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Abstract

It is easy to find expert knowledge on the Internet on
almost any topic, but obtaining a complete overview
of a given topic is not always easy: Information can
be scattered across many sources and must be ag-
gregated to be useful. We introduce a method for
intelligently growing a list of relevant items, start-
ing from a small seed of examples. Our algorithm
takes advantage of the wisdom of the crowd, in the
sense that there are many experts who post lists of
things on the Internet. We use a collection of simple
machine learning components to find these experts
and aggregate their lists to produce a single com-
plete and meaningful list. We use experiments with
gold standards and open-ended experiments without
gold standards to show that our method significantly
outperforms the state of the art. Our method uses
the clustering algorithm Bayesian Sets even when its
underlying independence assumption is violated, and
we provide a theoretical generalization bound to mo-
tivate its use.

1 Introduction

We aim to use the collective intelligence of the world’s
experts to grow a list of useful information on any
given topic. To do this, we aggregate knowledge from
many experts’ online guides in order to create a cen-
tral, authoritative source list. We focus on the task
of open-ended list aggregation, inspired by the collec-
tive intelligence problem of finding all planned events
in a city. There are many online “experts” that list
Boston events, such as Boston.com or Yelp, however
these lists are incomplete. As an example of the dif-
ficulties caused by information fragmentation, traffic
in parts of greater Boston can be particularly bad
when there is a large public event such as a street fes-
tival or fundraising walk. There are a number of lists
of Boston events, but they are all incomplete. Even
though these events are planned well in advance, the
lack of a central list of events makes it hard to avoid
traffic jams, and the number of online sources makes
it difficult to compile a complete list manually.

As the amount of information on the Internet con-
tinues to grow, it becomes increasingly important to
be able to compile information automatically in a
fairly complete way, for any given domain. The devel-
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opment of general methods that automatically aggre-
gate this kind of collective knowledge is a vital area of
current research, with the potential to positively im-
pact the spread of useful information to users across
the Internet.

Our contribution in this paper is a real system for
growing lists of relevant items from a small “seed”
of examples by aggregating information across many
internet experts. We provide an objective evaluation
of our method to show that it performs well on a wide
variety of list growing tasks, and significantly outper-
forms existing methods. We provide some theoretical
motivation by giving bounds for the Bayesian Sets al-
gorithm used within our algorithm. None of the com-
ponents of our method are particularly complicated;
the value of our work lies in combining these simple
ingredients in the right way to solve a real problem.

There are two existing methods for growing a list
of items related to a user-specified seed. The prob-
lem was introduced ten years ago on a large scale by
Google Sets, which is accessible via Google Spread-
sheet. We also compare to a more recent online sys-
tem called Boo!Wa! (http://boowa.com), which is
similar in concept to Google Sets. In our experi-
ments, we found that Boo!Wa! is a substantial ad-
vance above Google Sets, and the algorithm intro-
duced here is a similarly sized leap in technology
above Boo!Wa!. In a set of 50 experiments shown
in Section 4, the lower 25th percentile of our perfor-
mance was better than the median performance of
both Google Sets and Boo!Wa!, both in Precision@5
and Precision@20. More generally, our work builds
on “search” and other work in information retrieval.
Search engines locate documents containing relevant
information, but to produce a list one would gener-
ally need to look through the webpages and aggregate
the information manually. We build on the speed of
search, but do the aggregation automatically and in
a much more complete way than a single search.

In the supplementary material, we provide: addi-
tional details on the algorithm implementation, the
results for each gold standard experiment, three addi-
tional open-ended experiments, an additional gener-
alization bound, and proofs of the theoretical results.

Algorithm 1 Outline of the list growing algorithm

Input: A list of seed items
Output: A ranked list of new items related to the
seed items
for as many iterations as desired do

for each pair of seed items do
Source discovery : Find all sites containing
both items
for each source site do

List extraction: Find all items on the site
represented similarly to the seed items

end for

end for

for each discovered item do

Feature space: Construct a binary feature vec-
tor of domains where the item is found
Ranking : Score the item according to the seed
using Bayesian Sets

end for

Implicit feedback : Add the highest-ranked non-
seed item to the seed

end for

2 Algorithm

Algorithm 1 gives an outline of the list growing algo-
rithm, which we now discuss in detail.
Source discovery: We begin by using the seed items

to locate sites on the Internet that serve as expert
sources for other relevant items. We use a combina-
torial search strategy that relies on the assumption
that a site containing at least two of the seed items
likely contains other items of interest. Specifically,
for every pair of seed items, we search for all web-
sites that contain both of the items; this step takes
advantage of the speed of “search.”
List extraction: The output of the combinatorial

search is a list of source sites, each of which contains
at least two seed items. We then extract all of the
new items from each of these sites. Here our strategy
relies on the assumption that human experts orga-
nize information on the Internet using HTML tags.
For each site found with the combinatorial search, we
look for HTML tags around the seed items. We then
find the largest set of HTML tags that are common
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to both seed items, for this site, and extract all items
on the page that use the same HTML tags. Because
we allow any HTML tags, including generic ones like
<b> and <a>, the lists we recover can be noisy.
When we combine the lists together, we use a clus-
tering algorithm to ensure that the noise is pushed to
the bottom of the list.

Feature Space: At this point the algorithm has
discovered a collection of lists, each from a different
source. We now combine these lists so that the most
relevant information is on the top of the final, merged
list. To determine which of the discovered items are
relevant, we construct a feature space in which to
compare them to the seed items. Specifically, for each
discovered item x, we construct a binary feature vec-
tor where each feature j corresponds to an internet
domain (like boston.com or mit.edu), and xj = 1 if
item x can be found on internet domain j. This set
of internet domains is found using a search engine
with the item as the query. Related items should be
found on a set of mainly overlapping domains, so we
determine relevance by looking for items that cluster
well with the seed items in the feature space.

Ranking: The Bayesian Sets algorithm (Ghahra-
mani and Heller, 2005) is a clustering algorithm based
on a probabilistic model for the feature space. Specif-
ically, we suppose that each feature (in general, xj)
is a Bernoulli random variable with probability θj
of success: xj ∼ Bern(θj). Following the typical
Bayesian practice, we assign a Beta prior to the prob-
ability of success: θj ∼ Beta(αj , βj). Bayesian Sets
assigns a score f(x) to each item x by comparing the
likelihood that x and the seed S = {x1, . . . , xm} were
generated by the same distribution to the likelihood
they are independent:

f(x) := log
p(x, S)

p(x)p(S)
. (1)

Suppose there are N features: x ∈ {0, 1}N . Be-
cause of the Bernoulli-Beta conjugacy, Ghahramani
and Heller (2005) show that (1) has an analytical
form under the assumption of independent features.
However, the score given in Ghahramani and Heller
(2005) can be arbitrarily large as m (the number of
seed examples) increases. We prefer a normalized

score for the purpose of the generalization bound,
and so we use the following scoring function which
differs from that in Ghahramani and Heller (2005)
only by constant factors and normalization:

fS(x) :=
1

Z(m)

N
∑

j=1

xj log
αj +

∑m

s=1 x
s
j

αj

+ (1− xj) log
βj +m−

∑m

s=1 x
s
j

βj

, (2)

where

Z(m) := N log

(

γmin +m

γmin

)

and γmin := min
j

min{αj , βj} is the weakest prior hy-

perparameter. It is easy to show that fS(x) ∈ [0, 1].
Given the seed and the prior, (2) is linear in x, and
can be formulated as a single matrix multiplication.
When items are scored using Bayesian Sets, the items
that were most likely to have been generated by the
same distribution as the seed items are put high on
the list.

Feedback: Once the lists have been combined, we
continue the discovery process by expanding the seed.
A natural, unsupervised way of expanding the seed
is to add the highest ranked non-seed item into the
seed. Though not done here, one could also use a
domain expert or even crowdsourcing to quickly scan
the top ranked items and manually expand the seed
from the discovered items. Then the process starts
again; we do a combinatorial search for websites con-
taining all pairs with the new seed item(s), extract
possible new items from the websites, etc. We con-
tinue this process for as many iterations as we desire.
Further implementation details are available in the

supplementary material.

3 Theoretical Results

The derivation for Bayesian Sets assumes indepen-
dent features. In this application, features are inter-
net domains, which are almost certainly correlated.
Because Bayesian sets is the core of our method, we
motivate its use in this application by showing that
even in the presence of arbitrary dependence among
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features, prediction ability can be guaranteed as the
sample size increases. We consider an arbitrary dis-
tribution from which the seed S is drawn, and prove
that as long as there are a sufficient number of items,
x will on expectation score highly as long as it is from
the same distribution as the seed S. Specifically, we
provide a lower bound for Ex [fS(x)] that shows that
the expected score of x is close to the score of S with
high probability.

Theorem 1. Suppose x1, . . . , xm are sampled inde-

pendently from the same distribution D. Let pmin =
min
j

min{pj , 1 − pj} be the probability of the rarest

feature. For all pmin > 0, γmin > 0 and m ≥ 2, with
probability at least 1 − δ on the draw of the training

set S = {x1, . . . , xm},

Ex∼D [fS(x)] ≥
1

m

m
∑

s=1

fS(x
s)

−

√

1

2mδ
+

6

g(m)δ
+O

(

1

m2 logm

)

,

where,

g(m) := log

(

γmin +m− 1

γmin

)

(γmin + (m− 1)pmin)

The proof technique involves showing that
Bayesian Sets is a “stable” algorithm, in the sense of
“pointwise hypothesis stability” (Bousquet and Elis-
seeff, 2002). We show that the Bayesian Sets score
is not too sensitive to perturbations in the seed set.
Specifically, when an item is removed from the seed,
the average change in score is bounded by a quan-
tity that decays as 1

m logm
. This stability allows us

to apply a generalization bound from Bousquet and
Elisseeff (2002). The proof of pointwise hypothesis
stability is in the supplementary material.
The two quantities with the most direct influence

on the bound are γmin and pmin. We show in the
supplementary material that for pmin small relative
to γmin, the bound improves as γmin increases (a
stronger prior). This suggests that a strong prior
improves stability when learning data with rare fea-
tures. As pmin decreases, the bound becomes looser,

suggesting that datasets with rare features will be
harder to learn and will be more prone to errors.
It is useful to note that the bound does not depend

on the number of features N , as it would if we consid-
ered Bayesian Sets to simply be a linear classifier in
N dimensions or if we used a straightforward appli-
cation of Hoeffding’s inequality and the union bound.
Although a Hoeffding’s inequality-based bound does
provide a tighter dependence on δ due to the use here
of Chebyshev’s inequality rather than Hoeffding’s in-
equality (for example, a Hoeffding-based bound is
given in the supplementary material), the bound de-
pends on N which in this application is the number
of internet domains, and is thus extremely large. The
fact that the bound in Theorem 1 is independent ofN
provides motivation for using Bayesian Sets on very
large scale problems, even when the feature indepen-
dence assumption does not hold.
The gap between the expected score of x and the

(empirical) score of the seed goes to zero as 1√
m
. Thus

when the seed is sufficiently large, regardless of the
distribution over relevant items, we can be assured
that the relevant items generally have high scores.

4 Experiments

We demonstrate and evaluate the algorithm with
two sets of experiments. In the first set of experi-
ments, we provide an objective comparison between
our method, Google Sets, and Boo!Wa! using a ran-
domly selected collection of list growing problems for
which there exist gold standard lists. The true value
of our work lies in the ability to construct lists for
which there are not gold standards, so in a second set
of experiments we demonstrate the algorithm’s per-
formance on more realistic, open-ended list growing
problems. For all experiments, the steps and param-
eter settings of the algorithm were exactly the same
and completely unsupervised other than specifying
two seed items.

4.1 Wikipedia Gold Standard Lists

An objective evaluation of our method requires a set
of problems for which gold standard lists are avail-
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able. The “List of ...” articles on Wikipedia form
a large corpus of potential gold standard lists that
cover a wide variety of topics. We limited our exper-
iments to the “featured lists,” which are a collection
of over 2,000 Wikipedia lists that meet certain min-
imum quality criteria. We required the lists used in
our experiments to have at least 20 items, and ex-
cluded any lists of numbers (such as dates or sports
scores). We created a random sample of list growing
problems by randomly selecting 50 Wikipedia lists
that met the above requirements. The selected lists
covered a wide range of topics, including, for exam-
ple, “storms in the 2005 Atlantic hurricane season,”
“current sovereign monarchs,” “tallest buildings in
New Orleans,” “X-Men video games,” and “Pitts-
burgh Steelers first-round draft picks.” We treated
the Wikipedia list as the gold standard for the asso-
ciated list growing problem. We give the names of all
of the selected lists in the supplementary material.
For each of the 50 list growing problems, we ran-

domly selected two list items from the gold standard
to form a seed. We used the seed as an input to our
algorithm, and ran one iteration. We used the same
seed as an input to Google Sets and Boo!Wa!. We
compare the lists returned by our method, Google
Sets, and Boo!Wa! to the gold standard list by com-
puting the precision at two points in the rankings:
Precision@5 and Precision@20. This measures the
fraction of items up to and including that point in
the ranking that are found on the gold standard list.
In Figures 1 and 2 we show boxplots of the preci-

sion results across all 50 gold standard experiments.
For both Google Sets and Boo!Wa!, the median pre-
cision at both 5 and 20 was 0. Our method per-
formed significantly better, with median precision of
0.4 and 0.425 at 5 and 20 respectively. For our al-
gorithm, the lower quartile for the precision was 0.2
and 0.15 for 5 and 20 respectively, whereas this was
0 for Google Sets and Boo!Wa! at both precision
levels. Our method returned at least one relevant re-
sult in the top 5 for 82% of the experiments, whereas
Google Sets and Boo!Wa! returned at least one rel-
evant result in the top 5 for only 22% and 38% of
experiments, respectively.
The supplementary material gives a list of the Pre-

cision@5 and Precision@20 values for each of the

Figure 1: Precision@5 across all 50 list growing prob-
lems sampled from Wikipedia. The median is indi-
cated in red.

Figure 2: Precision@20 across all 50 list growing
problems sampled from Wikipedia.

Wikipedia gold standard experiments.

There are some flaws with using Wikipedia lists
as gold standards in these experiments. First, the
gold standards are available online and could poten-
tially be pulled directly without requiring any aggre-
gation of experts across different sites. However, all
three methods had access to the gold standards and
the experiments did not favor any particular method,
thus the comparison is meaningful. A more interest-
ing experiment is one that necessitates aggregation of
experts across different sites; these experiments are
given in Section 4.2. Second, these results are only ac-
curate insofar as the Wikipedia gold standard lists are
complete. We limited our experiments to “featured
lists” to have the best possible gold standards. A
truly objective comparison of methods requires both
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randomly selected list problems and gold standards,
and the Wikipedia lists, while imperfect, provide a
useful evaluation.

4.2 Open-Ended Experiments

It is somewhat artificial to replicate gold standard
lists that are already on the Internet. In this set
of experiments we demonstrate our method’s per-
formance on more realistic, open-ended list growing
problems. For these problems gold standard lists are
not available, and it is essential for the algorithm to
aggregate results across many experts. We focus on
two list growing problems: Boston events and Jewish
foods. In the supplementary material we provide 3
additional open-ended list growing problems: smart-
phone apps, politicians, and machine learning confer-
ences.

4.2.1 Boston Events

In this experiment, the seed items were two Boston
events: “Boston arts festival” and “Boston harbor-
fest.” We ran the algorithm for 5 iterations, yielding
3,090 items. Figure 3 shows the top 50 ranked items,
together with the source site where they were dis-
covered. There is no gold standard list to compare
to directly, but the results are overwhelmingly actual
Boston events. The events were aggregated across a
variety of expert sources, including event sites, blogs,
travel guides, and hotel pages. Figure 4 shows the
full set of results returned from Google Sets with the
same two events as the seed. Not only is the list
very short, but it does not contain any actual Boston
events. Boo!Wa! was unable to return any results for
this seed.

4.2.2 Jewish Foods

In this experiment, the seed items were two Jewish
foods: “Challah” and “Knishes.” Although there are
lists of foods that are typically found in Jewish cui-
sine, there is variety across lists and no authoritative
definition of what is or is not a Jewish food. We com-
pleted 5 iterations of the algorithm, yielding 8,748

Boston events

Boston arts festival

Boston harborfest

Whats going this month
Interview with ann scott
Studio view with dannyo
Tony savarino
Artwalk 2011
Greater boston convention visitors bureau
Cambridge chamber of commerce
Boston tours
3 county fairground
Boston massacre

Figure 4: Google Sets results for the Boston events ex-
periment (seed italicized).

items. Figure 5 shows the top 50 ranked items, to-
gether with their source sites. Almost all of the items
are closely related to Jewish cuisine. The items on
our list came from a wide variety of expert sources
that include blogs, informational sites, bakery sites,
recipe sites, dictionaries, and restaurant menus. In
fact, the top 100 most highly ranked items came from
a total of 52 unique sites. In Figure 6, we show the
complete set of results returned from Google Sets for
the same seed of Jewish foods. Although the results
are foods, they are not closely related to Jewish cui-
sine. Boo!Wa! was unable to return any results for
this seed.

5 Related Work

There is a substantial body of work in areas or tasks
related to the one which we have presented, which
we can only briefly review here. There are a num-
ber of papers on various aspects of “set expansion,”
often for completing lists of entities from structured
lists, like those extracted from Wikipedia (Sarmento
et al., 2007), using rules from natural language pro-
cessing or topic models (Tran et al., 2010; Sadamitsu
et al., 2011), or from opinion corpora (Zhang and
Liu, 2011). The task we explore here is web-based set

expansion (see, for example, Jindal and Roth, 2011)
and methods developed for other set expansion tasks
are not directly applicable.
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Item Source

0Boston arts festival (original seed)
3Cambridge river festival bizbash.com/bostons top 100 events/boston/story/21513/
0Boston harborfest (original seed)

harborfest
1Boston chowderfest celebrateboston.com/events.htm
4Berklee beantown jazz festival pbase.com/caseus/arts&view=tree

the berklee beantown jazz festival,
berklee bean town jazz festival

2Chinatown main street festival blog.charlesgaterealty.com/365-things/?Tag=Boston%20life
www.chinatownmainstreet.org

4th of july boston pops concert & fireworks display travel2boston.us/boston-harborfest-30th-anniversary-[...]
boston 4th of july fireworks & concert

Boston common frog pond bostonmamas.com/2009/06/
ice skating on boston common frog pond

First night boston what-is-there-to-do.com/Boston/Festivals.aspx
Boston dragon boat festival pbase.com/caseus/arts&view=tree

hong kong dragon boat festival of boston
dragon boat festival of boston

Boston tea party re enactment ef.com/ia/destinations/united-states/boston/student-life/
Christopher columbus waterfront park bostonmamas.com/2009/09/
Jimmy fund scooper bowl bizbash.com/bostons top 100 events/boston/story/21513/
Opening our doors day ef.com/ia/destinations/united-states/boston/student-life/
Oktoberfest harvard square & harpoon brewery sheratonbostonhotel.com/boston-festivals-and-events
August moon festival ef.com/ia/destinations/united-states/boston/student-life/
Annual boston wine festival worldtravelguide.net/boston/events
Cambridge carnival soulofamerica.com/boston-events.phtml
Regattabar berklee.edu/events/summer/
Arts on the arcade berklee.edu/events/summer/
Franklin park zoo hotels-rates.com/hotels reservations/property/27353/
Faneuil hall annual tree lighting ceremony ef.com/ia/destinations/united-states/boston/student-life/
Annual oktoberfest and honk festival ef.com/ia/destinations/united-states/boston/student-life/

honk! festival
Boston jazz week telegraph.co.uk/travel/[...]/Boston-attractions.html
Boston ballet celebrateboston.com/events.htm
Fourth of july reading of the declaration of independence ef.com/ia/destinations/united-states/boston/student-life/
Isabella stewart gardner museum hotels-rates.com/hotels reservations/property/27353/
Revere beach sand sculpting festival bizbash.com/bostons top 100 events/boston/story/21513/
Shakespeare on the common boston-discovery-guide.com/boston-event-calendar-[...]
Boston bacon takedown remarkablebostonevents.blogspot.com/[...]
Jazz at the fort berklee.edu/events/summer/
Cambridge dance party cheapthrillsboston.blogspot.com/[...]
Boston celtic music festival ef.com/ia/destinations/united-states/boston/student-life/
Taste of the south end bizbash.com/bostons top 100 events/boston/story/21513/
Greenway open market travel2boston.us/boston-harborfest-30th-anniversary-[...]
Boston winter jubilee ef.com/ia/destinations/united-states/boston/student-life/
Urban ag fair bostonmamas.com/2009/09/
Figment boston festivaltrek.com/festivals-location/USA/Massachusetts/
Boston kite festival bostoneventsinsider.com/2009/06/
Chefs in shorts bizbash.com/bostons top 100 events/boston/story/21513/
Old south meeting house hotels-rates.com/hotels reservations/property/27353/

Figure 3: Items and their source sites from the top of the ranked list for the Boston events experiment.
Superscript numbers indicate the iteration at which the item was added to the seed via implicit feedback.
“[...]” indicates the URL was truncated to fit in the figure. To improve readability, duplicate items were
grouped and placed in italics.
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Item Source

0Challah (original seed)
braided challah

3Potato latkes jewishveg.com/recipes.html
latkes; sweet potato latkes; potato latke

1Blintzes jewfaq.org/food.htm
cheese blintzes; blintz

0Knishes (original seed)
potato knishes; knish

2Noodle kugel pinterest.com/foodnwine/jewish-foods-holidays/
noodle kugel recipe; kugel; sweet noodle kugel

4Tzimmes jewfaq.org/food.htm
carrot tzimmes

Matzo balls jewishveg.com/recipes.html
matzo ball soup; matzo; matzoh balls

Potato kugel challahconnection.com/recipe.asp
Passover recipes lynnescountrykitchen.net/jewish/index.html

hanukkah recipes
Gefilte fish jewfaq.org/food.htm
Honey cake kveller.com/activities/food/Holidays.shtml
Soups, kugels & liver allfreshkosher.com/freezer/blintzes-knishes-burekas.html
Charoset jewishveg.com/recipes.html

haroset
Hamantaschen butterfloureggs.com/recipes/challah/
Matzo meal glattmart.net/en/198-blintzes
Rugelach pinterest.com/foodnwine/jewish-foods-holidays/

rugelach recipe
Matzo brei ilovekatzs.com/breakfast-houston/
Cholent jewfaq.org/food.htm
Sufganiyot kosheronabudget.com/kosher-recipe-exchange-the-complete-list/
Potato pancakes jewishveg.com/recipes.html
Noodle pudding epicurious.com/articlesguides/holidays/[...]/yomkippur recipes
Kreplach allmenus.com/md/pikesville/245371-suburban-house/menu/
Barley soup ecampus.com/love-knishes-irrepressible-guide-jewish/[...]
Mushroom barley zagat.com/r/veselka-manhattan-0/menu

mushroom barley soup
Chopped liver ryedeli.com/food/here
Garlic mashed potatoes tovascatering.com/menu brochure.html
Caponata lynnescountrykitchen.net/jewish/index.html
Compote kveller.com/activities/food/Holidays.shtml
Farfel & mushrooms hungariankosher.com/fb/catering-list.html

farfel
Kasha varnishkes jinsider.com/videos/vid/496-recipes/1867-potato-knishes.html

Figure 5: Items and their source sites from the top of the ranked list for the Jewish foods experiment.

There is good deal of work in the machine learning
community on aggregating ranked lists (e.g., Dwork
et al., 2001). These are lists that are typically al-
ready cleaned, fixed in scope, and ranked by individ-
ual experts, unlike our case. There is also a body of
work on aggregated search (Beg and Ahmad, 2003;
Hsu and Taksa, 2005; Lalmas, 2011), which typically
uses a text query to aggregate results from multi-
ple search engines, or of multiple formats or domains
(e.g. image and news), and returns links to the full

source. Our goal is not to rank URLs but to scrape
out and rank information gleaned from them. There
are many resources for performing a search or query
by example. They often involve using a single ex-
ample of a full document (Chang and Lui, 2001; Liu
et al., 2003; Wang and Lochovsky, 2003; Zhai and
Liu, 2005) or image (Smeulders et al., 2000), in order
to retrieve more documents, structures within docu-
ments, or images. “Query by example” can also refer
to methods of creating formal database queries from
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Jewish foods

Knishes

Challah

Crackers
Dinner rolls
Focaccie
Pains sucres
Pains plats
Biscotti integral de algarroba
Souffle de zanahorias
Tarta de esparragos
Leftover meat casserole
Pan de canela
Focaccia
Sweet hobz
Pranzu rolls
Focacce
Chicken quesadillas
Baked chicken chimichangas
Honey mustard salad dressing
Dixxijiet hobz
Roast partridge
Fanny farmer brownies
Pan pratos
Pan doce
Cea rolls
Flat paes
Hobz dixxijiet

Figure 6: Google Sets results for the Jewish foods exper-
iment (seed italicized).

user input text; none of these is the task we explore
here.

Methods such as Gupta and Sarawagi (2009) and
Pantel et al. (2009) involve growing a list, but require
preprocessing which crawls the web and creates an in-
dex of HTML lists in an unsupervised manner. We
do not preprocess, instead we perform information
extraction online, deterministically, and virtually in-
stantaneously given access to a search engine. There
is no restriction to HTML list structures, or need
for more time consuming learning methods (Freitag,
1998; Soderland et al., 1999). We also do not re-
quire human-labeled web pages like wrapper induc-

tion methods (Kushmerick, 1997). The works of
Wang and Cohen (2007, 2008) at first appear similar
to ours, but differ in many significant ways such as
how the seed is used, the feature space construction,
and the ranking method. We tried the method of
Wang and Cohen (2007, 2008) through their Boo!Wa!
interface, and found that it did not perform well on
our queries.

6 Conclusions

We applied a collection of machine learning tech-
niques to solve a real problem: growing a list using
the Internet. The gold standard experiments showed
that our method can perform well on a wide range
of list growing problems. In our open-ended experi-
ments, we found that the algorithm produced mean-
ingful lists, with information extracted from a wide
variety of sources, that compared favorably with lists
from existing related technology. Finally, we pre-
sented a theoretical bound that justifies our use of
Bayesian Sets in a setting where its feature indepen-
dence assumptions are not met. The problem of ag-
gregating expert knowledge in the form of lists on the
Internet is important in many domains and our algo-
rithm is a promising large scale solution that can be
immediately implemented and used.
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Supplement to Growing a List

This supplementary material expands on the algorithm, experiments, and theory given in the main text
of Growing a List. In Section 1 we give implementation details for our algorithm. In Section 2 we give
further detail on the Wikipedia gold standard experiments, and provide three additional sets of open-ended
experiments (smartphone apps, politicians, and machine learning conferences). In Section 3 we give the proof
of our main theoretical result, Theorem 1, as well as additional theoretical results, including a Hoeffding’s-
based generalization bound.

1 Implementation Details

Source discovery: This step requires submitting the query “term1” “term2” to a search engine. In our ex-
periments we used Google as the search engine, but any index would suffice. We retrieved the top 100 results.

List extraction: For each site found with the combinatorial search, we look for HTML tags around the seed
items. We use the following lines of HTML to illustrate:
<h2><b><a href="example1.com"> Boston Harborfest</a></b></h2>

<b><a href="example2.com"> Jimmy fund scooper bowl </a></b>

<b><a href ="example3.com"> the Boston Arts Festival 2012</a></b>

<h3><b><a href="example4.com"> Boston bacon takedown </a></b></h3>

<a href="example5.com"> Just a url </a>

For each of the two seed items used to discover this source, we search the HTML for the pattern:

<largest set of HTML tags>(up to 5 words) seed item (up to 5 words)<matching end tags>.

In the above example, if the first seed item is “Boston arts festival,” then it matches the pattern with the
HTML tags: <b><a>. If the second seed item is “Boston harborfest,” it matches the pattern with HTML
tags: <h2><b><a>. We then find the largest set of HTML tags that are common to both seed items, for
this site. In this example, “Boston arts festival” does not have the <h2> tag, so the largest set of common
tags is: <b><a>. If there are no HTML tags common to both seed items, we discard the site. Otherwise,
we extract all items on the page that use the same HTML tags. In this example, we extract everything with
both a <b> and an <a> tag, which means “Jimmy fund scooper bowl” and “Boston bacon takedown,”
but not “Just a url.”

In our experiments, to avoid search spam sites with extremely long lists of unrelated keywords, we reject
sources that return more than 300 items. We additionally applied a basic filter rejecting items of more than
60 characters or items consisting of only numbers and punctuation. No other processing was done.

Feature Space: We do separate Google searches for each item we have extracted to find the set of webpages
containing it. We use quotes around the query term and discard results when Google’s spelling correction
system modifies the query. Our ranking algorithm gauges whether an item appears on a similar set of web-
sites to the seed, so it is essential to consider the websites without an overlap between the item and the seed.
We retrieve the top 300 search results.

Ranking: Recall the scoring function that we use to rank retrieved items by relevance:

fS(x) =
1

Z(m)

N
∑

j=1

xj log
αj +

∑m
s=1 x

s
j

αj

+ (1− xj) log
βj +m−

∑m
s=1 x

s
j

βj

. (S1)
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As is typically the case in Bayesian analysis, there are several options for selecting the prior hyperparameters
αj and βj , including the non-informative prior αj = βj = 1. Heller & Ghahramani (2006) recommend using
the empirical distribution. Given n items to score x1, . . . , xn, we let

αj = κ1

(

1

n

n
∑

i=1

xi
j

)

, βj = κ2

(

1−
1

n

n
∑

i=1

xi
j

)

. (S2)

The first term in the sum in (S1) corresponds to the amount of score obtained by x for the co-occurrence
of feature j with the seed, and the second term corresponds to the amount of score obtained for the non-
occurrence of feature j with the seed. When αj = βj , the amount of score obtained when xj and the seed
both occur is equivalent to the amount of score obtained when xj and the seed both do not occur. Increasing
βj relative to αj gives higher emphasis to co-occurring features. This is useful when the feature vectors are
very sparse, as they are here; thus we take κ2 > κ1. Specifically, in all of our experiments we took κ2 = 5
and κ1 = 2, similarly to that done in Heller & Ghahramani (2006).

Feedback: To avoid filling the seed with duplicate items like “Boston arts festival” and “The boston arts
festival 2012,” in our implicit feedback we do not add items to the seed if they are a sub- or super-string of
a current seed item.

Our algorithm leverages the speed of Google, however, Google creates an artificial restriction on the
number of queries one can make per minute. This, and the speed of our internet connection in downloading
webpages, are the only two slow steps in our method - when the webpages are already downloaded, the
whole process takes seconds. Both issues would be fixed if we had our own index and search engine. On
the other hand, for curating master lists, the results are just as useful whether or not they are obtained
instantaneously.

2 Additional Experimental Results

Here we give additional details relating to the Wikipedia gold standard experiments, and provide results for
additional open-ended experiments.

2.1 Wikipedia Gold Standard Experiments

In Table 2.1 we give a completion enumeration of the results from the Wikipedia gold standard experiments.
For each list growing problem, we provide the Precision@5 and the Precision@20 for all three methods (our
method, Google Sets, and Boo!Wa!). This table illustrates both the diversity of the sampled list growing
problems and the substantially improved performance of our method compared to the others.

2.2 Additional open-ended experiments

We present results from three additional open-ended experiments: smartphone apps, politicians, and machine
learning conferences. These experiments were done with the same algorithm and parameter settings as all
of the experiments in the main text; only the seed items were changed.

2.2.1 Apps

In this experiment, we began with two popular apps as the seed items: “Word lens” and “Aroundme.” We
ran the algorithm for 5 iterations, throughout which 7,630 items were extracted. Figure S1 shows the top 50
most highly ranked items, together with the source site where they were discovered. Not only are the results
almost exclusively apps, but they come from a wide variety of sources including personal sites, review sites,
blogs, and news sites. In Figure S3, we show the complete list of results returned from Google Sets for the
same seed, which contains a small list of apps. Boo!Wa! was unable to return any results for this seed.
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Table S1: Results for all 50 experiments with Wikipedia gold standards. “Us” indicates our method, “BW”
indicates Boo!Wa!, and “GS” indicates Google Sets. “List of” has been removed from the title of each
Wikipedia article, for brevity.

Precision@5 Precision@20

Wikipedia gold standard list Us BW GS Us BW GS

Awards and nominations received by Chris Brown 1 1 0 0.95 0.95 0
Medal of Honor recipients educated at the United States Military Academy 0.2 0 0 0.2 0.05 0
Nine Inch Nails concert tours 0.4 0 0 0.55 0 0
Bleach episodes (season 4) 0 0 0 0 0 0
Storms in the 2005 Atlantic hurricane season 0.2 0 0 0.2 0 0
Houses and associated buildings by John Douglas 0.6 0.8 0 0.55 0.7 0
Kansas Jayhawks head football coaches 1 0.8 0 1 0.95 0
Kraft Nabisco Championship champions 0.2 0 0 0.15 0 0
Washington state symbols 0 0 0 0 0 0
World Heritage Sites of the United Kingdom 0.4 0 0 0.35 0 0
Philadelphia Eagles head coaches 0 0 0 0.05 0 0
Los Angeles Dodgers first-round draft picks 0.8 0 0 0.5 0 0.05
New York Rangers head coaches 0.2 0.8 0 0.2 0.75 0
African-American Medal of Honor recipients 1 0 0 0.95 0 0
Current sovereign monarchs 0.6 0 0 0.5 0 0
Brotherhood episodes 1 0.4 0 0.65 0.3 0
Knight’s Cross of the Iron Cross with Oak Leaves recipients (1945) 0 0 0 0 0 0.05
Pittsburgh Steelers first-round draft picks 0.2 0 0 0.5 0 0
Tallest buildings in New Orleans 0.4 0 0.6 0.4 0 0.15
Asian XI ODI cricketers 0.2 0 0.4 0.1 0 0.15
East Carolina Pirates head football coaches 0.2 0.2 0 0.05 0.05 0
Former championships in WWE 0.4 0 0.4 0.35 0.05 0.3
Space telescopes 0 0 0 0 0 0
Churches preserved by the Churches Conservation Trust in Northern England 0 0 0 0 0 0
Canadian Idol finalists 0.6 0 0.2 0.65 0 0.2
Wilfrid Laurier University people 1 0 0 0.9 0 0
Wario video games 0.2 0.6 0.8 0.25 0.35 0.4
Governors of Washington 0.8 0 0 0.6 0 0
Buffalo Sabres players 0.2 0 0 0.15 0 0
Australia Twenty20 International cricketers 0.4 0 1 0.5 0 0.7
Awards and nominations received by Madonna 1 1 0.2 0.95 1 0.05
Yukon Quest competitors 0.6 0.4 0.2 0.5 0.55 0.05
Arsenal F.C. players 0.8 0 0 0.95 0 0
Victoria Cross recipients of the Royal Navy 0.2 0 0 0.25 0 0
Formula One drivers 0 0.6 1 0 0.65 0.6
Washington & Jefferson College buildings 0 0 0 0 0 0
X-Men video games 0.4 0.8 0 0.3 0.3 0
Governors of Florida 0.6 0 0 0.5 0 0
The Simpsons video games 0 0 0 0.05 0 0
Governors of New Jersey 0.8 0.2 0 0.5 0.05 0
Uncharted characters 0.8 0 0.8 0.5 0 0.65
Miami Marlins first-round draft picks 0.8 1 0 0.6 0.3 0
Tallest buildings in Dallas 0.4 0.2 0 0.45 0.05 0
Cities and towns in California 0.8 0.6 1 0.8 0.15 0.9
Olympic medalists in badminton 0.6 0 0 0.35 0 0
Delegates to the Millennium Summit 0.6 0.6 0 0.8 0.3 0
Honorary Fellows of Jesus College, Oxford 0.8 0.4 0 0.95 0.6 0
Highlander: The Raven episodes 0.2 1 0 0.1 0.9 0
Voice actors in the Grand Theft Auto series 0.2 0 0 0.2 0 0
Medal of Honor recipients for the Vietnam War 0.8 0.8 0 0.95 0.3 0

2.2.2 Politicians

In this experiment, we began with two politicians as the seed items: “Barack obama” and “Scott brown.”
We ran the algorithm for 5 iterations, yielding 8,384 items. Figure S2 shows the top 50 most highly ranked
items, together with the source site where they were discovered. All of the items in our list are names of
politicians or politically influential individuals. In Figure S4, we show the results returned from Google Sets
for the same seed, which contain only a few people related to politics. Boo!Wa! was unable to return any
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Item Source
0Word lens (original seed)
2Read it later iapps.scenebeta.com/noticia/ultrasn0w

read later
0Aroundme (original seed)
3Instapaper time.com/time/specials/packages/completelist/0,29569,2044480,00.html

instapaper app
4Evernote crosswa.lk/users/amberreyn/iphone

evernote app
1Flipboard crosswa.lk/users/amberreyn/iphone
Dolphin browser 1mobile.com/maps-4530.html
Skitch worldwidelearn.com/education-articles/top-50-apps-for-time-management.html
Facebook messenger crosswa.lk/users/amberreyn/iphone
Zite adriandavis.com/blog/bid/118125/What-s-Installed-on-My-iPad
Tweetbot duckduckgo.com/1/c/IOS software
Google currents secure.crosswa.lk/users/osservatorio/iphone
Springpad time.com/time/specials/packages/completelist/0,29569,2044480,00.html
Imessage iphoneae.com/cydia/ihacks.html
Retina display twicpic.blogspot.com/
Ibooks crosswa.lk/users/amberreyn/iphone
Dropbox mobileappreviews.craveonline.com/reviews/apple/191-word-lens

dropbox (app); dropbox app
Marco arment wired.com/gadgetlab/tag/instapaper/
Doubletwist appolicious.com/finance/articles/4500-new-smartphone-[...]-download-these-apps-first
Google latitude iapps.scenebeta.com/noticia/ultrasn0w
Gowalla mobileappreviews.craveonline.com/reviews/apple/191-word-lens
Skype for ipad secure.crosswa.lk/users/osservatorio/iphone
Hulu plus appadvice.com/appnn/2010/12/expect-2011-app-store
Icloud thetechcheck.com/tag/iphone-apps/
Qik video 1mobile.com/maps-4530.html

qik
Find my friends oradba.ch/2012/05/ipad-apps/
Skydrive crosswa.lk/users/MyCsPiTTa/iphone
Google shopper mobileappreviews.craveonline.com/reviews/apple/191-word-lens
Swype techcrunch.com/2011/01/21/congratulations-crunchies-winners-twitter-takes-best-[...]
Pulse news reader techcrunch.com/2011/01/21/congratulations-crunchies-winners-twitter-takes-best-[...]
Spotify crosswa.lk/users/amberreyn/iphone
Readability tips.flipboard.com/2011/12/08/iphone-user-guide/
Apple app store socialmediaclub.org/blogs/from-the-clubhouse/finding-’perfect-app’-your-mobile-device
Tweetdeck iapps.scenebeta.com/noticia/ultrasn0w
Angry birds space appys.com/reviews/aroundme/
Smartwatch theverge.com/2012/3/3/2839985/[...]-client-free-mac-app-store
Vlingo mobileappreviews.craveonline.com/reviews/apple/191-word-lens
Rdio techcrunch.com/2011/01/21/congratulations-crunchies-winners-twitter-takes-best-[...]
Google goggles sofialys.com/newsletter sofialys/
Xmarks 40tech.com/tag/read-it-later/
Ios 6 zomobo.net/evernote-hello
Ibooks author duckduckgo.com/1/c/IOS software
Google drive geekandgirliestuff.blogspot.com/2012/01/instapaper-readitlater-readability.html
Facetime bgpublishers.com.au/2011/10/

Figure S1: Items and their source sites from the top of the ranked list for the apps experiment.

results for this seed.

2.2.3 Machine Learning Conferences

In this experiment, we began with two machine learning conferences as the seed items: “International
conference on machine learning,” and “Neural information processing systems.” We ran the algorithm for
5 iterations, yielding 3,791 items. Figure S5 shows the top 50 most highly ranked items, together with
the source site where they were discovered. A number of popular machine learning conferences, as well as
journals, are at the top of the list. Many of the sources are the sites of machine learning researchers. In
Figure S6, we show the results returned from Google Sets for the same seed of two conferences. Google Sets
returned a small list containing some conferences, but the list is less complete and some of the conferences
are not closely related to machine learning. Boo!Wa! was unable to return any results for this seed.

3 Proofs and Additional Theoretical Results

In this section, we provide an alternative to Theorem 1 that uses Hoeffding’s inequality (Theorem S1), the
proof of Theorem 1, comments on the effect of the prior (γmin) on generalization, and an example showing
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Item Source
0Barack obama (original seed)

obama
0Scott brown (original seed)
1John kerry publicpolicypolling.com/main/scott-brown/
3Barney frank masslive.com/politics/index.ssf/2012/03/sens scott brown and john kerr.html
4John mccain publicpolicypolling.com/main/scott-brown/

mccain
2Nancy pelosi theladypatriot.com/

pelosi
Mitch mcconnell publicpolicypolling.com/main/scott-brown/
Joe lieberman publicpolicypolling.com/main/scott-brown/
Mike huckabee publicpolicypolling.com/main/scott-brown/
Mitt romney masslive.com/politics/index.ssf/2012/04/power of incumbency boasts sen.html
Bill clinton mediaite.com/online/nothing-but-net-sen-scott-brown-makes-a-half-court-shot-at-local-community-[...]
John boehner audio.wrko.com/a/50487720/why-did-scott-brown-agree-with-barack-obama-s-recess-appointment.htm

boehner
Hillary clinton blogs.wsj.com/washwire/2010/01/29/all-in-the-family-obama-related-to-scott-brown/
Jon kyl tpmdc.talkingpointsmemo.com/nancy-pelosi/2010/08/
Joe biden publicpolicypolling.com/main/scott-brown/
Rudy giuliani publicpolicypolling.com/main/scott-brown/
Harry reid theladypatriot.com/
Olympia snowe publicpolicypolling.com/main/scott-brown/
Lindsey graham politico.com/news/stories/0410/36112.html
Newt gingrich masspoliticsprofs.com/tag/barack-obama/
Jim demint theladypatriot.com/
Arlen specter theladypatriot.com/
Dick cheney blogs.wsj.com/washwire/2010/01/29/all-in-the-family-obama-related-to-scott-brown/
George w bush wellgroomedmanscape.com/tag/scott-brown/

george w. bush
Eric holder disruptthenarrative.com/category/john-kerry/
Dennis kucinich publicpolicypolling.com/main/scott-brown/
Timothy geithner tpmdc.talkingpointsmemo.com/john-mccain/
Barbara boxer publicpolicypolling.com/main/scott-brown/
Tom coburn itmakessenseblog.com/tag/nancy-pelosi/
Orrin hatch publicpolicypolling.com/main/scott-brown/
Michael bloomberg masspoliticsprofs.com/tag/barack-obama/
Elena kagan audio.wrko.com/a/50487720/why-did-scott-brown-agree-with-barack-obama-s-recess-appointment.htm
Maxine waters polination.wordpress.com/category/nancy-pelosi/
Al sharpton porkbarrel.tv/
Rick santorum audio.wrko.com/a/50487720/why-did-scott-brown-agree-with-barack-obama-s-recess-appointment.htm
Ted kennedy newomenforchange.org/tag/scott-brown/
Janet napolitano disruptthenarrative.com/category/john-kerry/
Jeff sessions tpmdc.talkingpointsmemo.com/john-mccain/
Jon huntsman publicpolicypolling.com/main/scott-brown/
Michele bachmann publicpolicypolling.com/main/scott-brown/
Al gore publicpolicypolling.com/main/scott-brown/
Rick perry publicpolicypolling.com/main/scott-brown/
Eric cantor publicpolicypolling.com/main/scott-brown/
Ben nelson publicpolicypolling.com/main/scott-brown/
Karl rove politico.com/news/stories/1010/43644.html

Figure S2: Items and their source sites from the top of the ranked list for the politicians experiment.

that Bayesian Sets does not satisfy the requirements for “uniform stability” defined by Bousquet & Elisseeff
(2002).

3.1 An Alternate Generalization Bound

We begin by showing that the normalized score fS(x) in (S1) takes values only on [0, 1].

Lemma S1. 0 ≤ fS(x) ≤ 1.
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Apps

Word lens
Aroundme
Lifestyle
View in itunes
Itunes
Jcpenney weekly deals
Coolibah digital scrapbooking
Epicurious recipes shopping list
170000 recipes bigoven
Cf iviewer
Txtcrypt
Speak4it
Off remote free
Catholic calendar
Gucci
Board
Ziprealty real estate
Allsaints spitalfields
Lancome make up
Pottery barn catalog viewer
Amazon mobile
Gravity clock
Dace
Zara
Style com
Iridiumhd
Ebanner lite
Mymemoir
Rezepte
Maxjournal for ipad
Chakra tuning
My secret diary
Pretty planner
Remodelista
Ipause

Figure S3: Google Sets results for the apps experiment
(seed italicized).

Politicians

Barack obama
Scott brown
Our picks movies
Sex
Department of justice
Viral video
Africa
One persons trash
Donald trump
New mom confessions
Nonfiction
Libya
Sarah palin
Mtv
Alan greenspan
Great recession
Life stories
Jon hamm
Islam
The killing
American idol
Middle east
Celebrity
Tea parties
Budget showdown

Figure S4: Google Sets results for the politicians experi-
ment (seed italicized).

Proof. It is easy to see that fS(x) ≥ 0. To see that fS(x) ≤ 1,
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Item Source
3Machine learning journal cs.columbia.edu/∼rocco/papers/papers.html

Machine learning
0Neural information processing systems (original seed)

4advances in neural information processing
advances in neural information processing systems
advances in neural information
advances in neural information processing systems (nips)
nips (2007); nips (2008); nips 2007; nips 2009
nips, 2007; nips, 2008
neural information processing systems (nips 2007)

0International conference on machine learning (original seed)
icml 2005; icml 2006; icml (2010); icml, 2010
international conference on machine learning (icml), 2009
international conference on machine learning, icml (2005)
icml 2010; icml-08
international conference on machine learning (icml), 2008
international conference on machine learning (icml) (2008)
27th international conference on machine learning

1European conference on machine learning userpage.fu-berlin.de/mtoussai/publications/index.html
2conference on machine learning (ecml)

Journal of machine learning research cs.princeton.edu/∼blei/publications.html
journal of machine learning research (jmlr)
machine learning research

Artificial intelligence and statistics cs.princeton.edu/∼blei/publications.html
international conference on artificial intelligence and statistics

Conference on learning theory cs.cmu.edu/∼lafferty/publications.html
Journal of artificial intelligence research web.eecs.umich.edu/∼baveja/rlpubs.html
Conference on uncertainty in artificial intelligence (uai) cs.duke.edu/∼johns/

uncertainty in artificial intelligence (uai)
conference on uncertainty in artificial intelligence
uncertainty in artificial intelligence [uai]
uncertainty in artificial intelligence

Computer vision and pattern recognition cs.princeton.edu/∼blei/publications.html
Ieee international conference on data mining (icdm) cis.upenn.edu/∼ungar/Datamining/publications.html
Learning in graphical models cseweb.ucsd.edu/∼saul/papers.html
Aaai (2006) research.google.com/pubs/ArtificialIntelligence[...]

national conference on artificial intelligence
Proceedings of the sixth acm sigkdd international conference web.engr.oregonstate.edu/∼tgd/publications/index.html

on knowledge discovery & data mining
Machine learning summer school arnetminer.org/page/conference-rank/html/ML[...]
International joint conference on artificial intelligence userpage.fu-berlin.de/mtoussai/publications/index.html

Figure S5: Items and their source sites from the top of the ranked list for the machine learning conferences experiment.

Machine learning conferences

International conference on machine learning
Neural information processing systems
Society for neuroscience
Vision sciences society
Optical society of america
Japan neuroscience society
Computationalneuroscience organization
Japan neural network society
Institute of image information television engineers
Vision society of japan
American association for artificial intelligence
Psychonomic society
Association for psychological science
Decision hyperplane
San mateo
Computational and systems neuroscience
International conference on automated planning and scheduling
Uncertainty in artificial intelligence
International joint conference on artificial intelligence

Figure S6: Google Sets results for the machine learning conferences experiment (seed italicized).

Now we provide the alternative to Theorem 1 that uses Hoeffding’s inequality.
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Theorem S1. With probability at least 1− δ on the draw of the training set S,

Ex [fS(x)] ≥
1

m

m
∑

s=1

fS(x
s)−

√

1

2m
log

(

2N

δ

)

.

Proof. For convenience, denote the seed sample average as µj :=
1
m

∑m
s=1 x

s
j , and the probability that xj = 1

as pj := Ex[xj ]. Then,

1

m

m
∑

s=1

fS(x
s)− Ex [fS(x)]

=
1

N log
(

γmin+m
γmin

)

N
∑

j=1

(µj − pj) log
αj +mµj

αj

+ (pj − µj) log
βj +m(1− µj)

βj

≤
1

N

N
∑

j=1

|µj − pj |. (S3)

For any particular feature j, Hoeffding’s inequality (Hoeffding, 1963) bounds the difference between the
empirical average and the expected value:

P(|µj − pj | > ǫ) ≤ 2 exp
(

−2mǫ2
)

. (S4)

We then apply the union bound to bound the average over features:

P





1

N

N
∑

j=1

|µj − pj | > ǫ



 ≤ P





N
⋃

j=1

{|µj − pj | > ǫ}





≤

N
∑

j=1

P (|µj − pj | > ǫ)

≤ 2N exp
(

−2mǫ2
)

. (S5)

Thus,

P

(

1

m

m
∑

s=1

fS(x
s)− Ex [fS(x)] > ǫ

)

≤ 2N exp
(

−2mǫ2
)

, (S6)

and the theorem follows directly.

The bound in Theorem S1 has a tighter dependence on δ than the bound in Theorem 1, however it
depends inversely on N , the number of features. We prefer the bound in Theorem 1, which is independent
of N .

3.2 Proof of the Main Theoretical Result

We now present the proof of Theorem 1. The result uses the algorithmic stability bounds of Bousquet &
Elisseeff (2002), specifically the bound for pointwise hypothesis stability. We begin by defining an appropriate
loss function. Suppose x and S were drawn from the same distribution D. Then, we wish for fS(x) to be as
large as possible. Because fS(x) ∈ [0, 1], an appropriate metric for the loss in using fS to score x is:

ℓ(fS , x) = 1− fS(x). (S7)

Further, ℓ(fS , x) ∈ [0, 1].
For algorithmic stability analysis, we will consider how the algorithm’s performance changes when an

element is removed from the training set. We define a modified training set in which the i’th element has
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been removed: S\i := {x1, . . . , xi−1, xi+1, . . . , xm}. We then define the score of x according to the modified
training set:

fS\i(x) =
1

Z(m− 1)

N
∑

j=1

xj log
αj +

∑

s 6=i x
s
j

αj

+ (1− xj) log
βj + (m− 1)−

∑

s 6=i x
s
j

βj

, (S8)

where

Z(m− 1) = N log

(

γmin +m− 1

γmin

)

. (S9)

We further define the loss using the modified training set:

ℓ(fS\i , x) = 1− fS\i(x). (S10)

The general idea of algorithmic stability is that if the results of an algorithm do not depend too heavily on any
one element of the training set, the algorithm will be able to generalize. One way to quantify the dependence
of an algorithm on the training set is to examine how the results change when the training set is perturbed,
for example by removing an element from the training set. The following definition of pointwise hypothesis
stability, taken from Bousquet & Elisseeff (2002), states that an algorithm has pointwise hypothesis stability
if, on expectation, the results of the algorithm do not change too much when an element of the training set
is removed.

Definition S1 (Bousquet & Elisseeff, 2002). An algorithm has pointwise hypothesis stability η with respect
to the loss function ℓ if the following holds

∀i ∈ {1, . . . ,m}, ES

[

|ℓ(fS , x
i)− ℓ(fS\i , xi)|

]

≤ η. (S11)

The algorithm is said to be stable if η scales with 1
m
.

In our theorem, we suppose that all of the data belong to the same class of “relevant” items. The
framework of Bousquet & Elisseeff (2002) can easily be adapted to the single-class setting, for example by
framing it as a regression problem where all of the data points have the identical “true” output value 1. The
following theorem comes from Bousquet & Elisseeff (2002), with the notation adapted to our setting.

Theorem S2 (Bousquet & Elisseeff, 2002). If an algorithm has pointwise hypothesis stability η with respect
to a loss function ℓ such that 0 ≤ ℓ(·, ·) ≤ 1, we have with probability at least 1− δ,

Ex [ℓ(fS , x)] ≤
1

m

m
∑

i=1

ℓ(fS , x
i) +

√

1 + 12mη

2mδ
. (S12)

We now show that Bayesian Sets satisfies the conditions of Definition S1, and determine the corresponding
η. The proof of Theorem 1 comes from inserting our findings for η into Theorem S2. We begin with a lemma
providing a bound on the central moments of a Binomial random variable.

Lemma S2. Let t ∼ Binomial(m,p) and let µk = E
[

(t− E[t])k
]

be the kth central moment. For integer

k ≥ 1, µ2k and µ2k+1 are O
(

mk
)

.

Proof. We will use induction. For k = 1, the central moments are well known (e.g., Johnson et al., 2005):
µ2 = mp(1 − p) and µ3 = mp(1 − p)(1 − 2p), which are both O(m). We rely on the following recursion
formula (Johnson et al., 2005; Romanovsky, 1923):

µs+1 = p(1− p)

(

dµs

dp
+msµs−1

)

. (S13)

Because µ2 and µ3 are polynomials in p, their derivatives will also be polynomials in p. This recursion makes
it clear that for all s, µs is a polynomial in p whose coefficients include terms involving m.
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For the inductive step, suppose that the result holds for k = s. That is, µ2s and µ2s+1 are O(ms). Then,
by (S13),

µ2(s+1) = p(1− p)

(

dµ2s+1

dp
+ (2s+ 1)mµ2s

)

. (S14)

Differentiating µ2s+1 with respect to p yields a term that is O(ms). The term (2s+1)mµ2s is O(ms+1), and
thus µ2(s+1) is O(ms+1). Also,

µ2(s+1)+1 = p(1− p)

(

dµ2(s+1)

dp
+ 2(s+ 1)mµ2s+1

)

. (S15)

Here
dµ2(s+1)

dp
is O(ms+1) and 2(s+ 1)mµ2s+1 is O(ms+1), and thus µ2(s+1)+1 is O(ms+1).

This shows that if the result holds for k = s then it must also hold for k = s + 1 which completes the
proof.

The next lemma provides a stable, O
(

1
m

)

, bound on the expected value of an important function of a
binomial random variable.

Lemma S3. For t ∼ Binomial(m, p) and α > 0,

E

[

1

α+ t

]

=
1

α+mp
+O

(

1

m2

)

. (S16)

Proof. We expand 1
α+t

at t = mp:

E

[

1

α+ t

]

= E

[ ∞
∑

i=0

(−1)i
(t−mp)i

(α+mp)i+1

]

=

∞
∑

i=0

(−1)i
E
[

(t−mp)i
]

(α+mp)i+1

=
1

α+mp
+

∞
∑

i=2

(−1)i
µi

(α+mp)i+1
(S17)

where µi is the ith central moment and we recognize that µ1 = 0. By Lemma S2,

µi

(α+mp)i+1
=

O
(

m⌊ i
2 ⌋
)

O (mi+1)
= O

(

m⌊ i
2 ⌋−i−1

)

. (S18)

The alternating sum in (S17) can be split into two sums:

∞
∑

i=2

(−1)i
µi

(α+mp)i+1
=

∞
∑

i=2

O
(

m⌊ i
2 ⌋−i−1

)

=

∞
∑

i=2

O

(

1

mi

)

+

∞
∑

i=3

O

(

1

mi

)

. (S19)

These are, for m large enough, bounded by a geometric series that converges to O
(

1
m2

)

.

The following three lemmas provide results that will be useful for proving the main lemma, Lemma S7.

Lemma S4. For all α > 0,

g(α,m) :=
log
(

α+m
α

)

log
(

α+m−1
α

) (S20)

is monotonically non-decreasing in α for any fixed m ≥ 2.
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Proof. Define a = m−1
α

and b = m
m−1 . Observe that a ≥ 0 and b ≥ 1, and that for fixed m, a is inversely

proportional to α. We reparameterize (S20) to

g(a, b) :=
log (ab+ 1)

log (a+ 1)
. (S21)

To prove the lemma, it is sufficient to show that g(a, b) is monotonically non-increasing in a for any fixed
b ≥ 1. Well,

∂g(a, b)

∂a
=

b
ab+1 log (a+ 1)− 1

a+1 log (ab+ 1)

(log (a+ 1))
2 ,

so ∂g(a,b)
∂a

≤ 0 if and only if

h(a, b) := (ab+ 1) log (ab+ 1)− b(a+ 1) log (a+ 1) ≥ 0. (S22)

h(a, 1) = (a+ 1) log (a+ 1)− (a+ 1) log (a+ 1) = 0, and,

∂h(a, b)

∂b
= a log (ab+ 1) + a− (a+ 1) log (a+ 1)

= a (log (ab+ 1)− log (a+ 1)) + (a− log (a+ 1))

≥ 0 ∀a ≥ 0,

because b ≥ 1 and a ≥ log(1 + a) ∀a ≥ 0. This shows that (S22) holds ∀a ≥ 0, b ≥ 1, which proves the
lemma.

Lemma S5. For any m ≥ 2, t ∈ [0,m− 1], α > 0, and γmin ∈ (0, α],

1

Z(m)
log

α+ t+ 1

α
≥

1

Z(m− 1)
log

α+ t

α
. (S23)

Proof. Denote,

g(t;m,α) :=
1

Z(m)
log

α+ t+ 1

α
−

1

Z(m− 1)
log

α+ t

α
. (S24)

By Lemma S4 and γmin ≤ α, for any α > 0 and for any m ≥ 2,

log
(

α+m
α

)

log
(

α+m−1
α

) ≥
log
(

γmin+m
γmin

)

log
(

γmin+m−1
γmin

) =
Z(m)

Z(m− 1)
.

Thus,
log
(

α+m
α

)

Z(m)
≥

log
(

α+m−1
α

)

Z(m− 1)
, (S25)

which shows

g(m− 1;m,α) =
1

Z(m)
log

α+m

α
−

1

Z(m− 1)
log

α+m− 1

α
≥ 0. (S26)

Furthermore, because Z(m) > Z(m− 1),

∂g(t;m,α)

∂t
=

1

Z(m)

1

α+ t+ 1
−

1

Z(m− 1)

1

α+ t
< 0, (S27)

for all t ≥ 0. Equations S26 and S27 together show that g(t;m,α) ≥ 0 for all t ∈ [0,m− 1],m ≥ 2, proving
the lemma.

Lemma S6. For any m ≥ 2, t ∈ [0,m− 1], β > 0, and γmin ∈ (0, β],

1

Z(m)
log

β +m− t

β
≥

1

Z(m− 1)
log

β +m− 1− t

β
. (S28)
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Proof. Let t̃ = m− t− 1. Then, t̃ ∈ [0,m− 1] and by Lemma S5, replacing α with β,

1

Z(m)
log

β + t̃+ 1

β
≥

1

Z(m− 1)
log

β + t̃

β
. (S29)

The next lemma is the key lemma that shows Bayesian Sets satisfies pointwise hypothesis stability,
allowing us to apply Theorem S2.

Lemma S7. The Bayesian Sets algorithm satisfies the conditions for pointwise hypothesis stability with

η =
1

log
(

γmin+m−1
γmin

)

(γmin + (m− 1)pmin)
+O

(

1

m2 logm

)

. (S30)

Proof.

ES |ℓ(fS , x
i)− ℓ(fS\i , xi)|

= ES

∣

∣fS\i(xi)− fS(x
i)
∣

∣

= ES

∣

∣

∣

∣

∣

∣

1

Z(m− 1)

N
∑

j=1

[

xi
j log

αj +
∑

s 6=i x
s
j

αj

+ (1− xi
j) log

βj + (m− 1)−
∑

s 6=i x
s
j

βj

]

−
1

Z(m)

N
∑

j=1

[

xi
j log

αj +
∑m

s=1 x
s
j

αj

+ (1− xi
j) log

βj +m−
∑m

s=1 x
s
j

βj

]

∣

∣

∣

∣

∣

∣

≤ ES

N
∑

j=1

xi
j

∣

∣

∣

∣

∣

1

Z(m− 1)
log

αj +
∑

s 6=i x
s
j

αj

−
1

Z(m)
log

αj +
∑m

s=1 x
s
j

αj

∣

∣

∣

∣

∣

+ (1− xi
j)

∣

∣

∣

∣

∣

1

Z(m− 1)
log

βj + (m− 1)−
∑

s 6=i x
s
j

βj

−
1

Z(m)
log

βj +m−
∑m

s=1 x
s
j

βj

∣

∣

∣

∣

∣

(S31)

:= ES

N
∑

j=1

xi
jterm

1
j + (1− xi

j)term
2
j (S32)

=

N
∑

j=1

Ex1
j
,...,xm

j

[

xi
jterm

1
j + (1− xi

j)term
2
j

]

=

N
∑

j=1

E
x
s 6=i

j

[

term1
j |x

i
j = 1

]

P
(

xi
j = 1

)

+ E
x
s 6=i

j

[

term2
j |x

i
j = 0

]

P
(

xi
j = 0

)

≤

N
∑

j=1

max
{

E
x
s 6=i

j

[

term1
j |x

i
j = 1

]

,E
x
s 6=i

j

[

term2
j |x

i
j = 0

]

}

, (S33)

where (S31) uses the triangle inequality, and in (S32) we define term1
j and term2

j for notational convenience.
Now consider each term in (S33) separately,

E
x
s 6=i

j

[

term1
j |x

i
j = 1

]

= E
x
s 6=i

j

∣

∣

∣

∣

1

Z(m− 1)
log

αj +
∑

s 6=i x
s
j

αj

−
1

Z(m)
log

αj +
∑

s 6=i x
s
j + 1

αj

∣

∣

∣

∣

= E
x
s 6=i

j

[

1

Z(m)
log

αj +
∑

s 6=i x
s
j + 1

αj

−
1

Z(m− 1)
log

αj +
∑

s 6=i x
s
j

αj

]

, (S34)

where we have shown in Lemma S5 that this quantity is non-negative. Because {xs} are independent, {xs
j}

are independent for fixed j. We can consider {xs
j}s 6=i to be a collection ofm−1 independent Bernoulli random
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variables with probability of success pj = Px∼D(xj = 1), the marginal distribution. Let t =
∑

s 6=i x
s
j , then

t ∼ Binomial(m− 1, pj). Continuing (S34),

E
x
s 6=i

j

[

term1
j |x

i
j = 1

]

= Et∼Bin(m−1,pj)

[

1

Z(m)
log

αj + t+ 1

αj

−
1

Z(m− 1)
log

αj + t

αj

]

≤
1

Z(m− 1)
Et∼Bin(m−1,pj)

[

log
αj + t+ 1

αj + t

]

=
1

Z(m− 1)
Et∼Bin(m−1,pj)

[

log

(

1 +
1

αj + t

)]

≤
1

Z(m− 1)
log

(

1 + Et∼Bin(m−1,pj)

[

1

αj + t

])

=
1

Z(m− 1)
log

(

1 +
1

αj + (m− 1)pj
+O

(

1

m2

))

. (S35)

The second line uses Z(m) ≥ Z(m−1), the fourth line uses Jensen’s inequality, and the fifth line uses Lemma
S3. Now we turn to the other term.

E
x
s 6=i

j

[

term2
j |x

i
j = 0

]

= E
x
s 6=i

j

∣

∣

∣

∣

1

Z(m− 1)
log

βj + (m− 1)−
∑

s 6=i x
s
j

βj

−
1

Z(m)
log

βj +m−
∑

s 6=i x
s
j

βj

∣

∣

∣

∣

= E
x
s 6=i

j

[

1

Z(m)
log

βj +m−
∑

s 6=i x
s
j

βj

−
1

Z(m− 1)
log

βj + (m− 1)−
∑

s 6=i x
s
j

βj

]

. (S36)

We have shown in Lemma S6 that this quantity is non-negative. Let qj = 1− pj . Let t = m− 1−
∑

s 6=i x
s
j ,

then t ∼ Binomial(m− 1, qj). Continuing (S36):

E
x
s 6=i

j

[

term2
j |x

i
j = 0

]

≤
1

Z(m− 1)
Et∼Bin(m−1,qj)

[

log
βj + t+ 1

βj + t

]

≤
1

Z(m− 1)
log

(

1 +
1

βj + (m− 1)qj
+O

(

1

m2

))

. (S37)

where the steps are as with (S35). We now take (S35) and (S37) and use them to continue (S33):

ES |ℓ(fS , x
i)− ℓ(fS\i , xi)|

≤
N
∑

j=1

max

{

1

Z(m− 1)
log

(

1 +
1

αj + (m− 1)pj
+O

(

1

m2

))

,

1

Z(m− 1)
log

(

1 +
1

βj + (m− 1)qj
+O

(

1

m2

))}

≤

N
∑

j=1

1

Z(m− 1)
log

(

1 +
1

min{αj , βj}+ (m− 1)min{pj , qj}
+O

(

1

m2

))

≤
N

Z(m− 1)
log

(

1 +
1

γmin + (m− 1)pmin
+O

(

1

m2

))

:= η. (S38)

13



Using the Taylor expansion of log(1 + x),

η =
N

Z(m− 1)

(

1

γmin + (m− 1)pmin
+O

(

1

m2

)

−
1

2

(

1

γmin + (m− 1)pmin
+O

(

1

m2

))2
)

=
N

Z(m− 1)

(

1

γmin + (m− 1)pmin
+O

(

1

m2

))

=
1

log
(

γmin+m−1
γmin

)

(γmin + (m− 1)pmin)
+O

(

1

m2 logm

)

. (S39)

The proof of Theorem 1 is now a straightforward application of Theorem S2 using the result of Lemma
S7.

Proof of Theorem 1. By Lemma S7, we can apply Theorem S2 to see that with probability at least 1− δ on
the draw of S,

Ex [ℓ(fS , x)] ≤
1

m

m
∑

i=1

ℓ(fS , x
i) +

√

1 + 12mη

2mδ

Ex [1− fS(x)] ≤
1

m

m
∑

s=1

(1− fS(x
s)) +

√

1 + 12mη

2mδ

Ex [fS(x)] ≥
1

m

m
∑

s=1

fS(x
s)−

√

1 + 12mη

2mδ

=
1

m

m
∑

s=1

fS(x
s)

−

√

√

√

√

1

2mδ
+

6

δ log
(

γmin+m−1
γmin

)

(γmin + (m− 1)pmin)
+O

(

1

δm2 logm

)

.

3.3 Comments on the effect of the prior on generalization.

The prior influences the generalization bound via the quantity

h(γmin,m, pmin) := log

(

γmin +m− 1

γmin

)

(γmin + (m− 1)pmin) . (S40)

As this quantity increases, the bound becomes tighter. We can thus study the influence of the prior on gen-
eralization by studying the behavior of this quantity as γmin varies. The second term, (γmin + (m− 1)pmin),
is similar to many results from Bayesian analysis in which the prior plays the same role as additional data.
This term is increasing with γmin, meaning it yields a tighter bound with a stronger prior. The first term,

log
(

γmin+m−1
γmin

)

, is inherited from the normalization Z(m). This term is decreasing with γmin, that is, it

gives a tighter bound with a weaker prior. The overall effect of γmin on generalization depends on how these
two terms balance each other, which in turn depends primarily on pmin.

Exact analysis of the behavior of h(γmin,m, pmin) as a function of γmin does not yield interpretable results,
however we gain some insight by considering the case where γmin scales with m: γmin := γ̃(m− 1). Then we
can consider (S40) as a function of γ̃ and pmin alone:

h(γ̃, pmin) := log

(

γ̃ + 1

γ̃

)

(γ̃ + pmin) . (S41)
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Figure S7: The stability bound η as a function of the prior γmin, for fixed m = 100 and pmin = 0.001. For
γmin large enough relative to pmin, stronger priors yield tighter bounds.

The bound becomes tighter as γ̃ increases, as long as we have ∂h(γ̃,pmin)
∂γ̃

> 0. This is the case when

pmin < γ̃(γ̃ + 1) log

(

γ̃ + 1

γ̃

)

− γ̃. (S42)

The quantity on the right-hand side is increasing with γ̃. Thus, for pmin small enough relative to γ̃, stronger
priors lead to a tighter bound. To illustrate this behavior, in Figure S1 we plot the stability bound η (ex-

cluding O
(

1
m2 logm

)

terms) as a function of γmin, for m = 100 and pmin = 0.001. For γmin larger than about

0.01, the bound tightens as the prior is increased.

3.4 Bayesian Sets and Uniform Stability.

In addition to pointwise hypothesis stability, Bousquet and Elisseeff (2002) define a stronger notion of
stability called “uniform stability.”

Definition S2 (Bousquet and Elisseeff, 2002). An algorithm has uniform stability κ with respect to the loss
function ℓ if the following holds

∀S, ∀i ∈ {1, . . . ,m}, ||ℓ(fS , ·)− ℓ(fS\i , ·)||∞ ≤ κ. (S43)

The algorithm is said to be stable if κ scales with 1
m
.

Uniform stability requires a O
(

1
m

)

bound for all training sets, rather than the average training set as
with pointwise hypothesis stability. The bound must also hold for all possible test points, rather than testing
on the perturbed point. Uniform stability is actually a very strong condition that is difficult to meet, since
if (S43) can be violated by any possible combination of training set and test point, then uniform stability
does not hold. Bayesian Sets does not have this form of stability, as we now show with an example.

Choose the training set of m data points to satisfy:

xi
j = 0 ∀j, i = 1, . . . ,m− 1

xm
j = 1 ∀j,
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and as a test point x, take xj = 1 ∀j. Let xm be the point removed from the training set. Then,

κ = |ℓ(fS , x)− ℓ(fS\m , x)|

= |fS\m(x)− fS(x)|

=

∣

∣

∣

∣

∣

∣

1

Z(m− 1)

N
∑

j=1

xj log
αj +

∑m
s=1 x

s
j − xm

j

αj

−
1

Z(m)

N
∑

j=1

xj log
αj +

∑m
s=1 x

s
j

αj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

Z(m− 1)

N
∑

j=1

log
αj

αj

−
1

Z(m)

N
∑

j=1

log
αj + 1

αj

∣

∣

∣

∣

∣

∣

=
1

Z(m)

N
∑

j=1

log
αj + 1

αj

≥
log

maxj αj+1
maxj αj

log
(

γmin+m
γmin

) , (S44)

which scales with m as 1
logm

, not the 1
m

required for stability.
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