset J ℓ
3,j,j′ ⊂ J ℓ

t (δ) by taking the countable intersec-

tion of the comeagre sets J (q, n, s0, . . . , sk) given by the Lemma with J ℓ
2,j,j′. Now con-

sider any J ∈ J ℓ
3,j,j′ and u ∈

⋃

k≤k0
Mk(x−, x+;L, J) with uj+1, . . . , uj′−1 constant. As

before, this induces a solution v := (ui)i∈IC ∈ Mk((x−
i )i∈IC , (x+

i )i∈IC ;LI,H,x±

, J I) such
that Pjj′(vj(s, δj), vj′(s, 0)) = (uj+1(s, 0), uj′−1(s, δj′−1)) = (xj+1(0), xj′−1(δj′−1)) is in-
dependent of s ∈ R. Moreover, we know from Step 2 that D(vj (s0,δj),vj′ (s0,0))Pjj′ = 0

for all s ∈ R, and hence by Proposition 2.8 the intersection Λ(vjj′(s)) at vjj′(s) :=
(vj(s, δj), xj+1(0), xj′−1(δj′−1), vj′(s, 0)) induces a Lagrangian subspace of Txj+1(0)Mj+1 ×
Txj′−1(δj′−1)

Mj′−1 for every s ∈ R. Suppose by contradiction that it is not constant on any

neighbourhood of σ ∈ R. Fix q ∈ Sjj′ such that vjj′(s) ∈ Vq for |s−σ| < ǫ sufficiently small,

then by Theorem 2.9 (a) we have G1(vjj′(s)) = . . . = GN (vjj′(s)) = 0 for all |s−σ| < ǫ, but
dGn(vjj′(σ

′)) 6= 0 for some 1 ≤ n ≤ N and σ′ ∈ (σ − ǫ, σ + ǫ). Since the nonvanishing is an
open condition, we may also find s0 < . . . < sk ∈ Q ∩ (σ − ǫ, σ + ǫ) with dGn(vjj′(sl)) 6= 0,
in contradiction to the Lemma.

Step 4 : Next we explicitly state Step 3 as a splitting property and deduce surjectivity of
part of the linearized operator:

If u ∈ Mk(x−, x+;L, J) with ui(s, t) = x±
i (t) =: xi(t) for i = j + 1, . . . , j′ − 1 gives rise

to a constant Lagrangian subspace as in Step 3, then the linearized seam conditions

T(uj(s,δj),uj+1(s,0))Lj(j+1) = Λj(s)×Λj+1, T(uj′−1(s,δj′−1),uj′ (s,0))
L(j′−1)j′ = Λj′−1 ×Λj′(s)

split into the Lagrangian subspaces

Λj(s) ∼= T(uj(s,δj),xj+1(0))Lj(j+1) ∩
(

Tuj(s,δj)Mj × {0}
)

→֒ Tuj(s,δj)Mj

Λj+1
∼= T(uj(s,δj),xj+1(0))Lj(j+1) ∩

(

{0} × Txj+1(0)Mj+1

)

→֒ Txj+1(0)Mj+1

Λj′−1
∼= T(xj′−1(δj′−1),uj′ (s,0))

L(j′−1)j′ ∩
(

Txj′−1(δj′−1)
Mj′−1 × {0}

)

→֒ Txj′ (δj′ )
Mj′

Λj′(s) ∼= T(xj′−1(δj′−1),uj′ (s,0))
L(j′−1)j′ ∩

(

{0} × Tuj′(s,0)
Mj′

)

→֒ Tuj′ (s,0)
Mj′ .

Moreover, the operator Djj′ :=
(

∂s + Ji(xi)∂t − Ji(xi)Dxi
XHi

)

i=j+1,...,j′−1
maps

{

ξ ∈ ⊕j′−1
i=j+1W

1,p(R × [0, δi], x
∗
i TMi)

∣

∣

∣

∣

(

ξi(s, δi), ξi+1(s, 0)
)

∈ T(xi(δi),xi+1(0))Li(i+1) ∀i
ξj+1(s, 0) ∈ Λj+1, ξj′−1(s, δj′−1) ∈ Λj′−1

}

onto ⊕j′−1
i=j+1L

p(R × [0, δi], x
∗
i TMi).

We can express the operator Djj′ = ∂s + A in terms of an s-independent operator A =

(Ji(xi)∂t−Ji(xi)Dxi
XHi

)i=j+1,...,j′−1, which is self-adjoint on ⊕j′−1
i=j+1L

2([0, δi], x
∗
i TMi) with

domain
{

ζ ∈ ⊕j′−1
i=j+1W

1,2([0, δi], x
∗
i TMi)

∣

∣

∣

∣

(

ζi(δi), ζi+1(0)
)

∈ T(xi(δi),xi+1(0))Li(i+1) ∀i
ζj+1(0) ∈ Λj+1, ζj′−1(δj′−1) ∈ Λj′−1

}

.

Moreover, the nondegeneracy of the intersection points I(L,H) implies that A is invertible.
Indeed, the linearized operator cutting out I(L,H) as trajectory space splits at x± into A
and (Ji(x

±
i )∂t − Ji(x

±
i )D

x±

i
XHi

)i∈{j+1,...,j′−1}C with the analogous linearized seam condi-

tions. Now a general spectral analysis and Sobolev embedding argument proves that Djj′

is in fact an isomorphism, see e.g. [1, Chapter 3].
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Step 5 : We deduce from the previous steps that the set of almost complex structures of
class Cℓ, for which the linearized operators are surjective, is dense in the following sense:

For every integer ℓ > k0 let J ℓ
reg be the set of J ∈ J ℓ

t (δ) for which the linearized operators

Du∂J are surjective at all u ∈
⋃

k≤k0
Mk(x−, x+;L, J). Then J ℓ

reg ⊂ J ℓ
t (δ) is dense.

The density will follow from proving that J ℓ
reg contains the intersection of J ℓ

1 , all J ℓ
1,I ,

and all J ℓ
3,j,j′, i.e. a comeagre and hence dense set. So we need to consider a given J ∈

J ℓ
1 ∩

⋂

I J
ℓ
1,I ∩

⋂

j,j′ J
ℓ
3,j,j′ and show surjectivity of Du∂J for all solutions u.

Step 1a ensures surjectivity if u has no constant components, so it remains to consider u ∈
⋃

k≤k0
Mk(x−, x+;L, J) with ∂sui ≡ 0 ⇔ i ∈ I for some subset I ⊂ {0, . . . , r}. If all compo-

nents are constant, then surjectivity follows as in Step 4 from the fact that Du∂J = ∂s + A
is given by the s-independent self-adjoint operator A = (Ji(xi)∂t − Ji(xi)Dxi

XHi
)i=0,...,r

with constant Lagrangian seam conditions.
If u is a solution with constant components for a proper subset I ⊂ {0, . . . , r}, then as

before this induces a solution (uj)j∈IC ∈ Mk((x−
j )j∈IC , (x+

j )j∈IC ;LI,H,x±

, J I) for the locally

composed cyclic Lagrangian correspondence LI,H,x±

consisting of Lj(j+1) for j, j + 1 ∈

IC and L
H,x±

jj′ ⊂ Mj × Mj′ for each pair of consecutive indices j ⊳ j′ ∈ IC , i.e. with

j + 1, . . . , j′ − 1 ∈ I. Moreover, Step 3 implies that the linearized seam conditions at each
consecutive j ⊳ j′ ∈ IC split as in Step 4. As a direct consequence, the locally composed
correspondence also splits,

T(uj(s,δj),uj′ (s,0))
L

H,x±

jj′ = Λj(s) × Λj′(s).

That is, the seam conditions in the linearized operator D(uj)j∈IC
∂JI for the moduli space

associated to the local composition coincide with the seam conditions in nonconstant com-
ponents of the linearized operator Du∂J . Hence the linearized operator for the full problem

Du∂J is the direct sum of D(uj)j∈IC
∂JI and the operators Djj′ as in Step 4 for each con-

secutive j ⊳ j′ ∈ IC . The latter are surjective by Step 4, whereas the former is surjective
by Step 1b. This shows that Du∂J is indeed surjective for all solutions u of index up to k0,

and hence J ∈ J ℓ
reg.

Step 6: As final step we use an intersection argument due to Taubes to transfer from Cℓ to
C∞ almost complex structures. For fixed x± ∈ I(L,H), k0 ∈ N0 this proves the following:

Let Jreg,k0
(x−, x+) be the set of J ∈ Jt(δ) for which the linearized operators Du∂J are

surjective for all u ∈
⋃

k≤k0
Mk(x−, x+;L, J). Then Jreg,k0

(x−, x+) ⊂ Jt(δ) is comeagre.

For every R ≥ 0 let J R
reg ⊂ Jt(δ) and J ℓ,R

reg ⊂ J ℓ
t (δ) for ℓ > k0 be the sets of J for

which the linearized operators Du∂J are surjective at all u ∈
⋃

k≤k0
Mk(x−, x+;L, J) with

‖∂su‖∞ := maxi ‖∂sui‖∞ ≤ R.

Then J R
reg and J ℓ,R

reg are open in the C∞- resp. Cℓ-topology, by the following compactness

and gluing argument as in [2]: Suppose by contradiction that Jν → J∞ ∈ J ℓ,R
reg in the C1-

topology but Duν ∂Jν fails to be surjective for some solutions ∂Jνuν = 0 with ‖∂su
ν‖∞ ≤ R.

Then a subsequence of uν converges to a broken trajectory, consisting of a finite number
of nonconstant solutions with respect to J∞, and satisfying the same uniform derivative
bound. These components cannot have negative index since J∞ is regular for indices up to
k0. So, by index additivity, all components of the broken trajectory have index at most k0,
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and thus the linearized operators at these solutions are surjective. Now a standard gluing
construction shows that in fact Duν∂Jν must be surjective for some large ν.

We moreover know that J ℓ,R
reg ⊂ J ℓ

t (δ) is dense since it contains the dense set J ℓ
reg from

Step 5. Now J R
reg ⊂ Jt(δ) is dense in the C∞-topology since J R

reg = J ℓ,R
reg ∩ Jt(δ), where

J ℓ,R
reg ⊂ J ℓ

t (δ) is open and dense in the Cℓ-topology for all ℓ > k0. Finally Jreg,k0
(x−, x+) =

⋂

R∈N
J R

reg is a countable intersection of open dense subsets, i.e. comeagre.

To finish the proof of the Theorem, let Jreg(L;H) be the set of J ∈ Jt(δ) for which the

linearized operators Du∂J are surjective for all u ∈ Mk(x−, x+;L, J) with x± ∈ I(L,H)
and k ∈ Z. Then Jreg(L;H) =

⋂

k0∈N0

⋂

x±∈I(L,H) Jreg,k0
(x−, x+) is comeagre in Jt(δ) since

it is the countable intersection of comeagre sets. �
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