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Abstract—In this paper, we introduce a class of Locally
Adaptive Sampling schemes. In this sampling family, time
intervals between samples can be computed by using a function
of previously taken samples, called a sampling function. Hence,
though it is a non-uniform sampling scheme, we do not need
to keep sampling times. The aim of LAS is to have the
average sampling rate and the reconstruction error satisfy some
requirements. We propose four different schemes of LAS. The
first two are designed for deterministic signals. First, we derive
a Taylor Series Expansion (TSE) sampling function, which
only assumes the third derivative of the signal is bounded,
but requires no other specific knowledge of the signal. Then,
a Discrete Time-Valued (DTV) sampling function is proposed,
where the sampling time intervals are chosen from a lattice.
Next, we consider stochastic signals. We propose two sampling
methods based on linear prediction filters: a Generalized Linear
Prediction (GLP) sampling function, and a Linear Prediction
sampling function with Side Information (LPSI). In GLP
method, we only assume the signal is locally stationary. However,
LPSI is specifically designed for a known signal model.

I. INTRODUCTION

Taking samples from a signal satisfying some requirements
on the sampling rate and the reconstruction error is one of the
main problems in signal processing. The considered signal
can be deterministic (either band-limited or non-bandlimited)
or stochastic. In this paper, we propose a sampling family
which can be applied on both deterministic and stochastic
signals, satisfying sampling and reconstruction requirements.

For band-limited deterministic signals, this problem is
well-studied. For example, the Nyquist sampling theorem
proposes an appropriate uniform sampling setup which leads
to a zero reconstruction error. A non-uniform sampling
scheme based on level-crossings with iterative decoding is
considered in [1], while reference [2] presents an approach,
based on level crossings with a filtering technique, which
adapts the sampling rate and filter order by analyzing the
input signal variations online. Also, two adaptive sampling
schemes for band-limited deterministic signals are proposed
in [3]. These schemes are using some definitions of local
bandwidth, based on linear time-varying low pass filters [4],
and time-warping of bandlimited signals [5].

Many of these results for band-limited signals have been
extended to the case of non bandlimited signals [6]. For
example, it has been shown that some splines which are
non bandlimited signals can be reconstructed from uniformly
spaced samples similarly to bandlimited signals. However, it
requires to use a non causal IIR filter in some techniques.
Reference [7] considers joint sampling of amplitude and
derivative of spline-like signals, needing only FIR filters.

For a discrete stochastic signal, one scheme is to take
samples uniformly at a high rate and then, use source coding
to compress these samples approximately to their entropy
rate. This technique has two parts: uniform sampling, and
source coding. To have an appropriate performance, we need
long blocks of samples to be able to use source coding
efficiently, especially if statistical properties of the signal vary
slowly in time. This block-based approach may lead to a large
delay on reconstruction side. Instead, our proposed scheme
is a real-time compression scheme. It adaptively compresses
the signal by using its local properties causally.

In this paper, we introduce a new family of adaptive non-
uniform sampling schemes. In this sampling family, time
intervals between samples can be computed by using a
function of previously taken samples. This function is called
a sampling function. We refer to this sampling family as
Locally Adaptive Sampling (LAS). The aim in this sampling
process is to take samples of a discrete or continuous signal
in a way that balances the reconstruction distortion and the
average sampling rate.

Consider a continuous signal X(t). Suppose the ith sample
is taken at time ti. Define Ti , ti+1 − ti and ∆i ,
X(ti+1)−X(ti). Then, we take the (i+1)th sample after a
time interval with length Ti = f(

∪i−1
j=i−M{Tj ,∆j}), where

f is called the sampling function and M is called the order
of the sampling function (Figure 1). The sampling function
is known on both the sampling and the reconstruction sides.
Similarly, we can take samples from a discrete time signal,
by using a suitable sampling function. Hence, LAS can be
applied on both discrete and continuous signals.

This sampling structure is non-uniform except in trivial
cases when the sampling function is a constant-valued func-
tion. However, the key characteristic of our approach is that,
unlike traditional non-uniform sampling procedures, keeping
sampling times is not necessary. Rather, these times can be
recovered by using the sampling function and previously
taken samples. In the above example, we have ti+1 =
ti + f(

∪i−1
j=i−M{Tj ,∆j}).

In the above example, LAS is causal because the next
sampling time depends on samples taken before that time. In
general, it can be designed to be non-causal. But, in this pa-
per, we consider only causal sampling schemes. Note that the
reconstruction method can be causal or non-causal. LAS is an
adaptive process, because the sampling function, f , depends
on local characteristics of the signal. Finding an appropriate
sampling function of LAS depends on sampling requirements
such as the sampling rate, the distortion requirement, etc.
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TABLE I
TAXONOMY OF PROPOSED SAMPLING FUNCTIONS

Sampling Functions (LAS) Blind With Side Information
Deterministic Taylor Series Expansion (TSE) Discrete Time-Valued (DTV)

Stochastic Generalized Linear Prediction (GLP) Linear Prediction With Side Information (LPSI)

The aim of LAS is to balance between the average sam-
pling rate and the reconstruction distortion. Note that, this
objective is different from the one considered in change point
analysis or active learning. There, the objective is to find
points of the signal at which the statistical behaviors of the
signal change, by causal or non-causal sampling, respectively
(e.g., [8] and [9]).

We proceed by introducing four examples of LAS: for
deterministic and stochastic signals, with/without side infor-
mation about the signal. The taxonomy of sampling functions
we propose is given in Table I. In section II, we use
Taylor’s theorem to derive a suitable sampling function for
deterministic signals. This method is called Taylor Series
Expansion (TSE) method. Then, a Discrete Time-Valued
(DTV) method for this signal family is proposed in Section
III, where the sampling time intervals are chosen from a
lattice. For time-varying stochastic signals, we propose two
sampling methods based on linear prediction filters: Gen-
eralized Linear Prediction (GLP) method in Section IV, and
Linear Prediction with Side Information (LPSI) in Section V.
For TSE and GLP methods, we have a general condition on
the considered signal (bounded third derivative for TSE, and
being locally stationary for GLP). These methods are called
blind sampling methods. However, DTV and LPSI methods
are non-blind (with side information), because the sampling
scheme is specifically designed for a known signal model.

II. TAYLOR SERIES EXPANSION METHOD OF LAS
In this section, we use Taylor’s theorem to derive a suitable

sampling function for deterministic signals. Various instan-
tiations of LAS can be derived by using Taylor’s theorem,
depending on signals of interest, the allowed complexity of
the sampling function f , and the distortion requirement. In
this section, by an example, we explain how a sampling
function can be computed for a specific setup. Suppose
X(t) is a continuous signal. We consider the following
assumptions:

(C1) The order of the sampling function is two. In other
words, the sampling function is a function of three
previously taken samples (Ti = f(

∪i−1
j=i−2{Tj ,∆j})).

(C2) The reconstruction method is connecting two adjacent
samples by a line. We call this non-causal linear inter-
polation.

Also, the distortion requirement is assumed to be as
follows:

(C3) Suppose X̂(t) is the reconstructed signal. We want to
have |X(t) − X̂(t)| < D1, for all t, where D1 is a
sampling parameter.

The upper bound on the absolute value of the third
derivative is used a parameter in the sampling function and
is also used in the analysis.

Theorem 1. In the Taylor Series Expansion method of LAS,
if |X ′′′(t)| is uniformly bounded by a constant M , under
assumptions C1-C2, the following sampling function satisfies
the sampling requirement C3:

Ti = argmax T

s.t. (c1T + c2)T
2 ≤ D1 (1)

where c1 and c2 are constants, defined as follows,

c1 =
M

3

c2 =
|∆i−1

Ti−1
− ∆i−2

Ti−2
|

Ti−1+Ti−2

2

+
M

3

(Ti−1 + Ti−2)
2 + (Ti−1)

2

Ti−2
.

Before proceeding by the proof, it is insightful to inves-
tigate the behavior of Ti, with respect to different involved
parameters in (1).

• Increasing D1 leads to an increase in Ti. Intuitively, the
higher the allowed distortion, the lower the sampling
rate, and the larger the sampling time intervals.

• The first term of c2 (i.e.,

|∆i−1/Ti−1 −∆i−2/Ti−2|/
(
(Ti−1 + Ti−2)/2

)
can be viewed as an approximation of |X ′′(t)| at time
ti. Since the reconstruction method is a first order linear
filter, the higher the second derivative, the faster changes

of the signal. Therefore, by increasing |
∆i−1
Ti−1

−∆i−2
Ti−2

Ti−1+Ti−2
2

|, Ti

should decrease.

We present the proof of Theorem 1 in the following.
Proof: By Taylor’s theorem, for each t in [ti, ti+1), there

exists s1 in (ti, t) such that,

X(t) = X(ti) +X ′(ti)(t− ti) +X ′′(ti)
(t− ti)

2

2

+X ′′′(s1)
(t− ti)

3

6
. (2)

Since |X ′′′(t)| ≤ M for all t, we have Xl(t) ≤ X(t) ≤
Xu(t) where,

Xu(t) = X(ti) +X ′(ti)(t− ti) +X ′′(ti)
(t− ti)

2

2

+M
(t− ti)

3

6

Xl(t) = X(ti) +X ′(ti)(t− ti) +X ′′(ti)
(t− ti)

2

2

−M
(t− ti)

3

6
. (3)

For the reconstruction, according to assumption A2, we
connect adjacent samples by a line. Hence, for t ∈ [ti, ti+1),
we have,

X̂(t) = X(ti) + (t− ti)
∆i

Ti
. (4)

By Taylor’s theorem, there exists s2 ∈ (ti, ti+1) such that,
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titi-1 ti+1

Ti-1 Ti

i-1

i

Fig. 1. LAS setup

X(ti+1) = X(ti) +X ′(ti)(ti+1 − ti)

+ X ′′(ti)
(ti+1 − ti)

2

2
+X ′′′(s2)

(ti+1 − ti)
3

6
.

Hence,

∆i

Ti
= X ′(ti) +X ′′(ti)

Ti

2
+X ′′′(s2)

T 2
i

6
. (5)

Having (3), (4) and (5), for t ∈ [ti, ti+1), we can write,

|X̃(t)| = |X(t)− X̂(t)|
≤ (t− ti)[(t− ti + Ti)|X ′′(ti)|/2

+((t− ti)
2 + T 2

i )M/6] (6)
≤ D1.

The right-hand side of (6) is an increasing function of t
for t ∈ [ti, ti+1). Hence, its supremum happens at t = ti+1.
Thus, we have, (M

3
Ti + |X ′′(ti)|

)
T 2
i ≤ D1. (7)

By using Taylor’s theorem at times t = ti−1 and t = ti−2,
centered at t = ti, there exist s3 and s4 such that ti−1 <
s3 < ti and ti−2 < s4 < ti, and,

X(ti−1)−X(ti)

Ti−1
= −X ′(ti) +X ′′(ti)

Ti−1

2

−X ′′′(s3)
T 2
i−1

6
(8)

X(ti−2)−X(ti)

Ti−1 + Ti−2
= −X ′(ti) +X ′′(ti)

Ti−1 + Ti−2

2

−X ′′′(s4)
(Ti−1 + Ti−2)

2

6
. (9)

State 0 State 1

p

p

1-p 1-p

Fig. 2. A hidden Markov chain for θn

Hence,

|X ′′(ti)| ≤
|∆i−1

Ti−1
− ∆i−2+∆i−1

Ti−2+Ti−1
|

Ti−2

2

+
M

3

(Ti−1 + Ti−2)
2 + (Ti−1)

2

Ti−2

=
|∆i−1

Ti−1
− ∆i−2

Ti−2
|

Ti−1+Ti−2

2

+
M

3

(Ti−1 + Ti−2)
2 + (Ti−1)

2

Ti−2
. (10)

Combining (7) and (10) completes the proof.
A counterpart of this method can be derived for discrete

signals. For example, suppose X[n] is a discrete signal,
where n is a non-negative integer. The ith sample is taken
at time ni. Let us define Ni , ni+1 − ni and ∆i ,
X[ni+1] −X[ni]. Then, the (i + 1)th sample is taken after
Ni = f(

∪i−1
j=i−2{Nj ,∆j}) samples.

Let us define X ′[n] , X[n]−X[n− 1], X ′′[n] , X[n]−
2X[n − 1] + X[n − 2] and X ′′′[n] , X[n] − 3X[n − 1] +
3X[n−2]−X[n−3]. Suppose |X ′′′[n]| is uniformly bounded
by a constant M . Also, consider the following assumptions
as counterparts for assumptions C1, C2 and C3:

(C4) The sampling function is a function of three previously
taken samples (i.e., Ni = f(

∪i−1
j=i−2{Nj ,∆j})).

(C5) The reconstruction method is a linear interpolation
among taken samples.

(C6) Suppose X̂[n] is the reconstructed signal. We want to
have |X[n] − X̂[n]| < D1, where D1 is a sampling
parameter.

Theorem 2. In the Taylor Series Expansion method of LAS
for discrete signals, if |X ′′′[n]| is bounded by a constant M ,
under assumptions C4-C5, the following sampling function
satisfies the sampling requirement C6:

Ni = argmax [N ]

s.t. (c1N + c2)N
2 ≤ D1 (11)

where c1 and c2 are constants, defined as follows,

c1 =
M

3

c2 =
|∆i−1

Ni−1
− ∆i−2

Ni−2
|

Ni−1+Ni−2

2

+
M

3

(Ni−1 +Ni−2)
2 + (Ni−1)

2

Ni−2
.
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If instead of assumption C3, the normalized L1 norm of
the error signal is considered as a distortion measure (i.e.,
1
T

∫ T

t=0
|X̃(t)|dt ≤ D1), the following sampling function can

be derived:

Corollary 3. In the Taylor Series Expansion method of LAS,
if |X ′′′(t)| is bounded by a constant M , under assumptions
C1-C2, the following sampling function satisfies the L1 norm
of the error signal to be less than D1:

Ti = argmax T

s.t. (c1T + c2)T
2 ≤ D1 (12)

where c1 and c2 are constants, defined as follows,

c1 =
M

8
,

c2 =
5

12

( |∆i−1

Ti−1
− ∆i−2

Ti−2
|

Ti−1+Ti−2

2

+
M

3

(Ti−1 + Ti−2)
2 + (Ti−1)

2

Ti−2

)
.

A. Numerical Evaluations

While our proof has considered deterministic signals, since
the proposed sampling method is blind, it renders this method
a well-suited choice for uncertain signals. Hence, in this
section, we empirically evaluate the performance of our
scheme when the signal is deterministic over stochastically
varying time intervals. To do this, consider an underlying
hidden Markov chain (MC) with a transition probability p,
depicted in Figure 2. At each state, the signal is drawn by
a third order spline, up-sampled by a factor of us, where s
represents the state of MC. Thus, if the state of MC is s at
time n, X[n] and X[n+ us + 1] are drawn from a uniform
distribution over [−A,A]. Signal values at other times are
determined by a third order spline interpolation. Figure 3-
a shows a sample of this signal family, where p = 0.001,
u0 = 1, u1 = 20 and A = 0.5.

We use the normalized L1 norm of the error as a distortion
measure. The sampling function is given by (12).

Since our sampling scheme is blind, in our simulations,
the signal model is unknown and we are only allowed to use
the sampling function of (12). To do this, we need M , an
upper bound for the third derivative of the signal. From taken
samples, we approximate the third derivative as follows. First,
we define,

w(ti) ,
|∆i−1

Ti−1
− ∆i−2

Ti−2
|

Ti−1+Ti−2

2

. (13)

Then, ζ(ti) , |w(ti)−w(ti−1)|
(Ti−1+Ti−2+Ti−3)/3

is used as an ap-
proximation of the third derivate of the signal by Taylor’s
theorem . At each time, M is chosen as the maximum
of {ζ(ti), ζ(ti−1), ..., ζ(ti−W )}. In our simulations, we pick
W = 10.

Figure 3-b shows the number of samples (i) versus time
(ni) when D1 = 0.2. Hence, at each time ni, the slope of
the tangent line on the curve represents the sampling rate at
that time. We draw state transitions of the underlying hidden
Markov chain in Figure 3-a to clarify the rate adaptation in

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

n
i

i

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
−1

0

1

2

n
i

S
ig

n
a

l 
/ 

S
ta

te
 T

ra
n

s
it
io

n

(a)

(b)

Fig. 3. a) A sample signal and its MC state transitions used in Section
(II-A). b) Sampling rate versus time for this signal with TSE method.

different states. In state 0, in which the signal model is an up-
sampled third-order spline by a factor u0 = 1, the sampling
rate is greater than the one of state 1, where u1 = 20. The
overall sampling rate is 0.65 with error 0.005 for this signal
sample. Note that although the sampling rate seems roughly
the same within each state, it has some fluctuations.

III. DISCRETE TIME-VALUED METHOD OF LAS

In this section, we introduce a family of LAS where
sampling time intervals are discrete values. In this method,
the sampling rate is being adapted based on an estimation
of local variations of the signal. This method can be applied
to both continuous and discrete signals. In this section, we
consider its continuous time version; while its discrete time
version can be derived similarly to Theorem 2.

If |X ′′′(t)| is uniformly bounded by a constant M , under
assumptions C1 and C2 mentioned in Section II, along with
(10), an estimate of local variation of the signal at time ti, by
using previously taken samples, can be written as follows,

w(ti) ,
|∆i−1

Ti−1
− ∆i−2

Ti−2
|

Ti−1+Ti−2

2

. (14)

By a similar argument as the (10), the error of this
estimation can be bounded as follows,

∣∣w(ti)− |X ′′(ti)|
∣∣ ≤ M

3

(Ti−1 + Ti−2)
2 + (Ti−1)

2

Ti−2
. (15)

Consider the following heuristic sampling function,

Ti =

 f1(Ti−1) w(ti) < th1 and Ti > Tmin

Ti−1 th1 ≤ w(ti) < th2

f2(Ti−1) w(ti) ≥ th2 and Ti < Tmax
(16)

where f1(Ti−1) > Ti−1 and f2(Ti−1) < Ti−1. Tmin

and Tmax make sampling time intervals to be bounded.
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Thresholds th1 and th2 depend on signal characteristics and
sampling requirements. If w(ti) is smaller than a threshold,
the signal’s slope variations are small and we can decrease
the sampling rate in this case, since f1(Ti−1) > Ti−1. An
analogous argument can be expressed when w(ti) is greater
than a threshold.

An example of a sampling function (16) with linear
increase or decrease of Ti can be expressed as follows,

Ti =

 Ti−1 + ϵ1 w(ti) < th1 and Ti > Tmin

Ti−1 th1 ≤ w(ti) < th2

Ti−1 − ϵ2 w(ti) ≥ th2 and Ti < Tmax
(17)

where ϵ1 and ϵ2 are positive constants. Note that, given
Ti−1, there are only three possibilities for Ti, so, the sampling
time intervals are discrete.

IV. GENERALIZED LINEAR PREDICTION METHOD OF
LAS

In this section, we introduce another family of LAS whose
sampling function is based on a generalized linear prediction
filter. This sampling method is for discrete stochastic signals.
Here, we need the signal to be locally stationary ([10] and
[11]). In Section IV-B, we explain this family of signals in
details.

The used reconstruction method and the distortion measure
are as follows,

(C7) The reconstruction method is using a generalized linear
prediction filter.

(C8) If X̂[n] is the reconstructed signal, we want to have
E[(X[n] − X̂[n])2] ≤ D2, where D2 is a sampling
parameter.

In the following, we introduce a generalized linear predic-
tion filter for stationary signals.

A. Generalized Linear Prediction

Suppose X[n] is a stationary signal. Assume we have M
samples of X[n] at times n−m1, n−m2, ..., and n−mM .
Our aim is to predict linearly X[n] by using these known
samples so that the expected mean square error is minimized
(MMSE predictor).

min
wm1 ,...,wmM

E[|X̃[n]|2] (18)

subject to X̂[n] =
M∑
k=1

wmk
X[n−mk]

X̃[n] = X[n]− X̂[n].

Let us call a solution of this linear optimization, w∗
mi

,
for 1 ≤ i ≤ M . The only difference of this setup with a
traditional linear prediction ([12]) is to predict X[n] by a set
of non-uniform samples.

In an optimal scheme, the error term should be orthogonal
to all known samples.

E
[
X[n−mk]X̃

∗[n]
]
= 0 (19)

for k = 1, ...,M , where X̃∗[n] = X[n]−
∑M

k=1 w
∗
mk

X[n−
mk]. An auto-correlation function of X[n] can be written as
follows,

r[i] = E
[
X[n]Xc[n− i]

]
(20)

where Xc[n] is the conjugate of X[n]. Since in this paper, we
deal with real signals, without loss of generality, we ignore
conjugation effects. Hence, by using (19) and (20), we have
the following set of linear equations,

r[−mk] =

M∑
i=1

w∗
mi

r[mi −mk] (21)

for k = 1, ...,M . Sometimes, it is easier to express (21) in a
matrix form.

Let us define the following matrices,

m = [m1, ...,mM ]T (22)

Xn
m =

[
X[n−m1], ..., X[n−mM ]

]T
p =

[
r[−m1], ..., r[−mM ]

]T
w∗

m =
[
w∗

m1
, ..., w∗

mM

]T
R = E[(Xn

m)(Xn
m)T ].

Thus, linear equations of (21) can be written as a matrix
multiplication,

p = Rw∗
m.

For X[n] with zero mean, define,

σ2
X = E[|X[n]|2] = r[0]

σ2
X̃∗ = E[|X̃∗[n]|2].

Theorem 4. σ2
X̃∗ = r[0]− pTw∗

m.

Proof: Since X[n] has zero mean, and X[n] = X̂[n] +
X̃∗[n], by using (19), we can write,

σ2
X̃∗ = σ2

X − σ2
X̂

(23)

= r[0]− σ2
X̂

where X̂[n] = (w∗
m)T (Xn

m). Therefore,

σ2
X̂

= E[|X̂[n]|2] (24)

= (w∗
m)TE

[
(Xn

m)(Xn
m)T

]
w∗

m

= (w∗
m)TRw∗

m

= pTw∗
m.

Equations (23) and (24) establish the theorem.

B. LAS with a generalized linear prediction filter

In this section, we assume that the signal X[n] is a locally
stationary signal. Locally stationary processes can be used
as a tool to model systems where their statistical behavior
varies with time. We use a definition of locally stationary
processes presented in [10] and [11]. Intuitively, a locally
stationary process is a process where we can approximate its
local covariance coefficients within an error. Reference [10]
approximates the covariance of a locally stationary process
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by a covariance which is diagonal in basis of cosine packets.
While, [11] proposes a method to estimate the covariance
from sampled data. For simplicity, we assume a fixed window
size. But, this can also vary by time.

Let us define a window WL[n] with length L as follows,

WL[n] =

{
1 0 ≤ n ≤ L− 1
0 O.W. (25)

Xni

L [n] is a truncated version of X[n] which has its
samples over ni − L+ 1 ≤ n ≤ ni. I.e.,

Xni

L [n] = X[n].WL[n− ni + L− 1]. (26)

For Xni

L [n], auto-correlation coefficients can be written as
follows,

rni

L [k] = E
[
Xni

L [n]Xni

L [n− k]
]
. (27)

By using these coefficient, for m = [0, 1, ...,M − 1]T ,
where M < L, we define matrices (Xni

m)L, pni

L , (w∗
m)ni

L and
Rni

L , similarly to (22). Since X[n] is assumed to be locally
stationary, for any time n0 and any given ϵ, according to [10]
and [11], there exists an appropriate L such that,

∣∣E[
|X̃[ni + 1]|2

]
− rni

L [0] + (pni

L )T (w∗
m)ni

L

∣∣ < ϵ, (28)

where X̃[ni + 1] = X[ni + 1] − ((w∗
m)ni

L )T (Xni
m)L. We

refer to L as a window size of the locally stationary signal.
Define L0 and L1 as the minimum and the maximum allowed
window sizes, respectively. The stochastic nature of the signal
affects L0 and L1.

Intuitively, since X[n] is locally stationary, its MMSE
linear prediction filter with locally estimated autocorrelation
coefficients leads to an approximately same error as the one
of stationary signals. Now, we introduce a setup of LAS by
using a MMSE generalized linear prediction filter for locally
stationary signals. Except being locally stationary, we do not
have any other assumptions on the signal. Hence, this method
is referred as a blind sampling method.

Suppose X[n] is a locally stationary signal with window
size L. Say we have M samples X[ni], X[ni−m2 ], ...,
X[ni−mM

], where 0 < m2 < m3 < ... < mM < L.
Now, consider a truncated signal Xni

L [n] as defined in (26).
If we only use taken samples of this truncated signal (i.e.,
X[n−mi] for 1 ≤ i ≤ M ), we can compute approximations
for Rni

L , pni

L and (w∗
m)ni

L which we call them R̂ni

L , p̂ni

L and
(ŵ∗

m)ni

L , respectively. If L is sufficiently larger than L0, we
will have enough known samples in the truncated signal and
these approximations can be close to Rni

L , pni

L and (w∗
m)ni

L .
Then, we linearly predict X[ni + Ni] by using samples

X[ni], X[ni−m2 ], ..., and X[ni−mM ]. We assume that param-
eter L1 of our locally stationary signal is sufficiently large.
Hence, by using Theorem 4 and (28),∣∣E[

|X̃[ni +Ni]|2
]
− r̃ni

L [0] + (p̂ni

L )T (ŵ∗
m)ni

L

∣∣ < ϵ (29)

where ϵ is a small positive constant and m = [Ni, Ni +
m2, ..., Ni + mM ]. The reconstructed signal can be written

as,
X̂[ni +Ni] = ((ŵ∗

m)ni

L )TXni+Ni
m . (30)

A sampling function for this scheme chooses the greatest
possible Ni to have the expected error less than a threshold
(D2). Thus, we can write this sampling function as the
following linear optimization setup:

max Ni

s.t. X̂[ni +Ni] = ((ŵ∗
m)ni

L )TXni+Ni
m

p̂ni

L = R̂ni

L (ŵ∗
m)ni

L

|r̃ni

L [0]− (p̂ni

L )T (ŵ∗
m)ni

L | < D2. (31)

Note that, if the window size L is sufficiently larger than
the minimum allowed window size L0, we have enough
known samples in our window, and these approximations
would be appropriate. However, if we do not have enough
known samples in our window, we can use autocorrelation
coefficients of the previous window.

C. Numerical Evaluation

Analogously to Section II-A, to evaluate the performance
of the proposed method, we select a signal model which
is an auto regressive model with order one (AR(1)) over
stochastically varying intervals. In other words, the used
signal model in our simulations is a Markov jump linear
system model described as follows,

X[n] = αθnX[n− 1] + Zθn [n], (32)

where θn is the state of a hidden Markov Chain (MC)
with state transition probability p, depicted in Figure 2. At
time n, if MC is at state 0, θn = 0, otherwise, θn = 1.
Depending on the value of θn, the signal is generated by
a first order Auto Regressive model with parameter αθn . In
our simulations, we assume α0 = 0.7 and α1 = 0.97. Zθn

is a white Gaussian noise signal with mean 0 and variance
1 − α2

θn
. Hence, in our simulations, we have, σ2

Z0
≈ 0.5

and σ2
Z1

≈ 0.05. We assume state transition probability of
the underlying hidden Markov chain is 0.001 (p = 0.001).
Note that within each state, this signal is a locally stationary
signal. Figure 4-a shows a sample of this signal model.

In our sampling scheme, we assume that we do not know
this specific signal model and we are only allowed to use the
sampling function (31). We assume M = 5 and L = 100
throughout the simulations.

Figure 4-b shows the number of taken samples (i) versus
time ni, where D2 = 0.4. Hence, at each time ni, the slope of
the tangent line on the curve represents the sampling rate at
that time. State transitions of MC for this signal are depicted
in Figure 4-a to clarify the rate adaptation in different states.
In state 0, where the noise variance is 0.5, the sampling rate
is greater than the one in state 1, where the noise variance is
0.05. The overall sampling rate is 0.55 with MSE = 0.14
for this signal sample.
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Fig. 4. a) A sample signal and its MC state transitions used in Section
IV-C. b) Sampling rate versus time for this signal with GLP method.

V. LINEAR PREDICTION METHOD WITH SIDE
INFORMATION

In this section, we propose a sampling function based
on linear prediction with side information about the signal.
Hence, this method is non-blind. Consider the signal model
described in (32). Suppose its parameters (i.e., αθn) are
known for every n. Also, assume that the transition prob-
ability of the underlying MC, p, is small. These parameters
form the side information. For reconstruction, we use a linear
prediction filter.

Consider A = {(R,MSE)} as a set of achievable rate-
distortion pairs for this signal model. We consider MSE of
the error as a distortion measure. Similarly, define As =
{(Rs,MSEs)}, a set of achievable rate-distortion pairs
within state s. The next sample is taken when the prediction
error (or, the noise variance) exceeds a threshold D3.

Theorem 5. For the signal model described in (32), the
following rate-distortion pairs are achievable,

A = {(R,MSE)|(R,MSE) =
1

2
(1/K0,MSE0)

+
1

2
(1/K1,MSE1)} (33)

where,

MSEs =

∑Ks−1
i=1 (1− α2i

s )

Ks
(34)

and,

Ks =

 [ log(1−D3)
2 log(αs)

] αs /∈ {0, 1}
1 αs = 0
0 αs = 1

.

0 ≤ D3 ≤ 1 is a sampling parameter and s ∈ {0, 1}
represents the state of the MC.
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Fig. 5. A rate-distortion comparison between TSE and DTV of FANS and
a uniform sampling

Proof: By using (32) for each state s, we have,

X[n+K] = αK
s X[n] +

K∑
i=1

Z[n+ i]αK−i
j

= αK
s X[n] + Zs,K . (35)

Hence,
σ2
Zs,K

= 1− α2K
s . (36)

We take a sample when the prediction error (or, the noise
variance) exceeds a threshold D3. Hence, for αs /∈ {0, 1},
we choose the maximum value of K to have 1−α2K

s ≤ D3.
Hence, at state s, Ks = [ log(1−D3)

2 log(αs)
], when αs /∈ {0, 1}. Cases

when αs = 0 or αs = 1 are trivial.
Suppose MSEs(l) = E[(X[n+ l]− X̂[n+ l])2] at state s.

Since we take samples at times n and n+Ks, MSEs(0) =
MSEs(Ks) = 0. For l /∈ {0,Ks}, MSEs(l) = σ2

Zs,l
=

1 − α2l
s . Hence, the average MSE at each state s (called

MSEs) is,

MSEs =

∑Ks−1
l=1 (1− α2l

s )

Ks
. (37)

Since the underlying MC is symmetric, with a small tran-
sition probability, averaging achievable points over different
states of MC establishes the theorem.

VI. COMPARISON OF METHODS

In this section, we compare performances of different
proposed sampling schemes against uniform sampling. In
uniform sampling, the sampling rate is always in the form
of R = 1

Ns
, where Ns is a positive integer. To be able to

compare the performance of different methods with uniform
sampling at different rates, we need to modify the uniform
sampling setup to capture all possible sampling rates. To do
this, for a given rate R = 1

Ns
where Ns is not an integer

number, we take the ith sample at time ni = [Ri].
First, we compare sampling methods for deterministic

signals (i.e., the Taylor Series Expansion (TSE) method, the
Discrete Time Valued (DTV) method, and uniform sampling).
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Fig. 6. A rate-distortion comparison between GLP, GA of FANS and
uniform sampling with both lp and causal linear reconstructions.

We use the signal model described in Section II-A. For the
TSE method, we use a setup explained in Section II-A. For
the DTV method, we set ϵ1 = ϵ2 = 1, Tmin = 1 and
Tmax = 10. The reconstruction method used for all methods
is the first order linear filter. The distortion measure is the
L1 norm of the error.

Figure 5 shows the average sampling rate versus distortion
for different methods. As illustrated in this figure, for low
distortion, TSE method, and for high distortion, DTV method
outperform the others. For instance, at distortion 0.015, both
TSE and DTV methods outperform uniform with a rate factor
approximately 1.5. For fixed average sampling rate 0.6, TSE
outperforms uniform by distortion factor approximately 3.
Note that, non-smoothness of the curves is due to experi-
mental artifacts.

Next, we compare performances of sampling methods for
stochastic signals (i.e., the Generalized Linear Prediction
(GLP) method, the Linear Prediction with Side Information
(LPSI), and uniform sampling). We use the signal model
described in (32). For GLP method, we use the setup ex-
plained in Section IV-C. For LPSI method, we use the setup
explained in Section V. For uniform sampling, we use two
reconstruction methods. One is to use a linear prediction filter
with the same parameters as one of GLP method. The other
one is a causal first order linear filter.

Figure 6 illustrates a rate-distortion function for these
methods. Note that LPSI method outperforms the other
methods. This is because it is a non-blind LAS and we
have assumed we know the underlying signal model. Also,
GLP method outperforms uniform sampling with both de-
scribed reconstruction methods. For example, for a fixed
average sampling rate 0.5, GLP, LPSI, and uniform with
LP reconstruction outperforms uniform with linear filter
reconstruction by distortion factor approximately 3.5, 2.2,
and 1.3, respectively.

VII. CONCLUSION

In this paper, we introduced a family of locally adaptive
sampling scheme, called LAS. LAS can be applied on both

deterministic (either band-limited or non-bandlimited) and
stochastic signals. In this sampling family, time intervals
between samples can be computed by using a function of
previously taken samples. This function is called a sampling
function. Hence, although it is a non-uniform sampling,
we do not need to keep sampling times. The aim of this
sampling scheme is to have the average sampling rate and the
reconstruction error satisfy some requirements. We proposed
four different schemes of LAS to explain its different prop-
erties: Taylor Series Expansion (TSE) and Discrete Time-
Valued (DTV) methods for deterministic signals; Generalized
Linear Prediction (GLP) and Linear Prediction with Side
Information (LPSI) methods for stochastic signals. TSE and
GLP were called blind methods since we have a general
condition on the considered signal (bounded third derivative
for TSE, and being locally stationary for GLP). However,
DTV and LPSI methods are non-blind, because the sampling
scheme is specifically designed for a known signal model.
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