MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Unifying Execution of Imperative and Declarative Code

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Milicevic, Aleksandar et al. “Unifying Execution of Imperative and Declarative Code.”
Proceedings of the 33rd International Conference on Software Engineering, ICSE 11, May 21-28,
2011, Honolulu, Hawaii, USA, ACM Press, 2011. 511. Web.

As Published: http://dx.doi.org/ 10.1145/1985793.1985863
Publisher: Association for Computing Machinery
Persistent URL: http://hdl.handle.net/1721.1/72084

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72084
http://creativecommons.org/licenses/by-nc-sa/3.0/

Unifying Execution of Imperative and Declarative Code

Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, Daniel Jackson
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{aleks, drayside, kuat, dnj}@csail.mit.edu

ABSTRACT imperative code is a natural choice for reading the input
parameters, populating the working data structures, setting
up the problem, and presenting the solution back to the
user. The ability to switch smoothly back and forth be-
tween declarative logic and imperative programming makes
it possible to implement this kind of program more elegantly
and with less effort on the programmer’s part.

We propose a technology that can execute declarative
specifications without requiring the programmer to write a
single line of imperative implementation. The supported
specification language is JFSL [23], an Alloy-like [11] lan-
guage, that supports first-order relational logic with transi-
tive closure, and standard Java expressions. The expressive
power of JFSL makes it easy to succinctly write complex
relational properties in terms of a program’s data structures
and reachable objects on the heap. As we shall show, in
some cases, this form of execution is competitive with hand-
written imperative code; in others, it is not, but there are
still contexts in which it makes sense to trade performance

We present a unified environment for running declarative
specifications in the context of an imperative object-oriented
programming language. Specifications are Alloy-like, writ-
ten in first-order relational logic with transitive closure, and
the imperative language is Java. By being able to mix im-
perative code with executable declarative specifications, the
user can easily express constraint problems in place, i.e.,
in terms of the existing data structures and objects on the
heap. After a solution is found, the heap is updated to reflect
the solution, so the user can continue to manipulate the pro-
gram heap in the usual imperative way. We show that this
approach is not only convenient, but, for certain problems
can also outperform a standard imperative implementation.
We also present an optimization technique that allowed us
to run our tool on heaps with almost 2000 objects.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environment; for other benefits [17].

D.2.1 [Software Engineering]: Requirements/Specifica- By being able to mix imperative code with executable
tions; D.1.2 [Programming Techniques]: Automatic Pro- declarative specifications, the user can easily express con-
gramming straint problems in place, i.e., in terms of the existing data

structures and objects on the heap. The execution engine

General Terms runs a solver when a declarative constraint is encountered,

Design, Languages and automatically updates the heap to reflect the solution.
Keywords Afterwards, the program continues to manipulate the heap

in the usual imperative way. Without such a technology,
formal methods, executable specifications, declarative pro- the standard approach is to translate the problem into the
gramming, constraint-based languages language of an external solver with specialized hand-written

code, run the solver, and then translate the solution back
1. INTRODUCTION to the native programming language using more specialized

code. This requires more work and is more error prone.
This paper presents the implementation of our frame-
work, discusses the benefits of the unified environment, and
shows several illustrative examples in which the direct ex-
ecution of a declarative specification outperforms a hand-
written imperative implementation. The framework is af-
fectionately named SQUANDER, since it squanders computa-
tional resources, running an NP-complete boolean satisfia-
bility (SAT) algorithm to execute all programs — including
those that have much lower complexity. It can be freely

SQUANDER is a framework that provides a unified envi-
ronment for writing declarative constraints and imperative
statements in the context of a single program. This is partic-
ularly useful for implementing programs that involve compu-
tations that are relatively easy to specify but hard to solve
algorithmically. In such cases, declarative constraints can
be a natural way to express the core computation, whereas

Permission to make digital or hard copies of all or part of this work for obtained from [2}

personal or classroom use is granted without fee provided that copies are Contributions of this paper include:

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to e A framework for unified execution of imperative and

republish, to post on servers or to redistribute to lists, requires prior specific declarative code, that combines an existing pre/post/in-
permission and/or a fee. :

ICSE *11, May 21-28, 2011, Honolulu, Hawaii, USA variant annotation language with a single extension
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00. (to 'magically’ execute a procedure with a specifica-

tion but containing no code), and which requires no
preprocessing and no change to the execution environ-
ment beyond inclusion of the Squander library;

e A treatment of data abstraction, using serialization
techniques, that allows specifications to reference the
state of abstract objects — in particular the collections
of the Java library, as well as user-defined datatypes —
in a representation-independent fashion;

e An optimization technique for large object heaps, that
overcomes a key problem in translation to SAT (namely
that the sheer number of potential objects leads, with
a naive encoding, to an array of SAT variables whose
highest index is greater than Java’s largest integer);

e A series of small examples, illustrating the expressive-
ness of the declarative notation, and its performance
advantages, for some puzzles and graph algorithms;

A case study, in which an existing non-trivial program
(that was previously implemented with a handwritten
encoding) was retrofitted with the new framework, as
a test of its application in a slightly larger setting.

2. EXAMPLE - SUDOKU SOLVER

As an example, consider a simple Sudoku solver. The
solver is given a partially filled puzzle (Figure 1), and is
expected to fill out the empty cells with integer values so
that the following constraints hold: (1) cell values must be in
{1,2,--- ,n} (where n is the dimension of the puzzle, n = 9
in this example); (2) all cells within a given row, column, or
sub-grid have distinct values.

1 9

6|17]19]|2 415

Figure 1: A random Sudoku puzzle

static class Cell { int val = 0; } // 0 means empty

@lnvariant(”all v: int |

v I= 0 = lone this.cells.elems.val.v")
static class CellGroup {
Cell [] cells;

public CellGroup(int n) {this.cells=new Cell[n];}}

public class Sudoku {

CellGroup [] rows, cols, grids; int n;

public Sudoku(int n) { init(n); }

Q@Ensures(”all c:Cell | c.val>0 && c.val<=this.n")
@Modifies (" Cell.val [{c:Cell | c.val = 0}]")

public void solve() { Squander.exe(this); }}

Listing 1: Sudoku Specification

A suitable Java data model for this problem is given in
Listing 1; ignore the annotations for now. A CellGroup con-
tains an array of Cells with no duplicate values; overlapping
CellGroups are then defined in the class Sudoku for each row,
column and sub-grid. The init () method (invoked from the

Sudoku’s constructor) has the task of creating exactly n x n
Cell objects, n + n + n CellGroup objects, and properly es-
tablishing the sharing of Cells between CellGroups.

Now, onto the solving part. The invariant for CellGroups,
given above, can be expressed in a single line of JFSL (List-
ing 1, eInvariant annotation). It says that for all integer val-
ues v different from 0, select all Cell objects from the Cell-
Group.cells field with the value v (this.cells.elems.value.v),
and ensure that their count is either 0 or 1 (lone).

Class invariants assert properties of all members of a class,
but cannot be executed per se. To establish an executable
constraint, we define a standard Java method and annotate
it with a specification, which includes:

e a precondition (@Requires), on the state before method
invocation, assumed true if not specified;

e a postcondition (@Ensures), on the state after the method
has been executed;

e a frame condition (@Modifies), indicating what parts
of the state the method is allowed to modify.

In this case, the specification for the solve() method sim-
ply says that in the post-state (i.e. after the method has
been executed by SQUANDER), all cells must be filled out
with non-zero values. The frame condition limits modifi-
cations to those Cell.value fields that are currently empty
([{c: Cell | c.value == 0}]), since we don’t want to mod-
ify values given up-front. These constraints, implicitly con-
joined with the class invariant, are sufficient to solve the Su-
doku puzzle. The method body is simply a call to a utility
method, namely Squander.exe, which invokes the solver and
attempts to satisfy the specification, by updating the cell
values. Following execution of solve, assuming a solution
is found, the program may proceed to, for example, print
out the solved puzzle, using the usual imperative paradigm.
Otherwise, an exception is thrown to signal that the speci-
fication could not be satisfied.

3. BACKGROUND
3.1 Kodkod - A Solver for Relational Logic

Kodkod [21] is a constraint solver for relational logic. It
takes a relational formula to be solved, along with definitions
of a set of untyped relations, consisting of bounds for each
relation, and a bounded universe of atoms from which the
relations in the solution are populated. It translates the
formula to a boolean satisfiability problem and applies an
off-the-shelf SAT solver to search for a satisfying solution,
which, if found, is translated back to the relational domain.

Relations in Kodkod are untyped, meaning that every re-
lation can potentially contain any tuple drawn from the fi-
nite universe. The actual set of tuples that a relation may
contain is defined through Kodkod bounds. Two bounds
need to be specified: lower bound to define tuples that a re-
lation must contain, and upper bound to define tuples that
a relation may contain. The size of these bounds is what
primarily influences the search time — the fewer tuples there
are in the difference of the upper and the lower bound, the
smaller the search space, the faster the solving.

3.2 JFSL - JForge Specification Language

JFSL [23] is a formal specification language for Java. As
in Alloy, all expressions evaluate to relations. JFSL provides

common relational algebra operators: join (.), transpose (~),
tuple constructor (->), transitive closure (~), and reflexive
transitive closure (%), as well as set algebra operators: union
(+), difference (-), and intersection (&).

Like in Java, the universe of discourse consists of Java
objects, null, and primitive values. Each type corresponds
to a set of objects of exactly that type (e.g. int is the
set of all primitive integers, while Object is the set of all
instances of class Object, excluding subclasses). Each field
is treated as a binary relation from its declarer type to its
value type. The value type is represented by a union of the
concrete types that are assignable from the field’s declared
type. An array type T[] is represented with a ternary rela-
tion elems of type T[1->int->(T+Null). The bracket operator
is conveniently treated as a left join, so a[b] is equivalent to
b.(a.elems) if a is an array or b.a, otherwise. Formulas are
built from expressions using boolean algebra, the cardinality
operator (#)), set comprehensions (e.g. {x:T | P(x)}), and
quantifications (e.g. all x:T | P(x)).

JFSL specifications are written as Java annotations. Be-
sides the already mentioned @Invariant, @Requires, @Ensures,
and @Modifies clauses, JF'SL provides support for specifica-
tion fields via the @SpecField annotation. Definition of a
specification field consists of the type declaration, and op-
tionally an abstraction function, which defines how the field
value is computed in terms of other fields. For example,
@SpecField("x: one int | x = this.y - this.z") defines a
singleton integer field x, the value of which must be equal to
the difference of y and z. Specifications fields are inherited
from super-types and sub-types can override the abstraction
function (by simply redefining it) — this is particularly useful
for specifying abstract datatypes, such as Java collections.

The frame condition has an important role in precisely
specifying the effects of a method. It takes the form @Modi-
fies("f [s][ul"), with three parts. The first, and the only
mandatory part, is the name of the modifiable field, £. It is
optionally followed by the instance selector (s) which spec-
ifies instances for which the field may be modified (taken
to be “all” if not specified), and the upper bound (u) of the
modification (taken to be the full extent of the field’s type
if not specified). In the Sudoku example (Listing 1) we used
an instance selector to specify that only the empty cells may
be modified. In SQUANDER, the instance selector provides
the only mean of specifying the modifiable instances. If for
some reason we wanted to additionally constrain the values
that may be assigned to the cells, we could either add con-
straints to the @Ensures clause or use the upper bound clause
of the frame condition. The difference is that the former is
less efficient: the frame condition’s upper bound is trans-
lated directly to Kodkod bounds, which shrinks the search
space at the beginning of the search, as opposed to leaving
it large and constraining the search by adding more rules.

4. FROM OBJECTS TO RELATIONS

SQUANDER execution begins when the utility method Squan-
der.exe() is called by the client code, and involves the fol-
lowing steps:

e Assembling the relevant constraints, from the anno-
tations comprising the method’s specification, as well
as class annotations corresponding to invariants of all
relevant classes (determined by a traversal of the heap
from the receiver object);

e Construction of relations representing the values of ob-
jects and their fields in the pre-state, and additional
relations for modifiable fields to hold their values in
the post-state, along with their Kodkod bounds;

e Parsing of the constraints and conversion to a single
relational formula (handed to Kodkod for solving);

e If a solution is found, translation of the Kodkod re-
sult objects into updates of the Java heap state, by
modification of the object fields.

4.1 Heap Traversal and Object Serialization

The first concern for SQUANDER is discovering the reach-
able portion of the heap. The traversal algorithm is a stan-
dard breath-first algorithm (although depth-first would suf-
fice too), starting from a given set of root objects (the caller
instance plus method arguments) and repeatedly visiting all
children until all reachable objects have been visited. The
interesting part is how to enumerate children, i.e., how to
serialize a given object into a set of field values.

SQUANDER provides a generic mechanism that allows for
different object serializers based on the object’s class. For
example, the default object serializer simply returns values
of an object’s fields. This behavior is good in many cases,
including user-defined classes. However, when serializing ab-
stract types — such as an object of type java.util.Set — we
would like to return only the members of the set, excluding
objects that are artifacts of the representation (such as hash
buckets). An abstraction function is needed to separate the
actual content from the internal representation, and this is
exactly what object serializers provide. Similarly, they also
provide concretization functions that are used to restore an
object’s state from a given set of abstract values returned
by the solver. Through this mechanism, SQUANDER provides
support for Java collections and Java arrays (more details
in Section 6), and allows users to easily customize behavior
for user-defined abstractions.

4.1.1 Keeping Track of Type Parameters

Java collection classes make extensive use of parametric
types (also called “generics” in Java terminology). This al-
lows the programmer to indicate the type of objects a col-
lection may contain, e.g. a set of nodes (Set<Node>) rather
than a set of arbitrary objects (Set). Unfortunately, though,
since generics were a late addition to Java, they are imple-
mented using type erasure, and the parameter information is
only available at compile time. For ease of use, SQUANDER
is a runtime mechanism that uses the standard JVM, so it
has no access to the compile-time type information.

Knowing the exact types of objects, including type pa-
rameters, is important. One reason is that we don’t want to
have to write explicit casts in our specifications every time
we refer to an element of a collection (as one must do in
Java when not using generics). Other reasons are mainly
concerned about performance: without knowing the type
parameter, the extent of the elements of a set is the set of
all objects on the heap. If the set is actually a set of integers,
than the actual extent is much smaller, which would result
in a smaller bound if the set was modifiable (see Section 4.4),
which may dramatically improve Kodkod’s running time.

Java reflection does, however, provide static types of fields
and method parameters, which include type parameter in-
formation. Say there is a field declared as Set<Node> nodes;
the fact that the field is a “set of Nodes” can be obtained at

runtime. Consequently, if we know that some object obj was
read as a value of the field nodes, we can conclude that the
type of obj is actually Set<Node>. Almost all objects during
the heap traversal are discovered by reading field values. It is
only the caller instance whose origin is not known; all other
objects are either passed as method parameters or read as
field values, so complete type information can be obtained
for all objects but the root.

4.2 Reading, Parsing and Type Checking JFSL

When a new class is discovered during heap traversal, its
specification is obtained by reflection. The specification of a
class includes class invariants (@Invariant) and specification
fields (eSpecField). These can be specified either directly in
the source file using Java annotations or through a special
spec file, which must be found in the classpath and whose
name must correspond to its target class’s full name. Next,
text-based specifications are parsed and type-checked (e.g.
to make sure that all identifiers can be resolved to actual
classes/fields in the program, and that expressions have ex-
pected types, etc.) and eventually translated into relational
expressions. For most of this task, SQUANDER borrows func-
tionality from JForge [23].

4.3 Example of a Translation

To illustrate translation, we’ll first give an example even
simpler than the Sudoku example from Section 2. After-
wards, we’ll define the translation process more formally.

Consider an insertion into a binary search tree. For the
purpose of translation, we don’t need to give either the full
specification or the full source code listing, since the struc-
ture of the heap alone is sufficient to explain most of the
details. The class BST contains a single pointer to the root
node, and the Node class contains pointers to left and right
sub-trees, as well as a single integer value (through the field
key). The snapshot shown in Figure 2 gives an example of a
heap consisting of a tree t (in the class BST), four node ob-
jects (of which only three are reachable), and four key values.
When a node is inserted, all node pointers may potentially
be modified, so the specification for the insert method de-
clares fields root, left, and right as modifiable.

The resulting set of relations is shown in Table 1. Re-
lations in the upper section are unary, given relations, and
represent objects found on the heap. The middle section
contains relations that are also given, because they are used
to either represent unmodifiable fields or values in the pre-
state of modifiable fields. Finally, the relations in the bottom
section represent the post-state of modifiable fields; these
are the relations for which the solver will attempt to find
appropriate values.

By default, the lower bound is an empty set and the upper
bound is the extent of the field’s type. Note, however, that
SQUANDER also allows the users to tighten these bounds by
specifying the exact objects that are allowed to be modified
(using the instance selector clause of the frame condition, as
defined in Section 3.2). For example, for the relation left,
it is easy to specify in JFSL that the only left pointers that
may be modified are those of nodes whose left pointers are
currently set to null. As previously reported by Samimi et
al. [18], this can lead to a significant speed-up in certain
cases. To control the scope of the modification more finely,
SQUANDER additionally allows the users to constrain the set

of possible values for a field, by using the upper bound clause
of the frame condition.

right

left [y
Figure 2: A snapshot for the pre-state of t.insert(z)

=
o
o
(0]

BST1: {t1} N3: {n3} BST_this: {t1}

N1: {n1} | N4: {n4} z: {na}

N2: {n2} | null: {null} | ints: {0,1,5,6}
key: {(n1 — 5),(n2 = 0), (ng — 6),(ng — 1)}

root_pre: {(t1 — n1)}

left_pre: {(n1 — n2),(n2 — null), (ng = null), (ng — null)}
right_pre: {(n1 — n3), (n2 — null), (ng = null), (na — null)}
root: {}, {ti} x {n1,n2,n3,na}

left: {}, {ni,n2,n3,n4} x {n1,n2,n3,n4}

right: {}, {n1,n2,n3,n4} x {n1,n2,n3,n4}

Table 1: Translation of the heap from Figure 2 to
bounds (a single exact bound or a pair of lower/up-
per bounds)

4.4 Defining Relations and Bounds

The translation does not use all fields, but rather considers
only relevant fields, i.e. those that are explicitly mentioned
in the specification for the current method. Similarly, not
all reachable objects are needed; only objects reachable by
following the relevant fields are included in the translation.
These objects will be referred to as literals.

First we define a finite universe consisting of all literals
(and integers) within the bound. For every literal, a unary
relation is created. These relations are constant, i.e. they
are given an exact bound (lower and upper bounds are equal)
of a single unary tuple containing the corresponding literal.

For each Java type, one could either create a relation (with
appropriate bounds so that it contains the known literals),
or one could construct a relational expression denoting the
union of relations corresponding to all instance literals of
that type. In our implementation, we took the former ap-
proach, since it results in more readable expressions (which
helps in debugging) and has no performance impact.

For every field (including specification fields), a relation
of type f1d.declType — fld.type' is created to hold assign-
ments of field values to objects. If the field is modifiable
(inferred from its mention in a @Modifies clause), an addi-
tional relation is created, with the suffix “pre” appended to
denote the pre-state value. Relations for unmodifiable fields
are given an exact bound that reflects the current state of the
heap. For the modifiable relations, the “pre” relation is given
the same exact bound, and the “post” relation is bounded so
that it may contain any tuple permitted by the field’s type.
Local variables, such as this, return, and method arguments
are treated similarly to literals.

Table 2 summarizes how relations and bounds are cre-
ated. Function rel takes a Java element and, depending
on whether the element is modifiable, returns either one or
two relations (the “[1” notation means “list of”, and R is

Lt1d.declType is the declaring class of £1d

the constructor for relations, taking a name and a type for
the relation). Function bound takes a Java element and its
corresponding relation, and returns a bound for the rela-
tion. The Bound data type contains both lower and upper
bounds. If only one expression is passed to its constructor
(B), both bounds are set to that value. Helper functions
is_mod, is_post and fldval are used to check whether a field
is modifiable, to check whether a relation refers to the post-
state, and to return a literal that corresponds to the value
of a given field of a given literal, respectively.

[rel :: Element — [Relation] |

rel (Literal lit) [R(lit.name, lit.type)]
rel (Type t) [R(t.name, t)]
rel (Field fld)
if is_mod(fld)
[R(fld.name, fid.deciType — fld.type)] ++
[R(fld.name + “_pre”, fld.declType — fld.type)]
else
[R(f.name, f.declType — f.type)]
rel (Local var) = [R(var.name, var.type)]

[bound :: Element, Relation — Bound |

bound (Literal lit) (Relation r) B(lit)
bound (Type t) (Relation r) Ulit<¢ B(lit)
bound (Field fld) (Relation r)
if is_mod(fld) A is_post(r)
B({}, ext(fld.declType x fid.type))

else
B(Ulit: Object lit x ﬁdval(lit, ﬂd))
bound (Return ret) (Relation r) = B({}, ext(ret.type))
bound (Local var) (Relation r) = B(var)
[ext :: [Type] — Expression (helper) |
oxt [=0
ext (t: []) = Ulit<:¢lit
ext (t : xs) = extt X ext xs

Table 2: Translation of different Java constructs into
relations (function rel) and bounds (function bound)

4.5 Restoring the Java Heap State

After running Kodkod to search for a solution, the Java
heap state must be updated to reflect the outcome of the
search. If Kodkod reports that a solution could not be
found, SQUANDER simply throws an exception, which can
be caught and handled by the client code. If there exist
multiple solutions to the given problem, Kodkod will non-
deterministically return one?. The solution is then restored
to the Java heap by modification of the object fields through
reflection. Finally, execution returns to the client code.

The process of restoring the heap is straightforward. Dur-
ing the translation to Kodkod, SQUANDER saves the mapping
from Java objects to Kodkod atoms and from Java fields to
Kodkod relations. Therefore, a Kodkod solution, containing
values of all relations in the form of tuples of atoms, can be
directly mapped back to the values of Java fields.

5. MINIMIZING THE UNIVERSE SIZE

To represent a relation r of arity k, Kodkod allocates a
matrix of size n®, where n is the number of atoms in the
universe. For performance reasons, Kodkod uses a single

?Kodkod can also enumerate all possible solutions (one at a
time) and that functionality is exported by SQUANDER. This
feature is for example useful for generating test instances
that satisfy a certain property.

sequential array indexed by a Java integer, and so the size
of the matrix is limited to the largest integer values in Java
(Integer.MAX_VALUE). Consequently, if the universe contains
1291 atoms or more, the matrix for a ternary relation would
contain at least 1291% cells, which would exceed the size
limit, so the relation could not be represented in Kodkod.

In practice, this can be a problem. SQUANDER makes fre-
quent use of ternary relations (e.g. for representing arrays,
lists and maps), and heaps with more than 1290 objects are
not uncommon for problems that we would like to be able
to solve with SQUANDER, so a simple translation like the one
described in Section 4.4 (which simply creates a new atom
for every object it finds on the heap) is not feasible. As an
illustration, in our case study on a course scheduling applica-
tion for the MIT undergraduate degree program (explained
in Section 8), the heap contains more than 1900 objects.

5.1 “KodkodPart” Translation

Our KodkodPart translation achieves a universe with fewer
atoms by establishing a mapping from Java objects (also
called literals, as in Section 4.4) to Kodkod atoms that is
not necessarily an injective function. In other words, multi-
ple literals are allowed to map to a single atom, so that there
can be fewer atoms than literals. The key requirement is,
however, that there exists (in the larger context) an inverse
function from atoms back to literals, so that the heap can
be properly restored after a solution has been found. This
inverse function, we will see, can be contructed with the help
of available type information.

Consider the tree insertion example, shown in Figure 2.
Domains D, literals £, and assignments of literals to domains
v : D — P(L) for this example are summarized in Table 3.

D = {BST, Node, Null, Integer}

L = {bst1, n1, na, ns, na, null, 0, 1, 5, 6}
~v(BST) = {bst1} v(Node) = {ni, n2, ns, na }
v(Nu1l) = {null} ~(Integer) ={0, 1, 5, 6}

Table 3: Summary of domains and instances

Recall that field types are represented as unions of base
types (in this section also called partitions). For instance,
the type of the field BST.root is BST — Node U Null, because
values of this field can be either instances of Node or the
null constant. That means that all objects of class Node
plus the constant null must be mapped to different atoms,
so that it is possible to unambiguously restore the value of
the field root. This is the basic idea behind the KodkodPart
translation: all literals within any given partition must be
mapped to different atoms, whereas literals not belonging to
a common partition may share atoms. The inversion func-
tion can then work as follows: for a given atom, first select
the correct partition based on the type of the field being re-
stored, then unambiguously select the corresponding literal
from that partition.

To complete the example, the set of all unary types used
in the specification for this example is:

T = {BST, BST U Null, Node, Node UNull, Null, Integer}

This set is discovered simply by keeping track of types of
all relations created for Java fields, and it automatically be-
comes the set of partitions. A valid assignment of atoms to
literals that uses only 5 atoms, as opposed to 10 which is
how many the original translation would use, could be:

bstl — aop
null — aq

niy — ao
0— ao

ng — ai
1—a

n3g — az
5 — as

ng — as
6 — a3

5.2 Partitioning Algorithm

For a given set of base domains D, literals £, and parti-
tions 7 (7 is of type P(D)), and a given function y : D —
P(L) that maps domains to their instance literals, this algo-
rithm produces a set of atoms A and a function o : £ — A,
so that for every partition p, function « returns different
values for all instance literals of p. Formally:

(Vp € T)(Vll,lz € @Z)(p)) h#l, = Cl(ll) #* Oé(lz)

where 1 is a function that for a given partition returns a
comprehension of all instance literals of all of its domains:

YT —=P(L); P(p)={v(d)|dep}

Obviously, a simple bijection would satisfy this specifi-
cation, but such a solution wouldn’t achieve its main goal,
which is to minimize the number of atoms, because the num-
ber of atoms in this case would be exactly the same as the
number of literals. In order to specify solutions that actually
improve performance, we require the algorithm to produce
a result that minimizes the cardinality of A (i.e. the total
number of atoms).

In summary, the algorithm works as follows:

1. Dependencies between domains are computed. A do-
main depends on all domains with which it shares a
partition. Let the function § : D — P(D) express this:

d(d)y={dr|dr #dN((BpeT)d €p)}
2. The largest partition ppmaqz is found such that

(BpeT))| > Y(Pmaz)l

3. For every literal | in 9(pmaz) an atom a is created, it
is added to the universe A and assigned to [, so that
a(l) = a. From this point onwards, A is fixed.

4. For every other partition p iteratively, for all literals
I, € ¥(p) that do not already have an atom assigned,
a set of possible atoms A;, is computed and the first
value from this set is assigned to [,. Alp is obtained
when atoms corresponding to all literals of all depen-
dent domains is subtracted from .A.

For a discussion of why it is sufficient to simply find the
largest partition and allocate that many atoms, see [14, §4.2]

A limitation of this technique is that, if the class Object
is used as a field type, or anywhere in the specification, it
will result in one big partition containing all literals (be-
cause every class is a subclass of Object), so that the result
is equivalent to the original translation. Similarly, if there
exists a single partition with more than 1290 literals, the
problem will still be unrepresentable.

6. USER-DEFINED ABSTRACTIONS FOR
LIBRARY TYPES

When specifying a program, we would like to be able to
refer to the content of library types, to iterate over the ele-
ments of a Java set, for example. Clearly we do not wish to
expose to the internals of the various Set implementations,
so we cannot write declarative statements that directly refer
to the fields of HashSet, for example. We also do not want

our specification to depend on a concrete implementation
of these classes. This is a common problem, and SQUAN-
DER provides a generic solution by letting the users write
abstraction and concretization functions for library classes.

The task of supporting an arbitrary third party class con-
sists of (1) writing a .jfspec file with abstract field defini-
tions, and (2) writing an object serializer, as an implemen-
tation of the I0bjSer interface that provides abstraction and
concretization functions for the abstract fields.

The .jfspec files are written in JFSL. They contain ab-
stract fields (the same @SpecField annotation is used) and
invariants (@Invariant). Some abstract fields may have only
a type declaration, whereas others may also be given an
abstraction function (written in JFSL), expressed in terms
of the existing fields. The accompanying object serializer
must provide concrete implementations of abstraction and
concretization functions for only those abstract fields not al-
ready having an abstraction function defined in the .jfspec
file. The abstraction function (absFunc) takes a concrete ob-
ject and returns values of its abstract fields. The concretiza-
tion function (concrFunc) takes a concrete object and a value
of an abstract field, and is expected to restore that value to
the concrete object, by mutation. The code for serializers is
straightforward and is omitted for lack of space.

SQUANDER provides built-in support for Java collections
and Java arrays through this mechanism.

6.1 Specification for Java Sets and Maps

The abstract representation of a set is a set of elements,
which is captured in a single SpecField named elts; simi-
larly for maps, a binary relation also named elts is used to
represent the mapping from keys to values (Listing 2). Addi-
tional fields (size, keys, vals) are defined for convenience; an
abstraction functions is also provided so that the serializer
is not required to implement abstraction and concretization
functions for them. Additionally, an invariant is specified
for maps constrain each key to map to at most one value.

interface Set<kK> {
@SpecField("elts: set K")
@SpecField("size: one int| this.size=#this.elts”)}

interface Map<K,V> {

@SpecField("elts: K —> V")

@SpecField("size: one int | this.size = #this.elts")
@SpecField("keys: set K | this.keys = this.elts.(V)")
@SpecField("vals: set V | this.vals = this.elts[K]")
@lnvariant ({

"all k: K| k in this.elts.V => one this.elts[k]"})}

Listing 2: Specification for Set and Map

6.2 Specifications for Java Lists and Arrays

To capture the abstract representation of a list, we again
declare a single field, again named elts, but of type int->E
(Listing 3). This time, however, we must include an addi-
tional constraint to ensure that these fields represent a valid
list: there should be exactly one element for every index
from 0 (inclusive) to the size of the list (exclusive), and no
elements at any other index. We write this constraint as an
invariant in the same jfspec file. As before, we define field
size to represent the number of elements in the list. Finally,
we define an extra field, prev, defining the reverse ordering,
whose use is illustrated in the case study described later.
The abstraction function for this field makes use of a con-
stant relation, namely DEC, which is built-in to SQUANDER

and evaluates to all pairs {¢,7 — 1}, where both ¢ and ¢ — 1
are integers drawn from the finite universe.

Java arrays are likewise supported through this mecha-
nism, and their specification is almost identical to that given
in Listing 3. This mechanism automatically supports multi-
dimensional arrays, because in Java, multi-dimensional ar-
rays are simply arrays of arrays, and our mechanism for
defining specifications is inherently compositional.

graphs size, we ran the experiment on 10 different graphs
of that size, measured the execution times, and calculated
the average. All experiments included 2 warmup runs to
neutralize possible effects of class loading, etc.

interface List<E> {
@SpecField("elts: int —> E”)
@SpecField("size: one int | this.size = #this.elts"”)
@SpecField("prev : E—> E
this.prev = ("this.elts) . DEC . (this.elts)")
@lnvariant("all i: int | (i >= 0 && i < this.size)
? one this.elts[i] : no this.elts[i]")}

public class Graph {

public static class Node { int value; }

public static class Edge { Node src, dst; }
private Set<Node> nodes; private Set<Edge> edges;

@Ensures({"return[int] in this.edges.elts”,
"return[int].(src + dst) = this.nodes.elts”,
"return.length = #this.nodes.elts — 1",

"all i : int | i >=0&& i < return.length — 1 =
return[i].dst = return[i+1].src” })

@Modifies({"return.length”, "return.elems”})

@FreshObjects(cls = Edge[].class, num = 1)
public Edge[] hp() { return Squander.exe(this); }}

Listing 3: Specification for List

7. EXAMPLES AND EVALUATION

In this section we demonstrate how our framework is effi-
cient enough to be used — at least in some cases — as a pri-
mary implementation mechanism, where, in contrast, pre-
vious uses of solving during execution have focused on spe-
cialized applications (such as redundant computation as a
fallback [18], or for exploring behavior in the early stages of
the development process [17]).

7.1 Solving Hard Problems

If a problem is solvable in polynomial time, a careful man-
ual implementation is likely to outperform a SQUANDER im-
plementation. But if the problem itself is difficult, a solution
with SQUANDER may turn out — due to the efficiency of SAT
solvers — to perform better than a hand-written algorithm.

Of course, SQUANDER will not always offer the most effi-
cient solution; most of these problems have been well stud-
ied, and highly specialized heuristics have been developed
for solving them. Nevertheless, it is perhaps surprising how
competitive a SAT-based solution is — even including SQUAN-
DER’s overhead of encoding and decoding — with many hand-
written solutions. For our comparison, we used standard
textbook solutions to the benchmark problems, which are
typically based on backtracking with pruning. In Tables 4
and 5 we give total running time of our tool (Squander),
translation time to Kodkod (tTransl), translation time from
Kodkod to CNF (tKodkod) and SAT solving time (tSAT).

7.1.1 “Hamiltonian Path” Algorithm

A Hamiltonian path in a graph is one that visits each node
in the graph exactly once. Listing 4 shows both the data rep-
resentation that we used for graphs and the specification for
this problem. To find a solution, the framework must create
a fresh array of nodes to hold the result; this is specified
explicitly using the @FreshObjects annotation. The specifi-
cation asserts that the returned path contains all nodes in
the graph, and that for every two consecutive nodes in the
path, there exists an edge between them in the graph.

The textbook backtracking algorithm uses an adjacency
matrix to represent a graph. We took this particular imple-
mentation from the web site of the Cornell course on Algo-
rithms and Data Structures [1].

In our experiment, we generated two categories of directed
graphs: (1) graphs without any Hamiltonian paths, and (2)
graphs containing one or more Hamiltonian paths. For each

Listing 4: Hamiltonian Path specification
The following procedure was used to generate graphs:

1. generate and add n nodes to the graph

2. generate a random permutation of nodes and add edges
between the neighboring nodes in the permutation, in-
cluding the edge between the last and the first node.
At this point, the graph contains a Hamiltonian cycle.

3. randomly choose a number between 30 and 90 percent
of the maximum number of nodes (n(n+ 1)) and keep
adding random edges until the number of edges in the
graph is equal to the chosen number.

4. randomly choose a node and remove all its incoming
edges. At this point, the graph still contains at least
one Hamiltonian path, the one that starts from the
node selected in this step.

5. if the goal is to generate graphs with no Hamiltonian
paths, remove all outgoing edges of the node selected
in the previous step.

The results are shown in Table 4. For the manual imple-
mentation, establishing the absence of a Hamiltonian path
is harder than finding one (if it exists), since this requires
exploring all paths from the first node (i.e. whichever node
it chooses first). Sometimes, it can happen that the first
node has no outgoing edges, in which case the manual al-
gorithm terminates instantly, but on average, the problem
becomes hard for a random graph with 15 or more nodes.
In contrast, the boolean solver seems to easily locate the
isolated node, no matter where it is found in the graph, and
can thus prove nonexistence of a Hamiltonian path more
easily. Finding a path when one exists is harder, but on
average, the declarative solution still scales better than the
backtracking algorithm.

7.1.2 The N-Queens Problem

The problem of N-Queens involves placing N queens on
an N x N chess board so that no queen can take any of
the others. E. W. Dijkstra, in his book on structured pro-
gramming [7], describes a backtracking solution with prun-
ing, which we implemented in Java for the purpose of our
experiment. This algorithm keeps track of rows, columns
and diagonals that have been taken by the queens already
placed on the board, so every time it has to pick a position
for the next queen, it avoids all conflicting cells, thus prun-
ing a large portion of the search space. (There is a known
polynomial time algorithm for N-Queens [20], which first
guesses a solution, and then performs a local search using a

Graphs without Hamiltonian paths Graphs with Hamiltonian paths
10 14 15 20 25 30 | 35 40 10 14 15 20 25 30 35 | 40
Manual 0.02 | 96.92 | t/o | t/o | t/o | t/o | t/o | t/o || 0.01 | 50.17 | 214.96 | t/o | t/o | t/o | t/o | t/o
Squander | 0.19 | 0.29 | 0.28 | 0.37 | 0.57 | 1.2 | 1.8 | 3.59 || 0.22 | 0.45 0.31 0.87 | 8.76 | 98.08 | t/o | t/o
tTransl | 0.10 | 0.10 | 0.12 | 0.12 | 0.11 | 0.12 | 0.14 | 0.20 || 0.12 | 0.20 0.15 0.20 | 0.38 | 083 | t/o | t/o
tKodkod 0.09 0.18 0.15 0.24 0.43 1.01 1.49 3.07 0.1 0.18 0.12 0.18 0.53 1.05 t/o t/o
tSAT 0.0 0.01 0.01 0.01 0.03 0.07 | 0.17 0.32 0.0 0.07 0.04 0.49 7.85 96.2 t/o t/o

Table 4: Hamiltonian path execution times

gradient-based heuristic to move certain queens around until
all conflicts have been resolved.)

@Requires("result.length = n")

@Ensures ({

"all k: int | k>=0 && k<n => lone (Cell@i) k",
"all k: int | k>=0 && k<n => lone (Cell@j) k",
"all ql: result.elts | no q2: result.elts — ql|"+
" ql.i =q2.i || ql.i —ql.j =q2.i — q2.j ||"+
"oaql.j=92.j || ql.i +ql.j =q2.i +q2.j" })
@Modifies ({

"Cell.i [][{k: int | k>=0 && k<n}]",

"Cell.j [][{k: int | k>=0 && k<n}]" })

public static void nqueens(int n, Set<Cell> result)

Listing 5: NQueens Specification

Listing 5 gives the specification for N-Queens. The nqueens
method takes an integer n, and a set already containing ex-
actly n cel1® objects, and is expected to modify the coor-
dinates of the given cells so that they represent a valid po-
sitioning of n queens.* The frame condition specifies that
only cell coordinates are modifiable. The two bracketed
subexpressions respectively mean that: (1) all Cell instances
are modifiable, (2) the upper bound is {0, -+ ,n — 1} (val-
ues for cell coordinates). In the post-condition, the third
“all” clause asserts that no two different cells (queens) in
the resulting set may be in the same row, column or either
diagonal. The first two universal quantifier clauses are re-
dundant; they state that every row and every column must
contain exactly one Cell object, which follows from the third
constraint. Even though they are not required for correct
execution, redundant constraints often (as here) improve the
performance of the solver. To improve clarity, we could in-
troduce a special annotation, e.g. @AdviceSpec, to hold such
redundant constraints which don’t add anything new to the
problem specification, but only help the performance.

n=| 16 28 32 34 36 68
Manual 0.01 | 0.49 | 15.94 | 428.94 | t/o t/o
Squander | 0.64 | 4.88 | 10.32 | 11.58 | 16.02 | 269.09

tTransl 0.18 0.57 0.93 1.1 1.34 17.57
tKodkod 0.38 1.45 2.59 3.08 3.54 32.71
tSAT 0.08 2.86 6.8 7.4 11.14 218.81

Table 5: N-Queens execution times (in seconds)

3cell is a simple wrapper class for i and j coordinates of
the chess board.

4The reason why this method takes a set of cells (as opposed
to creating a new set with n Cells in it) is non-essential:
SQUANDER can’t arbitrarily create new objects; instead it
requires the user to explicitly pass the number of new objects
via FreshObjects annotations. Unfortunately, annotations
cannot take variables as arguments, only constants.

Table 5 shows results for different values of n. For smaller
values (up to 28), the (manual) backtracking algorithm per-
forms better (although SQUANDER’s performance is not ter-
rible). For larger values of n, SQUANDER scales considerably
better. It computes a solution for 54 queens in 89 seconds,
whereas the manual algorithm begins to time out (that is,
exceed the five minute limit we set) at only 34 queens.

8. COURSE SCHEDULER CASE STUDY

As a larger case study, we re-implemented an existing
application — a course scheduler that helps students select
courses to complete graduation requirements. Given a stu-
dent’s current standing, it finds a path to graduation that
meets the program requirements for the undergraduate de-
gree in EECS at MIT. The MIT program offers around 300
courses, defines prerequisites for more than 150 courses, and
also specifies some additional requirements (e.g. manda-
tory courses, selections of multiple options from groups of
courses, etc). The original implementation [24] used the
Kodkod [21] constraint solver directly via its API.

About 1500 lines of code were written to translate the stu-
dent’s standing and the set of MIT requirements to relational
constraints, run Kodkod to find a solution, and finally trans-
late the Kodkod solution back to the original data struc-
tures. It is these lines of code that SQUANDER is intended to
eliminate. Conceptually, the complexity of coming up with
correct specification for the problem remains the same; the
difference is that the user can now write about 30 lines of
human-readable specifications, instead of manually writing
1500 lines of code to walk the heap, construct all the Kod-
kod relations, create all the constraints through the Kodkod
API, and finally restore the solution onto the heap.

The goal of this case study was to assess the usability of
SQUANDER on a real world program, whose core lies in solv-
ing a constraint problem. A key goal was to make minimal
changes to the existing data structures of the original appli-
cation, so that the rest of the application (e.g. GUI, I/0,
etc.) might be reused without modification.

SQUANDER’s built-in abstractions for collection classes,
used extensively in the data model, were essential in reduc-
ing the annotation burden. We had to annotate user-defined
classes with invariants, define additional specification fields
when necessary, and introduce a single new method (solve),
with a specification capturing the course requirements.

A second goal was to show that the framework could scale
to a large heap. The novel translation presented in Section 5
enabled us to handle heaps with almost 2000 objects. The
time it takes SQUANDER to find a solution for a problem of
this size is less than 5 seconds. The original implementation
still runs faster (it takes about 1 second) but the cost of its
development was much higher.

@lInvariant ({
/* for all courses,

prereqs must be taken in the previous

semesters */

"this.prereqUsed.elts.elts in (("this.sCourses.elts.elts).("(this.semesters.prev)).(this.sCourses.elts.elts))”,

/* include prerequisites for courses x/

"(this.sCourses.vals.elts & PrereqMap.prereqs.keys) in this.prereqUsed.keys"”,

/% course and semester attributes match x/

"all sem: Semester | this.sCourses.elts[sem].elts.attributes.elts in sem.attributes.elts”,
/* don’'t skip semesters x/
"all sem: Semester | some this.sCourses.elts[sem].elts &&
Ithis.semesters.prev[sem].isPast => some this.sCourses.elts[this.semesters.prev[sem]]. elts”,

/* don’t assign courses more than once x/

"all sem: Semester | no (this.sCourses.elts[sem].elts & this.sCourses.elts[Semester — sem]. elts)"”,

/* don’t add "null” %/

"null lin this.sCourses.vals.elts"})
public class Schedule {

private List<Semester> semesters;

private Map<Semester, Set<Course>> sCourses; private Map<Course, Set<Course>> prereqUsed; }

public class Problem {

private DegreeProgram dp; private Schedule schedule;
@Ensures ({
"all req

private Set<Requirement> additionalReqs;

this.additionalReqs.elts + this.dp.groupings.elts.groupingReqs.elts | req.cond”,

"this.dp.rootGrouping.courses.elts in this.schedule.sCourses.vals.elts” })

@Modifies ({

/+ modify "semester to set of courses” map, but don't change the mapping for "past” semesters x*/

"this.schedule.sCourses.vals.elts [{st : java.util.Set<Course> | no sem

Semester |

sem.isPast && ((sem—>st) in this.schedule.sCourses.elts)}]”

/+ modify the used prerequisites map */

"this.schedule.prereqUsed.elts [] [] [PrereqMap.prereqs.elts.elts]”,

public void solve() { Squander.exe(this); }}

Listing 6: Partial specification for the course scheduler

8.1 Specification

The total number of lines of specification we wrote for this
case study was less than 30. Here, we illustrate only the most
interesting portion; the rest can be found in [14, ch. §].

Class Schedule is the primary class. It contains a list
of semesters (given in advance and not to be modified),
and a mapping from semesters to courses (sCourses) to be
computed. It may contain some existing assignments (e.g.
courses already taken) which are not to be modified. Course
prerequisites are defined (in disjunctive normal form) as sets
of sets of courses, with an additional field (prereqUsed)) hold-
ing the choice of course used to satisfy a course’s prerequi-
site. The specification that captures these invariants (and
others) is shown in Listing 6.

The core of the specification for the scheduler is associ-
ated with the method solve() (Listing 6). Aside from ref-
erences to a DegreeProgram and a Schedule, the Problem class
contains a set of additional constraints provided by the stu-
dent, e.g. “don’t schedule a course”, “schedule a course after
a given semester”, etc; departmental requirements are as-
sociated with DegreeProgram. The post-condition says that:
(1) all requirements must hold, and (2) the schedule must
include all courses specified by the department.

To express the first property, without having to know
about all subclasses of Requirement, we simply defined a
boolean specification field (named cond) and asserted that it
evaluates to true. Specific classes that implement Require-
ment are expected to override the definition of cond to impose
their own constraints. That way, we were able to specify sev-
eral kinds of requirement (e.g. mandatory courses, minimal
number of courses from a certain course group, etc.), but
detailed description is beyond the scope of this paper.

The frame condition for solve requires more than just list-
ing the modifiable fields. For example, not only must the
Set<Course>.data field be modifiable (because we are search-

ing for suitable values for the Schedule.sCourses map), but
an instance selector must also be provided to specify that
only those sets of courses that are not associated with the
past semesters may be modified. The content of the “used
prerequisites” map (Map<Course, Set<Course>>) must also be
modifiable, but this time, however, it is essential to tighten
the upper bound for this field so that its content is a subset
of the constant map of course prerequisites defined by the
department (which has less than 300 entries). Otherwise,
the bound for this field would have gone up to 90,000 atoms,
since there are 300 distinct courses and 300 distinct sets of
courses on the heap, causing a huge performance setback.

9. RELATED WORK

The idea of executable specifications is not a new one.
However, it has been widely assumed that any implemen-
tation would be hopelessly inefficient, and thus not feasible
for practical applications. Hoare [10] acknowledges the ben-
efits that such technology would have, but also predicts that
computers would never be powerful enough to carry out any
interesting computation in this way. Hayes and Jones [9] ar-
gue that direct execution of specifications would inevitably
lead to a decrease in the expressive power of the specification
language. On the other side, Fuchs [8] claims that declara-
tive specifications can be made executable by intuitive (man-
ual) translation to either a functional programming language
(such as ML) or a logic programming language (like Prolog).

In our previous paper [17], we suggested how executing
specifications might play a useful role in an agile develop-
ment process [3] (for fast prototyping, test input generation,
creation of mock objects directly from interfaces, etc.), gen-
eralizing an idea that originally appeared in TestEra [13] in
which test cases generated by solving a representation in-
variant were concretized into heap structures. Since then,
we have developed the techniques discussed in this paper,

and turned the prototype implementation mentioned in our
previous paper into a robust framework [2].

In the meantime, Samimi et al. implemented a tool [18],
called PBnJ, that takes ideas from our earlier paper, but
applies them in a different context: using executable spec-
ifications as a fallback mechanism. Like SQUANDER, PBnJ
provides a unified environment for imperative and declara-
tive code but it lacks SQUANDER’s expressive power and the
ability to handle abstract types (and in particular, library
classes). Their spec methods are similar to the spec fields
of [17], but do not accommodate arbitrary declarative for-
mulas — rather, only those for which a straightforward trans-
lation to imperative code exists. As a consequence, spec
methods can express something like “all nodes in a graph”,
or “all nodes such that each one of them has some property”,
but cannot express “some set of nodes that form a clique”.
Another limitation is that spec methods cannot be recursive.
By creating a separate relation for every spec field, SQUAN-
DER solves all these problems: whatever abstraction function
is given to a spec field, it will be translated into a relational
constraint on the corresponding relation, and Kodkod will
find a suitable value for it. PBnJ comes with custom classes
for sets, lists and maps, but provides no mechanism for the
user to extend the support to other abstract types.

SQUANDER can be considered as an implementation of the
Carroll Morgan’s mixed interpreter [16], comprising a com-
bination of conventional imperative statements and declara-
tive specification statements [15]. Wahls et al. are working
on executing JML [5] (a specification language very sim-
ilar to JFSL) by translation to constraint programs and
using backtracking search [6,12]. Oz also integrates con-
straint programming with high-level programming language
and does so by using constraint propagation and search com-
binators [19]. Yang’s LogLog tool [22] employs runtime con-
straint solving to automatically impute values for missing
data based on declarative constraints.

10. CONCLUSIONS AND FUTURE WORK

In this paper, we presented SQUANDER, a framework that
unifies both writing and executing imperative and declar-
ative code. With the optimizations described above, and
specification extensions to support data abstraction, we have
shown in this paper (a) that we are now able — for a non-
trivial class of problems — to use the mechanism as a stan-

dard runtime, and (b) that the framework is expressive enough

to specify and completely eliminate the manual encodings
and decodings of a moderately-sized course scheduling ap-
plication we had previously implemented.

In the future, we are hoping to explore a different transla-
tion mechanism, that would not only minimize the number
of atoms in the universe, but the number of relations as well.
For many problems, we compared the existing handwritten
translations to Kodkod with those produced by SQUANDER.
In almost all cases, the handwritten translations were more
compact and used fewer relations. This is because object
graphs usually contain many unmodifiable “links” that are
only used to navigate from the root objects to the modifi-
able portion of the heap. A more clever translation could
short-circuit some of those links, thus reduce the size of the
object graph, and potentially decrease the solving time. We
also plan to compare different techniques for solving declar-
ative constraints, e.g. the backtracking ones as in JMLe [12]
or Korat [4], with our current, SAT-solver based one.

11.
1]

(6]

[7]
8]

[9]

(10]

(1]

(12]

(13]

(14]
(15]
(16]
(17]
(18]

(19]

20]

21]

22]

23]

(24]

REFERENCES

Hamiltonian Path Algorithm.
http://moodle.cornellcollege.edu/0809/mod/
resource/view.php?id=8993. CSC213-8 Course.
Squander Home Page.
http://people.csail.mit.edu/aleks/squander.

K. Beck. Extreme Programming Ezplained. 1999.

C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated Testing Based on Java Predicates. In
ISSTA02.

L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. R.
Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An Overview of JML Tools and Applications. Software
Tools for Technology Transfer, 7(3):212-232, 2005.
N. Cata no and T. Wahls. Executing JML
specifications of Java card applications: a case study.
In SAC’09, pages 404-408, 2009.

O. J. Dahl, E. Dijkstra, and C. A. R. Hoare, editors.
Structured programming. Academic Press, 1972.

N. E. Fuchs. Specifications are (preferably) executable.
Software Engineering Journal, 7(5):323-334, 1992.

I. Hayes and C. B. Jones. Specifications are not
(necessarily) executable. Software Engineering
Journal, 4(6):330-338, 1989.

C. A. R. Hoare. An Overview of Some Formal
Methods for Program Design. IEEE Computer,
20(9):85-91, 1987.

D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, Apr. 2006.

B. Krause and T. Wahls. jmle: A tool for executing
JML specifications via constraint programming. In
FMICS’06, Aug. 2006.

D. Marinov and S. Khurshid. TestEra: A Novel
Framework for Automated Testing of Java Programs.
In ASE’01, 2001.

A. Milicevic. Executable Specifications for Java
Programs. Master’s thesis, MIT, Sept. 2010.

C. Morgan. The Specification Statement. ACM Trans.
Prog. Lang. Syst., 10(3), 1988.

C. Morgan. Programming from Specifications.
Prentice-Hall, 2nd edition, 1998.

D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and
D. Jackson. Agile specifications. In Onward’09, 2009.
H. Samimi, E. D. Aung, and T. D. Millstein. Falling
Back on Executable Specifications. In EFCOOP’10.

C. Schulte, G. Smolka, and J. Wiirtz. Encapsulated
Search and Constraint Programming in Oz. In PPCP,
pages 134-150. Springer-Verlag, 1994.

R. Sosic and J. Gu. A polynomial time algorithm for
the N-Queens problem. SIGART B., 1(3):7-11, 1990.
E. Torlak. A Constraint Solver for Software
Engineering: Finding Models and Cores of Large
Relational Specifications. PhD thesis, MIT, 2008.

J. Yang. Specification-Enhanced Execution. Master’s
thesis, MIT, May 2010.

K. Yessenov. A Light-weight Specification Language
for Bounded Program Verification. Master’s thesis,
MIT, 2009.

V. S. Yeung. Declarative Configuration Applied to
Course Scheduling . Master’s thesis, MIT, 2006.

http://moodle.cornellcollege.edu/0809/mod/resource/view.php?id=8993
http://moodle.cornellcollege.edu/0809/mod/resource/view.php?id=8993
http://people.csail.mit.edu/aleks/squander

	Introduction
	Example – Sudoku Solver
	Background
	Kodkod – A Solver for Relational Logic
	JFSL – JForge Specification Language

	From Objects to Relations
	Heap Traversal and Object Serialization
	Keeping Track of Type Parameters

	Reading, Parsing and Type Checking JFSL
	Example of a Translation
	Defining Relations and Bounds
	Restoring the Java Heap State

	Minimizing the Universe Size
	``KodkodPart'' Translation
	Partitioning Algorithm

	User-Defined Abstractions for Library Types
	Specification for Java Sets and Maps
	Specifications for Java Lists and Arrays

	Examples and Evaluation
	Solving Hard Problems
	``Hamiltonian Path'' Algorithm
	The N-Queens Problem

	Course Scheduler Case Study
	Specification

	Related Work
	Conclusions and Future Work
	References

