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Abstract—Carbon-based nanomaterials such as metallic single-
walled carbon nanotubes, multiwalled carbon nanotubes
(MWCNTs), and graphene have been considered as some of the
most promising candidates for future interconnect technology
because of their high current-carrying capacity and conductivity
in the nanoscale, and immunity to electromigration, which has
been a great challenge for scaling down the traditional copper
interconnects. Therefore, studies on the performance and
optimization of carbon-based interconnects working in a realistic
operational environment are needed in order to advance the
technology beyond the exploratory discovery phase. In this paper,
we present the first demonstration of graphene interconnects
monolithically integrated with industry-standard complementary
metal-oxide—semiconductor technology, as well as the first
experimental results that compare the performance of high-speed
on-chip graphene and MWCNT interconnects. The graphene
interconnects operate up to 1.3-GHz frequency, which is a speed
that is commensurate with the fastest high-speed processor chips
today. A low-swing signaling technique has been applied to
improve the speed of carbon interconnects up to 30%.

Index Terms—Carbon nanotubes, graphene, high speed, inter-
connect, on-chip.

I. INTRODUCTION

NTERCONNECT wires have always been one of the major
technology components of modern high-speed integrated
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circuits (ICs). In the most advanced IC technology, the
capacitance associated with interconnects typically accounts
for about 50% of the active processor power consumption [1],
and the associated signal delay along interconnects is one of the
main bottlenecks for the routing of high-speed signals. With the
progressive miniaturization of semiconductor devices, the need
for longer, thinner, and faster interconnects with lower power
consumption is becoming more pronounced. Conventional
interconnect materials such as copper are facing great
challenges to satisfy requirements when physical dimensions
are scaled down to the nanoscale range. First, the conductance
of copper significantly decreases when the lateral dimension is
scaled down: the resistivity of local interconnects is increased
by about 50% when wire pitch decreased from 100 to 50 nm
due to increased electron scattering at the grain boundaries
and wire surfaces [2], which increases the circuit signal delay;
equally important is that the reliability of copper wires suffers
when the current density increases due to the miniaturization.
Increased wire resistivity leads to increased Joule heating and
degraded electromigration lifetime, which result in decreased
maximum allowed current density in copper wires [2]-[4].
Therefore, alternative interconnect materials are being actively
researched to improve on-chip interconnect performance [5].
In recent years, graphene has gained a lot of attention for
being a promising new material for high-speed electronics [6]—
[9], since it not only shares the same outstanding transport
properties as carbon nanotubes [10]-[13], such as high mean
free path and high current-carrying capacity but also offers
potential advantages such as simpler fabrication process, better
material control, and better reproducibility [14]. Researchers
have demonstrated graphene transistors with intrinsic cutoff
frequency as high as 100 GHz [7], graphene nanomechani-
cal resonators operating at 50-80 MHz [8], and microwave
switches operating at gigahertz (GHz) range [9]. When used
as interconnects, graphene also showed a great potential: previ-
ous theoretical calculations have shown that the conductivity
of metallic graphene nanoribbons (GNR) would outperform
copper wires with unity aspect ratio when interconnect width
is scaled down below 8 nm [15]. The theory also predicts
that high-quality doped GNRs offer smaller signal delay than
copper at the 11-nm technology node when used as global
wires [16]. DC experimental characterizations showed that the
resistivity of good-quality GNRs in the width range from 18

0018-9383/$26.00 © 2010 IEEE
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Application of low-swing oscillator circuitry for interconnect performance improvement. (a) Circuit diagram of a five-stage low-swing ring oscillator with

a differential amplifier at the receiver end of the inverter chain. The line is terminated by a termination resistor (R = 20 k€2, R ~ 0.5R is a value determined
by the tradeoff between speed improvement brought by low-swing signaling and the sensitivity of the differential amplifier at the receiving end) to a midsupply
voltage; hence, the signal swing at the receiver end is reduced to Vpp X R/Rr, whereas the speed is increased by a factor R/ Rr. (b) Modeling results of signal
delay along 30-pum-long MWCNT interconnects integrated with a low-swing oscillator circuit. The signal delay increases with increasing MWCNT resistance, as
expected. For a good-quality MWCNT (lower resistivity), signal delay as low as 0.7 ns can be expected. (c) Experimental performance comparison of MWCNT
interconnects integrated on both full- and low-swing circuits. We can see that, even with an increased length, the MWCNT interconnect integrated with a low-
swing circuit still shows a significant signal delay improvement of about 30% at the same resistance value. (Symbols) Experimental data. (Solid lines) Visual

guides.

to 50 nm is smaller than 10 uf2-cm, which is comparable
with copper wires with the same physical dimensions [17].
Furthermore, GNRs have breakdown current density on the
order of 10% A/cm?, which is ten times higher than the max-
imum permissible current density of copper [18]. However,
despite the favorable theoretical and dc characterization results
of graphene interconnects, experimental demonstration of high-
speed signaling using graphene interconnects has not yet been
made, and there is no report of integration of graphene with
standard CMOS technology, which is a key requirement for
future integrated graphene electronics. We address these topics
by presenting the first experimental demonstration of high-
speed graphene interconnects integrated with a five-stage stan-
dard CMOS low-swing ring oscillator circuit operating above
1 GHz, which is a major milestone for graphene electronics.

II. LOow-SWING CIRCUITRY

The CMOS five-stage ring oscillator circuit is fabricated us-
ing standard 0.25-zm CMOS technology.! Each ring oscillator
is designed with a missing interconnect wire onto which a
graphene interconnect wire was subsequently integrated. Only
one graphene interconnect is integrated with each ring oscil-
lator, so that we can characterize each graphene interconnect
individually while maintaining the high oscillation speed. A
low-swing signaling technique is implemented for the ring

The 0.25-pm ring oscillator CMOS platforms were fabricated by Taiwan
Semiconductor Manufacturing Company.

oscillator circuit to serve as a method to investigate the high-
frequency performance of interconnects. A lower input-signal
swing shortens the time needed to charge up the load capaci-
tance, thereby improving the ring oscillator speed substantially.
Since the main focus of this paper is interconnect performance,
the possible extra chip area and power cost of introduction
of a low-swing receiver is not discussed here but has been
previously studied elsewhere [19]. Fig. 1(a) shows the ring
oscillator circuit diagram. The differential amplifier at the
receiving end provides higher signal sensitivity than a simple
inverter stage. Simulation shows that the signal delay of 30-ym-
long multiwalled carbon nanotube (MWCNT) interconnects
(diameter ~ 30 nm and resistivity ~ 650 p£2 - cm) in this low-
swing ring oscillator loop can be on the order of 100 ps [see
Fig. 1(b)].

To demonstrate the speed improvement brought by the im-
proved ring oscillator circuit design, we integrated, using di-
electrophoresis, the same kind of MWCNT interconnects onto
both the low-swing CMOS ring oscillators and the standard
full-swing CMOS oscillators. The fabrication process was de-
tailed in [20]. The experimental characterization result shows a
significant 30% average speed improvement for the same wire
resistance [see Fig. 1(c)].

III. GRAPHENE INTERCONNECT DEVICE FABRICATION

The process flows of graphene growth/transfer and post-
CMOS fabrication are shown in Fig. 2. First, large-area
multilayered graphene (average thickness of about 15-20 nm,



CHEN et al.: GRAPHENE AND CARBON NANOTUBE INTERCONNECTS FOR CMOS ELECTRONICS

3139

(@)
CH. Flow Spin Coat PMMA
@ Thermal Annealing @ — 4/H.:2;> — @ — 4
Si/SiO, ' Si/8i0, Si/Si0,
HCI Wet Etch
PMMA/Graphene Transfer

— 4
® =1 =t ®

Removing PMMA

Target Substrate

Si/Si0, Target Substrate
(b)
. Contact/Probing
Graphene Sheet Oxygen Plasma Etching Pads (Cr/Au)
1 @ 443 PRI ® .
Passivation
0.25um CMOS
1 | IR
Via Via Via Contact
— — Hole — Holes (Ti)
(O] ® ®
!, Aluminum
m\Wires
©

CMOS platform
ring oscillator arra
o 9 y

Graphene Sheet
Vs P

| Via'Contact @
LE

Graphene

(]! )

= | Electrodes 5‘7
(CriAu) @
10um

Fig. 2. Device fabrication process flows and images of as-fabricated on-chip graphene interconnects. (a) Process flow of CVD graphene growth and PMMA-
assisted transferring. (b) Process flow of the posttransfer fabrication process for integrating graphene with underneath CMOS circuitry. (c) Optical image of
graphene after being transferred on top of the CMOS ring oscillator array. (d) Optical image of one fabricated graphene interconnect on top of the CMOS ring
oscillator array. The lines that appear black in the middle of Ti via contacts are M3 Al lines. (Inset) AFM image of graphene stripes on the SiO2 /Si test substrate.

which is measured using atomic force microscopy) is grown
using chemical vapor deposition (CVD) on a 500-nm electron-
beam-evaporated nickel layer and then transferred to a 5 mm x
5 mm CMOS chip with the low-swing circuitry as previously
described. The CVD growth is carried out for 5 min at 1000 °C,
with 5 sccm of methane and 1300 sccm of hydrogen [21]. After
the growth is completed, a thin layer of polymethyl methacry-
late (PMMA) is spin coated on top of the graphene/nickel
substrate, and a 10% HCI aqueous solution is used to lift off the
PMMA-—graphene layer from the underneath nickel layer. Then,
the PMMA-—graphene film is placed on the target substrate, and
the PMMA is subsequently washed off using acetone. An aver-
age sheet resistance of about 700 €2/sq is extracted for graphene
before post-CMOS processing by transferring graphene on top
of the Si/SiO; substrate. In principle, this method is scalable
to transferring arbitrary large areas of graphene from arbitrary
substrates to CMOS substrates. For this reason, it is an attractive
option for integrating wafer-scale graphene with wafer-scale
CMOS substrates to facilitate very large scale integrated (VLSI)
graphene/Si electronics.

After the graphene transfer, all processing steps are done
using standard CMOS-compatible fabrication techniques. First,
graphene is patterned into stripes of different widths/lengths

using optical lithography and oxygen plasma etching. The
interconnect width ranges from 3 to 5 pm, whereas the length
ranges from 5 to 145 pum. Cr/Au electrodes are deposited as
contacts to graphene. Then, via holes are formed by etching
through the passivation layer, reaching down to the topmost
metal layer of the CMOS chip. Finally, the via contacts between
graphene interconnects and underlying CMOS circuitry are
made by filling the via holes with Ti.

IV. CHARACTERIZATION RESULTS

To see whether the quality of this novel nanomaterial is sig-
nificantly degraded by going through the standard CMOS fab-
rication process, we measured the sheet resistance of graphene
before and after the standard CMOS fabrication process,
Fig. 3(a) shows that the average sheet resistance of graphene
remains to be 700 €2/sq on average, which indicates that the
quality of graphene is generally preserved during device fabri-
cation. The -V characteristics of the fabricated graphene in-
terconnect in Fig. 3(a) indicate that we have achieved an ohmic
contact between graphene and metal. At the same time, the
linear -V curves show that the contact between graphene and
metal is ohmic. Contact resistance is negligible compared with
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Fig. 3.

DC characterization results for graphene interconnects. (a) Sheet resistance distribution. The average sheet resistance is Rs ~ 711 €/sq. The wide

distribution was due to variation in the number of layers and surface defects. (Inset) /-V" curve of a graphene interconnect showing an ohmic contact (L/W =
28 pm/3 pm, R = 6.15 k). (b) Interconnect resistance as a function of length, indicating diffusive transport. The intercept on the y-axis gives the contact
resistance between graphene and metal. It is negligible compared with the interconnect resistance. (c) Comparison between theoretical and experimental results
for interconnect conductance for the same length/width ratio. (Experimental results are obtained using interconnects with varied widths.) Theoretical results are

derived using the model proposed in [16].

interconnect resistance [see Fig. 3(b)]. Theoretical conductance
calculation is done based on the multilayer graphene conduc-
tivity model proposed in [16] using the material mean free
path derived from our sheet resistivity data. Comparison with
experimental measurement is shown in Fig. 3(c). To demon-
strate the high-speed signal routing capability of graphene
interconnects, we characterized the ring oscillator frequencies
and amplitudes by wire bonding the postprocessed CMOS chip
to a pin grid array package and mounting the package into
a printed circuit board for high-frequency electrical testing
[see Fig. 4(a)]. Gigahertz oscillation frequency is observed for
ring oscillators with graphene interconnects as long as 80 pm,
which confirms the great potential of graphene for future VLSI
interconnects. The oscillation frequency of the ring oscillator
circuit is determined by the total circuit RC delay as in (1)
(f is the circuit oscillation frequency, R is the total resistance
of the circuit dominated by graphene interconnect resistance,
Ciot 18 the total capacitance of the circuit, ps is the sheet
resistivity of graphene, L is the interconnect length, and W
is the interconnect width), which agrees with our experimental
characterization results shown in Fig. 4(b) and (c): the circuit
oscillation frequency is directly correlated with the interconnect
width and inversely correlated with the length/width ratio.
Thus

(D

By integrating graphene and the MWCNT with the same type
of low-swing CMOS ring oscillator, we directly compared
the RF performances of the two materials. Fig. 4(d) shows
that graphene offers a higher oscillation frequency because
of its lower resistivity, and the ring oscillator with best per-
formance graphene wire has an oscillation frequency that is
comparable with the reference oscillators with aluminum wire.
However, at the same resistance value, the MWCNT has bet-
ter signal delay performance. This may be due to the larger
total capacitance associated with our wide graphene stripes:
using the Predicative Technology Model [22], the wire-to-
ground electrostatic capacitance for a 1-pum-wide graphene
wire is around 0.118 fF/um (dielectric thickness = 500 nm),
whereas a 30-nm-wide MWCNT wire has capacitance around
0.0345 fF/pm. When graphene is scaled down to similar phys-
ical dimensions as the MWCNTSs (width ~ 30 nm), the esti-
mated single graphene wire electrostatic capacitance is about
0.01 fF/pm, similar to that of the MWCNT wire estimated
using the 1-D transmission line model [23]. However, while
scaling down the width of graphene decreases the intercon-
nect capacitance, it brings other issues like increased contact
resistance and increased wire resistivity due to limited material
quality and edge roughness. Although study has shown that it is
possible to fabricate chirality-controlled graphitic nanoribbons
[24] and that optimizing contact figuration can help achieve
an ohmic contact between GNRs and metal, more research
needs to be done to make high-frequency operation of GNR
interconnects practical.
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Fig. 4. RF characterization of graphene on-chip interconnects. (a) Printed circuit board and setup for RF measurements. (b) Oscillation frequency for various
interconnect lengths and widths. Gigahertz range operation frequency is observed for interconnects up to ~ 80 pm long. (c) Oscillation frequency and resistance
as functions of L /W ratio indicative of the number of squares. (Symbols) Experimental data. (Bold lines) Visual guides. (d) Oscillation period as a function of
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(Symbols) Experimental data. (Bold lines) Visual guides.

V. CONCLUSION

In summary, we have successfully demonstrated the first
integration of graphene interconnects with standard CMOS
technology. Gigahertz operation frequency is observed for
graphene interconnects as long as 80 ym. By using the low-
swing signaling technique, wire signal delay performance is
further improved by about 30%. Along with recent reports
on large-scale [25] transfer-free [26] low-temperature [27]
graphene synthesis techniques, the future of graphene inter-
connects in VLSI technology appears increasingly promising,
although advances in the controlled synthesis of continuous
sheets of graphene and understanding of graphene interconnect
performance limits require further research.
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