
MIT Open Access Articles

Circuit synthesizable guaranteed passive 
modeling for multiport structures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mahmood, Zohaib, and Luca Daniel. “Circuit Synthesizable Guaranteed Passive 
Modeling for Multiport Structures.” 2010 IEEE International Behavioral Modeling and Simulation 
Conference (BMAS), 2010. 19–24. © Copyright 2010 IEEE

As Published: http://dx.doi.org/10.1109/BMAS.2010.6156592

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/72205

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72205


Circuit synthesizable Guaranteed Passive Modeling for
Multiport Structures

Zohaib Mahmood
Massachusetts Institute of Technology

zohaib@mit.edu

Luca Daniel
Massachusetts Institute of Technology

luca@mit.edu

ABSTRACT
In this paper we present a highly efficient algorithm to automati-
cally generate circuit synthesizable dynamical models for passive
multiport structures. The algorithm is based on a natural convex re-
laxation of the original nonconvex problem of modeling multiport
devices from frequency response data, subject to global passivity
constraints. The algorithm identifies a collection of first and second
order passive networks interconnected in either series or parallel
fashion. Passive models for several multiport structures, including
Wilkinson type combiners, power and ground distribution grids and
coupled on-chip inductors are provided to corroborate the theoret-
ical development and show efficacy of the implemented algorithm.
To demonstrate the practical usage of our algorithm, the identified
models are also interfaced with commercial simulators and used to
perform time domain simulations while being connected to highly
nonlinear power amplifiers.

1. INTRODUCTION
Automatic generation of accurate, compact and passive dynam-

ical models for multiport passive interconnect structures from fre-
quency response is a crucial part of the design flow for complex
analog systems. Typically, passive structures are simulated by a
field solver which computes frequency response data samples in the
desired frequency band. Based on the frequency response samples
extracted by the solver or collected from measurements, a reduced
model is developed which can be incorporated into a circuit simu-
lator for time domain simulations of a larger system containing also
nonlinear devices. A model violating any basic physical property,
such as passivity, can cause convergence issues for the simulator,
huge errors in the response of the overall system, and the results
may become completely nonphysical.
There exist different approaches to generate dynamical models

from frequency response data. The problem of finding a passive
multiport model from complex frequency response data is highly
nonlinear and non convex. Given a set of frequency response sam-
ples {Hi,ωi}, where Hi = H( jωi) are the transfer matrix samples
of some unknown multiport linear system, the compact modeling
task is to construct a low-order rational transfer matrix Ĥ(s) such
that Ĥ( jωi) ≈ Hi. Formulated as an L2 minimization problem of
the sum of squared errors, it can be written as

minimize
Ĥ

∑
i

∣∣∣Hi− Ĥ( jωi)
∣∣∣2

subject to Ĥ( jω) passive
(1)

Even after ignoring the passivity constraint in (1), the unconstrained
minimization problem is non-convex and is therefore very diffi-
cult to solve. Direct solution using nonlinear least squares have
been proposed, such as Levenberg-Marquardt [1]. However, there
is no guarantee that such approach will converge to the global min-
imum, and quite often the algorithm will yield only a locally op-
timal result. Over the past years considerable effort has been put
into finding a convex relaxation to the original problem including
the passivity constraint such as [2–4]. Although these techniques
provide an analytical formulation, they are often criticized as be-

ing still computationally quite expensive. Most of these techniques
rely on enforcing some formulation of the positive real lemma by
constraining the real part of the impedance matrix to be positive
definite over all frequencies. Although such a constraint can be
certifiably enforced by using a Sum-Of-Squares (SOS) relaxation,
it is normally a costly operation, specially when the constraints are
defined on frequency dependent matrices such as in [3, 4].
Some iterative techniques also exist, such as [5,6]. In these tech-

niques a stable but non-passive model is first identified. This non-
passive model is then checked for passivity violations by examin-
ing if there exist pure imaginary eigen values of the correspond-
ing Hamiltonian matrix. Finally, some parameters of the initially
identified non-passive model are perturbed to correct for passivity
violations. These techniques are computationally efficient, how-
ever since perturbing the system is an ill-posed problem, there is no
guarantee that the final passivated model is optimal for accuracy.
In this paper we present a theoretical and analytical formulation

and a highly efficient implementation of a procedure for identify-
ing passive dynamical models from frequency response data for
multiport structures. We solve the problem in two steps, first a
set of common poles is identified using already established tech-
niques [3,7,8]. Next, we identify residue matrices while simultane-
ously enforcing passivity using frequency independent linear ma-
trix inequalities. Although, similar conditions for passivity were
derived in [9, 10], the conditions were used only to ‘check’ for
passivity violations as opposed to our proposed algorithm where
these conditions are built into the model identification procedure
to ‘enforce’ passivity. Also, no efficient algorithm was proposed
in [9, 10] to rectify for passivity violations. For example in [9] it
was proposed that the pole-residue pairs violating passivity condi-
tions should be discarded, this is highly restrictive and can signifi-
cantly deteriorate the accuracy. We instead propose that the identi-
fied residue matrices should conform to passivity conditions during
the identification procedure such that there are no passivity viola-
tion in the final model. The formulation presented in this paper,
being convex, is guaranteed to converge to the global minimum
and can be easily implemented using publicly available convex op-
timization solvers such as SeDuMi [11]. Also, since the constraints
presented in this paper are frequency independent, for the same
model accuracy we get orders of magnitude improvement in terms
of speed compared to other convex optimization based techniques
such as [3, 4] where the the constraints are frequency dependent
and are expensive to enforce. The scheme presented in this paper
can potentially be extended to generate parameterized models with
apriori global passivity certificate. Finally, the models generated by
our algorithm can readily be synthesized into an equivalent passive
network and can be interfaced with commercial circuit simulators
by generating either a spice-like netlist or a Verilog-A model.
The remainder of the paper is organized as follows: Section 2

describes the rational fitting of transfer matrices and the notion of
passivity. Section 3 formulates the problem of passive fitting for
multiport LTI systems. Section 4 details the full algorithm for our
modeling approach. Finally, Section 5 demonstrates the effective-
ness of the proposed approach in modeling various multiport struc-
tures.
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2. BACKGROUND

2.1 Rational Transfer Matrix Fitting
The problem of constructing a rational approximation of multi

port systems consists of finding residue matrices Rk, poles ak and
the matrices D & F such that the identified model, defined by the
transfer function Ĥ(s) in (2), minimizes the mismatch between the
reduced model and the original system as described in (1).

Ĥ(s) =
κ

∑
i=1

Rk
s−ak

+D+ sF (2)

whereRk,D and F are T×T residue matrices (assuming the system
has T ports) and ak are poles. Since most of the passive structures
have a symmetric response, Rk,D and F are symmetric matrices.

2.2 Passivity of Immitance 1 Transfer Matrix
Passivity is the inability of a system (or model) to generate en-

ergy. Since arbitrary connections of passive systems are guaran-
teed to be passive, passivity becomes an essential requirement if
the model is to be used for time domain simulations while being
interconnected with other subsystems. While it may be possible for
a non-passive model to provide high accuracy in the frequency do-
main, the same model when used in time domain simulation could
produce extremely inaccurate results resulting from passivity vio-
lations.
Passivity for an impedance or admittance system corresponds to

‘positive realness’ of the transfer matrix. To be positive real, the
transfer matrix Ĥ(s) must satisfy the following constraints

Ĥ(s̄) = Ĥ(s) (3a)

Ĥ(s) is analytic in ℜ{s}> 0 (3b)

Ĥ( jω)+ Ĥ( jω)† � 0 ∀ω (3c)

Where ℜ{ } denotes the real part and † indicates the hermitian
transpose.
The first condition (3a), commonly known as conjugate symme-

try, ensures that the impulse response corresponding to Ĥ(s) is real.
The second condition (3b) implies stability of the transfer function.
A causal linear system in the transfer matrix form is stable if all of
its poles are in the left half of the complex plane, i.e. all the poles
have negative real part. The third and final condition (3c), which is
positivity condition, implies positive realness of the symmetric part
of the transfer matrix on the jω axis.

3. PASSIVE FITTINGFORMULTIPORTLTI
SYSTEMS

3.1 Problem Formulation
We expand the summation for Ĥ(s) in (2). Also, since we are

mainly interested in the properties of H(s) on the imaginary axis,
we replace s with jω.

Ĥ( jω) =
κr
∑
k=1

Rrk
jω−ark

+
κc
∑
k=1

Rck
jω−ack

+D+ jωF (4)

Here κr and κc denote the number of purely real and the number of
complex poles, respectively. Also, Rrk ∈ R

T×T , Rck ∈ C
T×T , ark ∈

R, ack ∈C ∀k, and D,F∈R
T×T , where T is the number of ports. In

the following subsections, we consider one by one the implications
of each passivity condition in (3) on the structure of (4).

3.2 Conjugate Symmetry
The terms in (4) corresponding to the matrices D and F, and to

the summation over purely real poles satisfy automatically the first
passivity condition (3a). On the other hand such condition requires

1The term Immitance refers to Impedance and Admitance col-
lectively.

that the complex-poles ack and complex residue matrices R
c
k always

come in complex-conjugate-pairs

Ĥ( jω) =

κr
∑
k=1

Rrk
jω−ark

+
κc/2

∑
k=1

{
ℜRck+ jℑRck
jω−ℜack− jℑa

c
k

+
ℜRck− jℑR

c
k

jω−ℜack+ jℑack

}

+D+ jωF (5)

The proof is given in Appendix A. In (5) ℜ and ℑ indicate the real
and imaginary parts respectively. Note that the summation for com-
plex poles now extends only upto κc/2. Rewritting (5) compactly:

Ĥ( jω) =
κr
∑
k=1
Ĥrk ( jω)+

κc/2

∑
k=1
Ĥck ( jω)+D+ jωF (6)

where: Ĥrk ( jω) =
Rrk

jω−ark
(7)

Ĥck ( jω) =
ℜRck+ jℑRck
jω−ℜack− jℑa

c
k

+
ℜRck− jℑR

c
k

jω−ℜack+ jℑack
(8)

3.3 Stability
The second condition (3b), which requires analyticity of Ĥ(s)

in ℜ{s} > 0, implies stability. For a linear causal system in pole-
residue form (2), the system is strictly stable if all of its poles ak
are in the left half of complex plane i.e. they have negative real part
(ℜ{ak}< 0).

3.4 Positivity
The positivity condition for passivity (3c) is the most difficult

condition to enforce analytically. We present here an extremely
efficient condition which implies (3c). We consider the case when
all the building blocks in the summation (6), namely: purely real
poles/residues Ĥrk ( jω), complex-conjugate pairs of poles/residues
Ĥck ( jω), and the direct term matrix D are individually positive real.
Please note that the jωF term in (6) has purely imaginary response
and therefore does not affect positivity condition.

LEMMA 3.1. (Positive Real Summation Lemma) Let Ĥ( jω) be
a stable and conjugate symmetric transfer matrix given by (6), then
Ĥ( jω) is positive-real if Ĥrk ( jω), Ĥck ( jω) and D are positive-real
∀k. i.e.

ℜĤrk ( jω)� 0,ℜĤck ( jω)� 0∀k & D� 0 =⇒ Ĥ( jω)� 0 (9)

PROOF. The sum of positive-real, complex matrices is positive
real.

Lemma 3.1 describes a sufficient, but not-necessary, condition for (3c).
In the following subsections we derive the equivalent conditions of
positive realness on each term separately.

3.4.1 Purely Real Pole-Residues
In this section we derive the condition for the purely real pole/residue

term Ĥrk ( jω) in the summation (6) to be positive real. Such a con-
dition can be obtained by rationalizing Ĥrk ( jω) as in (7), which
results into:

Ĥrk ( jω) =−
arkR

r
k

ω2+ark
2 − j

ωRrk
ω2+ark

2 (10)

ℜĤrk ( jω)� 0 =⇒ −
arkR

r
k

ω2+ark
2 � 0 ∀ω,k = 1, ...,κr (11)

3.4.2 Complex Conjugate Pole-Residues
In this section we derive the positive realness condition for the

complex pole/residue term Ĥck ( jω) in the summation (6). Since
complex terms always appear conjugate pairs, we first add the two
terms for Ĥck ( jω) in (8) resulting into:

Ĥck ( jω) =
−2(ℜack)(ℜR

c
k)−2(ℑa

c
k)(ℑR

c
k)+ j2ω(ℜRck)

(ℜack)2+(ℑack)2−ω2− j2ωℜack
(12)
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Ĥck ( jω) =
−2{(ℜack)

3+ℜack(ℑa
c
k)
2}ℜRck−2{(ℑa

c
k)
3+(ℜack)

2ℑack}ℑR
c
k−2ω

2{(ℜack)(ℜR
c
k)− (ℑack)(ℑR

c
k)}

((ℜack)2+(ℑack)2−ω2)2+(2ωℜack)2

+ j
−2ω{(ℜack)

2− (ℑack)
2+ω2}ℜRck−4ω(ℜack)(ℑa

c
k)ℑR

c
k

((ℜack)2+(ℑack)2−ω2)2+(2ωℜack)2
(13)

ℜĤck ( jω)� 0 =⇒
−2{(ℜack)

3+ℜack(ℑa
c
k)
2}ℜRck−2{(ℑa

c
k)
3+(ℜack)

2ℑack}ℑR
c
k−2ω

2{(ℜack)(ℜR
c
k)− (ℑack)(ℑR

c
k)}

((ℜack)2+(ℑack)2−ω2)2+(2ωℜack)2
� 0 ∀ω,k = 1, ...,κc

(14)

In order to obtain positive realness condition on Ĥck ( jω) we ratio-
nalize (12) to form (13). The resulting condition for ℜĤck ( jω)� 0
is given in (14)

3.4.3 Direct Term Matrix
Since D is a constant real symmetric matrix, we require D to be

a positive semidefinite matrix, i.e.

D� 0

3.5 The Constrained Minimization Problem
We combine all the constraints derived earlier and formulate a

constrained minimization problem as follows:

minimize
Ĥ≡{Rk,ak,D,F}

∑
i

∣∣∣Hi− Ĥ( jωi)
∣∣∣2

subject to ark < 0 ∀k = 1, ...,κr
ℜack < 0 ∀k = 1, ...,κc
ℜĤrk ( jω)� 0 ∀ω,k = 1, ...,κr
ℜĤck ( jω)� 0 ∀ω,k = 1, ...,κc
D� 0

where Ĥ( jω) =
κr
∑
k=1
Ĥrk ( jω)+

κc/2

∑
k=1
Ĥck ( jω)+D+ jωF

(15)
Here Hi are the given frequency response samples at frequencies
ωi; Ĥrk and Ĥ

c
k are defined in (7) and (8) respectively; a

r
k and a

c
k

denotes the real and complex poles respectively. The detailed ex-
pressions forℜĤrk ( jω)� 0 andℜĤck ( jω)� 0 are described in (11)
and (14) respectively.

4. IMPLEMENTATION
In this section we describe in detail the implementation of our

passive multiport model identification procedure based on solving
the constrained minimization framework developed in Section 3.
The optimization problem in (15) is non-convex because both

the objective function and the constraints are non-convex. The
non-convexity in (15) arises mainly because of the terms contain-
ing products and ratios between decision variables such as ratio of
residue matrices, Rk, and poles, ak, in the objective function, and
product terms and ratios of Rk and ak in the constraints.
Since the main cause of non-convexity in (15) is the coupling

between Rk and ak, it is natural to uncouple the identification steps
of the unknowns, namely Rk and ak in order to convexify (15). We
propose to solve the optimization problem in (15) in two steps. The
first step consists of finding a set of stable poles ak for the system.
The second step is to find a passive multiport dynamical model for
the system, given stable poles from step 1. In the following sections
we describe how to solve the two steps.

4.1 Step 1: Identification of stable poles
Several efficient algorithms already exist for the identification of

stable poles for multiport systems. Some of the stable pole identifi-
cation approaches use optimization based techniques such as in [3].
Some schemes such as [7, 8] find the location of stable poles iter-
atively. Any one of these algorithms can be used as the first step
of our algorithm, where we identify a common set of stable poles

for all the transfer functions in the transfer matrix. As mentioned
before, to enforce conjugate symmetry, the stable poles can either
be real or be in the form of complex-conjugate pairs.

4.2 Step 2: Identification of Residue Matrices
In this section we formulate the convex optimization problem for

the identification of residue matrices using the stable poles from
step 1. We first revisit the conditions for passivity (11) and (14),
and later we shall develop the convex objective function.

4.2.1 Purely Real Pole-Residues
Let us consider the positive realness condition on the purely real

pole residue term Hrk ( jω) as in (11). The constraint (11) requires
frequency dependent matrices to be positive semidefinite for all fre-
quencies. This is in general very expensive to enforce. However, a
careful observation of (11) reveals that the denominator, which is
the only frequency dependent part of (11) is a positive real number
for all frequency. Hence we can ignore the positive denominator
which leaves us enforcing −arkR

r
k � 0. Since we are already given

stable poles (i.e. ark < 0), the constraint in (11) reduces to enforcing
positive semidefiniteness on Rrk, hence

ℜĤrk ( jω)� 0 =⇒ Rrk � 0 ∀k = 1, ...,κr. (16)

Such a constraint is convex and can be enforced extremely effi-
ciently using SDP solvers [11].

4.2.2 Complex Conjugate Pole-Residues
In this section we reconsider the positive realness condition on

the complex conjugate pole residue pair termHck ( jω) as in (14). As
before, a closer examination of the frequency dependent denomi-
nator in (14) reveals the fact that it is positive for all frequencies.
Given that we have a fixed set of stable poles, and the denominator
is always positive, we rewrite the constraint (14) only in terms of
the variables i.e. ω and Rck. Also, we replace the constant expres-
sions of ℜack and ℑack in (14) with generic constants ci. We finally
obtain the following equivalent condition

ℜĤck ( jω)� 0 =⇒

(c1ℜRck+ c2ℑRck)+ω2(c3ℜRck+ c4ℑRck)} � 0 ∀ω,k = 1, ...,κc
(17)

The problem is however still not solved since the condition in (17)
is frequency dependent.

LEMMA 4.1. Let X1,X2 ∈ S
T and ω ∈ [0,∞), where S

T is the
set of symmetric T ×T matrices, then

X1+ω2X2 � 0∀ω⇔ X1 � 0,X2 � 0 (18)

PROOF. Direction⇒
Given X1+ω2X2 � 0 we consider the following limits:

lim
ω→0

(X1+ω2X2)� 0 =⇒ X1 � 0

lim
ω→∞

(X1+ω2X2)� 0 =⇒ X2 � 0 (19)

Direction ⇐ follows from the fact that a non-negative weighted
sum of positive semidefinite matrices is positive semidefinite.
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We define

X 1k = c1ℜRck+ c2ℑRck
X 2k = c3ℜRck+ c4ℑRck, (20)

and apply Lemma 4.1 to the constraint defined in (17) which results
into

ℜĤck ( jω)� 0 =⇒ X 1k � 0,X
2
k � 0 ∀k = 1, ...,κc (21)

Since X 1k ,X 2k are linear combinations of the unknown matrices,
ℑRck & ℑRck the constraint (21) is a semidefinite convex constraint
and thus can be enforced very efficiently.

4.2.3 Convex Optimization to Find Residue Matrices
In this section we summarize the final convex optimization iden-

tifying the residue matrices which correspond to to passive H( jω),
given stable poles ak.

minimize
Rrk,Rck,D,F ∑

i

∣∣∣ℜHi−ℜĤ( jωi)
∣∣∣2+∑

i

∣∣∣ℑHi−ℑĤ( jωi)
∣∣∣2

subject to Rrk � 0 ∀k = 1, ...,κr
c1ℜRck+ c2ℑRck � 0 ∀k = 1, ...,κc
c3ℜRck+ c4ℑRck � 0 ∀k = 1, ...,κc
D� 0

where Ĥ( jω) =
κr
∑
k=1
Ĥrk ( jω)+

κc/2

∑
k=1
Ĥck ( jω)+D+ jωF

(22)

This final problem (22) is convex, since the objective function is
a summation of L2 norms. All the constraints in (22) are linear
matrix inequalities. This convex optimization problem is a special
case of semidefinite programming, requiring only few frequency
independent matrices to be positive semidefinite. This problem
formulation is extremely fast to solve, compared to other convex
formulations [3, 4] where the unknown matrices are frequency de-
pendent.

4.3 Equivalent Circuit Synthesis
From the circuits perspective, the algorithm identifies a collec-

tion of low-pass, band-pass, high-pass and all-pass passive filter
networks. These passive blocks can be readily synthesized into
an equivalent passive circuit networks, and can be interfaced with
commercial circuit simulators either by generating a spice-like netlist,
or by using Verilog-A. Alternatively, we can develop equivalent
state space realizations for our passive multiport models, for exam-
ple a Jordan-canonical form can be obtained as described in [8] and
then diagonalized.

4.4 The Complete Algorithm
In this section we present the description of the complete frame-

work in Algorithm 1. This algorithm minimizes a cost function

Algorithm 1 Complete Passive Multiport Model Identification
Input: The set of frequency response samples {Hi,ωi}, the num-

ber of poles N
Output: Passive model Ĥ( jω)
1: Find the stable system with N poles ak
2: Solve the optimization problem (22) for Rk
3: Construct the model in pole/residue form as in (4)
4: Synthesize the equivalent passive circuit and generate the cor-
responding netlist or verilogA model file

based on L2 norm subject to linear matrix inequalities. Such a for-
mulation can be solved very efficiently and is guaranteed to con-
verge to the global minimum. However, the fact that this algorithm
provides analytical expressions to enforce passivity in a highly effi-
cient manner has an enormous potential such as in future extensions
to parameterized passive multiport models; or to include designers
specific constraints such as ensuring a good match for qualify fac-
tors in RF inductor dynamical models.

Signal Splitter

PA1

PA2

Passive model for
Wilkinson Combiner

50 Ohms

vin vout

v1

v2

Figure 1: Block diagram of the LINC power amplifier archi-
tecture as simulated inside the circuit
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Frequency(Hz)

Im
(Z

)
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Our Passive Model

Figure 2: Comparing real and imaginary part of the impedance
parameters from field solver (dots) and our passive model (solid
lines). The mismatch, defined by (24), is ei,k(ω) < 0.7% ∀i,k,ω∈
[2,60]GHz

5. EXAMPLES
In this section we shall present modeling examples of various

multiport passive structures. All examples are implemented in Mat-
lab and run on a laptop with Intel Core2Duo processor with 2.1GHz
clock, 3GB of main memory, and running windows 7. We have also
posted on public domain free open source software implementing
this algorithm [12].

5.1 Wilkinson Combiner in a LINC Amplifier
In this section we shall present an example illustrating the use-

fulness of our proposed methodology for modeling and simulating
a LINC (LInear amplification with Nonlinear Components) power
amplifier. The architecture, as described in Figure 1, consists of a
signal splitter, two power amplifiers, and a Wilkinson type power
combiner. This architecture is designed to operate at 40GHz. PA1
and PA2 are class B amplifiers designed in 130nm SiGe process
using BJTs. The Wilkinson combiner is designed on alumina sub-
strate with characteristic impedance of 50Ω and operating frequency
of 40GHz.
Input, vin, to this architecture is a 64−QAM signal. The signal

splitter decomposes the input QAM signal into two phase modu-
lated fixed amplitude signals. Let vin = Vin∠φ be the input signal;
v1 = V0∠φ1 and v2 = V0∠φ2 be the two signals generated by the
splitter then,

vin = v1+ v2, Vin∠φ =V0∠φ1+V0∠φ2 (23)

The splitted signals are amplified by individual nonlinear power
amplifiers. The outputs of these two power amplifiers are added us-
ing a Wilkinson type power combiner. This 3-port Wilkinson com-
biner, is simulated inside a full wave public domain field solver [13]
available at [14]. Using the frequency response samples generated
by the field solver, a closed form state space model of order m= 30
is identified using our passive modeling algorithm. To demonstrate
the accuracy of this model in frequency domain Figure 2 compares
the impedance parameters from field solver (dots) and frequency
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Figure 3: Plotting the zoomed-in eigen values of the associated
hamiltonian matrix for the identified model of Wilkinson com-
biner
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Figure 4: Ideal normalized 64-QAM input voltage vin

response of our identified passive model (solid lines). The model-
ing error ei,k(ω), defined by (24), was less than 0.7% for all i,k in
the bandwidth of interest between 2GHz−60GHz

ei,k(ω) =
|Hi,k( jω)− Ĥi,k( jω)|

max
i,k,ω

|Hi,k( jω)|
(24)

The algorithm took only 2seconds to generate the entire model,
whereas for the same order and simular accuracy the algorithm de-
scribed in [3] took 83seconds; giving us a speed-up of 40×.
A model is passive if there are no purely imaginary eigen values

of the associated Hamiltonian matrix. Figure 3 is a zoomed-in
plot of the eigen values of the associated hamiltonian matrix for
the identified model. It is clear that the model passes the passivity
test since there are no purely imaginary eigen values.
Finally, the overall amplifier architecture is simulated inside a

commercial circuit simulator after connecting the linear model for
the combiner with the rest of the circuit components including the
nonlinear amplifiers, as shown in Figure 1. Practically speaking,
as verified in Figures 4 and 5, the passive nature of the identified
model for the Wilkinson combiner guarantees that transient sim-
ulations for the overall architecture converge, and the final output
signal vout is also a 64−QAM signal similar to the input vin.

5.2 Power Distribution Grid
The second example we present is a power & ground distribu-
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Figure 5: Normalized output voltage vout generated by tran-
sient simulation of the overall architecture in Figure 1

Figure 6: 3D layout of the distribution grid (not to scale) show-
ing Vdd (red or dark grey) and Gnd (green or light grey) lines.
Black strips represent location of ports
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Figure 7: Comparing real and imaginary parts of the
impedance from our passive model (solid line) and from the
field solver (dots) for a power distribution grid

tion grid used in systems on chip or on package. The 3D layout for
this power grid is shown in Figure 6, and is composed of Vdd (red
or dark grey) and Gnd (green or light grey) segments placed along
both x and y axes. External connections, given by solder balls in
a flip chip technology, are modeled with bond wires running verti-
cally. This structure was simulated using 52390 unknowns in the
full wave mixed potential integral equation (MPIE) solver, Fast-
Maxwell [13], to obtain frequency response samples up to 12 GHz.
The multiport simulation was arranged by placing eight ports: four
at the grid corners and four inside the grid. Ports are illustrated in
Figure 6 as black strips.
For this example our proposed algorithm identified an 8×8 pas-

sive transfer matrix of order m = 160 in 74seconds, whereas the
algorithm in [3] ran out of memory and did not generate the model.
To demonstrate the accuracy, Figure 7 compares the real and imag-
inary impedance respectively of our reduced model with the field
solver data. Although the models are passive by construction, the
passive nature was verified by the absence of purely imaginary
eigen values of the associated hamiltonian matrix.

5.3 On-chip RF Inductors
The third example is a collection of 4 RF inductors on the same

chip or package that are used in the design of multichannel re-
ceivers. The layout is shown in Figure 8. The structure has four
ports in total, configured at the input of each inductor. This struc-
ture was simulated using 10356 unknowns in the full wave field
solver, FastMaxwell [13] which captures substrate using a Green
function complex image method.
For this example a 4×4 passive transfer matrix of order m= 92

was identified. The algorithm took 72seconds to identify the pas-
sive model, compared to the algorithm in [3] which ran out of mem-
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Figure 8: 3D layout of the RF inductors (wire widths not to
scale)
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Figure 9: Comparing real part and imaginary of impedance
from our passive model (solid line) and from field solver (dots)
for the RF inductors

ory and did not generate the model. Figure 9 shows impedance pa-
rameters both from the field solver and from our identified model.
The passive nature of this model was verified by the absence of
pure imaginary eigen values of the associated hamiltonian matrix.

6. CONCLUSION
In this paper we have proposed a new semidefinite programming

based algorithm to solve the original nonlinear and non-convex
identification problem for passive multiport models. The identified
models, because of the passive nature of our construction, can be
readily synthesized into equivalent circuits and hence can be inter-
faced with commercial simulators easily. The theory is supported
by modeling and simulation of various multiport structures.Using
our approach we were able to get a speed-up of 40× over [3], while
for moderately large problems we were able to converge within a
reasonable amount of time whereas approaches such as [3] ran out
of resources and did not generate the model.
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APPENDIX
A. CONJUGATE SYMMETRY
The condition requires Ĥ( jω) = Ĥ( jω). We show that the Ĥ( jω),

as in (5) satisfies this constraint.

Ĥ( jω) =

κr
∑
k=1

Rrk
− jω−ark

+
κc/2

∑
k=1

{
ℜRck+ jℑRck

− jω−ℜack− jℑa
c
k

+
ℜRck− jℑR

c
k

− jω−ℜack+ jℑack

}

+D− jωF

⇒ Ĥ( jω) =

κr
∑
k=1

Rrk
jω−ark

+
κc/2

∑
k=1

{
ℜRck− jℑR

c
k

jω−ℜack+ jℑack
+

ℜRck+ jℑRck
jω−ℜack− jℑa

c
k

}
+D+ jωF

= Ĥ( jω)
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