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Abstract

This paper presents an adaptive learning model for market-making under the reinforcement
learning framework. Reinforcement learning is a learning technique in which agents aim to
maximize the long-term accumulated rewards. No knowledge of the market environment,
such as the order arrival or price process, is assumed. Instead, the agent learns from real-
time market experience and develops explicit market-making strategies, achieving multiple
objectives including the maximizing of profits and minimization of the bid-ask spread. The
simulation results show initial success in bringing learning techniques to building market-
making algorithms.
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1 Introduction

Many theoretical market-making models are developed in the context of stochastic dynamic program-

ming. Bid and ask prices are dynamically determined to maximize some long term objectives such

as expected profits or expected utility of profits. Models in this category include those of Ho & Stoll

(1981), O’Hara & Oldfiled (1986) and Glosten & Milgrom (1985). The main limitation of these models

is that specific properties of the underlying processes (price process and order arrival process) have to

be assumed in order to obtain a closed-form characterization of strategies.

This paper presents an adaptive learning model for market-making using reinforcement learning

under a simulated environment. Reinforcement learning can be considered as a model-free approxima-

tion of dynamic programming. The knowledge of the underlying processes is not assumed but learned

from experience. The goal of the paper is to model the market-making problem in a reinforcement

learning framework, explicitly develop market-making strategies, and discuss their performance. In

the basic model, where the market-maker quotes a single price, we are able to determine the optimum

strategies analytically and show that reinforcement algorithms successfully converge to these strate-

gies. The major challenges of the problem are that the environment state is only partially observable

and reward signals may not be available at each time step. The basic model is then extended to allow

the market-maker to quote bid and ask prices. While the market-maker affects only the direction of a

price in the basic model, it has to consider both the direction of the prices as well as the size of the

bid-ask spreads in the extended model. The reinforcement algorithm converges to correct policies and

effectively control the trade-off between profit and market quality in terms of the spread.

This paper starts with an overview of several important theoretical market-making models and an

introduction of the reinforcement learning framework in Section 2. Section 3 establishes a reinforce-

ment learning market-making model. Section 4 presents a basic simulation model of a market with

asymmetric information where strategies are studied analytically and through the use of reinforcement

learning. Section 5 extends the basic model to incorporate additional actions, states, and objectives for

more realistic market environments.
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2 Background

2.1 Market-making Models

The understanding of the price formation process in security markets has been one of the focal points

of the market microstructure literature. There are two main approaches to the market-making problem.

One focuses on the uncertainties of an order flow and the inventory holding risk of a market-maker. In

a typical inventory-based model, the market-maker sets the price to balance demand and supply in the

market while actively controlling its inventory holdings. The second approach attempts to explain the

price setting dynamics employing the role of information. In information-based models, the market-

maker faces traders with superior information. The market-maker makes inferences from the orders

and sets the quotes. This informational disadvantage is reflected in the bid-ask spread.

Garman (1976) describes a model in which there is a single, monopolistic, and risk neutral market-

maker who sets prices, receives all orders, and clears trades. The dealer’s objective is to maximize

expected profit per unit time. Failure of the market-maker arises when the it runs out of either inven-

tory or cash. Arrivals of buy and sell orders are characterized by two independent Poisson processes

whose arrival rates depend on the market-maker’s quotes. Essentially the collective activity of the

traders is modeled as a stochastic flow of orders. The solution to the problem resembles that of the

Gambler’s ruin problem. Garman studied several inventory-independent strategies that lead to either a

sure failure or a possible failure. The conditions to avoid a sure failure imply a positive bid-ask spread.

Garman concluded that a market-maker must relate its inventory to the price-setting strategy in order to

avoid failure. Amihud & Mendelson (1980) extends Garman’s model by studying the role of inventory.

The problem is solved in a dynamic programming framework with inventory as the state variable. The

optimal policy is a pair of bid and ask prices, both as decreasing functions of the inventory position. The

model also implies that the spread is positive, and the market-maker has a preferred level of inventory.

Ho & Stoll (1981) studies the optimal behavior of a single dealer who is faced with a stochastic demand

and return risk of his own portfolio. As in Garman (1976), orders are represented by price-dependent

stochastic processes. However, instead of maximizing expected profit, the dealer maximizes the ex-
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pected utility of terminal wealth which depends on trading profit and returns to other components in its

portfolio. Consequently dealer’s risks play a significant role in its price-setting strategy. One important

implication of this model is that the spread can be decomposed into two components: a risk neutral

spread that maximizes the expected profits for a set of given demand functions and a risk premium that

depends on the transaction size and return variance of the stock. Ho & Stoll (1983) is a multiple-dealer

version of Ho & Stoll (1981). The price-dependent stochastic order flow mechanism is common in the

above studies. All preceding studies only allow market orders traded in the market. O’Hara & Oldfiled

(1986) attempts to incorporate more realistic features of real markets into its analysis. The paper studies

a dynamic pricing policy of a risk-averse market-maker who receives both limit and market orders and

faces uncertainty in the inventory valuation. The optimal pricing strategy takes into account the nature

of the limit and market orders as well as inventory risk.

Inventory-based models focus on the role of order flow uncertainty and inventory risk in the determi-

nation of the bid-ask spread. The information-based approach suggests that the bid-ask spread could be

a purely informational phenomenon irrespective of inventory risk. Glosten & Milgrom (1985) studies

the market-making problem in a market with asymmetric information. In the Glosten-Milgrom model

some traders have superior (insider) information and others do not. Traders consider their information

and submit orders to the market sequentially. The specialist, which does not have any information

advantage, sets his prices, conditioning on all his available information such that the expected profit

on any trade is zero. Specifically, the specialist sets its prices equaled the conditional expectation of

the stock value given past transactions. Its main finding is that in the presence of insiders, a positive

bid-ask spread would exist even when the market-maker is risk-neutral and make zero expected profit.

Most of these studies have developed conditions for optimality but provided no explicit price ad-

justment policies. For example, in Amihud & Mendelson (1980), bid and ask prices are shown to relate

to inventory but the exact dependence is unavailable. Some analyses do provide functional forms of

the bid/ask prices (such as O’Hara & Oldfiled (1986)) but the practical applications of the results are

limited due to stringent assumptions made in the models. The reinforcement learning models devel-

oped in this paper make few assumptions about the market environment and yield explicit price setting
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strategies.

2.2 Reinforcement Learning

Reinforcement learning is a computational approach in which agents learn their strategies through

trial-and-error in a dynamic interactive environment. It is different from supervised learning in which

examples or learning targets are provided to the learner from an external supervisor.1 In a typical

reinforcement learning problems the learner is not told which actions to take. Rather, it has to find

out which actions yield the highest reward through experience. More interestingly, actions taken by an

agent affect not only the immediate reward to the agent but also the next state in the environment, and

therefore subsequent rewards. In a nutshell, a reinforcement learner interacts with a its environment

by adaptively choosing its actions in order to achieve some long-term objectives. Kaelbling & Moore

(1996) and Sutton & Barto (1998) provide excellent surveys of reinforcement learning. Bertsekas &

Tsitsiklis (1996) covers the subject in the context of dynamic programming.

Markov decision processes (MDPs) are the most common model for reinforcement learning. The

MDP model of the environment consists of (1) a discrete set of states S , (2) a discrete set of actions the

agent can take A , (3) a set of real-valued rewards R or reinforcement signals, (4) a starting probability

distribution over S , (5) a transition probability distribution p(s 0js;a), the probability of a state transition

to s0 from s when the agent takes action a, and (6) a reward probability distribution p(rjs;a), the

probability of issuing reward r from state s when the agent takes action a.

The MDP environment proceeds in discrete time steps. The state of the world for the first time step

is drawn according to the starting probability distribution. Thereafter, the agent observes the current

state of the environment and selects an action. That action and the current state of the world determine

a probability distribution over the state of the world at the next time step (the transition probability

distribution). Additionally, they determine a probability distribution over the reward issued to the

agent (the reward probability distribution). The next state and a reward are chosen according to these
1Bishop (1995) gives a good introduction to supervised learning. See also Vapnik (1995),Vapnik (1998), and Evgeniou,

M. & Poggio (2000).
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distributions and the process repeats for the next time step.

The dynamics of the system are completely determined except for the action selection (or policy) of

the agent. The goal of the agent is to find the policy that maximizes its long-term accumulated rewards,

or return. The sequence of rewards after time step t is denoted as rt ;rt+1;rt+2; :::; the return at the time

t, Rt , can be defined as a function of these rewards, for example,

Rt = rt + rt+1 + :::+ rT ;

or if rewards are to be discounted by a discount rate γ, 0� γ� 1:

Rt = rt +γrt+1 + :::+γT�1rT ;

where T is the final time step of a naturally related sequence of the agent-environment interaction, or

an episode.2

Because the environment is Markovian with respect to the state (i.e. the probability of the next

state conditioned on the current state and action is independent of the past), the optimal policy for the

agent is deterministic and a function solely of the current state.3 For reasons of exploration (explained

later), it is useful to consider stochastic policies as well. Thus the policy is represented by π(s;a), the

probability of picking action a when the world is in state s.

Fixing the agent’s policy converts the MDP into a Markov chain. The goal of the agent then becomes

to maximize Eπ[Rt ] with respect to πwhere Eπ stands for the expectation over the Markov chain induced

by policy π. This expectation can be broken up based on the state to aid in its maximization:

V π(s) = Eπ[Rt jst = s];

Qπ(s;a) = Eπ[Rt jst = s;at = a];
2These definitions and algorithms also extend to the non-episodic, or infinite-time, problems. However, for simplicity

this paper will concentrate on the episodic case.
3For episodic tasks for which the stopping time is not fully determined by the state, the optimal policy may also need to

depend on the time index. Nevertheless, this paper will consider only reactive policies or policies which only depend on the
current state.
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These quantities are known as value functions. The first is the expected return of following policy πout

of state s. The second is the expected return of executing action a out of state s and thereafter following

policy π.

There are two primary methods for estimating these value functions. The first is by Monte Carlo

sampling. The agent executes policy π for one or more episodes and uses the resulting trajectories

(the histories of states, actions, and rewards) to estimate the value function for π. The second is by

temporal difference (TD) updates like SARSA (Sutton (1996)). TD algorithms make use of the fact

that V π(s) is related to V π(s0) by the transition probabilities between the two states (from which the

agent can sample) and the expected rewards from state s (from which the agent can also sample). These

algorithms use dynamic-programming-style updates to estimate the value function:

Q(st ;at) Q(st;at)+α[rt+1 +γQ(st+1;at+1)�Q(st ;at)] : (1)

α is the learning rate that dictates how rapidly the information propagates.4 Other popular TD methods

include Q-learning (Watkins (1989), Watkins & Dayan (1992)) and TD(λ) (Watkins (1989), Jaakkola,

Jordan & Singh (1994)). Sutton & Barto (1998) gives a more complete description of Monte Carlo and

TD methods (and their relationship).

Once the value function for a policy is estimated, a new and improved policy can be generated by

a policy improvement step. In this step a new policy πk+1 is constructed from the old policy πk in a

greedy fashion:

πk+1(s) = argmax
a

Qπk(s;a): (2)

Due to the Markovian property of the environment, the new policy is guaranteed to be no worse than the

old policy. In particular it is guaranteed to be no worse at every state individually: Qπk+1(s;πk+1(s))�

Qπk(s;πk(a)).5 Additionally, the sequence of policies will converge to the optimal policy provided
4The smaller the α the slower the propagation, but the more accurate the values being propagated.
5See p. 95 Sutton & Barto (1998)
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sufficient exploration (i.e. that the policies explore every action from every state infinitely often in the

limit as the sequence grows arbitrarily long). To insure this, it is sufficient to not exactly follow the

greedy policy of Equation 2 but instead choose a random action ε of the time and otherwise choose the

greedy action. This ε-greedy policy takes the form

πk+1(s;a) =

8>><
>>:

1� ε if a = argmaxa0 Qπk(s;a0);

ε
jAj�1 otherwise:

(3)

An alternative to the greedy policy improvement algorithm is to use an actor-critic algorithm. In this

method, the value functions are estimated using a TD update as before. However, instead of jumping

immediately to the greedy policy, the algorithm adjusts the policy towards the greedy policy by some

small step size. Usually (and in this paper), the policy is represented by a Boltzmann distribution:

πt(s;a) = Pr[at = ajst = s] =
exp(w(s;a))

∑a02A exp(ws;a0)
(4)

where w(s;a) is a weight parameter of πcorresponding to action a in state s. The weights can be adjusted

to produce any stochastic policy which can have some advantages (discussed in the next section).

All three approaches are considered in this paper: a Monte Carlo method, SARSA (a temporal

difference method) and an actor-critic method. Each has certain advantages. The Monte Carlo tech-

nique can more easily deal with long delays between an action and its associated reward than SARSA.

However, it does not make as efficient use of the MDP structure as SARSA does. Therefore, SARSA

does better when rewards are presented immediately whereas Monte Carlo methods do better with long

delays.

Actor-critic has its own advantage in that it can find explicitly stochastic policies. For MDPs this

may not seem to be as much an advantage. However, for most practical applications, the world does not

exactly fit the MDP model. In particular, the MDP model assumes that the agent can observe the true

state of the environment. However in cases like market-marking that is not the case. While the agent can

observe certain aspects (or statistics) of the world, other information (such as the information or beliefs
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of the other traders) is hidden. If that hidden information can affect the state transition probabilities,

the model then becomes a partially observable Markov decision process (POMDP). In POMDPs, the

ideal policy can be stochastic (or alternatively depend on all prior observations which is prohibitively

large in this case). Jaakkola, Singh & Jordan (1995) discusses the POMDP case in greater details.

While none of these three methods are guaranteed to converge to the ideal policy for a POMDP

model (as they are for the MDP model), in practice they have been shown to work well even in the

presence of hidden information. Which method is most applicable depends on the problem.

3 A Reinforcement Learning Model of Market-making

The market-making problem can be conveniently modeled in the framework of reinforcement learning.

In the following market-making problems, an episode can be considered as a trading day. Note that

the duration of an episode does not need to be fixed. An episode can last an arbitrary number of time

steps and conclude when the certain task is accomplished. The market is a dynamic and interactive

environment where investors submit their orders given the bid and ask prices (or quotes) from the

market-maker. The market-maker in turn sets the quotes in response to the flow of orders. The job of

the market-maker is to observe the order flow, the change of its portfolio, and its execution of orders

and set quotes in order to maximize some long-term rewards that depend on the its objectives (e.g. profit

maximization and inventory risk minimization).

3.1 Environment States

The environment state includes market variables that are used to characterize different scenarios in the

market. These are variables that are observed by the market-maker from the order flow, its portfolio,

the trades and quotes in the market, as well as other market variables:

� Inventory of the market-maker — amount of inventory-holding by the market-maker.

� Order imbalance — excess demand or supply in the market. This can be defined as the share

difference between buy and sell market or limit orders received within a period of time.
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� Market quality measures — size of the bid-ask spread, price continuity (the amount of transaction-

to-transaction price change), depth of a market (the amount of price change given a number of

shares being executed), time-to-fill of a limit order, etc.

� Others — Other characteristics of the order flow, information on the limit order book, origin of

an order or identity of the trader, market indices, prices of stocks in the same industry group,

price volatility, trading volume, time till market close, etc.

In this paper, we focus on three fundamental state variables: inventory, order imbalance and market

quality. The state vector is defined as

st = (INVt; IMBt; QLTt) ;

where INVt , IMBt and QLTt denote the inventory level, the order imbalance, and market quality mea-

sures respectively. The market-maker’s inventory level is its current holding of the stock. A short

position is represented by a negative value and a long position by a positive value. Order imbalance can

be defined in many ways. One possibility is to define it as the sum of the buy order sizes minus the sum

of the sell order sizes during a certain period of time. A negative value indicates an excess supply and a

positive value indicates an excess demand in the market. The order imbalance measures the total order

imbalance during a certain period of time, for example, during the last five minutes or from the last

change of market-maker’s quotes to the current time. Market qualities measure quantities including

the bid-ask spread and price continuity (the amount of price change in a subsequent of trades). The

values of INVt , IMBt and QLTt are mapped into discrete values: INVt 2 f�Minv; :::;�1;0;1; :::;Minvg,

IMBt 2f�Mimb; :::;�1;0;1; :::;Mimbg, and QLTt 2f�MQLT ; :::;1;0;1; :::;MQLTg. For example, a value

of �Minv corresponds to the highest possible short position, -1 corresponds to the smallest short po-

sition and 0 represents an even position. Order imbalance and market quality measures are defined

similarly.
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3.2 Market-maker’s actions

Given the states of the market, the market-maker reacts by adjusting the quotes, trading with incoming

public orders, etc.. Permissible actions by the market-maker include the following:

� Change the bid price

� Change the ask price

� Set the bid size

� Set the ask size

� Others — Buy or sell, provide price improvement (provide better prices than the current market

quotes).

The models in this paper focus on the determination of the bid and ask prices and assume fixed bid and

ask sizes (e.g. one share). The action vector is defined as

at = (∆BIDt;∆ASKt) ;

where ∆BIDt = BIDt � BIDt�1 and ∆ASKt = ASKt � ASKt�1, representing the change in bid and

ask prices respectively. All values are discrete: ∆BIDt 2 f�M∆BID; :::;0; :::;M∆BIDg and ∆ASKt 2

f�M∆ASK; :::;0; :::;M∆ASKg, where M∆BID and M∆ASK are the maximum allowable changes for the bid

and ask prices respectively.

3.3 Reward

The reward signal is the agent’s driving force to attain the optimal strategy. This signal is determined

by the agent’s objectives. Possible reward signals (and their corresponding objectives) include

� Change in profit (maximization of profit)

� Change in inventory level (minimization of inventory risk)
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� Current market quality measures (maximization of market qualities)

The reward at each time step depends on the change of profit, the change of inventory, and the market

quality measures at the current time step. The reward can be defined as some aggregate function of

individual reward components. In its simplest form, assuming risk neutrality of the market-maker, the

aggregate reward can be written as a linear combination of individual reward signals:

rt = wpro∆PROt +winv∆INVt +wqltQLTt ; (5)

where wpro, winv and wqlt are the parameters controlling the trade-off between profit, inventory risk and

market quality; ∆PROt = PROt �PROt�1, ∆INVt = INVt � INVt�1 and QLTt are the change of profit,

the change of inventory, and market quality measure respectively at time t. Note that the market-maker

is interested in optimizing the end-of-day profit and inventory, but not the instantaneous profit and

inventory. However, it is the market quality measures at each time step with which the market-maker is

concerned in order to uphold the execution quality for all transactions. Recall that the agent intends to

maximize the total amount of rewards it receives. The total reward for an episode with T time steps is

RT =
T

∑
t=1

rt

= wproPROT +winvINVT +wqlt

T

∑
t=1

QLTt :

Here the market-maker is assumed to start with zero profit and inventory: PRO0 = 0 and INV0 = 0.

The market-maker can observe the variables INVt and QLTt at each time t, but not necessarily

PROt . In most cases, the “true” value or a fair price of a stock may not be known to the market-

maker. Using the prices set by the market-maker to compute the reward could incorrectly value the

stock. Furthermore the valuation could induce the market-maker to raise the price whenever it has

a long position and lower the price whenever it has a short position, so that the value of its position

can be maximized. Without a fair value of the stock, calculating the reward as in Equation 5 is not

feasible. In these cases, some proxies of the fair price can be considered. For example, in a market
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with multiple market-makers, other dealers’ quotes and execution prices can reasonably reflect the fair

value of the stock. Similarly, the fair price may also be reflected in the limit prices from the incoming

limit orders. Lastly, the opening and closing prices can be used to estimate the fair price. This approach

is motivated by how the market is opened and closed at the NYSE. The NYSE specialists do not open

or close the market at prices solely based on their discretion. Instead, they act as auctioneers to set

prices that balance demand and supply at these moments. Consequently these prices represent the most

informative prices given all information available at that particular time.

In the context of the reinforcement learning algorithm, the total reward for an episode is calculated

as the difference between the the end-of-day and the beginning-of-day profit:

RT = PROT �PRO0 = PROT :

Unfortunately, the profit reward at each time step is still unavailable. One remedy is to assume zero

reward at each t < T and distribute all total reward to at t = T . An alternative approach is to assign the

episodic average reward rt = RT=T to each time step.

For this paper two approaches in setting the reward are considered. In the first case, we assume that

the reward can be calculated as a function of the true price at each time step. However, the true price is

still not observable as a state variable. In the second case, we only reveal the true price at the end of a

training episode at which point the total return can be calculated.

4 The Basic Model

Having developed a framework for the market-maker, the next step is to create a market environment in

which the reinforcement learner can acquire experience. The goal here is to develop a simple model that

adequately simulates the strategy of a trading crowd given the quotes of a market-maker. Information-

based models focusing on information asymmetry provide the basis for our basic model. In a typical

information-based model, there is a group of informed traders or insiders who have superior information

about the true value of the stock and a group of uninformed traders who possess only public information.
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The insiders buy whenever the market-maker’s prices are too low and sell whenever they are too high

given their private information; the uninformed simply trade randomly for liquidity needs. A single

market-maker is at the center of trading in the market. It posts the bid and ask prices at which all trades

transact. Due to the informational disadvantage, the market-maker always loses to the insiders while

he breaks even with the uninformed.

4.1 Market Structure

To further illustrate this idea of asymmetric information among different traders, consider the following

case. A single security is traded in the market. There are three types of participants: a monopolistic

market-maker, insiders, and uninformed traders. The market-maker sets one price, pm, at which the

next arriving trader has the option to either buy or sell one share. In other words, it is assumed that the

bid price equals the ask price. Traders trade only with market orders. All orders are executed by the

market-maker and there are no crossings of orders among traders. After the execution of an order, the

market-maker can adjust its quotes given its knowledge of past transactions. In particular it focuses on

the order imbalance in the market in determining the new quotes. To further simplify the problem, it is

assumed that the stock position is liquidated into cash immediately after a transaction. Hence inventory

risk is not a concern for the market-maker. This is a continuous market in which the market-maker

executes the orders the moment when they arrive.

For simplicity, events in the market occur at discrete time steps. In particular, events are modeled

as independent Poisson processes. These events include the change of the security’s true price and the

arrival of informed and uninformed orders.

There exists a true price p� for the security. The idea is that there is an exogenous process that

completely determines the value of the stock. The true price is to be distinguished from the market

price, which is determined by the interaction between the market-maker and the traders. The price p�

follows a Poisson jump process. In particular, it makes discrete jumps, upward or downward with a

probability λ p at each time step. The size of the discrete jump is a constant 1. The true price, p�, is

given to the insiders but not known to the public or the market-maker.
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The insider and uninformed traders arrive at the market with a probability of λ i and 2λu respec-

tively.6 Insiders are the only ones who observe the true price of the security. They can be considered

as investors who acquire superior information through research and analysis. They compare the true

price with market-maker’s price and will buy (sell) one share if the true price is lower (higher) than

the market-maker’s price, and will submit no orders otherwise. Uninformed traders will place orders

to buy and sell a security randomly. The uninformed merely re-adjust their portfolios to meet liquidity

needs, which is not modeled in the market. Hence they simply submit buy or sell orders of one share

randomly with equal probabilities λu.

All independent Poisson processes are combined together to form a new Poisson process. Further-

more, it is assumed that there is one arrival of an event at each time step. Hence, at any particular time

step, the probability of a change in the true price is 2λ p, that of an arrival of an insider is λ i, and that of

an arrival of an uninformed trader is 2λu. Since there is a guaranteed arrival of an event, all probabilities

sum up to one: 2λ p+2λu +λi = 1.

This market model resembles the information-based model, such as Glosten & Milgrom (1985), in

which information asymmetry plays a major role in the interaction between the market-maker and the

traders. The Glosten and Milgrom model studies a market-maker that sets bid and ask prices to earn zero

expected profit given available information, while this model examines the quote-adjusting strategies

of a market-maker that maximize sample average profit over multiple episodes, given order imbalance

information. This model also shares similarities with the work of Garman (1976) and Amihud &

Mendelson (1980) where traders submit price-dependent orders and the market-making problem is

modeled as discrete Markov processes. But instead of inventory, here the order imbalance is used to

characterize the state.

4.2 Strategies and Expected Profit

For this basic model, it is possible to compute the ideal strategies. We do this first, before presenting

the reinforcement learning results for the basic model.
6Buy and sell orders from the uninformed traders arrive at a probability of λ u respectively.
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Closed-form characterization of an optimal market-making strategy in such a stochastic environ-

ment can be difficult. However, if one restricts one’s attention to order imbalance in the market, it

is obvious that any optimum strategy for a market-maker must involve the raising (lowering) of price

when facing positive (negative) order imbalance, or excess demand (supply) in the market. Due to the

insiders, the order imbalance on average would be positive if the market-maker’s quoted price is lower

than the true price, zero if both are equal, and negative if the quoted price is higher than the true price.

We now must define order imbalance. We will define it as the total excess demand since the last

change of quote by the market-maker. Suppose there are x buy orders and y sell orders of one share at

the current quoted price; the order imbalance is x�y. One viable strategy is to raise or lower the quoted

price by 1 whenever the order imbalance becomes positive or negative. Let us denote this as Strategy 1.

Note that under Strategy 1, order imbalance can be �1, 0 and 1. To study the performance of Strategy

1, one can model the problem as a discrete Markov process.7 First we denote ∆p = pm� p� as the

deviation of market-maker’s price from the true price, and IMB as the order imbalance. A Markov

chain describing the problem is shown in Figure 1. Suppose ∆p = 0, p� may jump to p�+1 or p��1

with a probability of λ p (due to the true price process); at the same time, p may be adjusted to p+ 1

or p�1 with a probability λu (due to the arrival of uninformed traders and the market-maker’s policy).

Whenever p 6= p� or ∆p 6= 0, p will move toward p� at a faster rate than it will move away from p�. In

particular, p always moves toward p� at a rate of λu +λi, and moves away from p� at a rate of λu. The

restoring force of the market-maker’s price to the true price is introduced by the informed trader, who

observes the true price. In fact, it is the presence of the informed trader that ensures the existence of

the steady-state equilibrium of the Markov chain.

Let qk be the steady-state probability that the Markov chain is in the state where ∆p = k. By

symmetry of the problem, we observe that

qk = q�k; for k = 1;2; ::: (6)

Focus on all k > 0 and consider the transition between the states ∆p = k and ∆p = k+1. One can relate
7Lutostanski (1982) studies a similar problem.
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Figure 1: The Markov chain describing Strategy 1, imbalance threshold Mimb = 1, in the basic model.

the steady-state probabilities as

qk+1(λp +λu +λi) = qk(λp +λu) (7)

qk+1 = qk
(λp+λu)

(λp +λu +λi)
for k = 0;1;2; :::

because a transition from ∆p = k to ∆p = k + 1 is equally likely as a transition from ∆p = k + 1 to

∆p = k at the steady state. By expanding from Equation 8 and considering Equation 6, the steady-state

probability qk can be written as

qk = q0

�
λp +λu

λp +λu +λi

�jkj

;8 k 6= 0:

All steady-state probabilities sum up to one

∞

∑
k=�∞

qk = 1; (8)

q0 +2
∞

∑
i=1

qk = 1;

q0 =
λi

2λ p+2λu +λi
:
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With the steady-state probabilities, one can calculate the expected profit of the strategy. Note that at the

state ∆p = k, the expected profit is �λ ijkj due to the informed traders. Hence, the expected profit can

be written as

EP =
∞

∑
k=�∞

�qkλijkj (9)

= �2
∞

∑
k=1

qkλijkj

= �2q0λi

∞

∑
k=1

k

�
λp+λu

λp +λu +λi

�k

=
�2(λ p+λu)(λp+λu +λi)

(2λ p+2λu +λi)
:

The expected profit measures the average profit accrued by the market-maker per unit time. The ex-

pected profit is negative because the market-maker breaks even in all uninformed trades while it always

loses in informed trades.

By simple differentiation of the expected profit, we find that EP goes down with λ p, the rate of

price jumps, holding λu and λi constant. The expected profit also decreases with λ i and λu respectively,

holding the other λ’s constant. However, it is important to point out that 2λ p+2λu+λi = 1 since there

is a guaranteed arrival of a price jump, an informed or uninformed trade at each time period. Hence

changing the value of one λ while holding others constant is impossible. Let us express λ p and λu in

terms of λi: λ p = α pλi and λu = αuλi. Now the expected profit can be written as:

EP =
�2(α p +αu)(α p +αu +1)

(2α p+2αu +1)2 :

Differentiating the expression gives

∂EP
∂α p

=
∂EP
∂αu

=
�2

(2α p+2αu +1)3 < 0:

The expected profit increases with the relative arrival rates of price jumps and uninformed trades.

To compensate for the losses, the market-maker can charge a fee for each transaction. This would
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relate the expected profit to the bid-ask spread of the market-maker. It is important to notice that the

strategy of the informed would be different if a fee of x unit is charged. In particular, if a fee of x units is

charged, the informed will buy only if the p�� pm > x and sell only if pm� p� > x. If the market-maker

charges the same fee for buy and sell orders, the sum of the fees is the spread. Let us denote the fee as a

half of the spread, SP=2. The market-maker will gain SP=2 on each uninformed trade, and j∆pj�SP=2

(given that j∆pj � SP=2 > 0) on each informed trade. If the spread is constrained to be less than 2,

then the informed traders’ strategy does not change, and we can use the same Markov chain as before.

Given SP and invoking symmetry, the expected profit can be written as

EP = λuSP�2λi

∞

∑
k�SP=2

(k�SP=2)qk:

If the market-maker is restricted to making zero profit, one can solve the previous Equation for the

corresponding spread. Specifically, if (1�λ i)(1�2λi)< 4λu, the zero expected profit spread is

SPEP=0 =
1�λi

2λu +λi(1�λi)
< 2: (10)

Although inventory plays no role in the market-making strategy, the symmetry of the problem

implies a zero expected inventory position for the market-maker.

Strategy 1 reacts to the market whenever there is an order imbalance. Obviously this strategy may

be too sensitive to the uninformed trades, which are considered noise in the market, and therefore would

not perform well in high noise markets. This motivates the study of alternative strategies. Instead of

adjusting the price when IMB = 1 or IMB = �1, the market-maker can wait until the absolute value

of imbalance reaches a threshold Mimb. In particular, the market-maker raises the price by 1 unit when

IMB = Mimb, or lowers the price by 1 unit when IMB = �Mimb and resets IMB = 0 after that. The

threshold equals 1 for Strategy 1. All these strategies can be studied in the same framework of Markov

models. Figure 2 depicts the Markov chain that represents strategies with Mimb = 2. Each state is now

specified by two state variables ∆p and IMB. For example, at the state (∆p = 1; IMB=�1), a sell order

(a probability of λu + λi) would move the system to (∆p = 0; IMB = 0); a buy order (a probability of
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Figure 2: The Markov chain describing Strategy 2, with the imbalance threshold Mimb = 2 in the basic model.

λu) would move the system to (∆p = 1; IMB = 0); a price jump (a probability of λ u) would move the

system to either (∆p = 0; IMB =�1) or (∆p = 2; IMB =�1).

Intuitively, strategies with higher Mimb would perform better in noisier (larger λu) markets. Let

us introduce two additional strategies: strategies with Mimb = 2 and Mimb = 3 and denote them as

Strategies 2 and 3 respectively. The expected profit provides a criterion to choose among the strategies.

Unfortunately analytical characterization of the expected profit for Strategies 2 and 3 is mathematically

challenging. Instead of seeking explicit solutions in these cases, Monte Carlo simulations are used to

compute the expected profits for these cases. To compare among the strategies, we set α p to a constant

and vary αu and obtain the results in Figure 3. The expected profit for Strategy 1 decreases with the

noise level whereas the expected profit for Strategies 2 and 3 increases with the noise level. Among the

three strategies, we observe that Strategy 1 has the highest EP for αu < 0:3, Strategy 2 has the highest

EP for 0:3 < αu < 1:1 and Strategy 3 has the highest EP for αu > 1:1.
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Figure 3: Expected profit for Strategies 1, 2, and 3 in the basic model.

∆P
-1 0 1

-3 -0.86 -0.86 -0.86
-2 -1.13 -1.41 -1.62
-1 -1.16 -1.70 -2.61

IMB 0 -1.62 -0.74 -1.62
1 -2.63 -1.78 -1.13
2 -1.67 -1.43 -1.15
3 -0.91 -0.91 -0.91

(a) Strategy 1

∆P
-1 0 1

-3 -1.95 -1.96 -1.96
-2 -1.97 -2.41 -3.23
-1 -2.18 -2.03 -2.72

IMB 0 -2.33 -1.79 -2.35
1 -2.76 -2.05 -2.21
2 -3.20 -2.37 -2.01
3 -1.90 -1.89 -1.89

(b) Strategy 2

∆P
-1 0 1

-3 -10.10 -19.13 -19.09
-2 -18.09 -10.67 -18.50
-1 -12.18 -10.41 -12.82

IMB 0 -11.13 -9.92 -11.56
1 -11.99 -9.76 -12.11
2 -18.57 -10.32 -18.14
3 -19.17 -19.22 -10.54

(c) Strategy 3

Figure 4: Examples of Q-functions for Strategies 1, 2 and 3. The bold values are the maximums for each row
showing the resulting greedy policy.
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4.3 Market-making with Reinforcement learning Algorithms

Our goal is to model an optimal market-making strategy in the reinforcement learning framework pre-

sented in Section 3. In this particular problem, the main focus is on whether reinforcement learning

algorithms can choose the optimum strategy in terms of expected profit given the amount of noise in

the market, αu. Noise is introduced to the market by the uninformed traders who arrive at the market

with a probability λu = αuλi.

For the basic model, we use the Monte Carlo and SARSA algorithms. Both build a value func-

tion Qπ(s;a) and employ an ε-greedy policy with respect to this value function. When the algo-

rithm reaches equilibrium, π is the ε-greedy policy of its own Q-function. The order imbalance

IMB 2 f�3;�2; :::;2;3g is the only state variable. Since market-maker quotes only one price, the set

of actions is represented by ∆pm 2 f�1;0;1g. Although the learning algorithms have the ability to rep-

resent many different policies (essentially any mapping from imbalance to price changes), in practice

they converge to one of the three strategies as described in the previous section. Figure 4 shows three

typical Q-functions and their implied policies after SARSA has found an equilibrium. Take Strategy 2

as an example, it adjusts price only when IMB reaches 2 or -2:

Yet, this seemingly simple problem has two important complications from a reinforcement learning

point-of-view. First the environment state is only partially observable. The agent observes the order

imbalance but not the true price or the price discrepancy ∆p. This leads to the violation of the Markov

property. The whole history of observed imbalance now becomes relevant in the agent’s decision mak-

ing. For instance, it is more likely that the quoted price is too low when observing positive imbalance

in two consecutive time steps than in just one time step. Formally, Pr[∆pjIMBt; IMBt�1; :::; IMB0] 6=

Pr[∆pjIMBt]. Nevertheless the order imbalance, a noisy signal of the true price, provides information

about the hidden state variable ∆p. Our model simply treats IMB as the state of the environment. How-

ever, convergence of deterministic temporal difference methods are not guaranteed for non-Markovian

problems. Oscillation from one policy to another may occur. Deterministic policies such as those

produced by the Monte Carlo method and SARSA may still yield reasonable results. Stochastic poli-

cies, which will be studied in the extended model, may offer some improvement in partially observable
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environments.

Second, since the true price is unobservable, it is infeasible to give a reward to the market-maker

at each time step. As mentioned in Section 3.3, two possible remedies are considered. In the first

approach, it is assumed that the true price is available for the calculation of the reward, but not as a

state variable. Recall that the market-maker’s inventory is liquidated at each step. The reward at time t

is therefore the change of profit for the time step

rt = ∆PROt =

8><
>:

p�t � pm
t for a buy order

pm
t � p�t for a sell order

(11)

Alternatively, no reward is available during the episode, but only one final reward is given to the agent

at the end of the episode. In this case, we choose to apply the Monte Carlo method and assign the

end-of-episode profit per unit time, PROT=T , to all actions during the episode. Specifically, the reward

can be written as

rt =
1
T

T

∑
τ=1

∆PROt : (12)

Table 1 shows the options used for each of the experiments in this paper. The first two experiments

are conducted using the basic model of this section, whereas the rest are conducted using the extended

model of the next section that incorporates a bid-ask spread. Each experiment consists of 15 (10 for

the extended model) separate sub-experiments, one for each of 15 (10) different noise levels. Each

sub-experiment was repeated for 1000 different learning sessions. Each learning session ran for 2000

(1000 for the extended model) episodes each of 250 time steps.

4.4 Simulation Results

In the experiments, the primary focus is whether the market-making algorithm converges to the opti-

mum strategy that maximizes the expected profit. In addition, the performance of the agent is studied

in terms of profit and inventory at the end of an episode, PROT and INVT , and average absolute price
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Experiment Model Learning State(s) Actions Reward
Number Method st at rt

1 basic SARSA IMBt ∆P 2 A ∆PROt

2 basic Monte Carlo IMBt ∆P 2 A PROT=T

3 extended actor-critic (IMBt ;QLTt) ∆BIDt 2 A wpro∆PROt +wqltQLTt

∆ASKt 2 A

3a extended SARSA (IMBt ;QLTt) ∆BIDt 2 A wpro∆PROt +wqltQLTt

∆ASKt 2 A

4 extended actor-critic (IMBt ;QLTt) ∆BIDt 2 A �j∆PROt j
∆ASKt 2 A

Table 1: Details of the experiments for the basic and extended models.

deviation for the entire episode, ∆p = 1
T ∑T

t=1 jp
m
t � p�t j. The agent’s end-of-period profit is expected

to improve with each training episode, though remain negative. Its inventory should be close to zero.

The average absolute price deviation measures how closely the agent estimates the true price. Figure 5

shows a typical realization of Experiment 1 in episodes 25, 100, 200 and 500. One can observe that

the market-maker’s price tracks the true price more closely as time progresses. Figures 6a and 6b show

the realized end-of-period profit and inventory of the market-maker and their corresponding theoretical

values. The profit, inventory and price deviation results all indicate that the algorithm converges at

approximately episodes 500.

With the knowledge of the instantaneous reward as a function of the true price, the SARSA method

successfully determines the best strategy under moderate noise level in the market. Figure 7 shows the

overall results from Experiment 1. The algorithm converges to Strategy 1, 2, or 3, depending on the

noise level. For each value of αu, the percentages of the sub-experiments converging to strategies 1,

2 and 3 are calculated. One important observation is that the algorithm does not always converge to

the same strategy, especially under high noise circumstances and around points of policies transitions.

The agent’s policy depends on its estimates of the Q-values, which are the expected returns of an action

given a state. Noisier observations result in estimates with higher variability, which in turn transforms
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Figure 5: Episodes 25, 100, 200 and 500 in a typical realization of Experiment 1. The market-maker’s price is
shown in the solid line while the true price in dotted line. The maker’s price traces the true price more closely
over time.
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Figure 6a: End-of-episode profit and the corresponding theoretical value of the market-maker in Experiment 1
for a typical run with λu = 0:25λi. The algorithm converges around episode 500 when realized profit goes to its
theoretical value.
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Figure 6b: End-of-episode Inventory and the corresponding theoretical value of the market-maker in Experi-
ment 1 for a typical run with λu = 0:25λi. The algorithm converges around episode 500 when realized inventory
goes to zero.
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Figure 6c: Average absolute price deviation of the market-maker’s quotation price from the true price in Experi-
ment 1 for a typical run with λu = 0:25λi. The algorithm converges around episode 500 when the price deviation
settles to its minimum.

into the variability in the choice of the optimum policy. Noise naturally arising in fully observable

environments is handled well by SARSA and Monte Carlo algorithms. However, the mismatch between

fully observable modeling assumption and the partially observable world can cause variability in the

estimates which the algorithms do not handle as well. This is responsible for the problems seen at the

transition points.

The results show that the reinforcement learning algorithm is more likely to converge to Strategy

1 for small values of α (α < 0:25) and Strategy 2 for higher values of α (0:35 < α < 1:00). There

are abrupt and significant points of change at α ' 0:30 and α ' 1:00 where the algorithm switches

from one strategy to another. These findings are consistent with the theoretical predictions based on

the comparison of the expected profits for the strategies (Figure 3). When the noise level α exceeds the

level of 1.0, the algorithm converges to Strategies 2 and 3 with an approximate likelihood of 80 and 20

percent respectively. According to the theoretical prediction, Strategy 3 would dominate the other two

strategies when αu > 1:1. Unfortunately, the simulation fails to demonstrate this change of strategy.

This is partially due to the inaccuracy in estimating the Q-function with the increasing amount of noise
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Figure 7: Percentages of SARSA simulations converges to Strategies 1, 2 and 3 in Experiment 1.

in the market. Furthermore, the convergence to Strategy 3 is intrinsically more difficult than that to

Strategies 1 and 2. In order to recommend Strategy 3, the algorithm has to first decide to maintain the

price for IMB� 2, effectively rejecting Strategies 1 and 2, and then estimate the relevant Q-values for

IMB = 3; more exploration of the state space is necessary to evaluate Strategy 3.

What if no reward is given to the agent during the course of an episode? Experiment 2 is the same

as Experiment 1 except for the differences in the learning method and the way reward is calculated.

Even without the knowledge of the precise reward at each time step, the Monte Carlo algorithm still

manages to shed some light on the choice of the optimum strategy. Figure 8 presents the percentages

of the strategies chosen for different noise levels. The algorithm is more likely to choose Strategy 1 for

small values of αu (αu < 0:30), Strategy 2 for moderate values of αu (0:30 < αu < 1), and Strategy 3

for large values of αu (αu > 1). This finding to some extent agrees with what the theory predicts.

Information on how much each action contributes to the total return is missing, unlike in the case

of the SARSA method where the value of an action is more immediately realized. This is known as

the credit assignment problem, first discussed by Minsky (1963). Even without the knowledge of the

contribution of individual actions, the Monte Carlo method still works. This is because, on average,
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Figure 8: Percentages of the simulations of the Monte-Carlo method converges to Strategies 1, 2 and 3 in
Experiment 2.

“correct actions” yield more reward and episodes with more “correct actions” consequently gather

higher total return. But the missing reward information on individual action results in a higher variance

in the estimation of values functions.

5 The Extended Model

The previous section demonstrates how reinforcement learning algorithms can be applied to market-

making problems and successfully converge to optimum strategies under different circumstances. Al-

though the basic model is useful because the experimental and theoretical results can be compared,

one major limitation of the basic model is the equality of the bid and ask prices. Without the bid-ask

spread the market-maker suffers a loss from the market due to the information disadvantage. A natural

extension of the basic model is to let the market-maker quote bid and ask prices. This section studies

a reinforcement learning strategy of the market-maker that balances the conflicting objectives of max-

imizing profit and market quality. Computer experiments demonstrate that the market-making agent

successfully tracks the true price using the its bid and ask prices, and controls its average spread in a
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continuous scale.

To incorporate bid and ask prices to the model, the set of actions is augmented to include the change

of bid price and the change ask price:

(∆BIDt;∆ASKt) 2 A�A ;

where A = f�1;0;1g. Altogether there are nine possible actions. Now, to characterize a market

scenario, the set of states should also include the spread, a measure of market quality. Specifically, the

state vector becomes

st = (IMBt;SPt);

where IMBt 2 f�1;0;1g is the order imbalance and SPt = ASKt �BIDt 2 f1;2;3;4g is the spread at

time t. The spread also enters the reward function for the control of market quality maintained by

a market-making algorithm. Recall that a market-maker may have multiple objectives. In the basic

model, the market-maker only aims at maximizing profit. With spread added to the model, the market-

maker would also need to consider the quality of market it provides. To balance between the two

objectives, consider the following reward function that linearly combines the measures of profit and

spread:

rt = wpro(∆PROt)+wqltSPt ;

where the reward for profit now depends on the side of the order:

∆PROt =

8><
>:

ASKt� p�t for a buy order

p�t �BIDt for a sell order
(13)

As for the reinforcement learning technique, an actor-critic method as described in Section 2.2 is

used for the extended model. This algorithm allows the agent to expressly pick stochastic policies,

which is important for two reasons. First, stochastic policies allow real-valued average spreads and

profits. Essentially, this gives the agent more control over the fine-tuning of the trade-off between profit
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and market quality. For example, a policy which maintains a spread of 1 and 2 with equal probability

of 1=2 would lead to an average spread of 1:5. Since the spread is intimately related to the profit

(as shown as Section 4.2), the agent also indirectly controls the profit. Second, stochastic policies

are particularly efficient in problems with partially observable states. This extended model pushes the

partial observability of the environment much further.

The market-making agent should aim to set its bid and ask prices such that they enclose the observed

true price: BIDt � p�t � ASKt . Under this condition, the market-maker will gain from any trades (those

of the uninformed traders) submitted to the market.

Three computer experiments are conducted for the extended model. In Experiments 3 and 3a, the

market-maker simultaneously maximizes profit and market-quality. The weight w pro is fixed but wqlt

is varied to demonstrate how spread can be fine-tuned. Experiment 3 applies the actor-critic method

that yields stochastic policies; Experiment 3a considers the SARSA method that yields deterministic

policies. It is interesting to compare the performance of the two approaches under partially observable

environments.

Experiment 4 studies how one can directly control the profit by incorporating a target profit ∆PRO�

into the reward function:

r0t = j∆PROt�∆PRO�j:

The target profit ∆PRO� is the desired average profit per unit time. Experiment 4 studies the particular

case when ∆PRO� = 0. The resulting spread is the zero profit spread for the market-maker.

5.1 Simulation Results

As in the basic model, the performance of the market-maker is measured with variables including

profit and average absolute price deviation. The end-of-episode profit PROT measures how much the

market-maker makes in an episode:

PROT =
T

∑
t=1

∆PROt;
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where ∆PROt is defined in Equation 13. The average absolute price deviation for an episode is calcu-

lated by considering both bid and ask prices:

∆p =
T

∑
t=1
jBIDt� p�t j+ jASKt� p�t j :

The episodic average spread for an episode is calculated as the average of the spread over time.

SP =
1
T

T

∑
t=1

SPt :

Figure 9 presents a typical run of Experiment 4. The accuracy in tracking the true price improves

over the episodes. Figures 10a to 10d show the end-of-episode profit and inventory, average spread,

and average absolute price deviation for a run of Experiment 3. The figures indicate that the algorithm

converges approximately at episode 500.

To demonstrate the results of an actor-critic method, Figure 11 graphically depicts the details of

a typical stochastic policy found in Experiment 3. The figure shows the probability distribution of

actions in all twelve possible situations specified by the state vector (IMB;SP). For each situation,

the probabilities of the nine possible actions are shown as a grid of squares. The areas of the squares

represent the probabilities of pairs of bid/ask actions under the policy. The bid/ask actions have been

transformed into changes of the mid-quote, (∆ASK+∆BID)=2, and the changes of the spread, ∆ASK�

∆BID, for easier interpretation of the figure.

The policy adjusts the prices for two objectives: to react to the order imbalance and to control

the spread. It behaves correctly by reducing, maintaining, and raising bid/ask prices under negative,

zero, and positive imbalance respectively, for cases of SP = 1;2;3. For the case when SP = 4, order

imbalance is ignored (i.e. the adjustment of the mid-quote is not biased towards any direction). On the

other hand, the policy tends to increase the spread for SP = 1, maintain or slightly increase the spread

for SP = 2, and decrease the spread for SP = 3; 4. The mean and median spread resulting from this

policy are both approximately 2:7.

By varying the spread parameter wqlt , we can control the spread of the policy learned by either
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Figure 9: Episodes 25, 100, 200 and 500 in a typical realization of Experiment 3 with wqlt = 0:1. The bid
and ask prices are shown in the shaded area, and the true price in the single solid line. The algorithm shows
improvement in tracing the true price with the bid and ask prices over time.
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Figure 10a: End-of-episode profit, PROT , of a typical epoch of Experiment 3 with wqlt = 0:1.
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Figure 10b: Episodic average spread, SP, of a typical epoch of Experiment 3 with wqlt = 0:1.
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Figure 10c: Episodic average absolute price deviation, ∆p, of a typical epoch of Experiment 3 with wqlt = 0:1.
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Figure 10d: End-of-episode inventory of a typical epoch of Experiment 3 with wqlt = 0:1.
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Figure 11: Conditional probability distribution of actions given imbalance and spread in a typical epoch of
Experiment 3 with wqlt = 0:1. Each probability distribution is depicted as a grid of squares whose areas represent
the actual probability of pairs of bid/ask actions. In each panel, the change of the mid-quote and the change of
the spread are shown on x-axis and y-axis respectively. For example, the panel at the third row and first column
shows the conditional probability Pr(a = a0jIMB = �1;SP = 3). The action a0 = (∆BID = �1;∆ASK = �1),
which is equivalent to a change of mid-quote of -1 and a change of spread of 0, has the highest probability among
all actions. In general, areas that appear in the upper (lower) portion of the panel represent a tendency to reduce
(raise) the spread; areas that appear to the left (right) of the panel represent a tendency to decrease (increase) the
mid-quote price.
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SARSA or actor-critic. The spread, as shown in Figure 12, decreases with an increasing value of

wqlt in Experiments 3 and 3a. For each wqlt , the mean, median and deciles of the average episodic

spread are shown. The variance of the average spread is due to the stochastic nature of the algorithm,

randomness in the order flow and true price process, and the imperfect state information. Comparing

the results of Experiments 3 and 3a, we notice that stochastic policies yield a much lower variance for

the resulting spread than deterministic policies do. As we expect, stochastic policies are better able to

control partially observable environments.

Figure 13 presents the relationship between spread and profit in Experiment 3. Profit increases

with spread as is expected. The results also indicate that to make a zero profit, the market-maker must

maintain a spread approximately between 2.8 and 2.9.

In Experiment 4, the algorithm successfully enforces a zero profit in the market. The mean, median

and standard error of profit are -0.48, 2.00 and 2.00 respectively, while the mean and median of spread

are 2.83 and 2.84 respectively. This result agrees with the results from Experiment 3. The empirical

distributions of profit and spread are shown in Figures 14a and 14b.

6 Conclusions

This paper presents an adaptive learning model for market-making in a reinforcement learning frame-

work. We develop explicit market-making strategies, achieving multiple objectives under a simulated

environment.

In the basic model, where the market-maker quotes a single price, we are able to determine the opti-

mum strategies analytically and show that the reinforcement algorithms successfully converge to these

strategies. In the SARSA experiment, for example, given the reward at each time step, a significant

percentage of the epochs converges to the optimum strategies under moderate noise environments. It is

also important to point out that the algorithm does not always converge to a single strategy, primarily

due to the partial observability of the problem.

The basic model is then extended to allow the market-maker to quote bid and ask prices. While
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Experiment 3: Stochastic Policies
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Experiment 3a: Deterministic Policies
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Figure 12: Spread weight versus episodic average spread in Experiment 3 and 3a. The deciles, median and mean
of average episodic spread, SP, of all the episodes over all epochs, are shown for different values of wqlt . For
both experiments, the spread decreases with the weight parameter, but the variance of the spread is much lower
for the actor-critic method that yields stochastic policies.
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Figure 13: Episodic average spread versus end-of-period profit in Experiment 3. The figure presents the average
SP versus the average PROT over all episode of an epoch. The profit goes up with the spread.
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Figure 14a: Empirical distribution of end-of-episode profit, PROT , in Experiment 4. The mean, median and
standard error of the profit is -0.48, 2.00 and 19.36 respectively.
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Figure 14b: Empirical distribution of average episodic spread, SP in Experiment 4. The mean, median and
standard error of the spread is 2.83, 2.84 and 0.07 respectively.

the market-maker only controls the direction of the price in the basic model, it has to consider both the

direction of the price and the size of the bid-ask spread in the extended model. The actor-critic algorithm

generates stochastic policies that correctly adjust bid/ask prices with respect to order imbalance and

effectively control the trade-off between the profit and the spread. Furthermore, the stochastic policies

are shown to out-perform deterministic policies in achieving a lower variance of the resulting spread.

Reinforcement learning assumes no knowledge of the underlying market environment. This means

that it can be applied to market situations for which no explicit model is available. We have shown ini-

tial success in bringing learning techniques to building market-making algorithms in a simple simulated

market. We believe that it is ideal to use the agent-based approach to address some of the challeng-

ing problems in the study of market microstructure. Future extensions of this study may include the

setup of more realistic and complex market environments, the introduction of additional objectives to

the market-making model, and the refinement of the learning techniques to deal with issues such as

continuous state variables.
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