
MIT Open Access Articles

Automatic Reconfiguration for Large-
Scale Reliable Storage Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Rodrigues, Rodrigo et al. “Automatic Reconfiguration for Large-Scale Reliable Storage 
Systems.” IEEE Transactions on Dependable and Secure Computing 9.2 (2010): 145–158.

As Published: http://dx.doi.org/10.1109/tdsc.2010.52

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/72134

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72134
http://creativecommons.org/licenses/by-nc-sa/3.0/


1

Automatic Reconfiguration for Large-Scale
Reliable Storage Systems

Rodrigo Rodrigues, Barbara Liskov, Kathryn Chen, Moses Liskov, and David Schultz
MIT Computer Science and Artificial Intelligence Laboratory

Abstract—Byzantine-fault-tolerant replication enhances the availability and reliability of Internet services that store critical state and
preserve it despite attacks or software errors. However, existing Byzantine-fault-tolerant storage systems either assume a static set
of replicas, or have limitations in how they handle reconfigurations (e.g., in terms of the scalability of the solutions or the consistency
levels they provide). This can be problematic in long-lived, large-scale systems where system membership is likely to change during
the system lifetime.
In this paper we present a complete solution for dynamically changing system membership in a large-scale Byzantine-fault-tolerant
system. We present a service that tracks system membership and periodically notifies other system nodes of membership changes. The
membership service runs mostly automatically, to avoid human configuration errors; is itself Byzantine-fault-tolerant and reconfigurable;
and provides applications with a sequence of consistent views of the system membership. We demonstrate the utility of this membership
service by using it in a novel distributed hash table called dBQS that provides atomic semantics even across changes in replica sets.
dBQS is interesting in its own right because its storage algorithms extend existing Byzantine quorum protocols to handle changes in
the replica set, and because it differs from previous DHTs by providing Byzantine fault tolerance and offering strong semantics.
We implemented the membership service and dBQS. Our results show the approach works well in practice: the membership service
is able to manage a large system and the cost to change the system membership is low.

✦

1 INTRODUCTION

Today we are more and more dependent on Internet ser-
vices, which provide important functionality and store
critical state. These services are often implemented on
collections of machines residing at multiple geographic
locations such as a set of corporate data centers. For
example, Dynamo uses tens of thousands of servers
located in many data centers around the world to build
a storage back-end for Amazon’s S3 storage service and
its e-commerce platform [1]. As another example, in
Google’s cluster environment each cluster includes an
installation of the GFS file system spanning thousands
of machines to provide a storage substrate [2].

Additionally, these systems are long-lived and need to
continue to function even though the machines they run
on break or are decommissioned. Thus there is a need to
replace failed nodes with new machines; also it is neces-
sary to add machines to the system for increased storage
or throughput. Thus the systems need to be reconfigured
regularly so that they can continue to function.

This paper provides a complete solution for reliable,
automatic reconfiguration in distributed systems. Our
approach is unique because

• It provides the abstraction of a globally consistent
view of the system membership. This abstraction
simplifies the design of applications that use it, since

• Rodrigo Rodrigues is now at the Max Planck Institute for Software
Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany, and
Moses Liskov is at the College of William and Mary, Williamsburg, VA.

it allows different nodes to agree on which servers
are responsible for which subset of the service.

• It is designed to work at large scale, e.g., tens or
hundreds of thousands of servers. Support for large
scale is essential since systems today are already
large and we can expect them to scale further.

• It is secure against Byzantine (arbitrary) faults. Han-
dling Byzantine faults is important because it cap-
tures the kinds of complex failure modes that have
been reported for our target deployments. For in-
stance, a recent report about Amazon’s S3 showed
that a bit flip in a server’s internal state caused
it to send messages with the wrong content [3].
Additionally the Byzantine fault model makes it
possible to tolerate malicious intrusions where an
attacker gains control over a number of servers.

Earlier proposals for keeping track of a dynamic system
membership do not provide all three properties. Many
do not tolerate Byzantine failures, (e.g., [4], [5]). Some
that handle Byzantine faults provide consistency but
work only for a system containing a small number
of nodes (e.g., [6]), while others trade off consistency
to achieve scalability (e.g., [7]). The one exception is
Census [8]; this builds on our techniques for flexible
reconfiguration, but uses other mechanisms to track
system membership.

Our solution has two parts. The first is a membership
service (MS) that tracks and responds to membership
changes. The MS works mostly automatically, and re-
quires only minimal human intervention; this way we
can reduce manual configuration errors, which are a



2

major cause of disruption in computer systems [9]. Pe-
riodically the MS publishes a new system membership;
in this way it provides a globally consistent view of the
set of available servers. The choice of strong consistency
makes it easier to implement applications, since it allows
clients and servers to make consistent local decisions
about which servers are currently responsible for which
parts of the service.

We run the MS on a small group of replicas and use
a number of protocols [10], [11], [12], [13] to enable the
MS to tolerate malicious attacks; we were able to take
advantage of protocols developed by others but combine
them in novel ways. Using a small group for the MS is
important since these protocols work well only in this
case. The design provides scalability to a large number of
nodes, most of which are clients of the MS. Additionally
it avoids overloading the servers that form the MS by
offloading expensive tasks to other nodes.

When there is a reconfiguration, the MS may need to
move to a new group of servers. This way we allow
the system to continue to operate correctly, even though
the failure bound in the original group of MS replicas
may subsequently be exceeded. We present a design for
reconfiguring the Byzantine-fault-tolerant group.

Tracking membership is only part of what is needed
for automatic reconfiguration. In addition, applications
need to respond to membership changes appropriately.

Therefore, the second part of our solution addresses
the problem of how to reconfigure applications automat-
ically as system membership changes. We present a stor-
age system, dBQS, that provides Byzantine-fault-tolerant
replicated storage with strong consistency. dBQS serves
as an example application that uses the membership
service and takes advantage of its strong consistency
guarantees. Additionally, dBQS is important on its own
for two reasons. First, to develop dBQS we had to
extend existing Byzantine quorum protocols, originally
designed for a static replica set, to enable them to
be reconfigurable while continuing to provide atomic
semantics across changes in the replica set. Second, dBQS
implements the popular DHT interface [14], but differs
from previous DHTs by handling Byzantine faults and
focusing on strong semantics, which can facilitate design
of applications that build on a DHT interface. In addition
the techniques used to handle membership changes in
dBQS could be generalized to other applications.

We have implemented the membership service and
dBQS. We present performance results that show that
the MS is able to manage a large system and reconfigure
in a reasonably short interval, and that the impact of
reconfiguration on dBQS performance is small.

2 SYSTEM MODEL AND ASSUMPTIONS

This section defines our model and assumptions.
We assume a system comprised of nodes that can be

servers implementing a storage service or clients using
that service. We assume without loss of generality that
the two sets are disjoint.

We assume nodes are connected by an unreliable asyn-
chronous network like the Internet, where messages may
be lost, corrupted, delayed, duplicated, or delivered out
of order. While we make no synchrony assumptions for
the system to meet its safety guarantees, it is necessary to
make partial synchrony assumptions for liveness, which
is discussed in Section 5.3.

We assume the existence of the following crypto-
graphic techniques that an adversary cannot subvert: a
collision-resistant hash function, a public key cryptogra-
phy scheme, and forward-secure signing keys [12], [13].
We also assume the existence of a proactive threshold
signature protocol [15], [16], [17], [11], [18] that guaran-
tees that threshold signatures are unforgeable without
knowing f or more out of n secret shares.

We assume a Byzantine failure model where faulty
nodes may behave arbitrarily. We assume a compro-
mised node remains compromised forever. This is a
realistic assumption because once a node is Byzantine
faulty, its secret information, including its private key,
may be known, and therefore it cannot be recovered and
then continue to be trusted. Instead it needs a new key,
which effectively means its identity has changed.

We assume nodes have clocks whose rates should
be loosely synchronized to keep time windows during
which failure bounds must be met reasonably short. We
do not depend on loosely synchronized clocks in order
to minimize our assumptions.

3 THE MEMBERSHIP SERVICE

This section describes the membership service (MS),
which provides a trusted source of membership infor-
mation.

The MS describes membership changes by producing
a configuration, which identifies the set of servers cur-
rently in the system, and sending it to all servers. To
allow the configuration to be exchanged among nodes
without possibility of forgery, the MS authenticates it
using a signature that can be verified with a well-known
public key.

The MS produces configurations periodically rather
than after every membership change. The system moves
in a succession of time intervals called epochs, and we
batch all configuration changes at the end of the epoch.
Producing configurations periodically is a key design
decision. It allows applications that use the MS to be
optimized for long periods of stability (we expect that
in storage applications epochs could last for hours,
although our evaluation shows we can support short
epochs if needed), and it reduces costs associated with
propagating membership changes (like signing config-
urations or transmitting them). It also permits delayed
response to failures, which is important for several reasons:
to avoid unnecessary data movement due to temporary
disconnections, to offer additional protection against de-
nial of service attacks (assuming we wait for longer than
the duration of such attacks), and to avoid thrashing,



3

where in trying to recover from a host failure the system
overstresses the network, which itself may be mistaken
for other host failures, causing a positive feedback cycle.

The notion of epochs provides consistency: all nodes
in the same epoch see exactly the same system member-
ship. Each epoch has a sequential epoch number. Epoch
numbers allow nodes to compare the recency of differ-
ent configurations. Furthermore, application messages
include the epoch number of the sender; this allows
nodes to learn quickly about more recent configurations.

We begin by specifying the functionality of the MS
in Section 3.1. We discuss how to implement that spec-
ification in a way that tolerates Byzantine faults in
Section 3.2. We discuss some refinements to the design
to achieve better scalability in Section 3.3. Section 3.4
discusses the impact of faulty servers on our system.

3.1 MS Functionality

3.1.1 Membership Change Requests
The MS responds to requests to add and remove servers.

We envision a managed environment with admission
control since otherwise the system would be vulnerable
to a Sybil attack [19] where an adversary floods the
system with malicious servers. Thus we assume servers
are added by a trusted authority that signs certificates
used as parameters to these requests. The certificate for
an ADD request contains the network address and port
number of the new server, as well as its public key,
whereas the certificate to REMOVE a node identifies the
node whose membership is revoked using its public key.

The MS assigns each server a unique node ID uni-
formly distributed in a large, circular ID space, which
enables the use of consistent hashing [20] to assign
responsibility for work in some of our MS protocols; ap-
plications can also these IDs if desired. The MS chooses
the server’s node ID as a SHA-1 hash of the values in
the add certificate. To prevent an attacker from adding
a group of servers that are all nearby in the ID space,
we require that the node’s public key be chosen by the
trusted authority.

We need to prevent replay of add requests; otherwise
a server that was removed could be re-added by a
malicious party. We do this by putting an interval of
epoch numbers in the add request; the request is only
good for those epochs. This approach allows us to limit
how long the MS needs to remember revocations.

3.1.2 Probing
The MS detects unreachable servers and marks them as
inactive. To do this, the MS probes servers periodically,
normally using unauthenticated ping messages, which
we expect to be sufficient to detect most unreachable
servers. Infrequently, probes contain nonces that must
be signed in the reply, to avoid an attack that spoofs
ping replies to maintain unavailable servers in the sys-
tem. Signed pings are used sparingly since they require
additional processing on the MS to verify signatures.

However, once a server fails to reply to a signed ping,
subsequent pings to that server request signatures until
a correctly signed response arrives.

If a server fails to reply to a threshold nevict number of
probes, it is declared to be inactive and will be removed
from the active system membership in the next epoch.
The probe frequency and eviction threshold are system
parameters that control how quickly the MS responds to
failures.

If an inactive server contacts the MS, it will be marked
as reconnected, but first the MS sends it a challenge that is
signed in the reply to avoid a replay attack. Servers are
not allowed to remain inactive indefinitely; instead such
servers are evicted automatically after some number of
epochs has passed.

Probes allow us to remove crashed servers. For
Byzantine-faulty servers, we rely on manual interven-
tion: an administrator obtains a revocation certificate
from the trusted authority and uses it to remove the
compromised server.

3.1.3 Ending Epochs
Epochs can terminate after a fixed duration or some
number of membership changes or a combination of the
two. The termination condition is a system parameter
that must be set by a system administrator based on
deployment characteristics, e.g., expected churn.

To determine when the epoch ends, the MS tracks the
termination condition. When the termination threshold
is reached the MS stops probing, and produces an epoch
certificate signed by the MS’s private key. The signature
in the certificate covers a digest of the membership (list
of servers and their reachability status) and the epoch
number of the new epoch.

Then the MS sends a NEWEPOCH message to the other
servers describing the next configuration. This message
contains the certificate and new epoch number, and
describes the configuration changes using deltas: it con-
tains lists of added, removed, inactive, and reconnected
servers. The message is authenticated by the MS so that
verifying it is easy. Transmitting deltas is important for
scalability, as discussed further in Section 3.3.

3.1.4 Freshness
Clients of the application using the MS need to verify
the freshness of their configuration information to ensure
they are communicating with the group that currently
stores an item of interest, and not an old group (which
may have exceeded the failure threshold).

We provide freshness by means of freshness certificates.
The mechanism works as follows. To use the replicated
service the client requires an unexpired freshness cer-
tificate. It obtains a certificate by issuing a challenge to
the MS. The challenge contains a random nonce; the
MS responds by signing the nonce and current epoch
number. The response gives the client a period of time
Tfc during which it may execute requests; the value of
Tfc is another system parameter. The client determines



4

Operations supported by the MS Requests initiated by the MS
ADD(cert) – takes a certificate signed by the trusted authority PROBE([nonce]) – the MS sends probes to servers periodically;
describing the node; adds the node to the set of system members. servers respond with a simple ack, or, when a nonce is sent,

by repeating the nonce and signing the response.
REMOVE(cert) – also takes a certificate signed by the trusted NEWEPOCH(cert,e,changes) – informs nodes of a new epoch.
authority that identifies the node to be removed; removes this Here, cert is a certificate vouching for the configuration,
node from the current set of members. and changes represents the delta in the membership.
FRESHNESS(nonce) – receives a freshness challenge; the reply
contains the nonce and current epoch number signed by the MS.

TABLE 1
Membership service interface.

when the period has expired by using its clock: it reads
the time when it sends the challenge, and treats the
corresponding freshness certificate as valid until that
time plus the duration Tfc. If the certificate expires, the
client halts application work until it obtains a new one.

When a client joins the system or reconnects after an
absence, it can contact any system participant to obtain
a system configuration; if the client knows of no current
system members it can learn of some through an out-of-
band mechanism. The contacted node sends it both the
epoch certificate it received in the most recent NEWE-
POCH message, and also the configuration it computed
as a result of processing that message. The client can
use the certificate to verify that the configuration is
authentic. In addition the client must obtain a freshness
certificate to ensure the configuration is current.

Freshness certificates do not constrain the MS: it
moves to the next epoch when thresholds are reached,
without regard for freshness certificates. They also do not
prevent clients from moving to a new epoch, and a client
need not refresh its certificate when it does so. Rather
these certificates ensure that clients do not use an old
configuration for “too long”. As explained in Section 5,
the correctness conditions for applications that use the
MS require that old groups meet their failure thresholds
until the last client freshness certificate expires.

Table 1 summarizes the specification of the service.
Next we describe the techniques we use to implement it
in a reliable and scalable way.

3.2 Byzantine Fault Tolerance

To provide Byzantine fault tolerance for the MS, we
implement it with a group of 3fMS +1 replicas executing
the PBFT state machine replication protocol [10]. These
MS replicas can run on server nodes, but the size of the
MS group is small and independent of the system size.

We describe how the MS operations are translated to
request invocations on the PBFT group in Section 3.2.1,
and how to reconfigure the MS (e.g., to handle failures
of the nodes that compose it) in Section 3.2.2.

3.2.1 PBFT Operations
PBFT provides a way to execute operations correctly
even though up to f replicas out of 3f + 1 are faulty.
Therefore we can implement ADD and REMOVE as PBFT

operations, which take as arguments the respective cer-
tificate, and whose effect is to update the current set of
members (which is the PBFT service state maintained by
the MS). Freshness challenges can also be implemented
as PBFT operations.

However the MS does more than perform operations:
it probes servers, decides when they are faulty, decides
when to end an epoch, and propagates information
about the new configuration to all the servers. This
additional work must be done in a way that prevents
faulty members of the MS from causing a malfunction,
while at the same time ensuring progress. We avoid
problems due to faulty nodes by requiring that fMS + 1

MS replicas vouch for any action that is based on non-
deterministic inputs.

Replicas probe independently, and a replica proposes
an eviction for a server node that has missed npropose
probe responses. It does this by sending eviction mes-
sages to other MS replicas and then waiting for signed
statements from at least fMS + 1 MS replicas (including
itself) that agree to evict that node. Other MS replicas
accept the eviction (and sign a statement saying so) if
their last nevict pings for that node have failed, where
nevict < npropose. Because the initiation of the eviction
waited a bit longer than necessary, most eviction pro-
posals will succeed if the node is really down.

Once the replica has collected the signatures, it invokes
the EVICT operation, which runs as a normal PBFT oper-
ation. This operation has two parameters: the identifier
of the node being evicted and a vector containing fMS+1

signatures from MS replicas agreeing to evict the node.
The operation will fail if there are not enough signatures
or they do not verify.

We use a similar scheme for reconnecting servers and
ending epochs: the proposer waits until other nodes are
likely to agree, collects fMS + 1 signatures, and invokes
the RECONNECT or MOVEEPOCH operation, respectively.

After the MOVEEPOCH operation is executed, all MS
replicas agree on the membership in the next epoch:
server nodes for which REMOVE operations have been
executed are removed and those for which ADD oper-
ations have been executed are added. Also EVICT and
RECONNECT operations mark server nodes as inactive
or active. Then the MS replicas can produce a certificate
describing the membership changes for the new epoch.



5

3.2.2 Reconfiguring the MS
There are two plausible ways to run the MS. The first
is to use special, separate nodes that are located in
particularly secure locations. The second is to use an
“open” approach in which the MS runs on regular
system members: servers occasionally act as MS replicas,
in addition to running the application. Our system can
accommodate either view, by considering the first one
as a special case of the open approach: we can mark
servers (when they are added) to indicate the roles they
are allowed to assume.

At the end of the epoch the system may decide to
move the MS to a different set of servers. This can
happen because one of the MS replicas fails; in the
open approach it may also happen proactively (every
k epochs) since the nodes running the MS are attractive
targets for attack and this way we can limit the time
during which such an attack can be launched. The
steps that are needed to move the MS occur after the
old MS executes the MOVEEPOCH operation, and are
summarized in Figure 1.

Choosing MS replicas. When the MS is reconfigured
proactively, we must prevent an attacker from predicting
where it will run next since otherwise an attack could
be launched over many epochs. This is accomplished by
choosing the MS replicas based on a random number,
re+1. We choose this number by running a PBFT oper-
ation that contains as an argument a hash of a random
number chosen by 2fMS + 1 replicas. After this step a
second operation discloses the corresponding random
value. The value of re+1 is produced by the hash of
the concatenation of the first fMS + 1 random values.
A proof that this scheme works even when fMS replicas
including the primary are faulty is contained in [21].

Signing. The MS needs to sign certificates with the
private key that corresponds to its well known public
key. But no MS replica can know this key, since if
it were faulty it could expose it. Therefore each MS
replica holds a share of the associated private key and
the signature is produced using a proactive threshold
signature scheme [15], [16], [17], [11], [18]. This scheme
will only generate a correct signature if fMS +1 replicas
agree on signing a statement.

When the MS moves, the new replicas obtain new
shares from the old replicas, allowing the next MS to
sign. Non-faulty replicas discard old shares after the
epoch transition completes. Different shares must be
used by the new MS replicas because otherwise these
shares could be learned by the attacker once more than
fMS failures occurred in a collection of MS groups.
Ensuring that data about shares is erased completely is
non-trival; methods to achieve this are discussed in [22].

Freshness Challenges. Threshold signatures are ex-
pensive and we would like to avoid their use for sign-
ing freshness challenges. Instead we would rather use
normal keys to sign the challenge responses: a challenge
response is legitimate if it contains individual signatures
from fMS +1 MS replicas. This approach is feasible if MS

1) Choose the random number.
2) Sign the configuration using the old shares.
3) Carry out a resharing of the MS keys with the

new MS members.
4) Discard the old shares.

Fig. 1. Summary of steps for reconfiguring the MS.

replicas have forward secure signing keys [12], [13]. The
approach works as follows. Clients accept a freshness
response for an epoch e only from a replica that is a
member of the MS in e and furthermore the response
is signed using that replica’s key for e. When a server
moves to the next epoch, it advances its signing key to
that epoch, and thus becomes unable any longer to sign
for earlier epochs. This ensures that it will be impossible
to obtain fMS + 1 freshness responses for an old epoch,
even if more than fMS members of the MS in that epoch
are now faulty, since at least 2fMS + 1 of them have
forgotten their keys for that epoch.

3.3 Scalability

We want to support large numbers of servers and clients.
To achieve this goal we must consider storage size, com-
munication requirements, and load at the MS replicas.

Storage size. In our scheme each node stores the
configuration in memory, but this is not a concern: if
we assume that node identifiers are 160 bits (based on a
SHA-1 cryptographic hash function), and we use 1024 bit
RSA public keys, the entire configuration for a system of
100, 000 servers will fit in approximately 14.7 megabytes,
which is small compared to current memory sizes.

Communication requirements. Although storing con-
figurations isn’t a problem, it would not be desirable
to communicate this much information at each new
epoch. Instead we communicate only the membership
events that occurred in the previous epoch. Even though
this set of events grows linearly with system size, in
our envisioned deployments we expect low churn and
therefore the constant will be small enough to make
this communication feasible. For instance, if a large-scale
failure causes 10% of nodes in a 100, 000 node system
to fail, the amount of information transmitted would be
10, 000 node ids, which takes only 200 KB.

A related issue is the time it takes for a new client
to download the configuration. (This is not a problem
for new servers since they won’t be active until the next
epoch). Here we can use Merkle trees [23] so that clients
can download specific parts of the configuration, e.g., to
learn about nodes in a particular ID interval first. Merkle
trees can also be used by a reconnecting node to identify
the minimum information that needs to be transmitted.

Load on the MS. Running the MS on a small subset
of system members is crucial for scalability since the
agreement protocol is quadratic in the number of nodes
in the group. However, we must also ensure that server
nodes acting as MS replicas are not overloaded. There
are three activities of concern. First is communication at



6

MS Replicas

Normal Nodes

Aggregators

Committee Members

Fig. 2. System architecture, showing a subset of nodes
running the MS, two committees, and four aggregators.

the end of an epoch – if the MS had to inform every node
about the new configuration. We can avoid this expense
by using distribution trees [21], [8]. Even if some node
does not receive the message containing the delta (e.g.,
due to a failure of an ancestor in the tree), it will detect
the failure when it receives a message with a larger
epoch number (recall that application messages contain
the epoch number of the sender); then it can retrieve the
configuration from the sender of that message.

The second potential source of overload is probing.
To avoid this expense, we use committees. A committee
is a group 2fMS + 1 servers who are not members of
the MS. Each committee is responsible for probing part
of the server space; the committee members do these
probes independently. The MS interrogates committees
periodically and infrequently. If fMS + 1 members of a
committee report that a server is unresponsive, that node
can be moved to the replica’s inactive list (since at least
one honest server has found it to be unresponsive). We
require only 2fMS +1 members in committees since they
need not carry out agreement. Committee reports can
be used as the argument of the EVICT or RECONNECT

operation to prove that the request is valid.
The third potential source of overload is freshness

challenges. Although freshness certificates can be valid
for a long time, there could be so many clients that the
MS could not keep up with the challenges. We solve this
problem using aggregation. Clients send challenges to
particular (non-MS) servers; different groups of clients
use different servers. A server collects challenges for
some time period, or until it has enough of them (e.g.,
a hundred), hashes the nonces, sends the challenge to
the MS, and forwards the signed response to the clients,
together with the list of nonces that were hashed.

Figure 2 illustrates the final system architecture con-
taining committees and aggregators.

3.4 Faulty Servers

Faulty servers cannot cause our system to behave in-
correctly (under the correctness conditions we define in
Section 5), but they can degrade performance of our
protocols. In the case of PBFT, this can be problematic
due to the fact the primary replica plays a special role in

the protocol, but recent work explains how to minimize
this performance degradation [24].

In our remaining protocols the roles of different repli-
cas are symmetric, so they are less affected by Byzantine
replicas. The aggregation protocol is an exception: a
single Byzantine replica can prevent freshness responses,
but if this happens clients will switch to a different
aggregator after a timeout.

4 DYNAMIC REPLICATION

This section describes how storage applications (or other
services) can be extended to handle reconfigurations
using the membership service. In particular, we present
dBQS, a read/write block storage system based on
Byzantine quorums [25]. dBQS uses input from the MS
to determine when to reconfigure.

dBQS is a strongly consistent distributed hash table
(DHT) that provides two types of objects. Public-key
objects are mutable and can be written by multiple
clients, whereas content-hash objects are immutable: once
created, a content-hash object cannot change. In this
paper we describe only public-key objects. In a separate
document [21] we describe the simpler protocols for
content-hash objects, and also dBFT, a state machine
replication system based on the PBFT algorithm, and a
general methodology for how to transform static replica-
tion algorithms into algorithms that handle membership
changes. A complete, formal description of the main
protocols used in dBQS and a proof of their correctness
can be found in a technical report [26].

Data objects in dBQS have version numbers that are
used to determine data freshness, and identifiers that are
chosen in a way that allows the data to be self-verifying
(similarly to previous DHTs such as DHash [14]). The
ID of a public-key object is a hash of the public key
used to verify the integrity of the data. Each object is
stored along with a signature that covers both the data
and the version number. When a client fetches an object
its integrity can be checked by verifying the signature
using a public key that is also validated by the ID of
the object. Version numbers are assigned by the writer
(in such a way that distinct writers always pick distinct
version numbers, e.g., by appending client IDs).

We partition objects among system nodes using con-
sistent hashing [20]: servers are assigned random IDs
in the same ID space as objects, and the replica group
responsible for ID i consists of the first 3f + 1 servers
in the current system membership (as dictated by the
MS) whose identifiers are equal to or follow i in the
identifier space. Figure 3 illustrates the assignment of
replica groups to objects.

dBQS ensures that concurrent accesses to the entire
set of public-key objects are atomic [27]: all system
operations appear to execute in a sequential order that
is consistent with the real-time order in which the
operations actually execute. We avoided designing the
protocols for public-key objects from scratch, but instead



7

C 1

C 2

y

x

Fig. 3. dBQS replica groups. The figure illustrates the
membership of two groups, one responsible for object x,
accessed by clients c1 and c2, and the other responsible
for object y, accessed only by c2.

extended existing Byzantine quorum protocols [25] in
novel ways to support reconfigurations, and provided
some optimizations for them.

4.1 Storage Algorithms in the Static Case

Read and write operations are performed using quorums.
Each object is stored at n = 3f + 1 nodes and quorums
consist of any subset containing 2f + 1 nodes. We begin
by describing the normal case when all communicating
nodes are in the same epoch; the epoch can be checked
because all protocol messages contain the sender’s epoch
number. A high-level description of the client-side read
and write protocols for this case is shown in Figure 4.

The write operation for a public-key object normally
has two phases. In the read phase, a quorum of 2f + 1

replicas is contacted to obtain a set of version numbers
for the object. Then the client picks a (unique) version
number greater than the highest number it read, signs
the object contents and the new version number, and
performs the write phase where it sends the new signed
object to all replicas and waits until it hears replies from
a quorum. The client sends a random nonce with both
requests, and the reply contains a signature that covers
this nonce together with the current version number, to
prevent replay attacks; clients know the public keys of all
nodes since this is part of the configuration information.
Clients repeat unanswered requests after a timeout to
account for message loss. Clients that access the same
objects repeatedly can use MAC-based authentication
instead of signatures.

Replicas receiving a write verify that the content of
the object, along with the version number, match the
signature. If this verification succeeds, the replica replies
to the client, but it only overwrites the object if the new
version number is greater than the one currently stored.

The read phase can be omitted if there is a single
writer (as in some existing applications, e.g., Ivy [28]);
in this case, the writer can increment the last version
number it knows and use it in the write phase.

To perform a read operation, the client requests the
object from all replicas in the read phase. Normally there

WRITE(x,data)

1) Send 〈READVERSION, x, nonce, e〉 messages to
the replicas in the group that stores x and wait
for 2f + 1 valid responses, all for epoch e.

2) Choose the largest version number returned
by these responses and increment it to obtain
a unique larger version number v. Then send
〈WRITE, x, data, v, e〉 messages to all the replicas
and wait for 2f + 1 valid responses.

data = READ(x)

1) Send 〈READ, x, nonce, e〉 messages to replicas of
the group that stores x and wait for 2f +1 valid
responses, all for epoch e.

2) If all responses contain the same version num-
ber, return that data. Otherwise select the high-
est version number among those returned, send
〈WRITE, x, data, v, e〉 messages to the replicas,
and wait for 2f +1 valid responses. Then return
data to the user.

Fig. 4. Simplified protocols for read and write operations.

will be 2f +1 valid replies that provide the same version
number; in this case the result is the correct response
and the operation completes. However, if the read occurs
concurrently with a write, the version numbers may
not agree. In this case, there is a write-back phase in
which the client picks the response with the highest
version number, writes it to all replicas, and waits for
a reply from a quorum. Again, nonces are employed
to avoid replays, and the reply contains a signature
that covers the nonce, and in the first phase also the
current version number. (We optimize the read phase
of the read protocol by sending a small request for the
signed version number to all replicas; the entire object
is downloaded from the first replier with the highest
version number.)

This scheme offers atomic semantics for crash-faulty
clients [25]. It does not prevent Byzantine-faulty clients
from causing atomicity violations, for instance, by writ-
ing different values to different replicas; a way to handle
Byzantine-faulty clients is described in a separate publi-
cation [29].

4.2 Membership Changes

Our protocols for reading and writing need to be mod-
ified to handle reconfigurations. We first explain how
to handle the situation of nodes being in different in
epochs, then we explain how to perform state transfer
when object responsibility shifts.

4.2.1 Executing Requests Across Epochs
When a client or a server receives a valid, more recent
configuration (either through the multicast of NEWE-
POCH messages or as a reply to contacting a node that is
more up-to-date), it immediately switches to that epoch.
Of course this switch will happen at different times at
different nodes. Here we explain what happens when a
client knows a different epoch than a server; Figure 5
shows the messages exchanged by the server and client.



8

Server side processing of client requests:

1) If a client request contains a smaller epoch num-
ber, send a 〈MOVETOEPOCH, e, c〉 message to
the client, where e is the replica’s epoch number
and c is the configuration for that epoch (the
delta plus the certificate).

2) Else if the client request contains a larger
epoch number, send an authenticated
〈REQUESTEPOCH, e, nonce〉 message to the
client, where e is the client’s epoch. When a
valid MOVETOEPOCH response arrives, move
to the new epoch.

3) Else normal processing of the request ensues.

Client side processing of these replies:

1) If a valid 〈REQUESTEPOCH, e, nonce〉 message
arrives for the client’s current epoch e, send a
〈MOVETOEPOCH, e, c〉 message to the server,
and then re-send the read or write request to
that server.

2) If a valid 〈MOVETOEPOCH, e, c〉 server message
arrives for a more recent epoch e, move to that
epoch, and then restart the read or write phase.

Fig. 5. Processing of messages during epoch changes.

As we explained earlier, a client request contains its
epoch number. If the client’s epoch number is smaller
than the replica’s, the replica rejects the request and
instead sends the current configuration information. The
client will then retry the request in the new epoch if
necessary (if the request has not yet completed). Each
individual phase of an operation can complete only
when the client receives 2f+1 replies from replicas in the
same epoch. This constraint is needed for correctness: If
an individual phase used results from different epochs,
we could not ensure the intersection properties that
make the operations atomic. Note that the read and write
phases can complete in distinct epochs, however.

If the client’s epoch number is larger than the replica’s,
the replica requests the new configuration, and the client
pushes it to the replica before retrying (if necessary).
Also, the replica won’t reply to a request if it has not
completed state transfer for that object (discussed next).

Clients need not refresh their freshness certificate
when they move to a later epoch. Rather these are used
to avoid communicating with an old replica group that
now contains more than f faulty nodes.

4.2.2 State Transfer

When the configuration changes, the set of servers stor-
ing certain objects may change. Each server must iden-
tify objects that it is no longer responsible for and refuse
subsequent requests for them. Each node also does state
transfer; it identifies objects it is newly responsible for
and fetches them from their previous replicas (in the
earlier epoch). To do state transfer nodes must know
both the old and new configuration. Therefore when
a node receives information about the next epoch, it
retains the earlier configuration until it completes state
transfer. (Also, a node can fetch information about earlier

configurations from the MS if necessary; this raises an
issue of when to garbage collect old configurations at
the MS, which is addressed elsewhere [21].)

The node sends state transfer requests to the old repli-
cas requesting all objects in a particular interval in the ID
space (these replicas enter the new epoch at that point if
they have not done so already). In practice, this is done
in two steps, with a first message requesting the IDs of
all objects in the interval, and a second step to fetch the
objects using the read protocols described above, except
that, unlike normal reads, state transfer does not need
to write back the highest value it read because the first
client operation in the new epoch will take care of the
write-back. A further point is that our implementation
prioritizes state transfer requests for objects that have
outstanding client requests.

State transfer ensures atomicity even if responsibility
for an object moves to a completely disjoint group of
servers in the new epoch. The new replicas will be
unable to answer client requests for that object until they
receive its state from 2f+1 old replicas. However the old
replicas switch to the new epoch before replying to state
transfer requests and once a replica switches it won’t
reply to client requests for that object. This means that
by the time the new replicas respond to client requests
for that object, the old replicas will no longer do so.

4.2.3 Deletion of Old Data

Old replicas must delete data objects they are no longer
responsible for to avoid old information accumulating
forever. A new replica sends acks to the old replicas
when it completes state transfer for some object. An old
replica counts acks and deletes the object once it has
2f +1 of them. It explicitly requests acks after a timeout
to deal with message loss.

After it deletes this state, the old replica can still
receive state transfer requests from a correct but slow
new replica (one it had not heard from previously).
In this case it replies with a special null value and
lowest version number. If a new replica receives 2f + 1

such replies it uses this value and version number for
the initial state of the object; the quorum intersection
properties ensure that the values stored at the replicas
that got the actual content and version number for the
object will be seen in any quorum that is subsequently
used to carry out operations.

5 CORRECTNESS

This section presents the correctness conditions and the
semantics provided by the system when such conditions
are met.

5.1 Safety Properties for the MS

The protocols used by the MS have different correctness
conditions, all of which must be met. This constraint
leads to the following correctness condition:



9

Correctness condition for the MS: For each epoch e,
the MS replica group for e must contain no more than fMS

faulty replicas up until the moment when the last non-faulty
MS replica finishes that epoch, discards its secret threshold
signature share, and advances its forward-secure signing key.

Given this assumption, and assuming that the various
protocols are able to terminate, we are able to offer
very strong guarantees: at the end of an epoch the MS
produces a certificate that describes the new system
membership, which can be used by clients and servers
to agree on the membership in that epoch. Additionally,
freshness certificates for epoch e cannot be produced
after the last non-faulty MS replica for epoch e finishes
that epoch because the forward-secure signing keys were
advanced (and at most fMS of these replicas could have
been compromised up to that moment).

A further point is that the MS will not falsely exclude
correct, reachable nodes because fMS + 1 nodes must
agree to remove a node and by assumption at least one
of them must be non-faulty. If we use committees, we
must also assume that no more than fMS of the 2fMS +1

committee members are faulty during the period of time
covered by the above condition.

In essence, the correctness condition defines a window
of vulnerability (a time interval when the MS group
cannot contain more than fMS faults). The interval isn’t
bounded from below since it is irrelevant whether a bad
MS replica became Byzantine faulty before or during the
epoch. The interval is bounded from above by the occur-
rence of certain events (like the conclusion of the epoch
transition protocols). If an adversary can delay such an
occurrence it might be able to extend the window long
enough to allow it to break the correctness conditions of
the system by corrupting more than fMS nodes.

We cannot guarantee that the system will be able to
run forever. For instance, an adversary can break the
system if it is able to corrupt more than fMS replicas
in the MS for epoch e before the end of e. However,
our system is useful because it provides a much longer
lifetime than one that uses a static group of replicas.
A static system is likely to run into problems as the
nodes that compose the MS start to fail. In contrast, in
a dynamic system, nodes that fail can be removed upon
detection, and new (or recovered) nodes are constantly
being added, which substantially increases the period
during which the correctness conditions are met.

5.2 Safety Properties for dBQS

To operate correctly, dBQS requires correctness of the
MS. But it also depends on a correctness condition that
is similar, but not identical, to that for the MS:

Correctness condition for dBQS. For any replica group
ge for epoch e that is produced during the execution of the
system, ge contains no more that f faulty replicas up until
the later of the following two events: (1) every non-faulty node
in epoch e + 1 that needs state from ge has completed state
transfer, or (2) the last client freshness certificate for epoch e

Window of vulnerability for epoch e

   (no more than f faults in epoch

    e replicas during this interval)

time

Epoch e starts

Client requests epoch

e freshness certificate

Epoch e ends

Freshness certificate

expires (slowest client)

Last correct epoch e+1 replica

concludes state transfer (from e)

...

Fig. 6. Window of vulnerability for epoch e.

or any earlier epoch expires at any non-faulty client c that
accesses data stored by ge.

Given this condition, dBQS provides atomic semantics;
a proof is given in a separate technical report [26].

As was the case for the MS, the condition defines a
time interval during which the number of simultaneous
node failures is constrained. The ending of the interval
depends on the occurrence of certain events, namely
ending state transfer and expiration of the last client
freshness certificate; this is illustrated in Figure 6. The
figure shows the time for state transfer being greater than
the freshness expiration time, which can happen if state
transfer takes a long time, e.g., when the state is large.
However the reverse may also be true, e.g., if we use a
long freshness period.

5.3 Liveness

Liveness of the MS depends on two factors. First, the
various protocols must be able to complete. Not only this
would be impossible in an asynchronous system [30],
but just assuming eventual delivery isn’t sufficient, e.g.,
for PBFT to make progress [10]. Instead we need the
stronger partial synchrony assumption of eventual time
bounds [27]. This means that the system runs asyn-
chronously for an unknown amount of time, but even-
tually starts to satisfy timing constraints with respect to
message delivery and processing times.

Under this condition the MS can transition between
epochs, but if epochs are too short there may not be
enough time for the MS to process membership events.
Therefore in addition we must assume epochs are long
enough so that probing can detect unreachable nodes
and requests to add and remove nodes can be executed.

In dBQS, ensuring that client operations eventually
terminate requires only a weak guarantee on message
delivery, such as asynchronous fair channels (i.e., a
message sent infinitely often would be received infinitely
often). Additionally, epochs must be long enough that
clients are able to execute their requests.

Liveness of the MS influences correctness of dBQS: in
practice it is important for the MS to make progress so
that the failure threshold imposed by the dBQS safety
condition is met. But as long as the failure thresh-
old holds, and the liveness conditions for dBQS are



10

met, dBQS is live regardless of whether the MS makes
progress.

6 EVALUATION

We implemented the membership service and dBQS
in C++. The MS is implemented as a BFT service us-
ing the publicly available PBFT/BASE code [31]. For
asynchronous proactive threshold signatures we imple-
mented the APSS protocol [11], but we adapted it to
support resharing to a different set of replicas [32].
(Wong et al. [17] were the first to propose this kind of
resharing.) dBQS is based on the code for the DHash
peer-to-peer DHT built on top of Chord [5]. Inter-
node communication is done over UDP with a C++
RPC package provided by the SFS toolkit [33]. Our
implementation uses the 160-bit SHA-1 cryptographic
hash function and the 1024-bit Rabin-Williams public
key cryptosystem implemented in the SFS toolkit for
authenticating communication and signing data objects.
The MS and dBQS run as separate user-level processes
and communicate using a Unix domain socket.

This section presents our experimental evaluation. Sec-
tion 6.1 evaluates performance during an epoch, when
no reconfiguration is happening; most of the time the
system is in this state, since the reconfiguration period
is typically long (e.g., on the order of hours). Section 6.2
evaluates the cost of reconfiguring the system.

The experiments we describe in this section used
machines from the PlanetLab and RON infrastructures
located in approximately 200 sites on four continents
(and, where noted, we used additional nodes in our
LAN).

6.1 Performance During an Epoch

This section evaluates the performance of the MS during
an epoch, and the impact of superimposing the service
on dBQS servers. A more detailed evaluation of the base
performance of dBQS can be found in [21].

Three types of membership activities happen during
an epoch: processing of membership events, such as
node additions and deletions; handling of freshness
certificates; and probing of system members. The first
two are not a major performance concern. We assume a
deployment in which membership events happen only
occasionally; processing of these events requires the use
of PBFT, but previous work [34] shows that this cost is
modest for reasonable values of f . Renewals of freshness
certificates are not a problem because the certificates are
refreshed infrequently and can be aggregated.

However probing is potentially a problem since probes
need to be sent regularly to all system members. Here we
examine the load on the probers (committee members
or members of the MS if there are no committees);
this analysis in turn allows us to determine how many
committees are needed, given a target probe frequency
and a system of size N nodes.

1

2

3

4

5

6

7

40 45 50 55 60 65 70 75 80 85

P
i
n
g
s
/
s
 
(
t
h
o
u
s
a
n
d
s
)

Pings sent per sleep cycle

no queries
30 queries/s

~300 queries/s

Fig. 7. Ping throughput.

The number of nodes a prober can monitor depends
on two factors: the maximum rate of pings each prober
is sending and the desired inter-ping arrival rate at each
system member. To determine how system load limits
the maximum probe rate we ran a simple load test where
we monitored an MS replica in our LAN while varying
the rate at which it probed other nodes in a large scale
system; the replica verified a signed nonce for 10% of the
ping replies. During the experiment the replica didn’t
process adds and removes and therefore the experiment
also shows the load on a committee member. The replica
ran on a local machine with a 2 GHz Pentium 4 processor
and 1 GB of memory running Linux 2.4.20. We populated
the system with many additional nodes located in our
LAN to avoid saturating wide-area links.

Throughout our experiments, we tried to determine
how system components interfere with each other. For
this experiment, the replica doing the pings was as-
sociated with an instance of dBQS (since we intend
to run committees on system nodes). We repeated the
experiment under three different degrees of activity of
the dBQS server: when it is not serving any data (which
will be the case when the MS does the pings and runs
on special nodes that don’t also handle the application),
when it is handling 30 queries per second, and when
clients saturate the server with constant requests, which
leads to the maximal number of about 300 queries per
second. Each query requested a download of a 512 byte
block.

Figure 7 shows how many pings the replica could
handle as we varied the number of probes sent each time
the replica resumed execution after a short sleep cycle
(of about 10 ms). The experimental methodology was to
run the system for a long time (until the replica handled
a total 400,000 pings), determine the length of time
required to do this, and compute the average throughput
for handling the pings. The figure shows three lines,
corresponding to the different levels of activity in terms
of serving data. It shows that the number of pings the
node can handle increased linearly with the number of
pings sent per sleep interval up to almost 7000 pings
per second if the node is not serving data, or up to about



11

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000M
a
x
 
f
e
t
c
h
 
t
h
r
o
u
g
h
p
u
t
 
(
f
e
t
c
h
e
s
/
s
)

Monitoring rate (pings/s)

Fig. 8. Fetch throughput, while varying the ping rate.

5000 pings per second if the node is also serving content.
After this point, the node goes into a state of receive
livelock, in which it spends most of its time processing
interrupts, and fails to perform other tasks. This leads
to decreasing ping throughput as we try to send more
pings.

We also evaluated the impact of sending probes on
dBQS performance. We ran an experiment to determine
how many fetch requests a dBQS node can handle, de-
pending on how fast the committee member running on
that node is sending probes. The results in Figure 8 show
that fetch throughput decreases from 350 fetches/s to 250
fetches/s as we increase ping load to near maximal.

A final factor to consider is bandwidth consumption.
In our system, outgoing packets contain 8 bytes for the
nonce and control information, plus the 28 byte UDP
header (ignoring Ethernet headers). Thus, for example,
a probing node would spend 21 KB/s for a probe rate
of 600 pings per second.

The main conclusion is that the architecture can scale
well without interfering with dBQS performance. The
exact parameters have to be set by an administrator
when deploying the system; however, with a target ping
interval of 1 minute and committee members that per-
form 500 pings/second, a single committee can monitor
30K nodes. This means that few committees are needed
for the data center services of today [1], [2], but more
will be needed in the future as system size increases.

A final point is that the MS can adjust the number
of committees dynamically, based on system size and
probe rate. In the future it would be interesting to add
this extension to our system.

6.2 Moving to a New Epoch

The second part of the evaluation concerns the cost of
moving from one epoch to the next. Here we have two
concerns: the cost at the MS, and the impact on the
performance of the storage protocols.

6.2.1 Cost at the MS
This part of the evaluation addresses the cost of re-
configuring the membership service at the end of an

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35

N
u
m
b
e
r
 
o
f
 
o
c
c
u
r
r
e
n
c
e
s

Reconfiguration time (s)

Fig. 9. Variation in time to reconfigure the MS.

epoch. We deployed our system in PlanetLab, which
represents a challenging environment with frequently
overloaded nodes separated by a wide area network,
and measured the time it takes to move the MS during
epoch transitions. The goal of the experiment was to
provide a conservative estimate of running the sequence
of steps for changing epochs (PBFT operations, threshold
signatures, and resharing). For analysis and evaluation
of the individual steps we refer the reader to [34], [11],
[32].

We ran the MS for several days and measured, for
each reconfiguration, the amount of time that elapsed
between the beginning of the reconfiguration and its
end. The MS was running on a group of 4 replicas
(i.e., fMS = 1) and moved randomly among the system
nodes. Even though we were limited by the size of the
testbed (in this case, hundreds of nodes), the main costs
are proportional to the number of changes and the MS
size, not the number of nodes, and therefore we expect
our results to apply to a larger deployment.

Figure 9 presents the results. The figure shows that
some reconfigurations were fast, but there is a large
variation in the time to reconfigure; this is explained by
the fact that nodes in the PlanetLab testbed are running
many other applications with varying load, and this
concurrent activity can affect the performance of the
machines significantly. The main conclusion is that, even
in a heterogeneous, often overloaded environment, most
reconfigurations take under 20 seconds to complete. This
indicates that the time to reconfigure is not a serious
factor in deciding on epoch duration.

6.2.2 dBQS
When the system moves to a new epoch, any application
that uses the MS must adapt to the membership changes.
In this section we evaluate this cost using dBQS. The ex-
periment measures the cost of a reconfiguration by con-
sidering servers that run dBQS but are not implementing
MS functions. In this case the cost of reconfiguration
is minor: for a particular client, there is the possibility
that a single operation is delayed because of the need
for either the client or the servers to upgrade to the



12

Reconfiguration Scenario Write Latency Read Latency

No reconfiguration 227.0 102.8
Client is behind 249.5 126.1

Servers are behind 298.6 174.9

TABLE 2
Performance of reads and writes under different

reconfiguration scenarios (values in milliseconds).

new epoch, but all other operations complete normally.
Note that this result assumes that state transfer is not
required, which would be the case if the replica group
did not move at the end of the epoch. State transfer can
delay replies for objects that have not been transferred
yet. By changing the rate at which we transfer objects,
we can reduce delaying a reply at the cost of more
communication to do state transfer. We evaluate the
impact of state transfer on performance elsewhere [21].

To determine the cost of operations when clients and
servers do not agree on the current epoch we used a
simple micro-benchmark that conducted a single read
and write operation on a 1 KB object. The object was
held at four replicas (i.e., we used f = 1), located at MIT,
UCSD, Cornell, and University of Utah. The client that
measured performance was located at CMU. The exper-
iments ran at night when network traffic was low and
machines were unloaded. We repeated each operation
(reading and writing a public key object) under three
different scenarios: when there are no reconfigurations
(client and replicas are in the same epoch); when the
client is one epoch behind the servers; and when the
client is one epoch ahead of the servers.

Table 2 summarizes the results; the data shown reflect
the average of five trials with a standard deviation of
less than 2 ms. The figure shows that performance of
individual operations when the system reconfigures is
close to performance when there are no reconfigurations.
Performance is better when the client upgrades than
when servers upgrade since the client upgrades and
retries the operation after talking to the closest replica,
whereas in the other case all replicas in a quorum need
to upgrade.

7 RELATED WORK

We begin by discussing prior work on systems like our
MS that provide membership control. Then we discuss
work on replicated systems, like dBQS, that support a
dynamic set of replicas. At the end of the section we
discuss other examples of large-scale Byzantine-fault-
tolerant storage systems.

7.1 Membership Control

The membership service has the same goals as the group
membership modules present in group communication
systems and our concepts of configurations and epochs

are equivalent to the notions of process groups and
views introduced in the virtual synchrony model [4]. The
initial work on group communication systems only toler-
ated crash failures. Byzantine failures are handled by the
Rampart [35] and SecureRing [36] systems. Adding and
removing processes in these systems is a heavyweight
operation: all nodes in the system execute a three-phase
Byzantine agreement protocol that is introduced by these
systems [6], which scales poorly with system size. We
get around this limitation by treating most nodes in the
system as clients, and using only a small subset of system
nodes to carry out the protocol. Thus our solution is
scalable with the number system nodes, which are only
clients of the protocols.

Guerraoui and Schiper [37] define a generic consensus
service in a client-server, crash-failure setting, where
servers run a consensus protocol, and clients use this
service as a building block. The paper mentions as an
example that the servers could be used to track mem-
bership for the clients; it also mentions the possibility of
the service being implemented by a subset of clients.
However the paper does not provide any details of
how the membership service would work. We show
how to implement a membership service that tolerates
Byzantine faults, and discuss important details such as
how to reconfigure the service itself.

Peer-to-peer routing overlays (e.g., Chord [5]) can be
seen as a loosely-consistent group membership scheme:
by looking up a certain identifier, we can determine the
system membership in a neighborhood of the ID space
near that identifier. Castro et al. proposed extensions to
the Pastry peer-to-peer lookup protocol to make it robust
against malicious attacks [38]. Peer-to-peer lookups are
more scalable and resilient to churn than our system, but
unlike our membership service, do not provide a consis-
tent view of system membership. As a result concurrent
lookups may produce different “correct” results.

Fireflies [7] is a Byzantine-fault-tolerant, one-hop (full
membership) overlay. Fireflies uses similar techniques to
ours (such as assigning committees that monitor nodes
and sign eviction certificates). However, it does not pro-
vide a consistent view of membership, but rather ensures
probabilistic agreement, making it more challenging to
build applications that provide strong semantics.

Census [8] includes a membership service and pro-
vides consistent views based on epochs; it builds on the
techniques described in this paper for the MS, both to
end the epoch and to allow the MS to move in the next
epoch. It is designed to work for very large systems,
and divides the membership into “regions” based on
coordinates. Each region tracks its own membership
changes and reports to the MS toward the end of the
epoch; the MS then combines these reports to determine
the membership during the next epoch and disseminates
the changes using multicast.



13

7.2 Dynamic Replication Protocols

Earlier work extended replication protocols (either based
on read/write quorums or on state machine replication)
to handle some forms of reconfiguration. Such proposals
assume an administrator who determines when to move
to the next epoch and what the membership will be. Our
proposal for the MS is therefore complementary since
it could be used in those systems to automate the role
of the administrator in a way that tolerates Byzantine
faults. We now discuss how the existing dynamic repli-
cation protocols relate to the ones used by dBQS.

There have been proposals for dynamic replication
protocols that tolerate crash failures, such as Rambo [39]
and SMART [40]. Our algorithms build on that body of
work, but extend it to the more challenging Byzantine
fault assumption.

Alvisi et al. [41] presented a first proposal for re-
configuring a Byzantine quorum system. However, they
assume a fixed set of replicas, and only allow the fault
threshold f to change between fmin and fmax. To
support changing the threshold, the system uses more
replicas and a larger quorum size than optimal, which
enables enough intersection to ensure that values are
not lost across threshold changes. (Both the state that
is written by clients and the current threshold value are
maintained using quorum protocols.)

Kong et al. [42] improve on this result by allowing
nodes to be removed from the set of servers; adding
nodes is not supported. Nodes are removed when sus-
pected to be faulty; this decision is made by a special,
fault-free monitoring node that tracks results returned
by different servers in response to read operations. The
techniques to ensure quorum intersection across node
removals are similar to the previous work.

The work of Martin and Alvisi [43] allows the con-
figuration to change; this work was concurrent with
our dynamic read/write algorithm [44]. Their proposal
assumes a trusted administrator (which the paper men-
tions can be implemented as an algorithm running in
a BFT manner) that is responsible for issuing a view
certificate at the beginning of each epoch. This certificate
contains a secret epoch key for each replica; replicas
use these keys to sign replies to client requests and
clients accept replies only when signed for the current
epoch. When replicas leave the epoch they erase their
previous epoch key; this way the system guarantees that
clients cannot get results from an old group. This ap-
proach solves the freshness problem without synchrony
assumptions. However, our approach avoids the need
to generate the epoch keys, which is problematic if done
by the MS: generating the keys in a way that avoids
exposure by Byzantine-faulty MS replicas is expensive,
and does not scale well. Additionally, we present an
implementation of the system and our design addresses
the problem of automatically determining membership
changes in a large scale system.

Antiquity [45] uses a secure log construction for wide-

area BFT storage. In this design, the head of the log is the
only mutable state of the system, which is maintained
using an evolution of Martin and Alvisi’s protocol [43],
and thus shares the same design choice of having an ad-
ministrator that takes an active part in the epoch change
protocol for each replica group. The administrator is also
tasked to select the sets of storage servers that host the
logs, and the deployment of Antiquity uses a DHT to
trigger reconfigurations.

7.3 Large-Scale Byzantine Storage

There are also proposals for Byzantine-fault-tolerant
storage systems that are related to our work. We high-
light how our research could be useful in two such
systems: OceanStore and Farsite.

OceanStore [46], [47] is a two-tiered system BFT stor-
age system. The primary tier of replicas offers strong
consistency for mutable data using the PBFT protocol,
and the secondary tier serves static data and thus has
simpler semantics. The only follow-up work that ad-
dresses reconfiguration is Antiquity, described above. We
believe our membership service would be an interesting
addition to this system as a means to determine the
current membership for the primary tier.

Farsite [48] is a BFT file system that uses spare re-
sources from desktop PCs to logically function as a
centralized file system. The paper mentions as future
work the design of a mechanism to determine which
machines to place file replicas on, but, to our knowledge,
no subsequent publications address this issue. Again, we
believe that the membership service would be a possible
mechanism to implement these features so our research
would also be of use in Farsite. More recently, the
replication protocols in Farsite use SMART [40] to handle
a dynamic set of replicas, but this represents a change
from the Byzantine failure model to only handling crash
faults, and it assumes an external source that triggers
reconfigurations.

8 CONCLUSION

This paper presents a complete solution for building
large-scale, long lived systems that must preserve critical
state in spite of malicious attacks and Byzantine failures.
We present a storage service with these characteristics
called dBQS, and a membership service that is part of
the overall system design, but can be reused by any
Byzantine-fault-tolerant large-scale system.

The membership service tracks the current system
membership in a way that is mostly automatic, to avoid
human configuration errors. It is resilient to arbitrary
faults of the nodes that implement it, and is recon-
figurable, allowing us to change the set of nodes that
implement the MS when old nodes fail, or periodically
to avoid a targeted attack.

When membership changes happen, the replicated
service has work to do: responsibility must shift to the
new replica group, and state transfer must take place



14

from old replicas to new ones, yet the system must still
provide the same semantics as in a static system. We
show how this is accomplished in dBQS.

We implemented the membership service and dBQS.
Our experiments show that our approach is practical and
could be used in a real deployment: the MS can manage a
very large number of servers, and reconfigurations have
little impact on the performance of the replicated service.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value store,” in Proceed-
ings of the 21st ACM Symposium on Operating Systems Principles,
2007, pp. 205–220.

[2] J. Dean, “Designs, lessons and advice from building large dis-
tributed systems,” Keynote talk at LADIS 2009.

[3] “Amazon S3 Availability Event: July 20, 2008,” http://status.aws.
amazon.com/s3-20080720.html, 2008.

[4] K. Birman and T. Joseph, “Exploiting virtual synchrony in dis-
tributed systems,” in Proceedings of the Eleventh ACM Symposium
on Operating Systems Principles, Nov. 1987, pp. 123–138.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proc. SIGCOMM 2001.

[6] M. Reiter, “A secure group membership protocol,” IEEE Transac-
tions on Software Engineering, vol. 22, no. 1, pp. 31–42, Jan. 1996.

[7] H. D. Johansen, A. Allavena, and R. van Renesse, “Fireflies:
scalable support for intrusion-tolerant network overlays,” in Pro-
ceedings of the 2006 EuroSys Conference, Leuven, Belgium, pp. 3–13.

[8] J. Cowling, D. R. K. Ports, B. Liskov, R. A. Popa, and A. Gaikwad,
“Census: Location-aware membership management for large-
scale distributed systems,” in Proceedings of the 2009 USENIX
Annual Technical Conference, San Diego, CA, USA, Jun. 2009.

[9] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do
internet services fail, and what can be done about it?” in USITS
’03, 4th USENIX Symposium on Internet Technologies and Systems,
Seattle, Washington, Mar. 2003.

[10] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,”
in Proceedings of the Third Symposium on Operating Systems Design
and Implementation (OSDI ’99), New Orleans, LA, Feb. 1999.

[11] L. Zhou, F. B. Schneider, and R. van Renesse, “Coca: A secure
distributed on-line certification authority,” ACM Transactions on
Computer Systems, vol. 20, no. 4, pp. 329–368, Nov. 2002.

[12] M. Bellare and S. Miner, “A forward-secure digital signature
scheme,” in CRYPTO ’99: Proceedings of the 19th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pp. 431–448.

[13] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key
encryption scheme,” in Advances in Crptology-Eurocrypt’03, LNCS
2656, pp. 255–271.

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with CFS,” in Proc. of the 18th
ACM Symposium on Operating Systems Principles (SOSP), Oct. 2001.

[15] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive public key and signature systems,” in Proceedings of
the 4th ACM conference on Computer and communications security
(CCCS), 1997, pp. 100–110.

[16] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asyn-
chronous verifiable secret sharing and proactive cryptosystems,”
in Proc. 9th ACM conf. on Computer and Communications Security,
2002, pp. 88–97.

[17] T. M. Wong, C. Wang, and J. M. Wing, “Verifiable secret redistri-
bution for archive systems,” in in Proceedings of the 1st International
IEEE Security in Storage Workshop, 2002, pp. 94–105.

[18] D. Schultz, B. Liskov, and M. Liskov, “Brief announcement: Mobile
proactive secret sharing,” in Proc. 27th Annual Symposium on
Principles of Distributed Computing (PODC), Aug. 2008.

[19] J. Douceur, “The sybil attack,” in Proc. 1st International Workshop
on Peer-to-Peer Systems (IPTPS’02), 2002.

[20] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the WWW,” in STOC
’97: Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, El Paso, Texas, May 1997, pp. 654–663.

[21] R. Rodrigues, “Robust services in dynamic systems,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Feb. 2005.

[22] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson,
“How to forget a secret,” in STACS 99: 16th Annual Symposium on
Theoretical Aspects of Computer Science, Mar. 1999, pp. 500–509.

[23] R. C. Merkle, “A Digital Signature Based on a Conventional
Encryption Function,” in Advances in Cryptology, 1987.

[24] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin,
“Making byzantine fault tolerant systems tolerate byzantine
faults,” in Proc. 6th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Apr. 2009.

[25] D. Malkhi and M. Reiter, “Secure and scalable replication in
phalanx,” in Proc. of the 17th Symposium on Reliable Distributed
Systems, Oct. 1998.

[26] R. Rodrigues and B. Liskov, “A correctness proof for a byzantine-
fault-tolerant read/write atomic memory with dynamic replica
membership,” MIT LCS TR/920, Sep. 2003.

[27] N. Lynch, Distributed Algorithms. Morgan Kaufmann Pub., 1996.
[28] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, “Ivy: A

read/write peer-to-peer file system,” in Proc. 5th symposium on
Operating Systems Design and Implementation (OSDI), Dec. 2002.

[29] B. Liskov and R. Rodrigues, “Tolerating byzantine faulty clients in
a quorum system,” in Proc. of the 26th IEEE International Conference
on Distributed Computing Systems (ICDCS 2006), Lisbon, Portugal.

[30] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost, “On
the impossibility of group membership,” in PODC ’96: Proc. of the
15th symposium on Principles of distributed computing, pp. 322–330.

[31] R. Rodrigues, M. Castro, and B. Liskov, “BASE: Using abstraction
to improve fault tolerance,” in Proceedings of the 18th Symposium
on Operating System Principles (SOSP’01).

[32] K. Chen, “Authentication in a reconfigurable byzantine fault
tolerant system,” Master’s thesis, MIT, Jul. 2004.

[33] D. Mazières, “A toolkit for user-level file systems,” in Proc. Usenix
Technical Conference, Jun. 2001, pp. 261–274.

[34] M. Castro, “Practical byzantine fault tolerance,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 2001.

[35] M. Reiter, “The Rampart toolkit for building high-integrity ser-
vices,” Theory and Practice in Distributed Systems, pp. 99–110, 1995.

[36] K. Kihlstrom, L. Moser, and P. Melliar-Smith, “The SecureRing
Protocols for Securing Group Communication,” in Proc. of the
Hawaii International Conference on System Sciences, Jan. 1998.

[37] R. Guerraoui and A. Schiper, “The generic consensus service,”
IEEE Trans. Software Eng., vol. 27, no. 1, pp. 29–41, 2001.

[38] M. Castro, P. Druschell, A. Ganesh, A. Rowstron, and D. Wal-
lach, “Security for structured peer-to-peer overlay networks,” in
Proceedings of the 5th symposium on Operating systems design and
implementation (OSDI’02), Boston, Massachusetts, Dec. 2002.

[39] N. Lynch and A. A. Shvartsman, “Rambo: A reconfigurable
atomic memory service,” in Proceedings of the 16th International
Symposium on Distributed Computing (DISC’02), 2002.

[40] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and
J. Howell, “The smart way to migrate replicated stateful services,”
in Proc. of 2006 EuroSys Conference, Leuven, Belgium, pp. 103–115.

[41] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. Wright, “Dynamic
Byzantine Quorum Systems,” in Proceedings of the International
Conference on Dependable Systems and Networks, DSN 2000, New
York, New York, Jun. 2000, pp. 283–292.

[42] L. Kong, A. Subbiah, M. Ahamad, and D. M. Blough, “A recon-
figurable byzantine quorum approach for the agile store,” in Proc.
22nd IEEE Symposium on Reliable Distributed Systems, Oct. 2003.

[43] J.-P. Martin and L. Alvisi, “A framework for dynamic byzantine
storage,” in Proc. Intl. Conf. on Dependable Systems and Networks
(DSN), Jun. 2004.

[44] R. Rodrigues and B. Liskov, “Reconfigurable byzantine-fault-
tolerant atomic memory,” in Proc. of the 23rd Annual ACM
SIGACT-SIGOPS Symposium on Principles Of Distributed Computing
(PODC), St. John’s, Newfoundland, Canada, Jul. 2004, pp. 386–
386.

[45] H. Weatherspoon, P. R. Eaton, B.-G. Chun, and J. Kubiatowicz,
“Antiquity: exploiting a secure log for wide-area distributed
storage,” in Proceedings of the 2007 EuroSys Conference, Lisbon,
Portugal, 2007, pp. 371–384.



15

[46] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-scale persistent
storage,” in ASPLOS-IX: Proc. 9th int. conf. on Architectural support
for programming languages and operating systems, 2000, pp. 190–201.

[47] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz, “Pond: the OceanStore prototype,” in Proceedings
of the 2nd USENIX Conference on File and Storage Technologies
(FAST’03), San Franscisco, California, Mar. 2003.

[48] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
“FARSITE: Federated, available, and reliable storage for an in-
completely trusted environment,” in Proc. of the 5th symposium on
Operating systems design and implementation (OSDI’02), Dec. 2002.

PLACE
PHOTO
HERE

Rodrigo Rodrigues is a tenure-track faculty
at the Max Planck Institute for Software Sys-
tems (MPI-SWS) where he leads the Depend-
able Systems Group. Previously, he was an
assistant professor at the Technical University
of Lisbon / INESC-ID. He graduated from the
Massachusetts Institute of Technology with a
doctoral degree in 2005. During his PhD, he
was a researcher at MIT’s Computer Science
and Artificial Intelligence Laboratory, under the
supervision of Prof. Barbara Liskov. He received

his Master’s degree from MIT in 2001, and an undergraduate degree
from the Technical University of Lisbon in 1998. He has won several
fellowships and awards, including a best paper award at the 18th ACM
Symposium on Operating Systems Principles (SOSP), and a special
recognition award from MIT’s Department of Electrical Engineering
and Computer Science. His primary technical interest is in distributed
systems, with a particular focus on system dependability.

PLACE
PHOTO
HERE

Barbara Liskov is an MIT Institute Professor of
Computer Science and Engineering and head of
the Programming Methodology Group. Liskov’s
research interests lie in programming methodol-
ogy, programming languages and systems, and
distributed computing. Major projects include:
the design and implementation of CLU, the first
language to support data abstraction; the de-
sign and implementation of Argus, the first high-
level language to support implementation of dis-
tributed programs; and the Thor object-oriented

database system, which provides transactional access to persistent,
highly-available objects in wide-scale distributed environments. Her cur-
rent research interests include Byzantine-fault-tolerant storage systems
and efficient and secure online storage. Prof. Liskov is a member of
the National Academy of Engineering, and a fellow of the American
Academy of Arts and Sciences, and the Association for Computer
Machinery. She received The Society of Women Engineers’ Achieve-
ment Award in 1996, the IEEE von Neumann medal in 2004, the ACM
SIGPLAN Programming Languages Achievement Award in 2008, and
the ACM A. M. Turing Award in 2008.

PLACE
PHOTO
HERE

Kathryn Chen graduated from MIT with a Mas-
ter of Engineering degree in 2004 and from
Wharton with a Master of Business Administra-
tion in 2009.

PLACE
PHOTO
HERE

Moses Liskov is a Lead Infosec Scientist/Engi-
neer at the MITRE corporation and a research
assistant professor at the College of William and
Mary. His interests include computer security,
cryptography, and theory. This work was per-
formed while Liskov was an assistant professor
at the College of William and Mary.

PLACE
PHOTO
HERE

David Schultz received a BA in computer sci-
ence (with distinction) from the University of Cal-
ifornia at Berkeley and a MS in computer science
from the Massachusetts Institute of Technology
(MIT). He is currently working toward a PhD de-
gree at MIT, with a focus in information flow con-
trol. His interests include distributed systems,
security, and cryptography.


