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Abstract

We present a new method for estimating the expected return of a POMDP from experience.
The estimator does not assume any knowledge of the POMDP and allows the experience
to be gathered with an arbitrary set of policies. The return is estimated for any new policy
of the POMDP. We motivate the estimator from function-approximation and importance
sampling points-of-view and derive its theoretical properties. Although the estimator is
biased, it has low variance and the bias is often irrelevant when the estimator is used for
pair-wise comparisons. We conclude by extending the estimator to policies with memory
and compare its performance in a greedy search algorithm to the REINFORCE algorithm
showing an order of magnitude reduction in the number of trials required.
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1 Introduction

We assume a standard reinforcement learning setup: an agent interacts with an environment mod-
eled as a partially-observable Markov decision process. Consider the situation after a sequence of
interactions. The agent has now accumulated data and would like to use that data to select how
it will act next. In particular, it has accumulated a sequence of observations, actions, and rewards
and it would like to select a policy, a mapping from observations to actions, for future interaction
with the world. Ultimately, the goal of the agent is to find a policy mapping that maximizes the
agent’s return, the sum of rewards experienced.
[3] presents a method for estimating the return for every policy simultaneously using data gathered

while executing a fixed policy. In this paper we consider the case where we do not restrict the policies
used for gathering data. Either we did not have control over the method for data collection, or we
would like to allow the learning algorithm the freedom to pick any policy for any trial and still be
able to use the data.
In the next section we develop two estimators (unnormalized and normalized). Section 3 shows

that while the normalized estimator is biased, its variance is much lower than the unnormalized
(unbiased) estimator resulting in a better estimator for comparisons. Section 4 demonstrates some
results on simulated environments. We conclude with a discussion of how to improve the estimator
further.

2 Estimators

2.1 Notation

In this paper we will use s to represent the hidden state of the world, x for the observation, a for the
action, and r for the reward. Subscripts denote the time index and superscripts the trial number.
We assume episodes of fixed-length, T .
Let π(x, a) be a policy (the probability of picking action a upon observing x). For the moment

we will consider only reactive policies of this form. h represents a history1 (of T time steps) and
therefore is a tuple of four sequences: states (s1 through sT ), observations (x1 through xT ), actions
(a1 through aT ), and rewards (r1 through rT ). The state sequence is not available to the algorithm
and is for theoretical consideration only. Lastly, we let R be the return (or sum of r1 through rT ).

π1 through πn are the n policies tried. h1 through hn are the associated n histories with R1

through Rn being the returns of those histories. Thus during trial i the agent executed policy πi

resulting in the history hi. Ri is used as a shorthand notation for R(hi), the return of that history.

2.2 Importance Sampling

Importance sampling is typically presented as a method for reducing the variance of the estimate
of an expectation by carefully choosing a sampling distribution[9]. For example, the most direct
method for evaluating

∫
f(x)p(x) dx is to sample i.i.d. xi ∼ p(x) and use 1

n

∑
i xi as the estimate.

However, by choosing a different distribution q(x) which has higher density in the places where |f(x)|
is larger, we can get a new estimate which is still unbiased and has lower variance. In particular,
we now draw xi ∼ q(x) and use 1

n

∑
i xi

p(xi)
q(xi)

as our estimate. This can be viewed as estimating

the expectation of f(x)p(x)
q(x)

with respect to q(x) which is like approximating
∫

f(x)p(x)
q(x)

q(x) dx with

samples drawn from q(x). If q(x) is chosen properly, our new estimate has lower variance.

1It might be better to refer to this as a trajectory since we will not limit h to represent only sequences that have been
observed; it can also stand for sequences that might be observed. However, the symbol t is over used already. Therefore, we
have chosen to use h to represent state-observation-action-reward sequences.
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In this paper, instead of choosing q(x) to reduce variance, we will be forced to use q(x) because
of how our data was collected. Instead of the traditional setting where an estimator is chosen and
then a distribution is derived which will achieve minimal variance, we instead have a distribution
chosen and we are trying to find an estimator with low variance.

2.3 Sampling Ratios

We have accumulated a set of histories (h1 through hn) each recorded by executing a (possibly
different) policy (π1 through πn). We would like to use this data to find a guess at the best policy.

A key observation is that we can calculate one factor in the probability of a history given a policy.
In particular, that probability has the form

p(h|π) = p(s1)
T∏

t=1

p(xt|st)π(xt, at)p(st+1|st, at)

=

[
p(s1)

T∏
t=1

p(xt|st)p(st+1|st, at)

][
T∏

t=1

π(xt, at)

]

=W (h)A(h, π) .

A(h, π), the effect of the agent, is computable whereas W (h), the effect of the world, is not because
it depends on knowledge of the underlying state sequence. However, W (h) does not depend on
π. This implies that the ratios necessary for importance sampling are exactly the ratios that are
computable without knowing the state sequence. In particular, if a history h was drawn according
to the distribution induced by π and we would like an unbiased estimate of the return of π′, then
we can use R(h)p(h|π′)

p(h|π)
and although neither the numerator nor the denominator of the importance

sampling ratio can be computed, theW (h) term in each cancels leaving a ratio of A(h, π′) to A(h, π)
which can be calculated. Different statements of the same fact have been shown before in [5, 7].
This fact will be exploited in each of the estimators in this paper.

2.4 Importance Sampling as Function Approximation

Because each πi is potentially different, each hi is drawn according to a different distribution and so
while the data are drawn independently, they are not identically distributed. This makes it difficult
to apply importance sampling directly. The most obvious thing to do is to construct n estimators
(one from each data point) and then average them. If π is the policy we are trying to evaluate, this
estimator is

1

n

∑
i

Ri p(h
i|π)

p(hi|πi)
. (1)

This estimator has the problem that its variance can be quite high. In particular, if only one of
the sampled policies is close to the target policy, then only one of the elements in the sum will have
a low variance. The other variances will be very high and overwhelm the total estimate. We might
then only use the estimate from the policy that is most similar to the target policy. Yet, we would
hope to do better by using all of the data.
However, we can use all of the data and reduce the variance if we consider importance sampling

from a function approximation point-of-view. Importance sampling in general seeks to estimate∫
f(x)p(x) dx. Consider estimating this integral by evaluating

∫
f̂(x)p̂(x) dx where f̂ and p̂ are
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approximations of f and p derived from data. In particular, with a bit of foresight we will choose f̂
and p̂ to be nearest-neighbor estimates. Let i(x) be the index of the data point nearest to x. Then,

f̂(x) = f(xi(x))

p̂(x) = p(xi(x)) .

Letting αi be the size of the region of the observation space closest to xi,∫
f̂(x)p̂(x) dx =

∑
i

αif(x
i)p(xi) .

We will also need to approximate αi. Let q(x) be the distribution from which xi was sampled.
We will take the estimate of αi to be proportional to the reciprocal of the density,

1
q(xi)

. This yields
the standard importance sampling estimator

1

n

∑
i

f(xi)
p(xi)

q(xi)
.

More importantly, this derivation gives insight into how to merge samples from different dis-
tributions. We can use the same approximations for f̂ and p̂. The only difference comes in the
approximation for αi. Whereas before the density of samples was q(x), now if each sample was
drawn according to its own distribution, qi(x), then the density is 1

n

∑
i q

i(x). Applying this change
results in the estimator ∑

i

f(xi)
p(xi)∑
j q

j(xi)
.

which, when translated to the POMDP estimation problem becomes

n∑
i=1

Ri p(hi|π)∑n
j=1 p(h

i|πj)
. (2)

This estimator is also unbiased (shown in the appendix) and has a lower variance because if one
of the sampling distributions is near the target distribution, then all elements in the sum share the
benefit.

2.5 Normalized Estimates

We can normalize the importance sampling estimate to obtain a lower variance estimate at the
cost of adding bias. Previous work has used a variety of names for this including weighted uniform
sampling[9], weighted importance sampling[7], and ratio estimate[2]. In general, such an estimator
has the form ∑

i f(x
i)p(xi)

q(xi)∑
i

p(xi)
q(xi)

.

This new form can be viewed in three different ways. First, it can be seen just as a trick to reduce
variance. Second, it can be viewed as a Bayesian estimate of the expectation [1, 4]. Unfortunately,
this view does not work for our application because we do not know the true probabilities densities.
[2] connects the ratio and Bayesian views, but neither can be applied here.
The final view is that we have adjusted the function approximator p̂. The problem with the

previous estimator can be seen by noting that the function approximator p(h) does not integrate
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Figure 1: Dependency graph for agent-world interaction with memory model

(or sum) to 1. Instead of p̂ = p(xi(x)), we make sure p̂ integrates (or sums) to 1: p̂ = p(xi(x))/Z
where Z =

∑
i αip(x

i). When recast in terms of our POMDP problem the estimator is

∑n
i=1 R

i p(hi|π)Pn
j=1 p(hi|πj)∑n

i=1
p(hi|π)Pn

j=1 p(hi|πj)

. (3)

2.6 Adding Memory

So far we have only discussed estimators for reactive policies (policies that map the immediate
observation to an action). We would like to be able to also estimate the return for policies with
memory. Consider adding memory in the style of a finite-state controller. At each time step,
the agent reads the value of the memory along with the observation and makes a choice about
which action to take and the new setting for the memory. The policy now expands to the form
π(x,m, a,m′) = p(a,m′|x,m), the probability of picking action a and new memory state m′ given
observation x and old memory statem. Now let us factor this distribution, thereby limiting the class
of policies realizable by a given memory size slightly but making the model simpler. In particular
we consider an agent model where the agent’s policy has two parts: πa(x,m, a) and πm(x,m,m′).
The former is the probability of choosing action a given that the observation is x and the internal
memory is m. The latter is the probability of changing the internal memory to m′ given the
observation is x and the internal memory is m. Thus p(a,m′|x,m) = πa(x,m, a)πm(x,m,m′). By
this factoring of the probability distribution of action-memory choices, we induce the dependency
graph shown in figure 1.
If we let M be the sequence {m1,m2, . . . ,mT}, p(h|π) can be written as

∑
M

p(h,M |π) =
∑
M

p(s1)p(m1)
T∏

t=1

p(xt|st)πa(xt,mt, at)πm(xt,mt,mt+1)p(st+1|st, at)

=

[
p(s1)

T∏
t=1

p(xt|st)p(st+1|st, at)

][∑
M

p(m1)
T∏

t=1

πa(xt,mt, at)πm(xt,mt,mt+1)

]

= W (h)A(h, π) ,

once again splitting the probability into two parts: one for the world dynamics and one for the
agent dynamics. The A(h, π) term involves a sum over all possible memory sequences. This can
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Figure 2: Means and standard deviations for the unnormalized and normalized estimates of the
return differences as a function of the number of data points. The data were collected by executing
the policy corresponding to the point (0.4, 0.6) in figure 3. The estimators were evaluated at the
policies (0.3, 0.9) and (0.4, 0.5). Plotted above are the means and standard deviations of these
estimates over 600 experiments. The horizontal line on the plots of the mean represent the true
difference in returns. The normalized plots fit the theoretical values well. The unnormalized plots
demonstrate that the variance is large enough that even 600 samples are not enough to get a
good estimate. The unnormalized mean should be constant at the true return difference and the
standard deviation should decay as 1√

n
. However, because the unnormalized estimator is much more

asymmetric (it relies on a few very heavily weighted unlikely events to offset the more common
events), the graph does not correspond well to the theoretical values. This is indicative of the
general problem with the high variance unnormalized estimates.

easily be computed by noting that A(h, π) is the probability of the action sequence given the
observation sequence where the memory sequence is unobserved. This is a (slight) variation of
a hidden Markov model: an input-output HMM. The difference is that the HMM transition and
observation probabilities for a time step (the memory policy and the action policy respectively)
depend on the value of x at that time step. Yet, the x’s are visible making it possible to compute
the probability and its derivative by using the forward-backward algorithm.

As such, we can now use the same estimators and allow for policies with memory. In particular,
the estimator has explicit knowledge of the working of the memory. This is in direct contrast to
the method of adding the memory to the action and observation spaces and running a standard
reinforcement learning algorithm where the agent must learn dynamics of its own memory. With
our explicit memory model, the learning algorithm understands that the goal is to produce the
correct action sequence and uses the memory state to do so by coordinating the actions in different
time steps.

3 Estimator Properties

It is well known that importance sampling estimates (both normalized and unnormalized) are
consistent[2, 1, 4]. Additionally, normalized estimators have smaller asymptotic variance if the
sampling distribution does not exactly match the distribution to estimate[2]. However, we are more
interested in the case of finite sample sizes.

The estimators of section 2.4 (equations 1 and 2) are unbiased. That is, for a set of chosen
policies, {π1, π2, . . . , πn}, the expectation over experiences of the estimator evaluated at π is the
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true expected return for executing policy π. Similarly, the estimator of section 2.5 (equation 3) is
biased. In specific, it is biased towards the expected returns of {π1, π2, . . . , πn}.
The goal of constructing these estimators is to use them to choose a good policy. This involves

comparing the estimates for different values of π. Therefore instead of considering a single point
we will consider the difference of the estimator evaluated at two different points, πA and πB. In
other words, we will use the estimators to calculate an estimate of the difference in expected returns
between two policies. The appendix details the derivation of the biases and variances. We only
quote the results here. These results are for using the same data for both the estimate at πA and
the estimate at πB.
We will consider only the unnormalized estimator (equation 2) and the normalized estimator

(equation 3), denoting them as DU and DN respectively. First, a few useful definitions:

p(h) =
1

n

∑
i

p(h|πi)

p̃(h, g) =
1

n

∑
i

p(h|πi)p(g|πi)

s2
X,Y =

∫
R2(h)

p(h|πX)p(h|πY )

p(h)
dh

s2
X,Y =

∫
(R(h)−E[R|πX ])(R(h)− E[R|πY ])

p(h|πX)p(h|πY )

p(h)
dh

η2
X,Y =

∫∫
R(h)R(g)

p(h|πX)p(g|πY )

p(h)p(g)
p̃(h, g) dh dg

η2
X,Y =

∫∫
(R(h)− E[R|πX ])(R(g)−E[R|πY ])

p(h|πX)p(g|πY )

p(h)p(g)
p̃(h, g) dh dg

bA,B =

∫∫
[R(h)−R(g)]

p(h|πA)p(g|πB)

p(h)p(g)
p̃(h, g) dh dg .

Note that all of these quantities are invariant to the number of samples provided that the relative
frequencies of the sampled policies remain the same as the number of samples increases. p and p̃ are
measures of the average distribution over histories. s2

X,Y and η2
X,Y are measures of second moments

and s2
X,Y and η2

X,Y are measures of (approximately) centralized second moments. bA,B is the bias of
the normalized estimate of the return difference.
The biases and variances of the estimates are2

E[DU ] = E[R|πA]− E[R|πB]

E[DN ] = E[R|πA]− E[R|πB]−
1

n
bA,B

E[(DU − E[DU ])
2] =

1

n
(s2

A,A − 2s2
A,B + s2

B,B − η2
A,A + 2η

2
A,B − η2

B,B)

E[(DN −E[DN ])
2] =

1

n
(s2

A,A − 2s2
A,B + s2

B,B − η2
A,A + 2η

2
A,B − η2

B,B)

− 3 1
n
(E[R|πA]−E[R|πB])bA,B +O(

1

n2
) .

2For the normalized difference estimator, the expectations shown are for the numerator of the difference. The denominator
is a positive quantity and can be scaled to be approximately 1. Because the difference is only used for comparisons, this scaling
makes no difference in its performance. See the appendix for more details.
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Figure 3: Left: Diagram of the “left-right” world. This world has eight states. The agent receives no
reward in the outlined states and one unit of reward each time it enters one of the solid states. The
agent only observes whether it is in the left or right set of boxed states (a single bit of information).
Each trial begins in the fourth state from the left and lasts 100 time steps. Right: The true expected
return as a function of policy for this world.

The bias of the normalized return difference estimator and the variance of both return differences
estimators decreases as 1

n
. It is useful to note that if all of the πi’s are the same, then p̃(h, g) =

p(h)p(g) and thus bA,B = E[R|πA] − E[R|πB]. In this case E[DN ] =
n−1

n
(E[R|πA] − E[R|πB]). If

the estimator is only used for comparisons, this value is just as good as the true return difference
(of course, for small n, the same variance would cause greater relative fluctuations).

In general we would expect bA,B to be of the same sign as E[R|πA] − E[R|πB]. We would also

expect s2
X,Y to be less than s2

X,Y (and similarly η2
X,Y to be less than η2

X,Y ). s2
X,Y and η2

X,Y depend on
the distance of the returns from the expected return under πX and πY . s2

X,Y and η2
X,Y depend on

the distance of the returns from zero. Without any other knowledge of the underlying POMDP, we
fully expect that the return from an arbitrary history be closer to the expectation of the return with
respect to πX than the arbitrarily chosen value 0. If bA,B is the same sign as the true difference in
returns and the overlined values are less than their counterparts, then the variance of the normalized
estimator is less than the variance of the unnormalized estimator.

Obviously we could be unlucky and have a domain for which the unnormalized estimator has
better performance. However, this seems unlikely and the reduction in variance makes up for the
added bias. These intuitions are demonstrated in figure 2 where we compared the estimates for the
problem described in section 4.2.

4 Experiments

4.1 Reinforcement Learning Algorithm

We can turn any of these estimators into a greedy learning algorithm. To find a policy by which to
act, the agent maximizes the value of the estimator by hill-climbing in the space of policies (using
the previous policy as a starting point) until it reaches a maximum. The agent uses this new policy
for the next trial. After the trial, it adds the new policy-history-return triple to its data and repeats.

The hill-climbing algorithm must be carefully chosen. For many estimates, the derivative of the
estimate varies greatly in magnitude (as shown below). Therefore, we have found it best to use
the direction of the gradient, but not its magnitude to determine the direction in which to climb.
The step size can be determined based on whether the previous step succeeded in increasing the
estimated expected return. In particular, we employ a conjugate gradient descent algorithm using
a golden-ratio line search[8].
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Figure 4: A comparison of the normalized and unnormalized estimators for single set of observations.
For each estimator, the return estimates are shown plotted after 5, 10, and 50 iterations (samples).
The left column is for the greedy policy improvement algorithm and the right column is for uniformly
sampled policies. The first row shows the returns as a function of trial number. The second shows
the path taken in policy space (or, for right columns, the random samples taken). Both estimators
were given the same sequence of data for the random case.
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Figure 6: Comparison of the greedy algorithm with a normalized estimator to standard REIN-
FORCE on the load-unload problem. Plotted are the results of ten runs of each algorithm. In the
case of REINFORCE, the returns have been smoothed over ten trials. The center line is the median
of the returns. The lines on either side are the first and third quartiles. The top and bottom lines
are the minimum and maximum values.

4.2 Two-dimensional Problem

Figure 3 shows a simple world for which the policy can be described by two numbers (the probability
of going left when in the left half and the probability of going left when in the right half) and the
true expected return as a function of the policy. Figure 4 compares the normalized (equation 2)
and unnormalized (equation 3) estimators both with the greedy policy improvement algorithm and
under random policy choices. We feel this example is illustrative of the reasons that the normalized
estimate works much better on the problems we have tried. Its bias to observed returns works
well to smooth out the space. The estimator is willing to extrapolate to unseen regions where the
unnormalized estimator is not. This also causes the greedy algorithm to explore new areas of the
policy space whereas the unnormalized estimator gets trapped in the visited area under greedy
exploration and does not successfully maximize the return function.

4.3 Twenty-dimensional Problem

Although the left-right problem was nice because the estimators could be plotted, it is very simple.
The load-unload problem of figure 5 is more challenging. To achieve reasonable performance, the
actions must depend on the history. We give the agent one memory bit as in section 2.6; this
results in twenty independent policy parameters. REINFORCE [10] has also been used to attack a
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very similar problem [6]. We compare the results of the normalized estimator with greedy search
to REINFORCE in figure 6. The REINFORCE algorithm frequently gets stuck in local minima.
The graph shown is for the best settings for the step size schedule of REINFORCE. In the best
case, REINFORCE converges to a near optimal policy in around 500 trials (100 time steps each).
The greedy algorithm run with the normalized estimate makes much better use of the data. Not
only does it reuse old experience, it has an explicit model of the memory bit and therefore does not
need to learn the “dynamics” of the memory. Most runs converge to the optimal policy in about
50 trials. One trial took about twice as long to converge to a slightly suboptimal policy.

5 Conclusion

We think this normalized estimator shows promise. It makes good use of the data and when
combined with a greedy algorithm produces quick learning. We would like to extend it in two
immediate ways. The first is to provide error estimates or bounds on the return estimate. Although
we have a formula for the variance of the estimator, we still need a good estimate of this variance
from the samples (the formula requires full knowledge of the POMDP). Such an estimate would
allow for exploration to be incorporated into the algorithm. At the moment, the greedy algorithm
only exploits the current information to achieve the best result on the next trial. If a measure of the
variance of the estimator were added, the algorithm could balance exploiting the data with learning
about new parts of the policy space.
Second, the estimate needs to be “sparsified.” After n trials, computing the estimate (or its

derivative) for a given policy takes O(n) work (the inner sums can be built up as the trials progress).
This makes the entire algorithm quadratic in the number of trails. However, a similar estimate could
probably be achieved with fewer points. Remembering only the important trials would produce a
simpler estimate.
These estimators are closely related to importance sampling. Yet, it is difficult to bring the results

from importance sampling to this problem. Importance sampling usually assumes that the designer
has control over the sampling distribution. In our problem, we’d like to allow the agent to use
experience that was sampled in any fashion. Whereas importance sampling often asks, “given an
expectation to estimate, how should I sample to reduce the variance of the estimate?” we would like
to ask “given a sampling method, how best should I estimate the expectation to reduce variance?”
[2] does list a number of other importance sampling methods. Unfortunately none of them are
computable in this case (recall that the full probability function is not available, only one factor of
it).
Finally, it may seem disturbing that we must remember which policies were used on each trail.

The return doesn’t really depend on the policy that the agent wants to execute; it only depends on
how the agent actually does act. In theory we should be able to forget which policies were tried;
doing so would allow us to use data which was not gathered with a specified policy. The policies
are necessary in this paper as proxies for the unobserved state sequences. We hope in future work
to remove this dependence.
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A Bias and Variance Derivations

We will assume that the policy we are evaluating is πA and thus we are interested in estimating
E[R|πA]. Later, we will look at the difference between the estimate at point πA and at point πB.
All sums are over the data points (1 through n) unless otherwise noted. Integrals will be over the
space of histories. If the space of histories is discrete (as is the case for POMDPs), these should
actually be sums. However, by using integrals for histories and sums for experience, the notation
becomes clearer.
To aid in the derivation of the bias and variance of the estimators, we will define a few symbols

to represent common quantities and simplify the notation:

p(h) =
1

n

∑
i

p(h|πi)

p̃(h, g) =
1

n

∑
i

p(h|πi)p(g|πi)

wi
A =

p(hi|πA)

p(hi)

wi
B =

p(hi|πB)

p(hi)

Ri = R(hi)

ri
A = Riwi

A

ri
B = Riwi

B

RA = E[R|πA]

RB = E[R|πB]
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not all of which will be useful immediately.

A.1 Unnormalized Estimator

First we consider the unnormalized estimator

U(πA) =
1

n

∑
i

ri
A .

Its mean can easily be derived as

E[U(πA)] = E[
1

n

∑
i

ri
A]

=
1

n

∑
i

E[ri
A]

=
1

n

∑
i

∫
R(hi)

p(hi|πA)

p(hi)
p(hi|πi) dhi

=
1

n

∑
i

∫
R(h)

p(h|πA)

p(h)
p(h|πi) dh

=

∫
R(h)

p(h|πA)

p(h)

1

n

∑
i

p(h|πi) dh

=

∫
R(h)

p(h|πA)

p(h)
p(h) dh

=

∫
R(h)p(h|πA) dh

= E[R|πA]

= RA

and thus U(πA) is an unbiased estimate of RA. Similarly, we can derive that

1

n

∑
i

E[ri
B] = RB

1

n

∑
i

E[wi
A] = 1

1

n

∑
i

E[wi
B] = 1

which will be useful later.
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We can also find the variance of this estimator:

E
[
(U(πA)− E[U(πA)])

2] = E[(
1

n

∑
i

ri
A)

2]−R2
A

=
1

n2

∑
i

E[(ri
A)

2] +
1

n2
(
∑

i

E[ri
A])

2 − 1

n2

∑
i

E[ri
A]

2 −R2
A

=
1

n

(
1

n

∑
i

E[(ri
A)

2]− 1

n

∑
i

E[ri
A]

2

)

=
1

n

(∫
R2(h)

p(h|πA)

p(h)
p(h|πA) dh−

∫∫
R(h)R(g)

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

)
.

Although this might look a bit messy, there is sense in it. The quantity inside the parentheses
is constant if, as n increases, the chosen policies (πi) remain the same. This would happen if we
kept the same set of trial policies and just kept cycling through them. In fact, if all of the πi’s are
equal, then the second integral works out to just be R2

A as p̃(h, g) = p(h)p(g) for this case. The

first integral can be rewritten as E[R2 p(h|πA)
p(h)

|πA] which looks more like a term normally associated
with variances.

To make this (and future) derivations simpler, we add the following definitions

s2
A,A =

1

n

∑
i

E[(ri
A)

2] =

∫
R2(h)

p(h|πA)

p(h)
p(h|πA) dh

s2
A,B = s2

B,A =
1

n

∑
i

E[ri
Ari

B] =

∫
R2(h)

p(h|πA)

p(h)
p(h|πB) dh

s2
B,B =

1

n

∑
i

E[(ri
B)

2] =

∫
R2(h)

p(h|πB)

p(h)
p(h|πB) dh

η2
A,A =

1

n

∑
i

E[ri
A]

2 =

∫∫
R(h)R(g)

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

η2
A,B = η2

B,A =
1

n

∑
i

E[ri
A]E[r

i
B] =

∫∫
R(h)R(g)

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg

η2
B,B =

1

n

∑
i

E[ri
B]

2

∫∫
R(h)R(g)

p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg .

Thus, var(U(πA)) =
1
n
(s2

A,A − η2
A,A).

A.2 Unnormalized Differences

Instead of computing the mean and variance of the normalized estimator (these quantities are too
convoluted to be useful), we will now look at the difference of the estimator at two different policies,
πA and πB. If we are using the estimator to guide a greedy search, then this is closer to a quantity
we care about. In fact, we really care how the maximum of the estimator compares to the true
maximum. That is too difficult to calculate. However, looking at the difference gives a better sense
of how the estimator works when used for comparisons.

For the unnormalized estimator, U(πA)−U(πB) is clearly an unbiased estimate of RA−RB . The
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variance of the difference can be derived, similarly to the previous derivation, to be

E
[
(U(πA)− E[U(πA)]− U(πB) + E[U(πB)])

2] = 1

n

(
s2

A,A − 2s2
A,B + s2

B,B − η2
A,A + 2η

2
A,B − η2

B,B

)
.

If we define q as
qA,B(h) = p(h|πA)− p(h|πB)

then we can also write

var(U(πA)− U(πB)) =
1

n

(∫
R2(h)

q2
A,B(h)

p2(h)
p(h) dh−

∫∫
R(h)R(g)

qA,B(h)qA,B(g)

p(h)p(g)
p̃(h, g) dh dg

)
.

A.3 Normalized Differences

For the normalized estimator we are interested in∑
i r

i
A∑

i w
i
A

−
∑

i r
i
B∑

i w
i
B

=

∑
i r

i
A

∑
j w

j
B −

∑
i r

i
B

∑
j w

j
A∑

i w
i
A

∑
j w

i
B

.

However, since the denominator is always positive and we only care about the sign of this quantity
(because we are using the estimator to compare potential policies), we can concentrate on the
numerator only. Furthermore, we can scale this quantity by any positive value. We will scale it by
1
n2 so that it is roughly the same as the unnormalized estimator and the variances can be compared.
Thus, we are interested in the bias and variance of the difference

D =
1

n2

∑
i,j

(ri
Awj

B − ri
Bwj

A) .

It is important to note that ri
Awi

B = ri
Bwi

A and thus when i = j the two terms in the sum cancel.
This leaves us with

D =
1

n2

∑
i�=j

(ri
Awj

B − ri
Bwj

A) .

The bias derivation is similar to the variance derivations of the unnormalized estimator.

E[D] =
1

n2

(∑
i�=j

E[ri
Awj

B]−
∑
i�=j

E[ri
Bwj

A]

)

=
1

n2

(∑
i,j

E[ri
A]E[w

j
B]−

∑
i

E[ri
A]E[w

i
B]−

∑
i,j

E[ri
B]E[w

j
A]−

∑
i

E[ri
B]E[w

i
A]

)

=
1

n

∑
i

E[ri
A]
1

n

∑
j

E[wj
B]−

1

n

∑
i

E[ri
B]
1

n

∑
j

E[wj
A]−

1

n

(
1

n

∑
i

(E[ri
A]E[w

i
B]−E[ri

B]E[w
i
A])

)

= RA −RB − 1

n
bA,B

where we define bA,B as

bA,B =

∫∫
[R(h)−R(g)]

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg .
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Again, if we fix the relative frequencies of the selected policies, bA,B is a constant as n increases.
Thus, the bias of D decreases at a rate of 1

n
. In fact, if all of the πi’s are the same, bA,B = RA −RB

and the expectation of the difference is

n− 1
n

(RA −RB)

which, except for n = 1, is just a scaled version of the true difference.

The derivation of the variance ofD is slightly more involved but involves the same basic technique.
First, however, we must make a brief detour. Consider, in general, calculating E[

∑
i�=j,k �=l aibjckdl].

We wish to break this sum up into independent components so that the expectations can be calcu-
lated. It involves a lot of algebra but the notion is fairly simple.

First we count up the different ways that the indices could coincide.

∑
i�=j,k �=l

aibjckdl =
∑

i�=j �=k �=l

aibjckdl

+
∑

i�=j �=k

(aicibjdk + aidibjck + aibjcjdk + aibjdjck)

+
∑
i�=j

(aicibjdk + aidibjcj)

where the notation i �= j �= k �= l implies none of the indices equal each other. While the expectation
can now be pushed through these three sums easily (because we know the indices to be different),
we have the complication that the sums are difficult to compute. We therefore break each sum
into a sum over all indices minus a set of sums accounting for when the indices are the same (and
therefore should not have been included). As is usual with inclusion-exclusion calculations, we also
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have to add back in some sums which were subtracted out twice. The net result is,

E[
∑

i�=j,k �=l

aibjckdl]

=
∑

i�=j �=k �=l

E[ai]E[bj ]E[ck]E[dl]

+
∑

i�=j �=k

(E[aici]E[bj ]E[dk] + E[aidi]E[bj ]E[ck] + E[ai]E[bjcj ]E[dk] + E[ai]E[bjdj]E[ck])

+
∑
i�=j

(E[aici]E[bjdj] + E[aidi]E[bjcj])

= (
∑
i,j,k,l

E[ai]E[bj ]E[ck]E[dl]

−
∑
i,j,k

E[ai]E[bi]E[cj]E[dk] + E[ai]E[bj ]E[ci]E[dk] + E[ai]E[bj ]E[ck]E[di]

+ E[ai]E[bj ]E[cj ]E[dk] + E[ai]E[bj ]E[ck]E[dj] + E[ai]E[bj ]E[ck]E[dk]

+ 2
∑
i,j

E[ai]E[bi]E[ci]E[dj] + E[ai]E[bi]E[cj ]E[di] + E[ai]E[bj ]E[ci]E[di] + E[ai]E[bj ]E[cj ]E[dj ]

+
∑
i,j

E[ai]E[bi]E[cj ]E[dj] + E[ai]E[bj ]E[ci]E[dj] + E[ai]E[bj ]E[cj ]E[di]

− 6
∑

i

E[ai]E[bi]E[ci]E[di])

+ (
∑
i,j,k

E[aici]E[bj ]E[dk]−
∑
i,j

E[aici]E[bi]E[dj ]

−
∑
i,j

E[aici]E[bj ]E[di]−
∑
i,j

E[aici]E[bj ]E[dj] + 2
∑

i

E[aici]E[bi]E[di])

+ (
∑
i,j,k

E[aidi]E[bj ]E[ck]−
∑
i,j

E[aidi]E[bi]E[cj ]

−
∑
i,j

E[aidi]E[bj ]E[ci]−
∑
i,j

E[aidi]E[bj ]E[cj ] + 2
∑

i

E[aidi]E[bi]E[ci])

+ (
∑
i,j,k

E[ai]E[bjcj]E[dk]−
∑
i,j

E[ai]E[bici]E[dj]

−
∑
i,j

E[ai]E[bjcj]E[dj ]−
∑
i,j

E[ai]E[bjcj ]E[di] + 2
∑

i

E[ai]E[bici]E[di])

+ (
∑
i,j,k

E[ai]E[bjdj]E[ck]−
∑
i,j

E[ai]E[bidi]E[cj]

−
∑
i,j

E[ai]E[bjdj]E[cj ]−
∑
i,j

E[ai]E[bjdj]E[ci] + 2
∑

i

E[ai]E[bidi]E[ci])

+ (
∑
i,j

E[aici]E[bjdj]−
∑

i

E[aici]E[bidi])

+ (
∑
i,j

E[aidi]E[bjcj]−
∑

i

E[aidi]E[bici])

(4)
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and although this looks complex, most of the terms are irrelevant. For instance, consider the term∑
i,j E[aidi]E[bjcj] (the very last sum). In the derivation of variance, this sum would be instantiated

with ai = ri
A, bj = wj

B, cj = rj
B, and di = wi

A. We can then rewrite it as

∑
i,j

E[aidi]E[bjcj ] =
∑
i,j

E[ri
Awi

A]E[r
j
Bwj

B]

=
∑

i

∫
R(h)

p(h|πA)p(h|πA)

p(h)p(h)
p(h|πi) dh

∑
j

∫
R(h)

p(h|πB)p(h|πB)

p(h)p(h)
p(h|πj) dh

= n2

∫
R(h)

p(h|πA)p(h|πA)

p(h)p(h)

1

n

∑
i

p(h|πi) dh

∫
R(h)

p(h|πB)p(h|πB)

p(h)p(h)

1

n

∑
j

p(h|πj) dh

= n2

∫
R(h)

p2(h|πA)

p2(h)
p(h) dh

∫
R(h)

p2(h|πB)

p2(h)
p(h) dh

where the two integrals are similar to those in equation A.1 in that they are constant quantities
based on the difference between the sampling distribution and the target distributions. What is
important is that converting

∑
i p(h|πi) into p(h) required pulling in a factor of 1

n
. Because there

were two sums, this had to be done twice resulting in the n2 term out in front. In general we need
only to consider the highest order terms and so only the sums with three or four indices will need
to be calculated. The rest will result in insignificant terms.

We can now approximate equation 4 as

∑
i�=j,k �=l

E[aibjckdl] ≈
∑
i,j,k,l

E[ai]E[bj ]E[ck]E[dl]

−
∑
i,j,k

(
E[ai]E[bi]E[cj ]E[dk] + E[ai]E[bj ]E[ci]E[dk] + E[ai]E[bj ]E[ck]E[di]

+ E[ai]E[bj ]E[cj ]E[dk] + E[ai]E[bj ]E[ck]E[dj] + E[ai]E[bj ]E[ck]E[dk]

)

+
∑
i,j,k

(
E[aici]E[bj ]E[dk] + E[aidi]E[bj ]E[dk]

+ E[ai]E[bjcj ]E[dk] + E[ai]E[bjdj ]E[ck]

)
(5)

where the error in the approximation is O(n2).
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In preparation for the variance ofD, we add a few more definitions similar to those of equation A.1:

u2
A,A =

1

n

∑
i

E[ri
Awi

A] =

∫
R(h)

p(h|πA)

p(h)
p(h|πA) dh

u2
A,B = u2

B,A =
1

n

∑
i

E[ri
Bwi

A] =

∫
R(h)

p(h|πA)

p(h)
p(h|πB) dh

u2
B,B =

1

n

∑
i

E[ri
Bwi

B]

∫
R(h)

p(h|πB)

p(h)
p(h|πB) dh

µ2
A,A =

1

n

∑
i

E[ri
A]E[w

i
A] =

∫∫
R(h)

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

µ2
A,B =

1

n

∑
i

E[ri
A]E[w

i
B] =

∫∫
R(h)

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg

µ2
B,A =

1

n

∑
i

E[ri
B]E[w

i
A] =

∫∫
R(h)

p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πA) dh dg

µ2
B,B =

1

n

∑
i

E[ri
B]E[w

i
B] =

∫∫
R(h)

p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg

v2
A,A =

1

n

∑
i

E[(wi
A)

2] =

∫
p(h|πA)

p(h)
p(h|πA) dh

v2
A,B = v2

B,A =
1

n

∑
i

E[wi
Awi

B] =

∫
p(h|πA)

p(h)
p(h|πB) dh

v2
B,B =

1

n

∑
i

E[(wi
B)

2] =

∫
p(h|πB)

p(h)
p(h|πB) dh

ξ2
A,A =

1

n

∑
i

E[wi
A]

2 =

∫∫
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

ξ2
A,B = ξ2

B,A =
1

n

∑
i

E[wi
A]E[w

i
B] =

∫∫
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg

ξ2
B,B =

1

n

∑
i

E[wi
B]

2 =

∫∫
p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg .

(6)
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We can now attack the variance of D.

E[(D − E[D])2] = E[D2]− E[D]2

=
1

n4
E

[ ∑
i�=j,k �=l

(
ri
Awj

Brk
Awl

B − 2ri
Awj

Brk
Bwl

A + ri
Bwj

Ark
Bwl

A

)]
− E[D]2

=

[
1

n4

∑
i�=j,k �=l

ri
Awj

Brk
Awl

B

]
−2
[
1

n4

∑
i�=j,k �=l

ri
Awj

Brk
Bwl

A

]

+

[
1

n4

∑
i�=j,k �=l

ri
Bwj

Ark
Bwl

A

]
−E[D]2

=

[
R2

A − 4 1
n
RAµ2

A,B − 1

n
η2

A,A − 1

n
R2

Aξ2
B,B + 4

1

n
RAu2

A,B +
1

n
s2

A,A +
1

n
R2

Av2
B,B

]

− 2
[
RARB

− 1

n
RAµ2

B,A − 1

n
RAµ2

B,B − 1

n
RBµ2

A,B − 1

n
RBµ2

A,A − 1

n
η2

A,B − 1

n
RARBξ2

A,B

+
1

n
RAu2

A,B +
1

n
RAu2

B,B +
1

n
RBu2

A,B +
1

n
RBu2

A,A +
1

n
s2

A,B +
1

n
RARBv2

A,B

]

+

[
R2

B − 4 1
n
RBµ2

B,A − 1

n
η2

B,B − 1

n
R2

Bξ2
A,A + 4

1

n
RBu2

A,B +
1

n
s2

B,B +
1

n
R2

Bv2
A,A

]

−R2
A −R2

B + 2RARB +
1

n
(RA −RB)bA,B +O(

1

n2
)

=
1

n

[
(R2

Av2
B,B − 2RAu2

B,B + s2
B,B)− (R2

Aξ2
B,B − 2RAµ2

B,B + η2
B,B)

(R2
Bv2

A,A − 2RBu2
A,A + s2

A,A)− (R2
Bξ2

A,A − 2RBµ2
A,A + η2

A,A)

− 2(RARBv2
A,B −RAu2

A,B −RBu2
A,B + s2

A,B)

+ 2(RARBξ2
A,B −RAµ2

B,A −RBµ2
A,B + η2

A,B)

− 4(RA −RB)(µ
2
A,B − µ2

B,A) + (RA −RB)bA,B

]
+O(

1

n2
) .

(7)

The fourth line came from applying the expansion of equation 5 along with the definitions from
equations A.1 and 6.
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At this point we need to introduce a few new definitions for the final bit of algebra.

s2
A,A =

1

n

∑
i

E[(ri
A)

2] =

∫
(R(h)−RA)

2p(h|πA)

p(h)
p(h|πA) dh

s2
A,B = s2

B,A =
1

n

∑
i

E[ri
Ari

B] =

∫
(R(h)−RA)(R(h)−RB)

p(h|πA)

p(h)
p(h|πB) dh

s2
B,B =

1

n

∑
i

E[(ri
B)

2] =

∫
(R(h)−RB)

2p(h|πB)

p(h)
p(h|πB) dh

η2
A,A =

1

n

∑
i

E[ri
A]

2 =

∫∫
(R(h)−RA)(R(g)−RA)

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

η2
A,B = η2

B,A =
1

n

∑
i

E[ri
A]E[r

i
B] =

∫∫
(R(h)−RA)(R(g)−RB)

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg

η2
B,B =

1

n

∑
i

E[ri
B]

2

∫∫
(R(h)−RB)(R(g)−RB)

p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg .

(8)

Most usefully, the following identities hold.

s2
A,A = R2

Av2
A,A − 2RAu2

A,A − s2
A,A

s2
A,B = RARBv2

A,B −RAu2
A,B −RBu2

A,B + s2
A,B

s2
B,B = R2

Bv2
B,B − 2RBu2

B,B + s2
B,B

η2
A,A = R2

Aξ2
A,A − 2RAµ2

A,A + η2
A,A

η2
A,B = RARBξ2

A,B −RAµ2
B,A −RBµ2

A,B + η2
A,B

η2
B,B = R2

Bξ2
B,B − 2RBµ2

B,B + η2
B,B

bA,B = µ2
A,B − µ2

B,A .

The variance of D can now be expressed as (continuing from equation 7)

E[(D −E[D])2] =
1

n

(
s2

A,A − 2s2
A,B + s2

B,B − η2
A,A + 2η

2
A,B − η2

B,B

)
− 3 1

n
(RA −RB)bA,B +O(frac1n2) .

The first line is better than the variance of the unnormalized difference. The equation is the same
except each quantity has been replaced by the “overlined” version. If we compare the two versions
(equations A.1 and 8) we can note that the non-overlined versions are all integrals averaging the
R(h) by some positive weights. However for the overlined versions, RA or RB are subtracted from
the returns before the averaging. We expect that RA and RB to be closer to the mean of these
quantities than 0 and thus the overlined quantities are smaller. In general, the variance of the
normalized estimator is invariant to translation of the returns (which is not surprising given that
the estimator is invariant in the same way). The unnormalized estimator is not invariant in this
manner. If the sampled πi’s are all the same, bA,B = RA−RB and thus the second line is a quantity
less than zero plus a term that is only order 1

n2 .

20


