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Early retinotopic cortex has traditionally been viewed as containing a veridical 

representation of the low-level properties of the image, not imbued by high-level 

interpretation and meaning. Yet several recent results indicate that neural 

representations in early retinotopic cortex reflect not just the sensory properties of 

the image, but the perceived size and brightness of image regions.  Here we used 

fMRI pattern analyses to ask whether the representation of an object in early 

retinotopic cortex changes when the object is recognized compared to when the 

same stimulus is presented but not recognized. Our data confirmed this hypothesis: 

the pattern of response in early retinotopic visual cortex to a two-tone ‘Mooney’ 

image of an object was more similar to the response to the full grey scale photo 

version of the same image when observers knew what the two-tone image 

represented than when they did not. Further, in a second experiment, high-level 

interpretations actually overrode bottom-up stimulus information, such that the 

pattern of response in early retinotopic cortex to an identified two-tone image was 

more similar to the response to the photograph version of that stimulus than it was 

to the response to the identical two-tone image when it was not identified. Our 

findings are consistent with prior results indicating that perceived size and 

brightness affect representations in early retinotopic visual cortex, and further show 

that even higher-level information--knowledge of object identity – also affects the 

representation of an object in early retinotopic cortex.  
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Introduction 

 

Early retinotopic cortex (i.e. V1/V2/V3) has traditionally been viewed as an 

approximately veridical representation of the low-level properties of the image, which 

provides the input to higher cortical areas where meaning is assigned to the image. But 

how distinct are data and theory in visual cortex? Recent evidence has shown that activity 

in early retinotopic cortex can reflect mid-level visual computations such as contour 

completion (Stanley and Rubin, 2003) and figure-ground discrimination (Hupé et al., 

1998; Heinen, et al., 2005; Huang and Paradiso, 2008), and even perceived size (Murray 

et al., 2006) and lightness constancy (Boyaci et al., 2007). Further, at least some of the 

responses in early retinotopic cortex are likely affected by feedback from higher areas, 

including attentional modulations (Datta and DeYoe, 2009; Fischer and Whitney, 2009; 

Ress et al., 2000), stimulus reward history information (Serences, 2008), and lower 

responses when a shape is perceived compared to when it is not (Murray et al., 2002; 

Fang, Kersten, & Murray, 2008a). Here we ask whether retinotopic cortex contains 

information about the perceived identity of an object. We unconfound the perceived 

identity of the object from its low-level visual properties by comparing the response to a 

Mooney image before and after it is disambiguated. 

 

Specifically, we scanned subjects while they viewed Mooney images they could not 

interpret, then greyscale versions of those same images, then the original Mooney images 

which subjects could now understand. We found that the spatial pattern of activation in 

early retinotopic cortex of a Mooney image more closely resembles the activation pattern 

from the unambiguous greyscale version of that same image when the Mooney image is 

understood than when it is not. This finding goes beyond prior findings indicating that the 

representation of a stimulus in early retinotopic cortex reflects higher-level information 

such as perceived size (Murray et al., 2002; Fang et al, 2008a), brightness (Boyaci et al., 

2007), and grouping (Fang et al, 2008b; Murray et al, 2002, 2004) by showing that the 

activation pattern of a stimulus in early retinotopic cortex also changes when it is 

recognized compared to when it is not. Further, our use of pattern analysis enables us to 

show that (1) the specific way the activation pattern (i.e., representation) in early 



 4 

retinotopic cortex changes is to become more like the unambiguous stimulus, and (2) 

these higher-level effects on pattern information are dissociable from the mean changes 

that have been reported previously. 

 

Methods 

Participants. Seven subjects (age range: 20-30) were run in the blocked design 

experiment (Experiment 1), and eight subjects (age range: 20-30) were run in the event-

related design experiment (Experiment 2). All subjects had normal or corrected-to-

normal vision. All gave written consent within a protocol passed by the Massachusetts 

Institute of Technology committee on the Use of Humans as Experimental Subjects. 

Subjects were paid sixty dollars per session. 

 

Experimental procedures. In Experiment 1 (Figure 1a), each subject participated in 12 

runs. In the first 4 runs (phase1: the “Mooney1” condition), subjects were presented with 

2 ambiguous two-tone images containing unidentifiable objects (7x7 in visual degrees). 

In the following 4 runs (phase2: "Photo”), subjects were presented with greyscale 

versions of the same stimuli in which the object could be clearly identified. In the last 4 

runs (phase3: “Mooney2”), the original two-tone images were presented again, but now 

the pictured object could be easily recognized due to the experience of the greyscale 

images. There were a total of 8 blocks of stimulus presentation in each run. During each 

block (20 seconds), the same image (a fish or a camel) was presented at 1 Hz at the center 

of the screen (remaining on for 500ms, followed by a blank inter-stimulus interval 

of500ms). The 2 kinds of block (fish-block and camel-block) were interleaved with blank 

blocks (20 seconds each); order of blocks was counterbalanced across runs. Each picture 

had two possible contrasts (high or low). For each stimulus presentation, participants 

were required to indicate via a 2-button response box whether the stimulus had a 

relatively high or low contrast.  

In Experiment 2, all the procedures were identical to those in Experiment 1 except 

that there were a total of 60 events of stimulus presentation in each run (30 for each 

stimulus condition). During each stimulus presentation, one of the two images was 

presented at the center of the screen for 180ms. The order of the trials was optimized 
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using an optimal sequencing program Optseq2 (NMR Center, Massachusetts General 

Hospital, MA, USA). Each run lasted 5 min 15 s. More than one-third of the scanning 

time (3/7) consisted of null events that were randomly inserted between trials. For each 

subject, 2 images were randomly selected from a set of 8 images (Figure 1b). Before the 

experiment, subjects were shown briefly with the two randomly selected pictures 

(remembered by subjects as pictures 1 and 2) and verbally confirmed that they could not 

recognize the images. After subjects finished phase1 and before they started phase2, we 

presented the photo version of the images during the break to make sure they can 

recognize the objects in the photo images. After subjects finished phase2 and before 

started phase3, we present the photo version of the images and the Mooney images side 

by side during the second break to make sure they could recognize that the objects in the 

Mooney images are the same as in the Photo images. Subjects were also asked after 

phase3 if they could identify the stimuli during phase3. For each stimulus presentation 

during the experiment, participants were required to indicate which one of the two images 

(pictures 1 or 2) was presented via a 2-button response box.  

 

ROI identification  

The localizer scans were run as described previously (Kourtzi and Kanwisher, 2001). 

Functional localization of the ROIs was based on independent runs (minimum=1; 

maximum=3) of four 20-second blocks of grayscale faces, scenes, common objects and 

scrambled objects (4 blocks per category per run). The critical region of interest (ROIs) 

identified in the independent localizer scan was the LOC (defined as the region that 

responded more strongly to images of intact objects than to images of scrambled objects 

(Malach et al., 1995). The foveal confluence (Dougherty et al., 2003) was defined as a 

small region at the posterior end of the calcarine sulcus, functionally constrained to the 

regions that responded more strongly to any images of (intact or scrambled) than to 

fixation (Figure 2). Specifically, we overlaid each subject’s functional contrast map 

(intact objects > scrambled objects) on top of his/her inflated brain and then selected 

voxels located (1) around the posterior tip of the calcarine sulcus and (2) within the 

functional contrast map. Since our stimuli extended about 3.5 degrees from the fovea and 

most of the features in the image were located in the center, we decided to be 



 6 

conservative and restricted the size of the foveal confluence so that it is smaller than the 

minimum size of foveal confluence reported in Dougherty et al. (2003). An additional 

annulus region surrounding the foveal confluence was identified as a control ROI. Since 

the annulus ROI was chosen to be a control region, the size of this ROI was selected to be 

larger than the foveal confluence (to gain power for the correlation analysis). The average 

size of the foveal confluence ROI in Experiments 1 and 2 were 161 (±19 s.e.m.; range: 

103-257) and 153 (±15; range: 103-228) voxels. Pictures for individual ROIs are 

provided in Supplementary Figure 1. 

 

Data Analysis. Scanning was done on the 3T Siemens Trio scanner in the McGovern 

Institute at MIT in Cambridge (Athinoula A. Martinos Imaging Center). Functional MRI 

runs were acquired using a gradient-echo echo-planar sequence (TR=3s, TE=40ms, 1.5 * 

1.5 * 1.5 mm + 10% spacing). Forty slices were collected with a 32-channel head coil. 

Slices were oriented roughly perpendicular to the calcarine sulcus and covered most of 

the occipital and posterior temporal lobes, as well as some of the parietal lobes.  

 fMRI data analysis was conducted using freesurfer 

(http://surfer.nmr.mgh.harvard.edu/). The processing steps for both the localizer and 

experimental runs included motion correction and linear trend removal. The processing 

for the localizer also included spatial smoothing with a 6mm kernel. A gamma function 

with delta = 2.25 and tau = 1.25 was used to estimate the hemodynamic response for 

each condition in the localizer scans.  

 Correlation analysis was conducted on the beta weight for each condition in each 

voxel with a standard multivariate pattern analysis method (Haxby et al., 2001). The 

mean response in each voxel across all conditions was subtracted from the response to 

each individual condition for each half of the data before calculating the correlations. 

Spatial patterns were extracted from each set of data (Mooney1, Photo, and Mooney2) 

separately for each combination of ROI and stimulus type (e.g., fish versus camel). 

Within each ROI we then computed the correlation between the spatial patterns of 

Mooney1 and Photo runs from the same stimulus category (for example, between 

Mooney1-fish and Photo-fish, and between Mooney1-camel and Photo-camel). The same 

correlation was computed between the spatial patterns of Mooney2 and Photo runs, and 
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between the spatial patterns of Mooney2 and Mooney1 runs. These correlations were 

computed for each subject and then averaged across subjects by conditions. Note that our 

method is equivalent to that used by Haxby et al. (2001), in which a given region of 

interest is deemed to contain information about a given stimulus discrimination (Stimulus 

A versus stimulus B) if the pattern of response across voxels in that region is more 

similar for two response patterns when they were produced by the same stimulus than 

when they were produced by two different stimuli, i.e. if mean(r(A1,A2), r(B1,B2)) > 

mean(r(A1,B2), r(A2,B1)). In our method, we directly computed the correlation between 

the spatial patterns of Mooney and Photo runs from the same stimulus category (for 

example, between Mooney-fish and Photo-fish, and between Mooney-camel and Photo-

camel). Although, conceptually, saying that an ROI contains discriminative information 

about stimulus A versus stimulus B (as in Haxby et al., 2001), is very different from 

saying that the activation pattern in this ROI is more similar between Phase 2 and Phase 3 

than between Phase 1 and Phase 2 as in our method, mathematically they amount to the 

same thing because of the normalization procedure (activation values were normalized to 

a mean of zero in each voxel across categories by subtracting the mean response across 

all categories) and the fact that there were only 2 categories. 

 

Results 

 

We tested whether top-down signals alter low-level representations to match high-level 

interpretations in an fMRI experiment with three phases (Figure 1a). Subjects viewed (i) 

two different two-tone images that they could not identify (“Mooney1”); (ii) the easily 

identifiable grey-scale photographic versions of the same images, e.g. a camel and a fish 

(“Photo”); and (iii) the original two-tone images which could now be easily recognized 

because of experience with the corresponding photograph (“Mooney 2”). If top-down 

signals make representations in early retinotopic cortex areas more closely match learned 

interpretations, we would predict that the fMRI response patterns in early retinotopic 

cortex will be more similar between the Photo and Mooney2 phases for a given stimulus, 

than between the Photo and Mooney1 phases for the same stimulus. 
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To address this question, we used a standard multivariate pattern analysis method (Haxby 

et al., 2001) (See Methods). This analysis was applied to three (independently defined) 

regions of interest (ROI): the lateral occipital complex  (LOC); the foveal confluence 

(FC), an early retinotopic area at the occipital pole where the foveal representations of 

visual areas V1, V2, and V3 converge; and an annulus ROI surrounding the FC (Figure 

2). 

 

Pattern information in LOC 

 

First we considered ventral visual area LOC, where the fMRI response has been shown 

previously to change after subjects recognized Mooney images (Dolan et al., 1997). 

Consistent with prior work, we found that the pattern of response across voxels in the 

LOC reflected subject’s interpretation of object identity in the first, blocked design 

experiment (see Figure 1a). That is, the pattern of response for the camel during the 

Photo phase was more similar to the camel in the Mooney2 phase than the camel in the 

Mooney1 phase (Figure 3a; paired t(6)=3.69, p=0.010). This result indicates that the 

representation of a given Mooney image in LOC is more similar to the representation of 

the photographic version of the same image after subjects have learned what that Mooney 

image represents than before. Note that previous studies showed only that perceptual 

learning of faces or objects enhanced activity in ventral visual areas (Dolan et al., 1997; 

George et al., 1999; James et al., 2002; McKeeff and Tong, 2006; Deshpande et al. 2009). 

Here we showed for the first time that the activation pattern of a given Mooney image 

actually changed to become more similar to the activation pattern of the photographic 

version of the same image.  

 

Pattern information in early visual cortex 

 

Our key prediction is that this pattern of correlations should exist in early retinotopic 

cortex as well: i.e., the high-level interpretation of a stimulus will modify the 

representation of that stimulus in early retinotopic cortex to make it more closely match 

what would be expected given that interpretation. Confirming our predictions, we find the 
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same effect in early retinotopic cortex: the Mooney2-Photo correlation was greater for 

corresponding stimuli than the Mooney1-Photo correlation (Figure 3b; paired t(6)=2.48, 

p=0.048). This result indicates that the representation in early retinotopic cortex for an 

ambiguous Mooney image is more similar to the early retinotopic representation of a 

grey-scale version of the same image when subjects interpret the Mooney as containing 

the information in the photo than when they do not. Analysis of the correlations for non-

corresponding stimuli (camel to fish) reveals that our results do not simply reflect overall 

higher responses between stimuli in Photo-Mooney2 versus Photo-Mooney1 (see 

Methods). Note that, for both the foveal confluence ROI and LOC, the Mooney2-

Mooney1 correlation is the highest of all the comparisons. This is not surprising given 

that the bottom-up information is identical in Mooney2 and Mooney1.  

 

Our finding suggests that the higher-level interpretation of a stimulus apparently alters 

the representation of that stimulus in early retinotopic cortex to make it match the 

representation consistent with the higher-level interpretation. However, before this 

conclusion can be accepted, we must address an alternative account subjects may have 

fixated different parts of the stimuli (e.g., the eyes) when they could identify the stimulus 

(i.e. in the Photo and Mooney 2 phases), compared to when they could not (the Mooney 1 

phase), making the patterns of early retinotopic response more similar for the photograph 

and Mooney 2 cases (which are both recognized) than either is to the Mooney 1 case 

(which is not recognized). To test this possibility, we conducted a second experiment 

with an event-related design in which the two different stimuli were interleaved in a 

random order within each block, and each stimulus was displayed for only 180 ms. Thus, 

subjects could not predict which stimulus would appear next, and they did not have time 

to make a saccade while a stimulus was presented. Nonetheless, we replicated the 

findings from our first experiment: we again found a higher correlation between Photo 

and Mooney 2 than between Photo and Mooney 1 (Figure 5; paired t(7)=6.77, p<0.001). 

Thus, our results cannot be explained by differential eye fixation patterns or predictive 

signals.  

 

With Experiment 2, we further tested whether the degree to which the early retinotopic 
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cortex representation matches the interpretation (top-down priors) as opposed to the data 

(bottom-up input) increases as the amount of bottom-up information decreases. We 

suspected that in the event-related design, when stimuli are presented briefly (180 ms, 

compared to 500 ms in Experiment 1) and less stimulus information is available, the early 

retinotopic representation of Mooney2 would be even more similar to the Photo than 

Mooney1. This possibility is consistent with many models of vision positing that V1 

reflects a combination of high-level information and low-level properties of an image. 

For example, one popular proposal about the computational role of top-down signals in 

the visual system is that these signals are the brain’s implementation of hierarchical 

Bayesian inference, i.e., they are the priors for the low-level visual areas. On this account, 

if prior information is particularly strong, and incoming data are particularly ambiguous, 

then the patterns of response between Mooney2 and the Photo in early retinotopic cortex 

might be even more similar than between Mooney2 and Mooney1. 

 

Indeed, our data are consistent with this interpretation: presenting less bottom-up 

information (in Experiment 2 compared to the Experiment 1) results in a proportional 

increase in the Mooney2-Photo correlation relative to the Mooney2-Mooney1 correlation 

(chi square sign-test of the interaction between Experiments 1 and 2 and Mooney2-Photo 

versus Mooney2-Mooney1, p=0.02). This interaction between amount of stimulus 

information and amount of top-down information supports that the hypothesis that the 

modulation of early retinotopic cortex in this task reflects not just a superposition but an 

integration of top-down interpretation (priors) with the bottom-up data. However, further 

work is necessary to test whether bottom-up and top-down inputs to retinotopic cortex 

interact.  

 

No mean response difference in LOC and foveal confluence ROI 

 

For the blocked-designed experiment (Experiment 1), the mean responses in both foveal 

confluence ROI and LOC (mean beta weights averaged within ROI) do not differ 

between Mooney1 and Mooney2 (paired t(6)<1.23, p>0.26), indicating that the pattern 

information is independent of the mean response (Figure 4). For the event-related 
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experiment (Experiment 2), there is a trend of a higher response in FC for Mooney2 than 

Mooney 1 (Figure 6), but it does not reach significance (paired t(7)=1.86, p=0.11). This 

result contrasts with previous studies (McKeeff and Tong, 2007), that recognized 

Mooney images induce larger signals in higher visual areas than unrecognized Mooney 

images. We suspect that this discrepancy arises from the presentation of only two 

Mooney images in our experiment, which might lead to stronger adaptation effects than 

in these prior experiments. 

 

The pattern of response did not change in the annulus ROI surrounding the foveal 

confluence  

 

We checked the anatomical specificity of our effect by analyzing a control ROI defined 

as an annulus surrounding the foveal confluence ROI. We found none of the critical 

effects in this annulus ROI: correlations between Photo and Mooney 2 were identical to 

those between Photo and Mooney 1, for both Experiment 1 (paired t(6)=0.07, p=0.94, 

Figure 7a) and Experiment 2 (paired t(7)=0.70, p=0.51, Figure 7b). The two-way 

ANOVA (region x experiment) revealed a significant region effect (F(1,25)=11.84, 

p=0.002). These results suggest that our finding is not resulting from a spillover from 

higher-level areas. 

 

Discussion 

 

Our results show that the recognition of an object alters its representation in early 

retinotopic cortex. Specifically, the early retinotopic representation of an ambiguous 

Mooney stimulus becomes more similar to the representation of an unambiguous 

grayscale version of the same stimulus when the Mooney stimulus is recognized 

compared to when it is not. Our finding goes beyond prior reports of correlations between 

neural responses and subjective percepts (McKeeff and Tong, 2006; Serences and 

Boynton, 2007), which might reflect trial-to-trial fluctuations in neural noise in early 

retinotopic visual areas propagating in a feedforward fashion to higher areas, producing 

different subjective percepts. In contrast, in our study we directly manipulated the high-
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level interpretation of the stimulus, and observed its effect in early retinotopic regions, 

enabling us to infer the causal direction of our effect as reflecting feedback from higher 

areas (such as LOC) to early retinotopic visual areas (Murray et al., 2002; Williams et al., 

2008). Our findings therefore suggest that representations in early retinotopic visual 

cortex reflect an integration of high-level information about the identity of a viewed 

object and low-level properties of that object.  

 

Our finding is consistent with other evidence that responses in early visual cortex can 

reflect influences of mid- and high-level visual processes, including figure-ground 

segregation (Hupé et al., 1998; Heinen, et al., 2005; Huang and Paradiso, 2008), contour 

completion (Stanley and Rubin, 2003), identification of object parts (McKeeff, T. J. & 

Tong, 2006), perceived size (Murray et al., 2006, Fang et al., 2008a), lightness constancy 

(Boyaci et al., 2007), and grouping (Murray et al., 2002; Fang et al., 2008b). Our finding 

goes beyond these other findings by showing an effect of object recognition on the 

representation of a stimulus in early retinotopic cortex. Further, our use of pattern 

analysis enables us to show that the specific nature of change in early retinotopic cortex 

is that the representation becomes more like that of the unambiguous (grayscale) stimulus 

when the stimulus is recognized (Mooney2) compared to when it is not (Mooney1).  

 

Perhaps the closest prior finding to ours is the report that mean responses in early 

retinotopic cortex are higher for stimuli that have not been grouped or recognized than 

stimuli that have (Murray 2002, Fang et al 2008a). We did not find this previously-

reported difference in mean responses in our study, despite finding that the activation 

pattern in early retinotopic cortex changes after the subjects recognized the stimuli. This 

discrepancy between our results and the prior studies may be due to the fact that our 

subjects were performing an orthogonal task whereas some of the previously-reported 

changes in early retinotopic cortex due to high-level interpretations are dependent on 

attention (Fang et al., 2008b). In any case, the fact that we found a change in the pattern 

response without a change in the mean response indicates that the two phenomena are 

distinct. 
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Our findings are consistent with several theoretical frameworks. According to one, the 

visual system implements hierarchical Bayesian inference (Lee and Mumford, 2003; Rao, 

2005), such that each visual area integrates priors (top-down signals) with new data 

(bottom-up input) to infer the likely causes of the input. According to the framework of 

perception as Bayesian inference (Knill and Richards, 1996), prior knowledge about the 

structure of the world provides the additional constraints necessary to solve the problem 

of vision, that is, to infer the causes in the world of particular retinal images (Lee, 1995; 

Mumford, 1992). Although numerous proposals have been made about how Bayesian 

inference could be implemented in the brain (Lee and Mumford, 2003), neural evidence 

for such computations has proven elusive (Knill and Pouget, 2004). Our findings provide 

evidence for one specific implementation of Bayesian inference in the visual system: a 

hierarchical system in which each layer integrates prior information from higher levels of 

abstractions with data from lower layers of abstraction (Lee and Mumford, 2003). 

 

Other interpretations of our finding include the possibility that the changes in early 

retinotopic cortex that arise when an image is understood reflect interpretation-contingent 

visual attention to specific retinotopic coordinates or mental imagery (Klein et al., 2004; 

Mohr et al., 2009). These effects might occur after recognition is complete, in which case 

they would constitute an alternative to the Bayesian account. However, attention/imagery 

accounts, according to which these mechanisms play a role in recognition itself, need not 

be alternatives to the Bayesian account. For example, attentional allocation to specific 

features at particular spatial locations based on high-level information is one method of 

combining top-down priors and bottom-up information, and can be seen as a mechanisms 

by which hierarchical Bayesian inference is accomplished. Indeed, attention to specific 

spatial coordinates has been postulated as the mechanism driving contour completion 

(Stanley and Rubin, 2003), identification of object parts (McKeeff and Tong, 2006), and 

figure-ground segregation (Hupé et al., 1998). These computations all require constraints 

in addition to the bottom-up input, and can be computationally formalized as hierarchical 

Bayesian inference. A higher-level interpretation (e.g. of object identity) is a natural 

source of additional information that can help to segregate figure from ground, fill in 

surfaces, complete contours, discern object parts, or otherwise sharpen early visual 
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representations: If we learn that an image represents a face, we can infer where to expect 

contours, parts, figure, and ground. Moreover, the higher-level interpretation is often 

easier to determine than the details, both for people and Bayesian models (Kersten et al., 

2004). We propose that this “blessing of abstraction” allows the visual system to 

efficiently parse visual scenes by exploiting its hierarchical structure: higher visual areas 

can quickly infer the global structure of the scene or object, and can then provide these 

interpretations as priors to the lower visual areas, thus disambiguating otherwise 

ambiguous input data (Bar, 2003, 2006; Hochstein and Ahissar, 2002; Ullman, 1995). 
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FIGURE LEGENDS 

 
Figure 1. Experimental procedure (blocked design). (a) During three phases of the 
experiment subjects viewed (i) two different two-tone images that they could not identify 
(“Mooney1”); (ii) the easily identifiable grey-scale versions of the same images 
(“Photo”); (iii) the original two-tone images which could now be easily recognized 
because of experience with the corresponding photograph (“Mooney 2”). (b) In 
Experiment 2, two images were randomly selected for each subject from the set of eight 
images shown here. 
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Figure 2. Regions of interests. (a) A statistical map for LOC (defined as the region that 
responded more strongly to images of intact objects than to images of scrambled objects 
p<10-4) is shown for one representative subject. We selected the two regions at the lateral 
occipital lobe (circled) as LOC. (b) Inflated cortical surfaces of a brain with dark gray 
regions representing sulci and light gray regions representing gyri. Foveal confluence (FC) 
was defined as a small region at the posterior end of the calcarine sulcus (green), 
functionally constrained to the region (yellow) that responded more strongly to images of 
intact/scramble objects than to fixation (p<10-25). Another annulus ROI surrounding the 
FC was also defined (red).  
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Figure 3. Blocked design results. (a) The correlation for the three comparisons 
(Mooney1-Photo, Mooney2-Photo, and Mooney2-Mooney1) in LOC. The correlation for 
Mooney2-Photo is significantly greater than for Mooney1-Photo (p=0.010). (b) The 
correlation for the three comparisons in the foveal confluence ROI. The correlation for 
Mooney2-Photo is significantly greater than for Mooney1-Photo (p=0.048). Error bars 
indicate standard errors. 
 
 

 
Figure 4. The mean beta weights of the 6 conditions for Experiment 1 in (a) LOC and (b) 
foveal confluence. Error bars indicate standard errors.  
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Figure 5. Event-related results. The correlation for the three comparisons (Mooney1-
Photo, Mooney2-Photo, and Mooney2-Mooney1) in the foveal confluence ROI. The 
correlation for Mooney2-Photo is significantly greater than for Mooney1-Photo 
(p<0.001). Error bars indicate standard errors. 
 
 

 
Figure 6. The mean beta weights of the 6 conditions for Experiment 2 in the foveal 
confluence ROI. Error bars indicate standard errors. 
 
 

 
Figure 7. Pattern analysis results in the annulus ROI surrounding the foveal confluence. 
(a) The correlation for the three comparisons (Mooney1-Photo, Mooney2-Photo, and 
Mooney2-Mooney1) in Experiment 1. The correlation for Mooney2-Photo is not 
significantly greater than for Mooney1-Photo (p=0.94). (b) The correlation for the three 
comparisons in Experiment 2. The correlation for Mooney2-Photo is not significantly 
greater than for Mooney1-Photo (p=0.51). Error bars indicate standard errors. 
 


