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INV ITED
P A P E R

Database Abstractions for
Managing Sensor Network Data
This paper surveys several research systems designed to manage sensor data by

using database-like abstractions; these systems are designed to organize data

collection and to clean and smooth data.

By Samuel Madden

ABSTRACT | Sensor networking hardware, networking, and

operating system software has matured to the point that the

major challenges facing the field now have to do with storing,

cleaning, and querying the data such networks produce. In this

paper, we survey several research systems designed for

managing sensor data using declarative database-like abstrac-

tions from the database community and specifically the

Massachusetts Institute of Technology (MIT, Cambridge) data-

base group. The systems we discuss are designed to help

prioritize data collection in the face of intermittent bandwidth,

clean and smooth data using statistical models stored inside

the database, and run declarative queries over probabilistic

data.

KEYWORDS | Database management systems; database query

processing; intelligent sensors

I . INTRODUCTION

Sensor networksVwireless collections of small devices

that capture data about the world around usVhave been a

popular research topic for the past decade. They offer the

potential to collect information about cities, natural

habitats, industrial equipment, etc., at an unprecedented

scale and granularity. For example, in our work on the

CarTel1 project at the Massachusetts Institute of Technol-

ogy (MIT, Cambridge), we have been using a network of
sensor-equipped cars to monitor traffic, road surface

conditions (potholes, etc.), and driver behavior. Fig. 1
shows a screenshot of average historical traffic delays in

Boston, MA and Cambridge, MA on weekdays at 5 p.m., as

collected by a CarTel network running on a fleet of 30 taxi

cabs for the past three years.

There have been a variety of different sensor network-

ing hardware platforms developed. Perhaps the best

known is the Berkeley Mote platform. Though there are

many mote variants, they all feature a low-power
microprocessor running at tens or hundreds of megahertz,

a few tens of kilobytes of RAM, and up to a few megabytes

of Flash storage. They can typically run for a few days at

full power on a pair of AA batteries, and several months or

even a few years when power is carefully managed. They

employ low-power, low-range radios that use about an

order of magnitude less energy per packet than an 802.11

(WiFi) radio, but transmit at rates up to only a few
hundred kilobits per second.

In the CarTel project, we use more conventional off-

the-shelf hardware. Our current device is based on a WiFi

access point, with a 802.11b/g radio, 64 MB of RAM, and

400-MHz processor. We have extended this device with a

global positioning system (GPS), an accelerometer, an

interface to the on-board diagnostic network in cars, and a

low-power microprocessor that can wake the device when
motion is detected.

These hardware platforms are relatively mature, as is

the basic operating system software that runs on them. For

example, our CarTel nodes run Linux, while the Berkeley

Motes typically run TinyOS,2 a low-level, event-driven

operating system that provides interfaces for capturing

sensor data and sending messages.

Techniques for dealing with the data produced by these
devices are less mature than the basic hardware and OSes.

Although there are many systems that can capture raw

sensor data and perform simple processing on it, e.g.,
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sensor network query processors like TinyDB [1], Cougar

[2], and SwissQM [3], as well as mote-based data collec-

tion protocols like CTP [4] and many off-the-shelf tools for

Linux, there are a number of higher level data processing
features that these systems lack. In particular:

• they do not provide users control over what data

should be delivered in the presence of network

congestion; it is often the case that sensor net-

works have more data to deliver than the network

has bandwidth to handle;

• they do not provide facilities to allow users to

interpolate missing readings, discard outliers, or
otherwise model and clean their data;

• they do not provide high level query interfaces that

allow users to pose queries over uncertain data

produced by sensors and modeling processes.

In this paper, we discuss recent research from the

database community, and in particular our group at MIT to

address these shortcomings using relational database tech-

niques. Although relational databases are not the only way
to interact with data, they do provide a high level interface

that many programmers find familiar and convenient, and

are widely used by scientists and other researchers as a low-

level interface for storing and extracting raw sensor data.

We focus specifically on three research systems and areas.

1) Tools for data collection and prioritation: Specif-

ically, we discuss ICEDB, a declarative query

language that specifies what data to collect in the
face of intermittent and limited connectivity.

2) Model-based views and FunctionDB: A system

that allows database systems to fit models to data

inside of the database, and to answer queries over

that modeled data.
3) Uncertain data processing: Techniques for run-

ning queries when data has uncertainty as a result

of the modeling process or underlying sensors.

In the next section, we describe the general outline of

the rest of the paper, beginning with an overview of how

these data management components work together.

II . ARCHITECTURE FOR SENSOR
NETWORK DATA MANAGEMENT

Fig. 2 shows how these three components interact in a

generalized sensor network data management system.

Raw data are collected from sensors and typically

processed by an on-node data management system

(ICEDB, in our case); this raw data are streamed to

some central Bportal[ that loads the data into a server-

based database. These data are cleaned (using model-based

views, or some other technique) and then made available
to external users for querying; users can specify how they

would like to model their data (e.g., what functions to fit

to it). Though conventional SQL may be an appropriate

query language, data from sensors, or output by model-

based views, are often probabilistic in nature, requiring

extensions to SQL to deal with the additional complexity

of uncertain data.

Fig. 1. Historical traffic in the Boston, MA area at 5 P.M. on a weekday; selected segments indicate traffic delays on the Harvard Bridge.
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In the remainder of this paper, we discuss these com-

ponents in more detail, describing our ICEDB system for

data collection and prioritization in Section III, our ap-

proach to cleaning and smoothing noisy data collected

from such a system in Section IV, and several related
projects that have looked at running queries on top of such

cleaned data when it involves probabilistic or uncertain

values in Section V.

III . DATA COLLECTION
AND PRIORITIZATION

One of the challenges of sensor networks is that sensors

can produce lots of dataVsometimes thousands of samples

per secondVand network bandwidth can be quite variable.
In some deployments, such as our CarTel system, nodes

have high bandwidth WiFi radios that can deliver tens of

megabits per second, but are intermittently connected to

other nodes or basestations and so must buffer data. In

other cases, such as mote networks, radios are much lower

bandwidthVdelivering just hundreds of kilobits per

second. In mote networks, interference from other nodes,

especially in dense networks, can mean that each node
sees even less bandwidth than this.

To address issues related to variable bandwidth in a

data collection system, we developed ICEDB [5]. ICEDB is

a delay-tolerant distributed continuous query processor.

To support variable bandwidth, it provides two key fea-

tures: first, queries can be annotated with one of several

prioritization clauses that dictate which query results are

most important; second, query results and queries are
buffered and delivered when connectivity is available.

In ICEDB, user applications define data sources and

express declarative queries in a SQL dialect at a centralized

portal. ICEDB distributes these data sources and queries to

Blocal[ query processors running on each mobile node,

such that all nodes operate on the same data sources and

run the same queries. The nodes gather the required data,

process it locally, and deliver it to the portal whenever
network connectivity is available. Queries and control

messages also flow from the portal to the remote nodes

during these opportunistic connections.

A data source consists of a physical sensor attached to

the node, software on the node that converts raw sensor

data to a well-defined schema, and the schema itself. These

data sources produce tuples at a certain rate and store

them into a local database on each node, with one table per
data source. Continuous and snapshot queries sent from

the portal are then executed over this database.

The main difference between ICEDB and traditional

continuous query processors (e.g., Aurora [6], Tele-

graphCQ [7], and STREAM [8]) is that the results of con-

tinuous queries are not immediately sent over the network,

but instead are staged in an output buffer. The total size of

each raw sensor data store and output buffer is limited by
the size of the node’s durable storage. Queries and data

sources are prioritized, and we use a policy that evicts the

oldest data from the lowest prioritized buffers or tables

first. Buffers are drained using a network layer tuned for

intermittent and short-duration wireless connections. As

results arrive at the portal, tuples are partitioned into

tables according to the name of the source query and the

remote node ID.
In general, each node produces many more tuples than

it can transmit to the portal at any time. The main ad-

vantage of buffering is that it allows an ICEDB node to

select an order in which it should transmit data from

among currently available readings when connectivity is

present, rather than simply transmitting data in the order

produced by the queries. This allows us to reduce the

priority of old results when new, higher priority data are
produced, or to use feedback from the portal to extract

results most relevant to the current needs or users.

As result tuples flow into the output buffer from the

continuous and ad hoc queries, they are placed into separate

buffers. Each query (and corresponding buffer) can specify

a PRIORITY. The node’s network layer empties these

buffers in priority order. Tuples from queries of the same

priority are by default processed in a round-robin fashion.
The PRIORITY clause alone is insufficient to address

all prioritization issues because the amount of data pro-

duced by a single query could still be large. To order data

within a query’s buffer, queries may include a DELIVERY
ORDER BY clause, which causes the node to assign a

Bscore[ to each tuple in the buffer and deliver data in score

order.

For example, the query

SELECT gps.speed FROM gps, road_seg

WHERE gps:insert time > cqtime� 5 AND

road seg:id ¼ lookupðgps:lat; gps:lonÞ
EVERY 5-s BUFFER IN gpsbuf

DELIVERY ORDER BY gps:speed�
road seg:speed limit DESC

Fig. 2. Software architecture of an idealized sensor network data

processing system.
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requests that speed readings from cars that most exceed
the speed limit be delivered first. Many more sophisticated

prioritization schemes are possible using DELIVERY
ORDER BY, as described in [5].

ICEDB also provides a centralized way for the portal to

tell nodes what is most valuable to it, using the option

SUMMARIZE AS clause in queries. Using this clause,

nodes generate a low-resolution summary of the results

present in the corresponding query’s output buffer. When
a node connects to the portal, it first sends this low-

resolution summary. The portal then uses the summary to

rank the node’s results, and sends the ranking to the node.

The node then orders the data in that query’s buffer ac-

cording to the ranking. This enables the portal, for exam-

ple, to ask different cars to prioritize data from different

geographic locations, avoiding redundant reports.

These prioritization mechanisms are run continuously,
maintaining a buffer of data that will be delivered when a

network connection is available. When a node does con-

nect to the portal, several different rounds of communi-

cation occur. First, the portal sends a changelog of updates

(adds, removes, modifications) to queries, data sources,

and prioritization functions that have occurred since the

node last connected (this information is maintained in a

local database on the portal). Simultaneously, the node
sends any summaries generated by SUMMARIZE AS
queries and the portal sends back orderings for results

based on these summaries. Once the summarization pro-

cess is complete, the node drains its output buffers using

an output iterator in the following order: 1) in order of

buffer priority, using weights among equal priority buffers;

2) within each buffer, in the rank order specified in the

summaries (if the query uses SUMMARIZE AS); and
3) within each Bsummary segment,[ in order of the score

assigned by the DELIVERY ORDER BY clause.

A similar set of ideas for prioritizing data delivery were

explored in Lance [9]; both Lance and ICEDB provide

techniques for allowing applications to specify what data

they would like to deliver next, and for assigning priorities

to data items using both local and basestation-assigned

priorities. One significant difference is that Lance is not
coupled with a declarative data collection system; this may

make it more flexible and capable of being embedded in

existing mote-based applications, but also makes it harder

to use as it requires a mote-based application to be coded in

low-level nesC. In contrast, for applications whose data

collection needs can be effectively expressed as SQL

queries, ICEDB requires no additional programming for

the sensor node.

IV. MODEL-BASED VIEWS

ICEDB and Lance provide a way to collect specific, high-

value data from nodes when connectivity is limited. Once

data are collected, however, users typically need to

perform several cleaning and processing steps before that

data can be directly used. Performing this cleaning is the
goal of our work on model-based views [10].

Model-based views are similar to views in a traditional

database, except that instead of simply selecting out a

portion of an underlying relational data set, model-based

views fit a model (the view) to an underlying collection of

data and then allow relational queries to be run over that

model. For example, a simple model might represent a

collection of temperature readings from a sensor using
interpolation such that there are no gaps of larger than

1 s; this would be expressed as a model-based view as

follows:

create view

IntView(time[0::1],sensorid[::1],temp)
as interpolate temp using tm, sensorid
for each sensorid M
training_data select temp, tm, sensorid
from raw-temp-readings
where raw� temp� readings:sensorid ¼ M

This view says that temperature should be interpolated

from time, with a different view for each sensor.

Model-based views have widespread utility in sensor

applications. In particular, we have spent some time look-
ing at applications of views that fit continuous functions

(i.e., apply regression) to underlying sensor data [11].

In some cases, continuous functions emerge naturally

from the dataVfor example, a vehicle trajectory can be

represented as a series of road segments derived from

geographic data. In others, functions arise from discrete

data using some form of regression (curve fitting). In many

applications, posing queries in the curve or function do-
main yields more natural and/or accurate answers com-

pared to querying raw data, for one or both of the following

reasons.

Continuous Data: For many applications, a set of discrete

points is an inherently incomplete representation of the

data. For example, if a number of sensors are used to mo-

nitor temperature in a region, it is necessary to interpolate
sensor readings to predict temperature at locations where

sensors are not physically deployed.

Noisy Data: Raw data can also contain measurement

errors, in which case simple interpolation does not work.

For example, in a sensor network, sensors can occasionally

fail, or malfunction and report garbage values due to low

batteries/other anomalies; when using a prioritization
system such as ICEDB, some data may be dropped due to

bandwidth shortages. In such situations, it is preferable to

query values predicted by a regression function fit to the

data, rather than the raw data itself.

As a simple example of a case where model-based views

are needed, consider Fig. 3. Here a trace of GPS points

from one of the taxis in our CarTel deployment is shown.
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Notice that there is a gap in the data (inside the dark

rectangle), where there are no red dots. Now imagine the

user asks for the average speed in, or the time when the cab

passed through, the dark rectangle. A conventional data-

base system would simply report no answerVsince there

are no points inside the rectangle. However, it is clear to a
person that the car did in fact pass through the rectangle.

Model-based views make it possible to use interpolation or

regression to make the database system able to Bunder-

stand[ this fact as well. Model-based views can annotate

interpolated values with probabilities or uncertainties to

indicate to the user that they were introduced by the view;

these probabilities can be queries using techniques for

probabilistic querying described in Section V.
The problem of querying continuous functions is not

adequately addressed by existing tools. Packages like

MATLAB support fitting data with regression functions,

but do not support declarative queries. Databases excel at

querying discrete data, but do not support functions as

first-class objects. They force users to store continuous

data as a set of discrete points, which has two drawbacksV
it fails to provide accurate answers for some queries, as
discussed, and for many other queries, it is inefficient

because a large number of discrete points are required for

accurate results.

In our work on FunctionDB, we build a model-based

view system that allows users to query the data represented

by a set of continuous functions, for addressing applica-

tions like the Bmissing data[ scenario in Fig. 3. By pushing

support for functions into the database, rather than re-

quiring an external tool like MATLAB, users can manage

these models just like any other data, providing the

benefits of declarative queries and integration with
existing database data. FunctionDB supports special tables

that can store mathematical functions, in addition to

standard tables with discrete data. The system provides

users with tools to input functions, either by fitting raw

data using regression, or directly if data are already con-

tinuous (e.g., road segments). For example, a user might

use FunctionDB to represent the points ðt ¼ 1; x ¼ 5Þ;
ðt ¼ 2; x ¼ 7Þ; ðt ¼ 3; x ¼ 9Þ as the function xðtÞ ¼ 2tþ 3,
defined over the domain t 2 ½1; 3�.

In addition to creating and storing functions, Func-

tionDB allows users to pose familiar relational queries over

the data represented by these functions. The key novel

feature of FunctionDB is an algebraic query processor that

executes relational queries using symbolic algebra when-

ever possible, rather than converting functions to discrete

points for query evaluation. Relational operations become
algebraic manipulations in the functional domain. For

example, to answer a selection query that finds the time

when the temperature of a sensor whose value is described

by the equation xðtÞ ¼ 2tþ 3 equals 5, the system must

solve the equation 2tþ 3 ¼ 5 to find t ¼ 1.

Fig. 3. Example showing missing GPS points along a roadway and a query rectangle over the region where data are missing.

Model-based views allow the database system to interpolate missing values inside this region.
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Algebraic query processing is challenging because
queries over functions of multiple variables can generate

systems of inequalities for which closed-form solutions are

intractable. Consider temp ¼ fðx; yÞ, a model of temper-

ature as a function of x and y location, and suppose a user

writes a query like SELECT AVG(temp) WHERE
x2 þ y2 G 20, which requests the average temperature in

a circular region. This requires computing the integral of

fðx; yÞ over the region. For arbitrary functions, or regions
defined by arbitrary WHERE predicates, closed-form solu-

tions either do not exist, or are expensive to compute.

Hence, FunctionDB chooses a middle ground between

brute-force discretization and a fully symbolic system. It is

able to efficiently approximate a broad class of regionsV
those defined by arbitrary systems of polynomial con-

straints (such as the region in the WHERE clause above) by

a collection of hypercubes.
In [11], we describe the details of how we efficiently

evaluate queries over regions enclosed by polynomial

constraints by approximating them with hypercubes, while

preserving the semantics of query results. Our results from

evaluating FunctionDB on two real data sets (data from 54

temperature sensors in an indoor deployment, and traffic

traces from cars) show that FunctionDB achieves order of

magnitude (10�–100�) better performance for aggregate
queries and 2�–10� savings for selective queries,

compared to approaches that represent functions as

discrete points on a grid (as we did in [10]). FunctionDB

is also more accurate than gridding, which results in up to

15%–30% discretization error. Our current implementa-

tion of FunctionDB provides support for multivariate

regression over polynomials of arbitrary degree; the model

is easily extensible to other types of regression and curve
fitting (e.g., logistic regression, fitting to differential

equations [12]).

Other work on model-based views has looked at the use

of probabilistic graphical models [13] and well as time

series and differential equations [12].

V. QUERYING UNCERTAIN DATA

After modeling with a system like FunctionDB, users need

a way to pose queries over their data. Though FunctionDB

can eliminate noise and outliers by fitting functions to

data, sensor data can still be uncertain. Uncertain data arise

due to the following factors.

• Inherent uncertainty in sensors: Physical sensors

are inherently inaccurate, producing discrete

values that effectively sample some distribution
around the Btrue[ value that they measure. For

example, a GPS sensor typically reports a position

estimate that is accurate to within about 5 m of the

true position.

• Limited temporal or spatial resolution: Sensors

only capture data about a limited geographic extent

at some maximum rate. Bandwidth, money, and

energy further restrict the number and maximum
delivery rate for data. To correct for these Bgaps,[
some form of interpolation or regression is ty-

pically used, introducing uncertainty in the times

and areas where no data are available.

The database community has recently focused on the

problem of querying uncertain data, that is, over pro-

bability distributions, or over discrete values that may or

may not be present in the database. A complete treatment
of all the issues that arise when processing queries over

this kind of uncertain data is beyond the scope of this

paper, but to give a simple example, consider a tem-

perature sensor that produces readings drawn from some

distribution. A natural way to represent this in tabular

form might be to take some samples from this distribu-

tion, to produce a discrete table of samples at different

times (assuming each time is independent of the previous
time)

Sensor Time Temperature Probability

1 1:00 28 �C 0.25
1 1:00 27 �C 0.5

1 1:00 25 �C 0.25

1 1:30 29 �C 0.15

1 1:30 26 �C 0.7

1 1:30 23 �C 0.15

Though this may look like a standard relational table,

there are many queries over it that are not easy to answer
in the relational framework. For example, consider the

question BAt what time did sensor 1 have the highest

temperature?[ At time 1:30, it has temperature 29 �C with

probability 0.15, but at time 1:00, it had temperature 28 �C
with probability 0.25, so it might be tempting to produce

one of these results. However, it is also quite likely the

maximum temperature was neither 29 �C or 28 �C, but

something less. Hence, answering this question is actually
quite complex.

One popular way to answer these kinds of questions is

using so-called Bpossible world semantics[ [14]. The idea is

to define all possible values that the maximum could take,

and to compute the probabilities for each such possible

value. For this query, the possible worlds (along with the

probability of each) work out to

Max(Temp) Probability

29 �C 0.15

28 �C (1�0.15)�0.25¼0.22

27 �C (1�0.15�0.22)�0.5/0.75¼0.42

26 �C (1�0.15�0.22�0.42)�0.7/0.85¼0.17

25 �C (1�0.15�0.22�0.42�0.17)�0.25/0.25¼0.04
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This means that, for example, the largest value is 29 �C
with probability 0.15, and that the Bmost probable[ largest

value is 27 �C.

Obviously, answering such queries requires a relatively

sophisticated query processor that understands how to

manipulate probabilities in a way that a standard query

processor does not. Unfortunately, in general, this ap-

proach leads to a number of possible worlds that are expo-

nential in the number of input tuples. To see this, suppose,
for example, that we had asked for the times when sensor

1’s value exceeded 25 �C; if there are n different times in

the database, each of which has a nonzero probability of

the sensor’s value either exceeding or not exceeding 25 �C,

then there are 2n possible worlds.

One solution to this problem might just be to eliminate

the uncertainty, for example, to replace each reading by its

average value. However, this may be nonideal in some
applications. If our temperature data are used to sound an

alarm when the temperature goes above 28 �C, it may be

important to know that there is a 15% chance the tem-

perature is at 29% appropriate action can be taken.

There are several research groups actively engaged in a

variety of more sophisticated ways to represent and query

uncertain data in database systems, and to deal with

queries of the sort described above (see, e.g., [14]–[19],
along with many others.) Researchers take different ap-

proaches, for example, some seek to use a restricted model

of uncertainty to make query processing tractable [16];

others look at continuous distributions and simple approx-

imations of them, instead of discrete values as in the above

case [17], [19].

At MIT (along with researchers from Brown Univer-

sity, Providence, RI) we have worked on a small part of this
problem, namely the problem of answering top-k queries

over uncertain data [20]. These queries are similar to the

maximum query given above, except that the answer is a

length-k vector instead of just a single result. Clearly, just

as there many possible maximum values, there are many

possible top-k vectors. In fact, for a large data set, there are

exponentially many such vectors (containing essentially

every possible permutation of values), which would be too

expensive to compute or even to send to the user. Instead,
we devised a method to effectively sample this space of

top-k vectors to compute c typical top-k vectors. Our algo-

rithm is based on dynamic programming; it works by

building up top-1 vectors, extending those to be top-2 vec-

tors, and so on, until it has found a set of candidate top-k
vectors. The details, along with an evaluation on real data

from the CarTel project, are given in [20].

In addition to answering top-k queries, the probabilistic
query processor is capable of answering more conventional

queries with probabilistic thresholds, e.g., finding all of the

sensor readings with probability above some threshold.

VI. CONCLUSION

In this paper, we discussed the problem of data manage-

ment in sensor networks, focusing on new problems that
have arisen now that the basic sensor networking hardware

and software have matured to the point that real applica-

tions are being built. In particular, we discussed problems

various research groups, and especially our group at MIT,

have tackled in this area in the past few years, including

the following.

• The problem of prioritizing data that are collected

based on application needs. Systems like Lance and
the ICEDB system we have developed at MIT allow

users to prioritize the data they collect as a part of

queries.

• The problem of cleaning data, using models, in a

relational database-like framework that provide

declarative queries, transactional semantics, and

efficient operation over disk resident data, and the

FunctionDB system we have built to do this.
• The problem of querying uncertain data, with

probabilities, using SQL-like queries, and the range

of solutions developed in the database community

for processing such queries.

Together, these problems demonstrate the rich set of

data management challenges presented by sensor net-

works, with research challenges in networking, machine

learning, databases, and operating systems. h
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and J. Rogers, BSimultaneous equation
systems for query processing on
continuous-time data streams,[ in Proc.
IEEE Int. Conf. Data Eng., 2008, pp. 666–675.

[13] B. Kanagal and A. Deshpande, BEfficient
query evaluation over temporally correlated
probabilistic streams,[ in Proc. IEEE Int.
Conf. Data Eng., 2009, pp. 1315–1318.

[14] N. N. Dalvi and D. Suciu, BEfficient query
evaluation on probabilistic databases,[

Int. J. Very Large Data Bases, vol. 16, no. 4,
pp. 523–544, Oct. 2007.

[15] N. Dalvi and D. Suciu, BAnswering queries
from statistics and probabilistic views,[ in
Proc. 31st Int. Conf. Very Large Data Bases,
Trondheim, Norway, 2005, pp. 805–816.

[16] O. Benjelloun, A. D. Sarma, A. Halevy, and
J. Widom, BULDBs: Databases with
uncertainty and lineage,[ in Proc. 32nd
Int. Conf. Very Large Data Bases, Seoul, Korea,
2006, pp. 953–964.

[17] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao,
and P. J. Shenoy, BProbabilistic inference
over RFID streams in mobile environments,[
in Proc. IEEE Int. Conf. Data Eng., 2009,
pp. 1096–1107.
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