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The extended Lomon-Gari-Krümpelmann model of nucleon electromagnetic form factors, which

embodies �, �0, !, !0, and � vector meson contributions and the perturbative QCD high momentum

transfer behavior has been extended to the timelike region. Breit-Wigner formulas with momentum-

dependent widths have been considered for broad resonances in order to have a parametrization for the

electromagnetic form factors that fulfills, in the timelike region, constraints from causality, analyticity,

and unitarity. This analytic extension of the Lomon-Gari-Krümpelmann model has been used to perform a

unified fit to all the nucleon electromagnetic form factor data, in the spacelike and timelike region (where

form factor values are extracted from eþe� $ N �N cross sections data). The knowledge of the complete

analytic structure of form factors enables predictions at extended momentum transfer, and also of timelike

observables such as the ratio between electric and magnetic form factors and their relative phase.

DOI: 10.1103/PhysRevD.85.113004 PACS numbers: 13.40.Gp, 12.40.-y, 14.20.Dh, 25.30.Bf

I. INTRODUCTION

Nucleon electromagnetic form factors (EMFFs) de-
scribe modifications of the pointlike photon-nucleon vertex
due to the structure of nucleons. Because the virtual photon
interacts with single elementary charges, the quarks, it is a
powerful probe for the internal structure of composite
particles. Moreover, as the electromagnetic interaction is
precisely calculable in QED, the dynamical content of each
vertex can be compared with the data. The study of EMFFs
is an essential step towards a deep understanding of the
low-energy QCD dynamics. Nevertheless, even in case of
nucleons, the available data are still incomplete. The ex-
perimental situation is twofold:

(i) In the spacelike region many data sets are available
for elastic electron scattering from nucleons (N),
both protons (p) and neutrons (n). Recently, the
development of new polarization techniques (see
e.g. Ref. [1]) provides an important improvement
to the accuracy, giving a better capability of disen-
tangling electric and magnetic EMFFs than the un-
polarized differential cross sections alone.

(ii) In the timelike region there are few measurements,
mainly of the total cross section (in a restricted
angular range) of eþe� $ N �N, one set for neutrons
and nine sets for protons, one of which includes a
produced photon. Only two attempts, with incom-
patible results, have been made to separate the elec-
tric and magnetic EMFFs in the timelike region.

Many models and interpretations for the nucleon EMFFs
have been proposed. Such a wide variety of descriptions
reflects the difficulty of connecting the phenomenological
properties of nucleons, parametrized by the EMFFs, to the

underlying theory which is QCD in the nonperturbative
(low-energy) regime. The analyticity requirement, which
connects descriptions in both space (q2 < 0) and timelike
(q2 > 0) regions, drastically reduces the range of models to
be considered. In particular, the more successful ones in
the spacelike region are the vector-meson-dominance
(VMD) based models [2,3] (see, e.g., Ref. [4] for a review
on VMDmodels) that, in addition, because of their analytic
form, have the property of being easily extendable to
the whole q2 domain: spacelike, timelike, and asymptotic
regions.
In this paper we propose an analytic continuation to the

timelike region of the last version of the Lomon model for
the spacelike nucleon EMFFs [5]. This model has been
developed by improving the original idea, due to Iachello,
Jackson, and Landé [2] and further developed by Gari and
Krümpelmann [3], who gave a description of nucleon
EMFFs which incorporates VMD at low momentum trans-
fer and asymptotic freedom in the perturbative QCD
(pQCD) regime. As we will see in Sec. III, in this model
EMFFs are described by two kinds of functions: vector
meson propagators, dominant at low-q2 and hadronic form
factors (FFs) at high-q2. The analytic extension of the
model only modifies the propagator part and consists in
defining more accurate expressions for propagators that
account for finite-width effects and give the expected
resonance singularities in the q2-complex plane.

II. NUCLEON ELECTROMAGNETIC
FORM FACTORS

The elastic scattering of an electron by a nucleon
e�N ! e�N is represented, in Born approximation, by
the diagram of Fig. 1 in the vertical direction. In this
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kinematic region the 4-momentum of the virtual photon is
spacelike: q2 ¼ �2!1!2ð1� cos�eÞ � 0, !1ð2Þ is the en-
ergy of the incoming (outgoing) electron and �e is the
scattering angle.

The annihilation eþe� ! N �N or N �N ! eþe� is repre-
sented by the same diagram of Fig. 1 but in the horizontal
direction, in this case the 4-momentum q is timelike: q2 ¼
ð2!Þ2 � 0, where ! � !1 ¼ !2 is the common value of
the lepton energy in the eþe� center of mass frame.

The Feynman amplitude for the elastic scattering is

M ¼ 1

q2
½e �uðk2Þ��uðk1Þ�½e �Uðp2Þ��ðp1; p2ÞUðp1Þ�;

where the 4-momenta follow the labelling of Fig. 1, u and
U are the electron and nucleon spinors, and �� is a non-
constant matrix which describes the nucleon vertex. Using
gauge and Lorentz invariance, the most general form of
such a matrix is [6]

�� ¼ ��FN
1 ðq2Þ þ

i���q�
2MN

FN
2 ðq2Þ; (1)

whereMN is the nucleon mass (N ¼ n, p), and FN
1 ðq2Þ and

FN
2 ðq2Þ are the so-called Dirac and Pauli EMFFs; they are

Lorentz scalar functions of q2 and describe the nonhelicity-
flip and the helicity-flip part of the hadronic current, re-
spectively. Normalizations at q2 ¼ 0 follow from total
charge and static magnetic moment conservation and are

FN
1 ð0Þ ¼ QN; FN

2 ð0Þ ¼ �N;

where QN is the electric charge (in units of e) and �N the
anomalous magnetic moment (in units of the Bohr magne-
ton �B) of the nucleon N.

In the Breit frame, i.e. when the transferred
4-momentum q is purely spacelike, q ¼ ð0; ~qÞ, the had-
ronic current takes the standard form of an electromagnetic
4-current, where the time and the space component are
Fourier transformations of a charge and a current density,
respectively:

�q ¼ J0 ¼ e

�
FN
1 þ q2

4M2
FN
2

�
~Jq ¼ e �Uðp2Þ ~�Uðp1Þ½FN

1 þ FN
2 �:

We can define another pair of EMFFs through the combi-
nations

GN
E ¼ FN

1 þ q2

4M2
N

FN
2 GN

M ¼ FN
1 þ FN

2 : (2)

These are the Sachs electric and magnetic EMFFs [7], that,
in the Breit frame, correspond to the Fourier transforma-
tions of the charge and magnetic moment spatial distribu-
tions of the nucleon. The normalizations, which reflect this
interpretation, are

GN
E ð0Þ ¼ QN; GN

Mð0Þ ¼ �N;

where �N ¼ QN þ �N is the nucleon magnetic moment.
Moreover, Sachs EMFFs are equal to each other at the
timelike production threshold q2 ¼ 4M2

N , i.e.,

GN
E ð4M2

NÞ ¼ GN
Mð4M2

NÞ:

Finally, we can consider the isospin decomposition for the
Dirac and Pauli EMFFs:

Fis
i ¼ 1

2
ðFp

i þ Fn
i Þ; Fiv

i ¼ 1

2
ðFp

i � Fn
i Þ; i ¼ 1; 2:

(3)

Fis and Fiv are the isoscalar and isovector components.

III. THE MODEL

The model presented here is based on simpler versions
designed for the spacelike EMFFs of Iachello, Jackson and
Landé [2] and of the Gari and Krümpelmann idea [3],
which describes nucleon EMFFs by means of a mixture
of VMD, for the electromagnetic low-energy part, and
strong vertex FFs for the asymptotic behavior of super-
convergent or pQCD. The Lomon version [5], which fits
well all the spacelike data now available included two
more well identified vector mesons and an analytic correc-
tion to the form of the � meson propagator suitable for
describing the effect of its decay width in the spacelike
region fitted to a dispersive analysis by Mergell, Meissner,
and Drechsel [8].
This model describes the isospin components, Eq. (3), in

order to separate different species of vector meson contri-
butions. For the isovector part, the Lomon model used the
� and �ð1450Þ or �0 contribution, while for the isoscalar
the !, !ð1420Þ or !0 and � were considered. In detail
these are the expressions:

FIG. 1. One-photon exchange Feynman diagram for scattering
e�N ! e�N and annihilation eþe� ! N �N.
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Fiv
1 ðq2Þ ¼ ½BW1;�

MMDðq2Þ þ BW�0
0 ðq2Þ�F�

1 ðq2Þ þ ½1� BW1;�
MMDð0Þ � BW�0

0 ð0Þ�FD
1 ðq2Þ;

Fiv
2 ðq2Þ ¼ ��½BW2;�

MMDðq2Þ þ BW
�0
0 ðq2Þ�F�

2 ðq2Þ þ ½1� BW
2;�
MMDð0Þ � BW

�0
0 ð0Þ�FD

2 ðq2Þ;
Fis
1 ðq2Þ ¼ ½BW!

0 ðq2Þ þ BW!0
0 ðq2Þ�F!

1 ðq2Þ þ BW�
0 ðq2ÞF�

1 ðq2Þ þ ½1� BW!
0 ð0Þ � BW!0

0 ð0Þ�FD
1 ðq2Þ;

Fis
2 ðq2Þ ¼ ½�!BW

!
0 ðq2Þ þ �!0BW!0

0 ðq2Þ�F!
2 ðq2Þ þ ��BW

�
0 ðq2ÞF�

2 ðq2Þ þ ½�s � �!BW
!
0 ð0Þ � �!0BW!0

0 ð0Þ�FD
2 ðq2Þ;

(4)

where
(i) BW	

0 ðq2Þ is the propagator of the intermediate vector

meson 	 in pole approximation

BW 	
0 ðq2Þ ¼

g	
f	

M2
	

M2
	 � q2

; 	 ¼ �0; !;!0; �;

(5)

M2
	g	=f	 are the couplings to the virtual photon and

the nucleons;

(ii) BW
i;�
MMDðq2Þ are dispersion-integral analytic ap-

proximations for the � meson contribution in the
spacelike region [8]

BW
1;�
MMDðq2Þ¼

1:0317þ0:0875ð1�q2=0:3176Þ�2

2ð1�q2=0:5496Þ ;

BW2;�
MMDðq2Þ¼

5:7824þ0:3907ð1�q2=0:1422Þ�1

2��ð1�q2=0:5362Þ ;

(iii) the last term in each expression of Eq. (4) domi-
nates the asymptotic QCD behavior and also nor-
malizes the EMFFs at q2 ¼ 0 to the charges and
anomalous magnetic moments of the nucleons;

(iv) the functions F	
i ðq2Þ, 	 ¼ �,!,� and i ¼ 1, 2, are

meson-nucleon FFs which describe the vertices
	NN, where a virtual vector meson 	 couples
with two on-shell nucleons. Noting that the same
meson-nucleon FFs are used for �0 and !0 as for �
and !, we have

F
�;!
i ðq2Þ¼ fiðq2Þ� �2

1

�2
1�q2

�
�2

2

�2
2�q2

�
i
; i¼ 1;2;

F�
1 ðq2Þ¼ f1ðq2Þ

�
q2

q2��2
1

�
3=2

;

F�
2 ðq2Þ¼ f2ðq2Þ

�
�2

1

�2
�

q2��2
�

q2��2
1

�
3=2

; (6)

where �1 and �2 are free parameters that represent
cutoffs for the general high energy behavior and the
helicity-flip, respectively, and

~q 2 ¼ q2
ln½ð�2

D � q2Þ=�2
QCD�

lnð�2
D=�

2
QCDÞ

; (7)

where �D is another free cutoff which controls the
asymptotic behavior of the quark-nucleon vertex,

the extra factor in F�
i ðq2Þ imposes the Zweig rule;

(v) the functions FD
i ðq2Þ can be interpreted as quark-

nucleon FFs that parametrize the direct coupling of
the virtual photon to the valence quarks of the
nucleons,

FD
i ðq2Þ ¼

�2
D

�2
D � ~q2

�
�2

2

�2
2 � ~q2

�
i
; i ¼ 1; 2; (8)

~q2 is defined as in Eq. (7);
(vi) finally, �	 is the ratio of tensor to vector coupling at

q2 ¼ 0 in the 	NN matrix element, while the iso-
spin anomalous magnetic moments are

�s ¼ �p þ �n; �v ¼ �p � �n:

The spacelike asymptotic behavior (q2 ! �1) for
the Dirac and Pauli EMFFs of Eq. (4) is driven by
the FD

1;2ðq2Þ contribution, given in Eq. (8). In par-

ticular, we get

Fiv; is
1 ðq2Þ �

q2!�1
1

½q2 lnð�q2=�2
QCDÞ�2

Fiv; is
2 ðq2Þ �

q2!�1
Fiv; is
1 ðq2Þ

�q2 lnð�q2=�2
QCDÞ

;

as required by the pQCD [9].
In principle, this model can be extended also to the

timelike region, positive q2, to describe data on cross
sections for the annihilation processes: eþe� $ N �N.
However, a simple analytic continuation of the expressions
given in Eq. (4) involves important issues mainly concern-
ing the analytic structure of the vector meson components
of the EMFFs that, in the timelike region, are complex
functions of q2. The hadronic FFs of Eqs. (6) and (8) may
also have real poles as a function of q2. In fact, as defined

above, F�
i has a real pole at q2 ¼ �2

i . In the other denom-
inators of Eqs. (6) and (8), as in F

�;!
i and FD

1 , q
2 is replaced

by ~q2. The latter as a function of q2 has a maximum in its
real range 0< q2 <�2

D, which, for reasonable values of
�D and �QCD, may be smaller than �2

1, �2
2 and �2

D.

Therefore, all the hadronic FFs real poles may be avoided

by also replacing q2 by ~q2 in the factors of F�
i . This does

not effect the asymptotic behavior required by the Zweig
rule and will be adopted in the model used here. The results
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in Sec. VI show that with this modification real poles can
be avoided in every case examined, although in half the
cases mild constraints on �1 or �QCD are needed which

affect the quality of the fit negligibly. A detailed treatment
of the possibility of extending the model from the spacelike
to the timelike region will be given in Sec. V.

IV. ANALYTICITY OF BREIT-WIGNER
FORMULAS

The standard relativistic Breit-Wigner (BW) formula for
an unstable particle of mass M and energy independent
width � is

BW ðsÞ ¼ 1

M2 � s� i�M
;

it has a very simple analytic structure, only one complex
pole and no discontinuity cut in its domain. Once this
formula is improved to include energy dependent widths,
one immediately faces problems concerning the analyticity.

We consider explicitly the case of the � resonance in its
dominant decay channel 
þ
�. A realistic way to formu-
late an energy dependent width is to extend the � mass off
shell, making the substitution M2

� ¼ s, in the first order

decay rate

�ð� ! 
þ
�Þ ¼ jg�

j2
48


M2
� � 4M2




M2
�

; (9)

where g�

 is the coupling constant and,M� andM
 are the

� and pion mass, respectively. Such a decay rate has been
obtained by considering, for the vertex �
þ
�, the point-
like amplitude

M ¼ g
�


��ðpþ � p�Þ�;

where �� is the polarization vector of the vector meson �,

and p� is the 4-momentum of 
�. Finally, assuming
the 
þ
� as the only decay channel and using Eq. (9)
for the corresponding rate, the energy dependent width can
be defined as

�
�
s ðsÞ ¼ �

�
0

M2
�

s

�
s� s0
M2

� � s0

�ð3=2Þ � ��

M�

ðs� s0Þð3=2Þ
s

;

�� � �
�
0M

3
�

ðM2
� � s0Þð3=2Þ

; (10)

where the subscript ‘‘s’’ indicates the factor 1=s appearing
in the width definition, �

�
0 is the total width of the �, and

s0 ¼ 4M2

. It follows that the BW formula becomes

BW sðsÞ ¼ s

sðM2
� � sÞ � i��ðs� s0Þð3=2Þ

:

In this form the BW has the ‘‘required’’ [10] discontinuity
cut ðs0;1Þ and maintains a complex pole sp,

sp ¼ ~M�
2 þ i~��

0
~M� ’ M2

� þ i�
�
0M� ¼ s0p:

Because of the more complex analytic structure, the new
pole position sp turns out to be slightly shifted with respect

to the original position s0p. Moreover, these are not the only

complications introduced by using ��ðsÞ instead of ��
0 ; the

power 3=2 in the denominator and the factor 1=s [see
Eq. (10)] also generate additional physical poles which,
in agreement with dispersion relations, must be subtracted,
as discussed below.

A. Regularization of Breit-Wigner formulas

We consider the general case where there is a number N
of poles lying in the physical Riemann sheet. We may
rewrite the BW by separating the singular and regular
behaviors as

BW ðsÞ ¼ PNðsÞQ
N
j¼1ðs� zjÞ½M2 � s� i�ðs� s0Þ��

;

where PNðsÞ is a suitable N degree polynomial, � is a
noninteger real number which defines the discontinuity
cut (in the previous case we had � ¼ 3=2), � ¼
M�0=ðM2 � s0Þ�, and the zj are the real axis (physical)

poles. To avoid divergences in our formulas, we may define
a simple regularization procedure consisting in subtracting
these poles. In other words we add counterparts that at
z ¼ zj behave as the opposite of the ith pole. In more

detail, we may define a regularized BW as

gBWðsÞ ¼ BWðsÞ

� XN
k¼1

PNðzkÞQN
j¼1;j�kðzk � zjÞ½M2 � zk � i�ðzk � s0Þ��

� 1

s� zk
: (11)

In Appendix A we show how dispersion relations (DRs)
offer a powerful tool to implement this procedure without
the need to know where the poles are located. However, in
this paper we show that an analytic expression also con-
tains the information.

B. Two cases for �ðsÞ
In our model for nucleon EMFFs, widths are used only

for the broader resonances: �ð770Þ, �ð1450Þ, and !ð1420Þ
[11]. We explicitly consider two expressions for �ðsÞ
which entail different analytic structures for the BW for-
mulas. Besides the form we discussed in Sec. IV, Eq. (10),
we consider also a simpler expression (closer to the non-
relativistic form); hence, for a generic broad resonance, we
have
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�sðsÞ ¼ �0

M2

s

�
s� ~s0
M2 � ~s0

�ð3=2Þ � �s

M

ðs� ~s0Þð3=2Þ
s

;

with: �s ¼ �0M
3

ðM2 � ~s0Þð3=2Þ

�1ðsÞ ¼ �0

�
s� ~s0
M2 � ~s0

�ð3=2Þ � �1

M
ðs� ~s0Þð3=2Þ;

with: �1 ¼ �0M

ðM2 � ~s0Þð3=2Þ
: (12)

In both cases we assume that such a resonance decays
predominantly into a two-body channel whose mass
squared equals ~s0. The subscript ‘‘1’’ in the second ex-
pression of Eq. (12) indicates that there is no extra factor
1=s in the definition of the energy dependent width.

As already discussed, the BW formulas acquire a more
complex structure as functions of s; as a consequence,
unwanted poles are introduced. Such poles spoil analytic-
ity, hence, they must be subtracted by hand or, equiva-
lently, by using the DR procedure defined in Appendix A.

In more detail, for both BW formulas, we only have one
real pole, that we call ss and s1, respectively, (both less
than ~s0). The corresponding residues, that we call Rs;1, are

Rs ¼ ss
M2 � 2ss þ 3

2�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s0 � ss

p ;

R1 ¼ 1

�1þ 3
2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s0 � s1

p :
(13)

Following Eq. (11), the regularized BW formulas read

gBW s;1ðsÞ ¼ BWs;1ðsÞ � Rs;1

s� ss;1
:

In particular, below the threshold ~s0, where BWs are real,
we have

gBWsðs< ~s0Þ ¼ s

sðM2 � sÞ��sð~s0 � sÞ3=2 �
Rs

s� ss
;

gBW1ðs< ~s0Þ ¼ 1

M2 � s��1ð~s0 � sÞ3=2 �
R1

s� s1
: (14)

Above ~s0 BWs become complex; real and imaginary parts

are obtained as the limit of gBWs;1ðsÞ over the upper edge of
the cut ð~s0;1Þ. Since the poles ss;1 are real, only the real

parts have to be corrected as

Re½gBWsðs > ~s0Þ� ¼ s2ðM2 � sÞ
s2ðM2 � sÞ2 þ �2

sðs� ~s0Þ3
� Rs

s� ss
;

Re½gBW1ðs > ~s0Þ� ¼ M2 � s

ðM2 � sÞ2 þ �2
1ðs� ~s0Þ3

� R1

s� s1
;

(15)

while the imaginary parts remain unchanged

Im½gBWsðs > ~s0Þ� ¼ s�sðs� ~s0Þ3=2
s2ðM2 � sÞ2 þ �2

sðs� ~s0Þ3
;

Im½gBW1ðs > ~s0Þ� ¼ �1ðs� ~s0Þ3=2
ðM2 � sÞ2 þ �2

1ðs� ~s0Þ3
:

(16)

The parameters of the subtracted poles for the three vector
mesons are reported in Table I. A third case is discussed in
Appendix B. It is not fitted to the data because its reso-
nance structure is intermediate between the two above
cases.
Figures 2 and 3 show comparisons between the two

descriptions in case of � in the spacelike and timelike
regions, respectively. On the left of each figure is the
modulus of each, on the right the relative difference with
respect to BWs.

V. THE ANALYTIC EXTENSION

The original model, described in Sec. III and constructed
in the spacelike region, can be analytically continued in the
timelike region using the regularized BW formulas ob-
tained in Sec. IV.We consider then a new set of expressions
for Fiv

1;2ðq2Þ and Fis
1;2ðq2Þ, homologous to those of Eq. (4)

where now we use regularized BW formulas instead of the
MMD [8] � width form or the zero-width approximation
given in Eq. (5), and also two additional vector meson
contributions, �ð1450Þ and !ð1420Þ here simply �0 and
!0, as in the last version of the Lomon model [5]. Such
BWs have the expected analytic structure and reproduce in
both spacelike and timelike regions the finite-width effect
of broad resonances. The narrow widths of the ! and �
have negligible effects, so we use these modified propa-
gators only for broader vector mesons, namely: the iso-
vectors � and �0, and the isoscalar !0. These are the new
expressions for the isospin components of nucleon EMFFs:

TABLE I. Parameters for the BW formulas of resonances: �ð770Þ, �ð1450Þ, and !ð1420Þ.
Resonance M (GeV) �0 (GeV) ~s0 ss (GeV

2) s1 (GeV2)

�ð770Þ 0.7755 0.1491 4M2

 0.005953 �11:63

�ð1450Þ 1.465 0.400 4M2

 0.003969 �29:43

!ð1420Þ 1.425 0.215 ðM
 þM�Þ2 0.06239 �19:46
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Fiv
1; caseðq2Þ ¼ ½gBW�

caseðq2Þ þ gBW�0
caseðq2Þ�F�

1 ðq2Þ þ ½1� gBW�
caseð0Þ � gBW�0

caseð0Þ�FD
1 ðq2Þ;

Fiv
2; caseðq2Þ ¼ ½��

gBW�
caseðq2Þ þ ��0 gBW�0

caseðq2Þ�F�
2 ðq2Þ þ ½�v � ��

gBW�
caseð0Þ � ��0gBW�0

caseð0Þ�FD
2 ðq2Þ;

Fis
1; caseðq2Þ ¼ ½BW!

0 ðq2Þ þ gBW!0
caseðq2Þ�F!

1 ðq2Þ þ BW�
0 ðq2ÞF�

1 ðq2Þ þ ½1� BW!
0 ð0Þ � gBW!0

caseð0Þ�FD
1 ðq2Þ;

Fis
2; caseðq2Þ ¼ ½�!BW

!
0 ðq2Þ þ �!0 gBW!0

caseðq2Þ�F!
2 ðq2Þ þ ��BW

�
0 ðq2ÞF�

2 ðq2Þ þ ½�s � �!BW
!
0 ð0Þ � �!0 gBW!0

caseð0Þ
� ��BW

�
0 ð0Þ�FD

2 ðq2Þ;

where case ¼ s and case ¼ 1 correspond to the parametrizations of the energy dependent width described in Sec. IVB.
Following Eqs. (14)–(16) for the definition of gBWðq2Þ, and including the coupling constants, we have
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gBW�
caseðq2Þ

¼

8>>><>>>:
g�M

2
�

f�

�
q2

q2ðM2
��q2Þ�i��

s ðq2�~s�
0
Þ3=2 �

R�
s

q2�s�s

�
case ¼ s

g�M
2
�

f�

�
1

M2
�
�q2�i��

1
ðq2�~s�

0
Þ3=2 �

R�
1

q2�s�
1

�
case ¼ 1

with � ¼ �, �0, !0 (parameters in Table I), where the ��
1;s

are given in Eq. (12) and the residues R�
1;s are given in

Eq. (13). The BWs does not spoil the high-energy behavior
of the resulting nucleon E introduction of the regularized
MFFs. In fact, as jq2j ! 1, the function gBW�

caseðq2Þ van-
ishes like 1=q2, i.e. following the same power law as the
previous BW�

0 ðq2Þ, in the case ¼ 1 and case ¼ s [see
Eq. (5)], indeed we have

gBW�
caseðq2Þ �

jq2j!1

8><>:
g�M

2
�

f�

1�R�
s

q2
case ¼ s

� g�M
2
�

f�

R�
1

q2
case ¼ 1

:

It is interesting to notice that in both cases it is just the
subtracted pole which ensures the expected behavior, and,
in particular, the asymptotic limit of q2 	 gBW�

caseðq2Þ is
proportional to R�

1 and ð1� R�
s Þ, respectively. For the

reason discussed at the end of Sec. III, for the presentmodel,
q is replaced by ~q in the hadronic FF’s F�

i of Eq. (6).

VI. RESULTS

Nine sets of data have been considered; six of them lie in
the spacelike region [12], and three lie in the timelike
region [13–21]. The data determine the Sachs EMFFs
and their ratios. The fit procedure consists in defining a
global 
2 as a sum of nine contributions, one for each set.
In more detail, we minimize the quantity


2 ¼ X9
i¼1

�i 	 
2
i ;

where the coefficients �i weight the ith contribution, we
use �i ¼ 1 or �i ¼ 0 to include or exclude the ith data set.
The single contribution 
2

i is defined in the usual form as


2
i ¼

XNi

k¼1

�
Qiðq2kÞ � vi

k

�vi
k

�
2
;

whereQiðq2Þ indicates the physical observable, function of
q2, that has been measured and the set fq2k; vi

k; �v
i
k;Nig

represents the corresponding data; vi
k is the k th value (k ¼

1; . . . ; Ni) of the quantity Qi (i ¼ 1; . . . ; 9) measured at
q2 ¼ q2k, with error �vi

k. Table II reports the complete

list of observables, the number of data points, and the
corresponding minimum 
2’s, in the two considered cases
as described in Sec. V for the sets of data with and without
the BABAR data which have a final state photon. For
case ¼ s, with and without the BABAR data, the optimiza-
tion over the full set of 13 free parameters (Table III)
determines �1, �2, �D and �QCD such that the hadronic

FFs have no real poles. For the case ¼ 1with BABAR data,
the full minimization implies a zero for (�2

1 � ~q2) produc-
ing poles in the hadronic FF. Reminimizing with the con-
straint �1 ¼ 0:5 GeV, just above the 0.4744 GeVobtained
without the constraint, removes the poles. For case ¼ 1
without BABAR data, it is required that the already fixed
�QCD ¼ 0:15 GeV be changed to �QCD ¼ 0:10 GeV to

avoid a zero of (�2
1 � ~q2). In both cases the change in 
2

is negligible. Data and fits, black and gray curves corre-
spond to case ¼ 1 and case ¼ s, respectively, are shown in
Figs. 5–12. In the spacelike region the electric Sachs
EMFFs are normalized to the dipole form

GDðq2Þ ¼
�
1� q2

0:71 GeV2

��2
;

while magnetic EMFFs are also normalized to the mag-
netic moment. This normalization decreases the range of
variation, but the curves clearly demonstrate deviations
from the dipole form. The observable RN is defined as
the ratio RN ¼ GN

E=G
N
M for the nucleon N. As N stands

for both neutron and proton, there are six spacelike ob-
servables. A departure from scaling is shown in the devia-
tion of Rp and Rn from unity.

TABLE II. Measured quantities, numbers of data points and 
2 contributions. The values in parentheses indicate the number of data
points in the case ‘‘No BABAR.’’

Minimum 
2
i

Qi Ni case ¼ s With BABAR case ¼ 1 With BABAR case ¼ s No BABAR case ¼ 1 No BABAR

spacelike Gp
M 68 48.7 50.1 54.6 60.8

Gp
E 36 30.4 27.6 26.2 35.0

Gn
M 65 154.6 154.2 158.2 167.0

Gn
E 14 22.7 23.2 24.1 26.0

�pG
p
E=G

p
M 25 13.9 12.9 10.6 14.4

�nG
n
E=G

n
M 13 11.3 10.7 8.2 8.9

timelike jGp
eff j 81 (43) 162.5 166.7 62.2 35.0

jGn
eff j 5 8.4 6.3 3.2 0.3

Total 313(275) 452.5 451.7 347.3 347.4

TIMELIKE AND SPACELIKE ELECTROMAGNETIC FORM . . . PHYSICAL REVIEW D 85, 113004 (2012)

113004-7



The timelike effective FF, jGN
effj, is defined as

jGN
effðq2Þj ¼

26664 �ðeþe� ! N �NÞ
4
	2

3q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

N

q2

r
ð1þ 2M2

N

q2
Þ

37775
1=2

; (17)

where �ðeþe� ! N �NÞ is the measured total cross section,
and the kinematic factor at denominator is the Born cross
section for a pointlike nucleon. In terms of electric and
magnetic EMFFs, GN

E and GN
M, i.e. considering the matrix

element given in Eq. (1) and the definitions of Eq. (2), we
have

jGN
effðq2Þj ¼

�
jGN

Mðq2Þj2 þ
2M2

N

q2
jGN

E ðq2Þj2
�
1=2

�
�
1þ 2M2

N

q2

��1=2
;

and this is the relation that we use to fit the data on jGN
eff j

for both proton-antiproton and neutron-antineutron
production.

The proton-antiproton production experiments were of
two types, (1) the exclusive pair production [13–20] and
(2) production of the pair with a photon [21]. In the latter
case the pair production energy is obtained by assuming
that the photon was produced by the electron or positron
and that no other photons were emitted but undetected. Fits
of the model were made both with and without the latter

data [21]. In Figs. 5–12 the fit curves corresponding to the
two possibilities: with and without BABAR data, are shown
as solid and dashed lines, respectively.
The free parameters of this model are
(i) the three cutoffs: �1, �2, and �D which parametrize

the effect of hadronic FFs and control the transition
from nonperturbative to perturbative QCD regime in
the �NN vertex;

(ii) five pairs of vector meson anomalous magnetic
moments and photon couplings ð�	; g	=f	Þ, with
	 ¼ �, �0, !, !0, �.

The best values for these 13 free parameters together
with the constants of this model are reported in Table III.
The fixed parameters concern well-known measurable

features of the intermediate vector mesons and dynamical
quantities. Particular attention has to be paid to �QCD. In

fact we use the values �QCD ¼ 0:15 GeV in all cases but

for the case ¼ 1 without BABAR data, where instead
�QCD ¼ 0:10 GeV. The use of such a reduced value is

motivated by the requirement of having no real poles in
meson-nucleon and quark-nucleon FFs (Sec. III). As
�QCD ¼ 0:15 GeV is closer to the values preferred by

high energy experiments, it suggests that case ¼ s is the
more physical model. Another reason to prefer it on physi-
cal grounds is that the width formula of the vector meson
decay in case ¼ s is determined by relativistic perturbation
theory. Case ¼ 1 was chosen because it is a simpler rela-
tivistic modification of the nonrelativistic Breit-Wigner
form. This in our view is a less physical reason.

TABLE III. Best values of fit parameters and constants.

Parameter case ¼ s With BABAR case ¼ 1 With BABAR case ¼ s No BABAR case ¼ 1 No BABAR

g�=f� 2.766 2.410 0.9029 0.4181

�� �1:194 �1:084 0.8267 0.6885

M� (GeV) 0.7755 (fixed)

�� (GeV) 0.1491 (fixed)

g!=f! �1:057 �1:043 �0:2308 �0:4894
�! �3:240 �3:317 �9:859 �1:398
M! (GeV) 0.78263 (fixed)

g�=f� 0.1871 0.1445 0.0131 0.1156

�� �2:004 �3:045 37.218 �0:2613
M� (GeV) 1.019 (fixed)

�� (GeV) 20.0 (fixed)

g!0=f!0 2.015 1.974 1.265 1.649

�!0 �2:053 �2:010 �2:044 �0:6712
M!0 (GeV) 1.425 (fixed)

�!0 (GeV) 0.215 (fixed)

g�0=f�0 �3:475 �3:274 �0:8730 �0:0369
��0 �1:657 �1:724 �2:832 �104:35
M�0 (GeV) 1.465 (fixed)

��0 (GeV) 0.400 (fixed)

�1 (GeV) 0.4801 0.5000 0.6474 0.6446

�2 (GeV) 3.0536 3.0562 3.0872 3.6719

�D (GeV) 0.7263 0.7416 0.8573 0.8967

�QCD (GeV) 0.150 0.100
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VII. DISCUSSION

The Lomon-Gari-Krumpelman model [5] was devel-
oped for and fitted to spacelike EMFF data. To enable
the model to include the timelike region, only the vector
meson (of nonnegligible width) propagators needed revi-
sion to appropriately represent a relativistic BW form at
their pole in the timelike region. Two such forms are
discussed above, case ¼ 1, the minimal alteration from
the nonrelativistic BW form, and case ¼ s derived from

relativistic perturbation theory. The resulting modification
in the spacelike region is minor and affected the fit there
very little.
With the new form of the vector meson propagators, the

simultaneous fit to the spacelike EMFF and the timelike
nucleon-pair production data was satisfactory as seen in
Figs. 4–11 and by the 
2 values of Table III.
The 
2 contributions from each spacelike EMFF differ

little between case ¼ 1 and case ¼ s and are approxi-
mately the same as in the spacelike only fit of Ref. [12].
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However, the fit in the timelike region, as measured by

2, is qualitatively poorer when the BABAR data [21] are
included (
2=d:o:f: ¼ 2:5) than when that set of data is
omitted (
2=d:o:f: ¼ 0:5 for case ¼ 1, and is 1.0 for
case ¼ s). As the quality of the fit is poorer when the
BABAR data are included, it may indicate an inadequacy
in the model. However, the energy of the nucleon pairs
produced in the BABAR experiment, unlike that of the
exclusive pair production [13–20], depends on the assump-
tion that the observed photon is from electron or positron
emission and is not accompanied by a significant amount

of other radiation. The resultant theoretical error is not
fully known although relevant calculations have been
made [22]. The angular distributions may be sensitive to
these radiation effects affecting the values of the jGp

E=G
p
Mj

ratio whose data are displayed in Fig. 12 together with our
prediction.
Figures 4–9 are extended to higher momentum transfers

than the present data to show how the four different fits
may be discriminated by new data. Figure 8 for Rp indi-

cates that at the higher momentum-transfers extended data
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may discriminate the smaller case ¼ s no BABAR predic-
tion from the larger case ¼ 1 and case ¼ s with-BABAR
predictions and from the still larger case ¼ 1 no-BABAR
prediction. Figure 9 for Rn shows that at high momentum
transfer the case ¼ s predictions are higher than those for
case ¼ 1.

Figure 11 is extended in energy for the same reason. It
clearly shows that at higher energy case ¼ 1 no-BABAR
may be discriminated from the other three fits by moder-
ately precise data.

An extension of Fig. 10 would only show the production
of proton pairs remaining very close to zero. However, in
the range of energy already covered it is evident that the
case ¼ s no-BABAR result is difficult to reconcile with the
BABAR data for s ¼ 5–7 GeV2. However, for s ¼
7:5–8:5 GeV2 the no-BABAR fits are closer to the BABAR
data than are the with-BABAR fits.
Figures 12 and 13 show that experiments in the timelike

region for the ratio jGp
E=G

p
Mj and the phase difference of

Gp
E and Gp

M would be effective in discriminating between
the models presented here and other models as well.

APPENDIX A: DISPERSION RELATIONS

Dispersion relations are based on the Cauchy theorem.
Consider a function FðzÞ, analytic in the whole z complex
plane with the discontinuity cut ðs0;1Þ. If that function
vanishes faster than 1= lnjzj as jzj diverges, we can write
the spectral representation

FðzÞ ¼ 1




Z 1

s0

Im½FðxÞ�dx
x� z

: (A1)

This is the so-called DR for the imaginary part where it is
understood that the imaginary part is taken over the upper
edge of the cut.
The extension to the case where there is a finite number

of additional isolated poles is quite natural. Indeed, con-
sidering a function with the set of N poles fzjg (j ¼
1; . . . ; N) of Sec. IVA, under the same conditions, we
obtain the spectral representation

FðzÞ þ 2
i
XN
j¼1

Res

�
Fðz0Þ
z0 � z

; zj

�
¼ 1




Z 1

s0

Im½FðxÞ�dx
x� z

;

(A2)

where Res½gðzÞ; z0� stands for the residue of the function
gðzÞ at z ¼ z0. Furthermore, since we know the poles, we
can use the more explicit form

FðzÞ ¼ fðzÞQ
N
j¼1ðz� zjÞ ;

where fðzÞ is the pole-free part of FðzÞ, but it has the same
discontinuity cut. Using this form in the residue definition
of Eq. (A2) and defining ~FðzÞ as the regularized version of
FðzÞ, we have

~FðzÞ ¼ FðzÞ þ XN
k¼1

fðzkÞQ
N
k¼1;k�jðzk � zjÞ

1

zk � z

¼ 1




Z 1

s0

Im½FðxÞ�dx
x� z

which is exactly the same expression as Eq. (11). In other
words, the DR procedure, using only the imaginary part
of a generic function, which is suffering or not from
the presence of unwanted poles, guarantees regularized
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analytic continuations, the poles, even if unknown, are
automatically subtracted.

APPENDIX B: A THIRD CASE

We consider a regularized vector meson propagator [23]

DðsÞ ¼ 1

M2
0 � sþ�ðsÞ ;

where M0 is the bare mass of the meson and �ðsÞ is the
scalar part of the tensor correlator. The imaginary part, due
to the pion loop, can be obtained using the so-called
Cutkosky rule [24] as

Im�ðsÞ ¼ ��0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� ~s0Þ3

s

s
�ðs� ~s0Þ;

�0 ¼ �0M
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 � ~s0Þ3

p : (B1)

The real part of �ðsÞ represents the correction to the bare
mass M0 in such a way that the dressed mass becomes

M2 ¼ M2
0 þ Re�ðsÞ:

It follows that the propagator can be written in terms ofM2

and the only imaginary part of �ðsÞ

DðsÞ ¼ 1

M2 � s� i Im�ðsÞ
¼ 1

M2 � s� i�ðs� ~s0Þ�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� ~s0Þ3=s
p : (B2)

Actually, only the imaginary part of this expression makes
sense because of the Heaviside step function in the defini-
tion of Eq. (B1); nevertheless, using DR, one can deter-
mine the complete propagator starting just from its
imaginary part. The propagator is expected to be real below
the threshold ~s0. In particular, using Eq. (A1) for t < ~s0, we
have

DðtÞ ¼ 1




Z 1

~s0

ImDðsÞds
s� t

¼ �0




Z 1

~s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� ~s0Þ3

p
ds

½sðM2 � sÞ2 þ �2
0ðs� ~s0Þ3�ðs� tÞ ; (B3)

while the real part over the timelike cut ð~s0;1Þ, i.e. for
s > ~s0, is

ReDðsÞ ¼ 1



Pr
Z 1

~s0

ImDðs0Þds0
s0 � s

¼ �0



Pr
Z 1

~s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0ðs0 � ~s0Þ3

p
ds0

½s0ðM2 � s0Þ2 þ �2
0ðs0 � ~s0Þ3�ðs0 � sÞ :

(B4)

In this case the ‘‘natural’’ spacelike extension of the origi-
nal form given in Eq. (B2) is no more possible; in fact such

a form, when we forget the Heaviside function in the
denominator, develops a second cut which extends over
the whole spacelike region. It follows that we can not write
an expression like

R 3 ~Dðs < ~s0Þ � 1

M2 � s� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� ~s0Þ3=s

p � X
k

Rk

s� sk|fflfflfflfflffl{zfflfflfflfflffl}
Physical poles

;

where we get, in the spacelike region, a regular and real
propagator simply by subtracting the physical poles.
The only possibility to go below threshold is to use the

DRs of Eqs. (B3) and (B4). We compute explicitly the DR
integrals using the substitution

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s0

s

s ���!
8>>><>>>:
s ¼ ~s0

1�x2

ds ¼ 2~s0
xdx

ð1�x2Þ2

s 2 ð~s0;1Þ ! x 2 ð0; 1Þ
:

The regularized form for DðsÞ is
~DðsÞ

¼

8>>>><>>>>:
�1

s�0

P
3
i¼0

�3
i lnð

�iþ1

�i�1ÞQ
3
k�i

ðx2i�x2
k
Þ s� ~s0

�
P

3
i¼1

�3
i
lnð�iþ1

�i�1
ÞQ

3
k�i

ðx2
i
�x2

k
Þ
þ

x3
0
lnj�0þ1

�0�1
jQ

3
k�0

ðx2
0
�x2

k
Þ


s�0
þ i�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs�~s0Þ3

p
sðM2�sÞ2þ�2

0ðs�~s0Þ3 s>s0

:

The four values x2i (i ¼ 0, 1, 2, 3), with �i �
ffiffiffiffiffi
x2i

q
, are the

roots of the 4th-degree polynomial in x2, which represents
the denominator of the integrands in both DR’s:

f½ð1� x2ÞM2=~s0 � 1�2=�2
0 þ x6gð~s0=t� 1þ x2Þ; (B5)

in particular, x20 ¼ 1� ~s0=s is the only root that depends

on s, while the three xi, with i ¼ 1, 2, 3, are the constant
zeros of the first polynomial factor of 2 in Eq. (B5). The
value at s ¼ 0 can be obtained as

~Dð0Þ ¼ � 1


s0�0

X3
i¼1

x3i lnðxiþ1
xi�1ÞQ

3
k�i
k¼1

ðx2i � x2kÞ
:

Concerning the asymptotic behavior, when s ! �1, i.e.
x20 ! 1, is

~DðsÞ �jsj!1
1


�0

Q3
i¼1ð1� x2i Þ

lnjsj
s

¼ �0


ð1þ �2
0Þ

lnjsj
s

;

where the last identity follows because the product at
denominator is just the 3th degree x2 polynomial of
Eq. (B5) evaluated at x2 ¼ 1.
A data fit was not made for this case because the

resonance shape it produces is intermediate between the
fitted case ¼ 1 and case ¼ s.
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APPENDIX C: THE THRESHOLD BEHAVIOR

The effective proton and neutron EMFFs extracted from
the cross section data through the formula of Eq. (17) have
a quite steep enhancement towards the threshold, i.e. when
q2 ! ð2MNÞ2. This is a consequence of the almost flat
cross section measured in the near-threshold region:
ð2MNÞ2 � q2 � ð2 GeVÞ2. Such a flat behavior is in con-
trast with the expectation in case of a smooth effective FF,
which gives, near threshold, a cross section proportional to

the velocity of the outgoing nucleon
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

N=q
2

q
.

Moreover, in the threshold region the formula of Eq. (17)
has to be corrected to account for N �N finale state interac-
tion. In particular, in the Born cross section formula, in
case of proton-antiproton, we have to consider the correc-
tion due to their electromagnetic attractive interaction [25].
Such a correction, having a very weak dependence on the
fermion pair total spin, factorizes and, in case of pointlike
fermions, corresponds to the squared value of the Coulomb

scattering wave function at the origin; it is also called the
Sommerfeld-Schwinger-Sakharov rescattering formula
[26]. Besides the Coulomb force, strong interaction could
also be considered. Indeed, when final hadrons are produced
almost at rest, they interact strongly with each other before
getting outside the range of their mutual forces [27]. Indeed
there is evidence for near threshold quasibound N �N states
with widths in the tens of MeV [28]. It follows that EMFF
values in this energy region are affected by different kinds of
corrections whose form and interplay are not well-known.
Hence, we decided to include in the present analysis only
data above q2 ¼ 4 GeV2, to avoid the threshold region.
Figures 14 and 15 show the residue data over fit for the

proton and neutron effective FFs, respectively. They have
been obtained dividing the fit functions shown in Figs. 10
and 11 by the corresponding data on jGp;n

eff j. The threshold
enhancement of the proton data exceeds the fit by a factor
of more than two and, in the neutron case, even within large
errors, the factor is about three.
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