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Abstract— A formalism was recently introduced to instru-
ment, monitor and control computer applications based on the
rate of heartbeats they emit, thereby quantitatively signaling
their progress toward goals. To date, the idea was however used
essentially in an heuristic manner. This work first shows that a
very simple dynamic heartbeat rate model can be devised, an
that said model allows to address the corresponding control
problems in a methodologically grounded way. A general
solution is then devised, that can be realized through different
actuation mechanisms, depending on which type of resource—
CPU, memory, bandwidth, etc.—is constraining the application
performance in the particular situation at hand. Experiments
prove the efficacy of the proposed extension to the heartbeats
framework, both with applications that fit the proposed model
and with more complex test cases, for which said model is just
a coarse approximation.

I. INTRODUCTION

Modern computing systems, from multicores to clouds,
present a number of challenges to software developers. In
addition to performance and correctness issues, modern sys-
tems must be concerned with power and energy efficiency as
well as reliability and predictability, even when the execution
environment cannot be characterized a priori. One approach
to addressing these challenges is to build computing systems
that observe their execution and adjust their behavior based
on feedback from said observations. Recently, the control
community has been active in studying such computing
systems [1], [2]. However most of the literature is concerned
with the analysis of existing systems, whose complexity and
inherently heterogeneous nature requires equally complex
modeling paradigms - and often identification mechanisms
- to be exploited [3].

In fact, most adaptive computing systems problems can
be formulated as control ones in a direct manner. For
example, consider the problem of allocating processor cores
in a modern multicore processor. A possible strategy is to
have the system allocate the minimum number of cores
required to meet application goals. Unused cores can be
allocated to another application or possibly idled to save
power. Such a system could greatly reduce the programmer’s
burden by ensuring that the application always uses the
minimum number of cores to reach its performance goal.

To complete this formulation, however, there must be a
generalized interface for an application to make both its goals
and current performance known to the resource allocator.
Such a general interface would allow any possible controller
to work on the active applications.

It has recently been observed that feedback control allows
the reformulation of many computing system management
problems in an effective way, leading to simpler solutions
than the ones currently adopted, provided some instrumen-
tation is introduced. Curiously enough, this observation has
been made in both the control and the computer science com-
munities: examples are respectively [4] and the Application
Heartbeats framework [5], used and extended in this work.

The software framework called Application Heartbeats,
has been recently introduced to make it possible to monitor
generic applications. Using this interface, applications ex-
press their performance by registering a “heartbeat” at impor-
tant intervals. Additionally, the interface allows applications
to express their performance goals in terms of a desired heart
rate or a desired latency between specially tagged heartbeats.
Thus, the Application Heartbeats interface allows any appli-
cation to export a feedback mechanism upon which a control
system can be devised. For example, a video encoder can be
written to produce a heartbeat with every frame of video. Fur-
thermore, this encoder can express its target performance as a
desired rate of frames per second. With this information, the
controller (i.e., the resource allocator) described above could
minimize the amount of computational resources required to
meet the encoder’s performance goals.

This paper develops and analyzes a control system for
allocating resources in a multicore processor using Appli-
cation Heartbeats to provide the performance target and the
feedback mechanism. To begin, related work is discussed
in Section II. Next, a model of the system to be controlled
is presented in Section III. This model is simple, yet still
captures the control-relevant dynamics. It also incorporates
disturbances, to reasonably account for the effects of a non-
structured external environment or of unmodeled dynamics
with a minimum additional effort. After discussing this
model, the control strategy is described in Section IV. The
key property of this controller is that the control signal
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computation is completely disjoint from the actuation policy.
In this work, the selected actuation policy is the assignment
of cores to the application; however, the controller is general
enough to work with any actuation policy which can modify
the speed of the application. After presenting the control
strategy, some experiments demonstrate the use of this strat-
egy to control a real computing system. Specifically, these
experiments (in Section V) illustrate how the controller is
able to allocate the minimum number of cores required to
maintain a video encoder’s target performance while encod-
ing high-definition video. The paper concludes in Section VI.

II. MOTIVATION AND RELATED WORK

Control theory is emerging as an approach for the design
of self-managed computing systems. Karamanolis et al. stress
the need for a rigorous approach in the design of dynami-
cally controlled systems and many computing management
problems can be formulated such that standard controllers
can be applied [6]. This formulation requires the necessary
tunable parameters (actuators) and the appropriate feedback
metrics (sensors and measurements).

Several examples show the advantages of such a for-
mulation. Hollot has shown how the congestion window
mechanism in the TCP protocol can be interpreted as a
control system [7]. Scheduling policies were addressed as
well, and [8] points out the important distinction between
open-loop and closed-loop algorithms. Encoding and/or de-
coding videos maintaining adequate service levels while
keeping the energy consumption as low as possible is a open
problem. Bang et al. refer to video decoding and shows some
comparisons between existing techniques before discussing
a new approach based on workload estimation via Kalman
filters [9]. In [10] the same problem is faced for parallel
data-flow applications. The application is described as a
pipeline of stages and the goal is to find the correct speed
configuration for each element of the pipeline to reach the
goal minimizing the overall energy consumption. In [11] a
control structure is proposed, however not yet realized, in
which a feedback loop allows the translation of the service
level agreement objectives into set-points for the response
time of the servers and tracking performance is traded-off
with energy savings. Varma et al. present a modification
of the PID control algorithm to synthesize a nqPID (not
quite PID) control system to chose the CPU frequency of
a computing unit [12]. In [13] a system that runs multiple
receding horizon controllers on the same multi core machine
is considered. The number of processors assigned to each
subsystem is changed as well as the execution horizons
of each controller, casting the proposed problem into an
optimization one. This work addresses the problem for a
known environment, where a predefined number of processes
compete for the same resource. These processes are however
very well characterized and their behavior is a priori known.

None of the mentioned contributions, however, relies on a
general software framework that allows the goal definition
and the progress measurement in a uniform way. In this
paper the Heartbeats framework is used as such a general

framework and a single application is considered. The main
contribution of this manuscript is a formulation of heart
beat rate based problems in terms of feedback control ones
through a prior definition of a model of the application rate
dynamics, and subsequently a simple but methodologically
grounded control design. Note that computational lightness
is a must in this context, so that for any possible solution
simplicity is a merit.

III. THE MODEL OF THE CONTROLLED SYSTEM

As pointed out and discussed in [4], the successful for-
mulation of computing system control problems relies on a
clear definition of the system to be controlled prior to the
control design—a less trivial task than it may appear.

The aim of this section is to carry out the above task in the
context of this work, i.e., to propose a simple yet promising
model of a generic software application, which is conceived
to be suitable for control purposes. First, the model, which
makes use of the heart beat abstraction, is presented. Second,
its accuracy is discussed, showing the advantages and the
limitations of the outlined approach.

A. Hypotheses and formulation

The model assumes that applications have been instru-
mented with a feedback-oriented mechanism, in this case
Application Heartbeats. Thus, an application issues a series
of heartbeats at regular intervals. In addition, the application
makes its target performance, or heart rate measured in
heartbeats per second, known to the rest of the system.

Consider a single heartbeat-enabled application executed
in a computing system with Nc processor cores. Denote by k
the index counting the heartbeat signaling operations. Also,
let hbt(k) be the time elapsed between the (k− 1)-th and
the k-th measurement. Define by wσ the workload of the
instrumented application—the workload is defined to be the
average expected time between two subsequent heartbeats
when the application is executed with the minimum available
amount of needed resources (i.e., with a single core). Assume
that the workload does not depend on the application’s
progress, so that it can be considered known and constant
(relaxations will be addressed in the future). Under the above
assumptions, a model for the system under control (the
instrumented application) takes the form

hbt(k) = wσ u(k−1)+δw(k−1) (1)

where δw is an exogenous disturbance and it is assumed
that the actual time hbt(k) does not depend on the previous
execution times {hbt(k−1), hbt(k−2) . . .}. This is a realistic
assumption for a lot of applications, as long as they are
carefully instrumented. However, it does not always hold.
Think for example at the aforementioned video encoder that
produces a heartbeat with every frame of video. The frames
can be divided into three different categories: I, P and B
frames [14]. I frames are difficult to compress and do not
require other video frames to decode after compression. P
frames can use data from previous frames to decompress
and therefore their content can be represented with less data
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and encoded differently. B frames can use both previous and
forward frames for data reference to get the highest amount
of data compression. The use of these different types of
frames means that the workload can vary as a function of
frame-type and in some implementations the time to encode
a single frame can in principle depend on the time taken in
the previous ones’ encoding.

In control problems tackled with model (1), the phe-
nomenon just sketched appears as unmodeled dynamics. Of
course one could extend the model to handle the different
frame-types, but the new model would become application-
specific. Therefore, although model extensions can (and will)
be considered, this work aims at proving that good results
can be obtained while keeping the model as simple (and
general) as possible.

As a side remark notice that the same model could be
written with the heart rate in place of the time between
subsequent heart beats with no influence on the results.
Moreover, the transfer function from the control signal u
to the time hbt is

HBt(z)
U(z)

=
wσ

z
. (2)

Such a control signal u(k) represents the fraction of time
the application should consume with respect to the workload,
and is thus bounded in the interval (0,1]. Having u(k) = 1
is equivalent to giving the application the least amount of
resources, and limiting its execution time to the workload.
Suppose that u(k)≥ ε; u(k) = ε means allowing the applica-
tion to run with all the available resources in order to obtain
the maximum speed-up. Notice that the control signal choice
is completely general with respect to the actuation policy,
so the same control signal will work with different actuation
policies. For example, this control signal can be used with an
actuation policy which allocates cores to speed up compute-
bound applications or with an actuation policy which assigns
DRAM bandwidth to speed up memory-bound applications.

Fig. 1. Heartbeat rate for x264 application launched with 1 (red), 4 (light
blue), 16 (green), 24 (purple) and 32 (orange) threads when no control is
applied. In abscissae the number of heart beat for the encoding of 512
frames, an heartbeat is emitted every time the application complete the
encoding of a single frame.

As anticipated, the proposed model does not always fit the
application. Sometimes the application execution is marked
by different phases with the workload varying among these
phases [15]. In order to model this behavior, the workload
can be seen as an exogenous switching signal [16] that
changes when the application enters a different phase. Figure

1 reports an example of a instrumented version of x264 [17],
running with an input that exposes phases in its behavior. The
figure depicts the heart rate, i.e., the number of heartbeats
per second, when the application has to encode 512 different
frames1 and is launched respectively with different number
of threads on a 16 core machine. In the following however,
we will make the simple assumption of a constant workload,
while future studies will be devoted to the analysis of the
system as a switching one. If the workload profile is known
a priori, the devised controller is still valid, as long as the
workload value is updated.

B. Some words on accuracy

The model used this work is very simple, yet it captures
all the necessary dynamics to properly control the system
and the presence of disturbances accounts for workload
variations that are not a priori predictable. However, the
model requires mapping u(k) into an effective control action.
This mapping is conceptually part of the control mechanism,
but can invalidate the model if not properly considered (see
again the discussion in [4]).

Finding a good actuation policy is a complex problem [6].
In order to take advantage of the modeling analysis done
so far, it is necessary to describe the relationship between
the control variable u(k) and the effective actuation (i.e.,
the number of cores the application can use, a frequency
scaling mechanism, a scheduling policy, a memory allocation
algorithm, etc.). If such a relationship is not valid for the
current application, the control system will not behave as
expected.

For example, if we are controlling an application by
changing the number of cores it can use, the proposed
model does not take into account the average, expected
parallelism of the algorithm realized by the application in
the k-th sampling period. This value can be introduced but
will lead to a more complex formulation. Generally speaking,
the average parallelism is defined as the average number of
busy processor cores during the considered period when an
unlimited number of cores are available [19]. Assigning more
cores than this value would not be beneficial. If available,
average parallelism for an application can be used to produce
a more accurate control system, but will result in a more
complicated model.

Generally, problems arise when the control actuator allo-
cates a particular resource, but changing that resource does
not influence the application behavior. For example, think of
an application that is waiting to retrieve data from an input
device. No matter how many cores the controller assigns,
the application will stall waiting for the input data. In such a
scenario the model is not valid. This scenario can be modeled
as a faulty actuator, which makes the system behave in open-
loop, even though the controller is still active. A proper
antiwindup mechanism can manage the recovery of such a
situation (i.e., regain the set point quickly once the actuator

1The input video in this case is taken from the PARSEC benchmark
suite [18].
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becomes effective again) but there is apparently a strong need
for control solutions that change actuation policy when the
system is not approaching the target goal (and are simple
enough for the addressed context, where many fault detection
techniques would be too complex to apply).

For the purpose of this work, we limit the analysis to one
control solution and show how the control system behaves in
two scenarios. First a simple example illustrates the behavior
of the control system when the application depends only on
the controlled resource. A second example explores the case
where this assumption does not hold.

IV. A SIMPLE CONTROL SCHEME

Once the process model has been written, a control scheme
needs to be synthesized. We use the standard scheme of
Figure 2. A deadbeat controller is developed, to assign the
transfer function between the desired time between two
subsequent heartbeats hb◦t and the effective one hbt .

Fig. 2. The proposed control scheme.

The controller sets such a function to 1/z, obtaining a pure
delay. The regulator R(z) is thus

R(z) =
z

(wσ )(z−1)
. (3)

Moreover, the set point hb◦t is generated inverting the
desired heart rate, specified by the application through the
Heartbeats framework.

As discussed above, the calculation of the control signal
u(k) has to be translated into a corresponding actuator value.
A function that maps u(k) into the corresponding actuator
value has to be provided for every actuation mechanism.
Although many actuators can be chosen, this work considers
only the number of cores allocated to the instrumented
application.

In the following, let c(k) be the number of cores allocated
to the instrumented application at time k. As a modeling
parameter, it is assumed that the speedup of the application
varies with the square root of the number of cores assigned
to the software program. Thus,

u(k) =
1√
c(k)

, c(k) =
1

u(k)2 (4)

and the control signal u(k) is limited with an antiwindup
mechanism in the range [0.25,1], i.e., the actuatot is limited
to a maximum of 16 cores, which corresponds to the machine
used in our experimental setup.

Obviously, in the proposed solution, only some values
of u(k) can be effectively mapped into the corresponding
value for c(k), as fractions of a core cannot be assigned.
However, such a granularity results in a strong limitation of
the control action. Therefore a time division output actuation

scheme is adopted. For example, if in a given period 2.75
cores are required, the system can allocate three cores for
the first 75% of that period and two for the remaining 25%.
To achieve better performances, the period of such a scheme
should depend on the estimated workload of the application
and on the desired heart rate. The following section presents
some examples.

V. EXPERIMENTAL RESULTS

In order to validate the proposed approach we report
some tests, with two different software applications. First
we test the system with an application (termed the “nominal
application”) that completely fits the proposed model, and
then we report some case studies with the aforementioned
video encoder x264 and different input data. The first test
shows that when the model is correct the proposed control
scheme works on the real device, including the control quan-
tization, the time division output, and all the implementation-
related overhead. The second set of tests shows that in a
more complex case, where the proposed model is just an
approximation, satisfactory results can be obtained anyway,
although there is clear evidence of the need for future
refinements.

A. Nominal application

Most applications require more than a single resource.
However, there are interesting test cases where the software
code is CPU-bounded. To reproduce this situation within
the Heartbeat framework, we wrote a test application that
behaves according to the proposed model (1). In such an
application the workload variations are very small with
respect to the model and the application scales almost exactly
with the square root of the number of cores. A real software
application was used instead of a simulation example, to
validate the approach even in the presence of possible
problems and delays due to the software implementation of
the control scheme.

Figure 3 shows the results of the control action on this
software application. As can be seen, the desired heart rate is
reached in the minimum amount of time. The control action
is performed every period, where such period is equal to the
desired amount of time among 5 subsequent heart beats. As
can be seen, the desired heart rate is 3.5 beats per second,
and the period is 1428571µs. The control system in this
case easily lets the application meet its goals, with minimum
resource consumption.

B. x264

As anticipated, the x264 video encoder is a complex
application to control. It is not necessarily CPU bound during
all parts of its execution, and the encoding time for a frame
can vary. We are aware that more can be done by adding
complexity to the model, but our experiments show that
good results can be achieved if the involved parameters are
correctly tuned even with the simple model proposed herein.
In the following, two test cases are presented that refer to
different input data. The first one has normal variations in the
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Fig. 3. Results with the nominal application in abscissæ the current heart beat, while the black curve is the heart rate, the points are the number of cores
assigned before the time division output.

workload, while in the second case the application behaves
according to the three distinct phases depicted in figure 1,
and is thus more difficult to control.

Define ws as the control window size, that is related to
the control period. A control action is performed every Ts
seconds, where such period is equal to the desired amount
of time among ws subsequent heart beats, being therefore
Ts = ws/hb◦t . Typically, in a video encoding application
the desired encoding speed is 30 frames per second. The
instrumented application emits an heart beat every time a
frame is completely encoded, so the desired heart rate 30
beats per second.

Figure 4 reports the first test results. Different experiments
are conducted, with ws = 5,15,20 and the corresponding
periods equal to ws/30s. In this test case, the estimation
of the workload provided to the controller (1 second per
heartbeat on a single core machine) is higher then the
effective workload (an average value is 0.3 seconds per
heartbeat when the application is executed with a single
core). In the first plot, the measured heart rate is depicted in
black, with different window sizes. The green curve shows
the heart rate, when ws = 40 and a correct estimation of the
workload is provided. In the second plot, the corresponding
control actions are shown. As can be seen, increasing the
window size results in a more accurate but slower control
action. A slower period results in heavier disturbance, while
a larger period is preferable to limit the effects of the non-
modeled dynamics. As we expect, c(k) converges to the
desired value in all cases.

The second test case is more complicated and Figure 5
shows the experimental result obtained when the workload
estimation provided is 0.2 seconds per heartbeat, which is a
reasonable value. Two different setup results are depicted,
with ws = 20,40 and the corresponding periods equal to
ws/30s. As anticipated, in this second test case, the ap-
plication does not completely fit the proposed model and
exposes high variability. Moreover, such variability makes
it useless to increase the window size in order to obtain a
better result. This is probably due to the fact that in some of
the application phases, the relationship between the actuation
mechanism and the control signal does not hold anymore.
However, the results are still valuable as a first exploration.

VI. CONCLUSION AND FUTURE WORK

In this work the problem of controlling the resources
assigned to a software application in order for this application
to match its desired goal was considered, limiting the scope
to the core allocation mechanism. The Heartbeats framework
was exploited as a viable instrument, both for allowing
the application to express its desires and to measure its
performance in terms of how close the effective behavior
is to the desired one.

A model of the system under control was discussed,
highlighting its limitation and its advantages. The model can
be further extended including other available information. A
simple control solution was proposed, that relies on such a
model. Simplicity and computational efficiency is a merit
of the proposed research, given that every resource used
to execute the controller is effectively subtracted from the
application itself, in this case the computation time being
the controlled resource. Nonetheless, more complex control
schemes can be considered as well, considering for example
the disturbance rejection as a primary objective.

Some experimental results for the devised solution were
presented, showing that the controller behaves well for
CPU bound applications—i.e., in general, when the available
actuator is effective. It is worth noticing, from this point of
view, that the proposed control action is in principle general,
and different actuators can realize it. Future work will thus
be devoted to analyzing such solutions, in which the system
has different actuation mechanism and the controller can
dynamically chose which is the preferred one, based on the
application progresses.
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