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ABSTRACT
We present the power spectrum of the reconstructed halo density field derived from a sample
of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Re-
lease (DR7). The halo power spectrum has a direct connectionto the underlying dark matter
power fork 6 0.2 h Mpc−1, well into the quasi-linear regime. This enables us to use a fac-
tor of ∼ 8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h
Mpc−1, as was adopted in the SDSS team analysis of the DR4 LRG sample(Tegmark et al.
2006). The observed halo power spectrum for0.02 < k < 0.2 h Mpc−1 is well-fit by our
model:χ2 = 39.6 for 40 degrees of freedom for the best-fittingΛCDM model. We find
Ωmh2(ns/0.96)0.13 = 0.141+0.009

−0.012 for a power law primordial power spectrum with spectral
indexns andΩbh

2 = 0.02265 fixed, consistent with CMB measurements. The halo power
spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to
an effective distance toz = 0.35: rs/DV (0.35) = 0.1097+0.0039

−0.0042. Combining the halo power
spectrum measurement with the WMAP 5 year results, for the flat ΛCDM model we find
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Ωm = 0.289±0.019 andH0 = 69.4±1.6 km s−1 Mpc−1. Allowing for massive neutrinos in
ΛCDM, we find

∑

mν < 0.62 eV at the 95% confidence level. If we instead consider the ef-
fective number of relativistic speciesNeff as a free parameter, we findNeff = 4.8+1.8

−1.7. Com-
bining also with the Kowalski et al. (2008) supernova sample, we findΩtot = 1.011 ± 0.009
andw = −0.99 ± 0.11 for an open cosmology with constant dark energy equation of state
w. The power spectrum and a module to calculate the likelihoods is publicly available at
http://lambda.gsfc.nasa.gov/toolbox/lrgdr/.

Key words: cosmology: observations, large-scale structure of Universe, galaxies: haloes,
statistics

1 INTRODUCTION

The past decade has seen a dramatic increase in the quantity and
quality of cosmological data, from the discovery of cosmological
acceleration using supernovae (Riess et al. 1998; Perlmutter et al.
1999) to the precise mapping of the cosmic microwave back-
ground (CMB) with the Wilkinson Microwave Anisotropy Probe
(Page et al. 2003; Nolta et al. 2009) to the detection of the im-
print of baryon acoustic oscillations (BAO) in the early uni-
verse on galaxy clustering (Eisenstein et al. 2005; Cole et al. 2005).
Combining the most recent of these three cosmological probes,
Komatsu et al. (2009) detect no significant deviation from the min-
imal flat ΛCDM cosmological model with adiabatic, power law
primordial fluctuations, and constrain that model’s parameters to
within a few percent.

The broad shape of the power spectrum of density fluctuations
in the evolved universe provides a probe of cosmological parame-
ters that is highly complementary to the CMB and to probes of
the expansion history (e.g., supernovae, BAO). The last decade has
also seen a dramatic increase in the scope of galaxy redshiftsur-
veys. The PSCz (Saunders et al. 2000) contains∼ 15000 IRAS
galaxies out toz = 0.1, the 2dF Galaxy Redshift Survey(2dFGRS;
Colless et al. 2001, 2003) collected 221,414 galaxy redshifts with
median redshift 0.11, and the Sloan Digital Sky Survey (SDSS;
York et al. 2000) is now complete with 929,555 galaxy spectra
(Abazajian et al. 2009) including both main galaxies (〈z〉 ∼ 0.1;
Strauss et al. 2002) and Luminous Red Galaxies (LRGs;z ∼ 0.35;
Eisenstein et al. 2001). To harness the improvement in statistical
power available now from these surveys requires stringent under-
standing of modeling uncertainties. The three major components
of this uncertainty are the non-linear gravitational evolution of
the matter density field (e.g., Zel’dovich 1970; Davis et al.1977;
Davis & Peebles 1977), the relationship between the galaxy and
underlying matter density fields (“galaxy bias”, e.g., Kaiser 1984;
Rees 1985; Cole & Kaiser 1989), and redshift space distortions
(e.g., Kaiser 1987; Davis & Peebles 1983 and Hamilton 1998 for
a review).

Several major advances have enabled previous analyses of
2dFGRS and SDSS to begin to address these complications.
Progress inN -body simulations (e.g., Heitmann et al. 2008), an-
alytical methods (see Carlson et al. 2009 for an overview and
comparison of many recent methods), and combinations thereof
(e.g., Smith et al. 2003; Eisenstein et al. 2007b) have allowed sig-
nificant progress in the study of the non-linear real space mat-
ter power spectrum. Recent power spectrum analyses have ac-
counted for the luminosity dependence of a scale independent
galaxy bias (Tegmark et al. 2004a; Cole et al. 2005), which can in-
troduce an artificial tilt inP (k) in surveys which are not volume-
limited (Percival et al. 2004). Cresswell & Percival (2009)have re-

cently examined the scale dependence of galaxy bias as a function
of luminosity and color. Tegmark et al. (2004a) applied a matrix-
based method using pseudo-Karhunen-Loève eigenmodes to mea-
sure three power spectra from the SDSS galaxy distribution,allow-
ing a quantification of the clustering anisotropy and a more accu-
rate reconstruction of the real-space power spectrum than can be
obtained from the angle-averaged redshift space power spectrum.
Non-linear redshift space distortions, caused in part by the virial-
ized motions of galaxies in their host dark matter haloes, create
features known as Fingers-of-God (FOGs) along the line of sight
in the redshift space galaxy density field (Davis & Peebles 1983;
Gramann et al. 1994). Both Tegmark et al. (2004a) and Cole et al.
(2005) apply cluster-collapsing algorithms to mitigate the effects of
FOGs before computing power spectra. Previous analyses have fit
galaxy power spectra to linear (Percival et al. 2001, 2007) or non-
linear matter models (Spergel et al. 2003; Tegmark et al. 2004), but
did not attempt to model the scale dependence of the galaxy bias.
Cole et al. (2005) introduced a phenomenological model to account
for both matter non-linearity and the non-trivial relationbetween
the galaxy power spectrumPgal(k) and matter power spectrum:

Pgal(k) =
1 + Qk2

1 + Ak
Plin(k) , (1)

wherePlin denotes the underlying linear matter power spectrum.
For the 2dFGRS analysis, Cole et al. (2005) fitA using mock
galaxy catalogues and derive expected central values ofQ. In the
fit to the observed galaxy power spectrum, they allowQ to vary up
to twice the expected value, which is supported by halo modelcal-
culations of the cosmological dependence of the galaxyP (k). This
approach appears to work well for the case of 2dFGRS galaxies
because it was calibrated on mock catalogues designed to match
the properties of this galaxy population; however, its application
to the LRG sample in Tegmark et al. (2006), where the best-fitting
Q was much larger than for 2dFGRS galaxies, is questionable
(see Reid et al. 2008 and Yoo et al. 2009, but also Sánchez & Cole
2008).

In this paper we focus our efforts on accurately modeling the
relationship between the galaxy and matter density fields for the
SDSS LRG sample. Several authors have studied this relationusing
the small and intermediate scale clustering in the SDSS LRG sam-
ple (Masjedi et al. 2006; Zehavi et al. 2005; Kulkarni et al. 2007;
Wake et al. 2008; Zheng et al. 2008; Reid & Spergel 2009) and
galaxy-galaxy lensing (Mandelbaum et al. 2006). The LRG selec-
tion algorithm in the SDSS (Eisenstein et al. 2001) was designed to
provide a homogenous galaxy sample probing a large volume with
a number density,̄nLRG, which maximizes the effective survey
volumeVeff (k) on the large scales of interest,k ∼ 0.1h Mpc−1.
Veff is given by (Feldman et al. 1994; Tegmark 1997):
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Veff (k) =

∫

d3r

[

n(r)P (k)

1 + n(r)P (k)

]2

, (2)

whereP (k) denotes the measured galaxy power spectrum,n̄(r)
the average galaxy number density in the sample at positionr,
and the integral is over the survey volume. The total error on
P (k) is minimized (i.e.,Veff is maximized) when̄nP ∼ 1,
which optimally balances cosmic variance and shot noise fora
fixed number of galaxies. The LRG sample has proven its statisti-
cal power through the detection of the BAO (Eisenstein et al.2005;
Percival et al. 2007). However, parameterizing the LRG power
spectrum with a heuristic model for the non-linearity (Eqn.1) and
marginalizing over fitting parameters limits our ability toextract
the full cosmological information available from the powerspec-
trum shape and can introduce systematic biases (Sánchez & Cole
2008; Dunkley et al. 2009; Verde & Peiris 2008; Reid et al. 2008).

On sufficiently large scales, we expect galaxies to be lin-
early biased with respect to the underlying matter density field
(Mo & White 1996; Scherrer & Weinberg 1998). However, an of-
ten overlooked consequence of a sample withn̄LRGPLRG ∼ 1
is that errors in the treatment of the shot noise can introduce sig-
nificant changes in the measured shape ofPLRG(k) and can be
interpreted as a scale dependent galaxy bias. In the halo model pic-
ture, the LRGs occupy massive dark matter haloes, which them-
selves may not be Poisson tracers of the underlying matter density
field, as they form at the high peaks of the initial Gaussian den-
sity distribution (e.g., Bardeen et al. 1986). Moreover, anadditional
shot noise-like term is generated when multiple LRGs occupyindi-
vidual dark matter haloes (Peacock & Smith 2000; Cooray & Sheth
2002). Our approach is to first eliminate the one-halo contribution
to the power spectrum by identifying groups of galaxies occupying
the same dark matter halo, and then to calibrate the relationbe-
tween the power spectrum of the reconstructed halo density field,
Phalo(k, p), and the underlying matter power spectrum,PDM (k),
using theN -body simulation results presented in Reid et al. (2008).
As a result, the effects of non-linear redshift space distortions
caused by pairs of galaxies occupying the same halo are dimin-
ished. However, a further complication is that LRGs occupy the
massive end of the halo mass function, and velocities of isolated
LRGs within their host haloes could still be quite large. Thedetails
of the relation between LRGs and the underlying matter distribu-
tion can then have a significant impact on the non-linear corrections
to the power spectrum.

The DR7 LRG sample has sufficient statistical power that
the details of the relation between LRGs and the underlying mat-
ter density field become important and need to be reliably mod-
eled before attempting a cosmological interpretation of the data.
This paper offers three sequential key improvements to the model-
ing of LRG clustering compared with Eisenstein et al. (2005)and
Tegmark et al. (2006):

• We reconstruct the underlying halo density field traced by the
LRGs before computing the power spectrum, while Tegmark et al.
(2006) apply an aggressive FOG compression algorithm. The re-
constructed halo density field power spectrum deviates fromthe
underlying matter power spectrum by< 4% atk = 0.2 h Mpc−1,
while the Tegmark et al. (2006) power spectrum differs by∼ 40%
atk = 0.2 h Mpc−1 (Reid et al. 2008).
• We produce a large set of mock LRG catalogues drawn from

N -body simulations of sufficient resolution to trace a halo mass
range relevant to LRGs without significant errors in the small-scale
halo clustering and velocity statistics (see Appendix A of Reid et al.
2008). We present novel consistency checks between the mockand

observed LRG density fields in halo-scale higher order clustering,
FOG features, and the effective shot noise.
• We use these tests along with the halo model framework to de-

termine tight bounds on the remaining modeling uncertainties, and
marginalize over these in our likelihood calculation. In contrast,
Eisenstein et al. (2005) assume no uncertainty in their model LRG
correlation function, and Tegmark et al. (2006) marginalize overQ
in Eqn. 1 with only an extremely weak prior onQ.

This paper represents a first attempt to analyse a galaxy redshift sur-
vey with a model that accounts for the non-linear galaxy biasand
its uncertainty; other approaches that utilize the galaxy distribu-
tion rather than the halo density field are in development (Yoo et al.
2009).

In this paper we present and analyse a measurement of the
power spectrum of the reconstructed halo density field from the
SDSS DR7 LRG sample. DR7 represents a factor of∼ 2 increase
in effective volume over the analyses presented in Eisenstein et al.
(2005) and Tegmark et al. (2006), and covers a coherent region of
the sky. Section 2 describes the measurement of the reconstructed
halo density field power spectrum,̂Phalo(k), along with the win-
dow and covariance matrices used in our likelihood analysis. Sec-
tion 3 describes the details of our model for the reconstructed halo
power spectrum,Phalo(k, p). In Section 4 we summarize the tests
we have performed for various systematics in our modeling ofthe
relation between the galaxy and dark matter density field. Wequan-
tify the expected level of uncertainty through two nuisanceparam-
eters and present several consistency checks between the model
and observed reconstructed halo density field. In Section 5 we dis-
cuss the cosmological constraints from̂Phalo(k) alone as well as
in combination with WMAP5 (Dunkley et al. 2009) and the Union
supernova dataset (Kowalski et al. 2008). Section 6 compares our
findings with the results of previous analyses of galaxy clustering,
and Section 7 summarizes our conclusions.

In a companion paper (Percival et al. prep; hereafter, P09) we
measure and analyse BAO in the SDSS DR7 sample, of which
the LRG sample considered here is a subset. BAO are detected
in seven redshift shells, leading to a 2.7% distance measureat
redshift z = 0.275, and a measurement of the gradient of the
distance-redshift relation, this quantified by the distance ratio be-
tweenz = 0.35 andz = 0.2. We show in Section 5 that the results
from these measurements are in agreement with our combined re-
sults from BAO and the shape of the power spectrum calculated
using just the LRGs. The results from these different analyses will
be correlated because of the overlapping data used, so they should
not be combined in cosmological analyses. The best data set to be
used will depend on the cosmological model to be tested. While
the inclusion of 2dFGRS and main SDSS galaxies in P09 provides
a higher significance detection of the BAO, we show in Section
5.4 that the full power spectrum information provides tighter con-
straints on both massive neutrinos and the number of relativistic
species.

Throughout the paper we make use of two specific cosmolog-
ical models. The simulation set described in Reid et al. (2008) and
used to calibrate the modelPhalo(k,p) adopts the WMAP5 recom-
mendedΛCDM values: (Ωm, Ωb, ΩΛ, ns, σ8, h) = (0.2792, 0.0462,
0.7208, 0.960, 0.817, 0.701). We refer to this model throughout the
paper as our ‘fiducial cosmological model.’ To convert redshifts
to distances in the computation of thêPhalo(k), we adopt a flat
ΛCDM cosmology withΩm = 0.25 andΩΛ = 0.75. Throughout
we refer to the power spectrum of several different density fields

c© 0000 RAS, MNRAS000, 000–000
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P (k) Definition Reference

P̂LRG(k) measured angle averaged redshift-space power spectrum of the LRGs -
P̂halo(k) measured power spectrum of reconstructed halo density field -
Plin(k) linear power spectrum computed by CAMB Lewis et al. (2000)
PDM(k) theoretical real-space non-linear power spectrum of dark matter -
Pnw(k) theoretical linear power spectrum without BAO (“no wiggles”) Eisenstein & Hu (1998)
Pdamp(k) theoretical linear power spectrum with damped BAO (Eqn. 10) Eisenstein et al. (2007b)
Phalo(k,p) model for the reconstructed halo power spectrum for cosmological parametersp Reid et al. (2008)
Phalo,win(k, p) Phalo(k, p) convolved with survey window function (Eqn. 5) Percival et al. (2007)

and directly compared witĥPhalo(k) in the likelihood calculation (Eqn. 6)

Table 1.Definitions of power spectra referred to throughout the paper.

and several theoretical spectra. Table 1 summarizes their defini-
tions.

2 DATA

2.1 LRG sample

The SDSS (York et al. 2000) is the largest galaxy survey
ever produced; it used a 2.5m telescope (Gunn et al. 2006)
to obtain imaging data in 5 passbandsu, g, r, i and z
(Fukugita et al. 1996; Gunn et al. 2006). The images were reduced
(Stoughton et al. 2002; Pier et al. 2003; Ivezić et al. 2004)and cal-
ibrated (Hogg et al. 2001; Smith et al. 2002; Tucker et al. 2006;
Padmanabhan et al. 2008), and galaxies were selected for follow-
up spectroscopy. The second phase of the SDSS, known as SDSS-
II, has recently finished, and the DR7 (Abazajian et al. 2009)sam-
ple has recently been made public. The SDSS project is now contin-
uing with SDSS-III where the extragalactic component, the Baryon
Oscillation Spectroscopic Survey (BOSS; Schlegel et al. 2009), has
a different galaxy targeting algorithm. DR7 therefore represents the
final data set that will be released with the original targeting and
galaxy selection (Eisenstein et al. 2001; Strauss et al. 2002).

In this paper we analyse a subsample containing110 576 Lu-
minous Red Galaxies (LRGs: Eisenstein et al. 2001), which were
selected from the SDSS imaging based ong, r and i colours,
to give approximately15 galaxies per square degree. The SDSS
also targeted a magnitude limited sample of galaxies for spec-
troscopic follow-up (Strauss et al. 2002). The LRGs extend this
main galaxy sample toz ≃ 0.5, covering a greater volume. Our
DR7 sample covers7931 deg2 (including a 7190 deg2 contiguous
region in the North Galactic Cap), with an effective volume of
Veff = 0.26 Gpc3h−3, calculated with a model power spectrum
amplitude of104 h−3Mpc3. This power spectrum amplitude is ap-
proximately correct for the LRGs atk ∼ 0.15 h Mpc−1. For com-
parison, the effective volume of the sample used by Eisenstein et al.
(2005) wasVeff = 0.13 Gpc3h−3, andVeff = 0.16 Gpc3h−3

in Tegmark et al. (2006); this work represents a factor of∼2 in-
crease in sample size over these analyses. The sample is the same as
that used in P09, and its construction follows that of Percival et al.
(2007), albeit with a few improvements.

We use SDSS Galactic extinction-corrected Petrosian
magnitudes calibrated using the “übercalibration” method
(Padmanabhan et al. 2008). However, we find that the power
spectrum does not change significantly when one adopts the old
standard calibration instead (Tucker et al. 2006). Luminosities
are K-corrected using the methodology of Blanton et al. (2003);
Blanton et al. (2003b). We remove LRGs that are not intrinsically
luminous by applying a cutM0.1r < −21.8, whereM0.1r is our

Figure 1. Fits to the redshift distributions for the LRG selection used in this
work (solid curves) and the Zehavi et al. (2005)−23.2 < Mg < −21.2
sample used in Tegmark et al. (2006) (dashed curves).Upper panel: n(z)
vs redshift in units of10−4 (h−1 Mpc)−3 Lower panel: N(< z) =
∫

dzn(z)dV/dz (arbitrary overall normalization).

estimate of the absolute magnitude in ther-band for a galaxy at
z = 0.1.

Spectroscopic LRG targets were selected using two color-
magnitude cuts (Eisenstein et al. 2001). The tiling algorithm en-
sures nearly complete samples (Blanton et al. 2003). However,
spectroscopic fiber collisions prohibit simultaneous spectroscopy
for objects separated by< 55′′, leaving∼ 7% of targeted objects
without redshifts (Masjedi et al. 2006). We correct for thiseffect
as in Percival et al. (2007): for an LRG lacking a spectrum but55”
from an LRG with a redshift, we assign both galaxies the measured
redshift. If the LRG lacking a redshift neighbors only a galaxy from
the low redshift SDSS main sample, we do not assign it a redshift.
These galaxies are assumed to be randomly distributed, and simply
contribute to the analysis by altering the completeness, the fraction
of targeted galaxies with good redshifts, in a particular region. The
impact of the fiber collision correction is addressed in Appendix
B3 and Appendix B4.

Fig. 1 compares the number density as a function of redshift
for the LRG selection used in this paper (Percival et al. 2007) and
the one used in Tegmark et al. (2006) and presented in Zehavi et al.
(2005). The main differences are that our selection includes a small
number of galaxies atz < 0.15, and our cut on the intrinsic lumi-

c© 0000 RAS, MNRAS000, 000–000
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nosity of the LRGs slightly reduces the number density of galax-
ies at highz. The different selections produce a similar number of
galaxies per unit volume, and we expect no difference between the
samples on the large scale structure statistics of interesthere.

2.2 Recovering the halo density field

In real space, the impact of more than one LRG per halo on the large
scale power spectrum can be accurately modeled as an additional
shot noise term (Cooray & Sheth 2002; Reid et al. 2008). However,
this picture is much more complicated in redshift-space because
of the velocity dispersion of the LRGs shifts them along the line
of sight by∼ 9 h−1 Mpc (Reid et al. 2008), and the distribution
of intrahalo velocities has long tails. This shifting causes power
to be shuffled between scales and causes even the largest scale
modes along the line of sight to be damped by these FOG features
(Davis & Peebles 1983; Peacock & Dodds 1994; Seljak 2001). We
substantially reduce the impact of these effects by using the power
spectrum of the reconstructed halo density field.

We follow the Counts-In-Cylinders (CiC) technique in
Reid et al. (2008) to identify LRGs occupying the same halo and
thereby estimate the halo density field. Two galaxies are consid-
ered neighbors when their transverse comoving separation satisfies
∆r⊥ 6 0.8 h−1 Mpc and their redshifts satisfy∆z/(1 + z) 6

∆vp/c = 0.006 (∆vp = 1800 km s−1). A cylinder should be a
good approximation to the density contours of satellites surround-
ing central galaxies in redshift space, as long as the satellite ve-
locity is uncorrelated with its distance from the halo centre and
the relative velocity dominates the separation of central and satel-
lite objects along the line of sight. Galaxies are then grouped with
their neighbors by a Friends-of-Friends (FoF) algorithm. The re-
constructed halo density field is defined by the superposition of the
centres of mass of the CiC groups. We refer to the power spectrum
of the reconstructed halo density field asP̂halo(k); it is our best es-
timate of the power spectrum of the haloes traced by the LRGs.For
comparison we also compute the power spectrum without applying
any cluster-collapsing algorithm,̂PLRG(k).

Our reconstructed halo density field contains104 337 haloes
derived from110 576 LRGs.

2.3 Calculating power spectra, window functions and
covariances

In this paper we focus on using the angle-averaged power spectrum
to derive constraints on the underlying linear theory powerspec-
trum. On linear scales the redshift space power spectrum is pro-
portional to the real space power spectrum (Kaiser 1987; Hamilton
1998). Our halo density field reconstruction mitigates the effects of
FOGs from objects occupying the same halo. Though we do not
explore it here, we expect that our halo density field reconstruction
will be useful to an analysis of redshift-space anisotropies (e.g.,
Hatton & Cole 1999).

The methodology for calculating the power spectrum of the
reconstructed halo density field,̂Phalo(k), is based on the Fourier
method of Feldman et al. (1994). The halo density is calculated by
throwing away all but the brightest galaxy where we have located
a set of galaxies within a single halo. This field is convertedto
an over-density field by placing the haloes on a grid and subtract-
ing an unclustered “random catalogue”, which matches the halo
selection. To calculate this random catalogue, we fit the redshift
distributions of the halo sample with a spline model (Press et al.

Figure 2. Top panel:MeasuredP̂halo(k) bandpowers. Error bars indicate√
Cii (Eq. 3).Middle panel: Correlations between data values calculated

using Log-normal catalogues, assuming our fiducial cosmological model.
Bottom panel:The normalized window function for each of our binned
power spectrum values with0.02 < k < 0.2 hMpc−1. Each curve shows
the relative contribution from the underlying power spectrum as a function
of k to the measured power spectrum data. The normalisation is such that
the area under each curve is unity. For clarity we only plot curves for every
other band power.

1992) (shown in Fig. 1), and the angular mask was determined us-
ing a routine based on a HEALPIX (Górski et al. 2005) equal-area
pixelization of the sphere as in (Percival et al. 2007). Thisproce-
dure allows for the variation in radial selection seen atz > 0.38,
which is caused by the spectroscopic features of the LRGs moving
across the wavebands used in the target selection. The haloes and
randoms are weighted using a luminosity-dependent bias model
that normalizes the fluctuations to the amplitude ofL∗ galaxies
(Percival et al. 2004). To do this we assume that each galaxy used
to locate a halo is biased with a linear deterministic bias model, and
that this bias depends onM0.1r according to Tegmark et al. (2004a)
and Zehavi et al. (2005), whereM0.1r is the Galactic extinction and
K-correctedr-band absolute galaxy magnitude. This procedure is
similar to that adopted by P09.

The power spectrum was calculated using a10243 grid in a
series of cubic boxes. A box of length4000 h−1 Mpc was used
initially, but we then sequentially divide the box length inhalf and
apply periodic boundary conditions to map galaxies that lieout-
side the box. For each box and power spectrum calculation, we
include modes that lie between1/4 and1/2 the Nyquist frequency
(similar to the method described by Cole et al. 2005), and cor-
rect for the smoothing effect of the cloud-in-cell assignment used
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to locate galaxies on the grid (e.g. Hockney & Eastwood 1981,
chap. 5). The power spectrum is then spherically averaged, leav-
ing an estimate of the “redshift-space” power. The upper panel of
Fig. 2 shows the shot-noise subtracted bandpowers measuredfrom
the halo density field, calculated in bands linearly separated by
∆k = 0.004 h Mpc−1. This spacing is sufficient to retain all of
the cosmological information.

The calculation of the likelihood for a cosmological model
given the measured bandpowersP̂halo(k) requires three additional
components determined by the survey geometry and the proper-
ties of the galaxy sample: the covariance matrix of measuredband-
powersCij , the window functionW (ki, kn), and the model power
spectrum as a function of the underlying cosmological parameters,
Phalo(k, p). The calculation of model power spectra is considered
in Section 3.

The covariance matrix and corresponding correlation coeffi-
cients between bandpowersi andj are defined as

Cij = 〈P̂halo(ki)P̂halo(kj)〉 − 〈P̂halo(ki)〉〈P̂halo(kj)〉(3)

corr(ki, kj) =
Cij

√

CiiCjj

(4)

The covariance matrix was calculated from104 Log-Normal (LN)
catalogues (Coles & Jones 1991; Cole et al. 2005). Catalogues
were calculated on a(512)3 grid with box length4000 h−1 Mpc
as in P09, where LN catalogues were similarly used to estimate
covariance matrices. UnlikeN -body simulations, these mock cat-
alogues do not model the growth of structure, but instead return
a density field with a log-normal distribution, similar to that seen
in the real data. The window functions for these catalogues were
matched to that of the halo catalogue. The input power spectrum
was a cubic spline fit matched to the data power spectra, multi-
plied by a dampedΛCDM BAO model calculated using CAMB
(Lewis et al. 2000). The recovered LN power spectra were clipped
at 5σ to remove extreme outliers which contribute less than 0.05%
of the simulated power spectra, and are clearly non-Gaussian. This
covariance matrix calculation matches the procedure adopted by
P09. The middle panel of Fig. 2 shows the correlations expected
between band-powers calculated using this procedure.

As described in Cole et al. (2005), the window function can
be expressed as a matrix relating the theory power spectrum for
cosmological parametersp and evaluated at wavenumberskn,
Phalo(kn,p), to the central wavenumbers of the observed band-
powerski:

Phalo,win(ki,p) =
∑

n

W (ki, kn)Phalo(kn,p) − W (ki, 0). (5)

The termW (ki, 0) arises because we estimate the average halo
density from the sample, and is related to the integral constraint in
the correlation function (Percival et al. 2007). The windowfunc-
tion allows for the mode-coupling induced by the survey geometry.
Window functions for the measured power spectrum (Eqn. 15 of
Percival et al. 2004) were calculated as described in Percival et al.
(2001), Cole et al. (2005), and Percival et al. (2007): an unclustered
random catalogue with the same selection function as that ofthe
haloes was Fourier transformed using the same procedure adopted
for our halo overdensity field described above. The shot noise was
subtracted, and the power spectrum for this catalogue was spheri-
cally averaged, and then fitted with a cubic spline, giving a model
for W (ki, kn). For ease of use this is translated into a matrix by
splitting input and output power spectra into band powers asin
Eqn. 5.

The window functionsW (ki, kj) and the corresponding cor-
relation coefficients for every other bandpower are shown inthe
lower panel of Fig. 2. In addition to the window coupling for
nearby wavenumbers, there is a beat-coupling to survey-scale
modes (Hamilton et al. 2006; Reid et al. 2008). That is, density
fluctuations on the scale of the survey couple to the modes we
can measure from the survey. However, this effect predominantly
changes only the amplitude of̂Phalo(k), which is marginalized
over through the bias parameterb2

0 in Eqn. 15 below. Fig. 2 can be
compared with Fig. 10 in Percival et al. (2007), where the windows
and correlations were presented for the SDSS DR5 data. For the
DR5 plot, variations in the amplitude were removed leaving only
the small-k difference couplings. The power spectrum, window
functions, and inverse covariance matrix are electronically avail-
able with the likelihood code we publicly release (see Section 5).

2.4 P̂halo(k) likelihood

We assume that the likelihood distribution of the power spectrum
band powers is close to a standard multi-variate Gaussian; by the
central limit theorem, this should be a good approximation in the
limit of many modes per band. The final expression for the likeli-
hood for cosmologyp is then

− 2 ln L(p) = χ2(p) =
∑

ij

∆iC
−1
ij ∆j , (6)

where∆i ≡
[

(P̂halo(ki) − Phalo,win(ki, p)
]

.
A single comoving distance-redshift relationχfid(z), that of

a flat,Ωm = 0.25 cosmology, is assumed to assign positions to the
galaxies in our sample before computingP̂halo(k). Rather than re-
computingP̂halo(k) for each comoving distance-redshift relation
to be tested, Percival et al. (2007) and P09 account for this when
evaluating the likelihood of other cosmological models by alter-
ing the window function.DV (z,p) (Eisenstein et al. 2005) quan-
tifies the model dependence of the conversion between (ra, dec, z)
and comoving spatial coordinates when galaxy pairs are distributed
isotropically:

DV (z) =

[

(1 + z)2DA(z)2
cz

H(z)

]1/3

, (7)

whereDA(z) is the physical angular diameter distance. Follow-
ing Tegmark et al. (2006) we partially correct for the discrepancy
between the fiducial modelχfid(z) and theχ(z) of the model to
be tested by introducing a single dilation of scale. To first order,
changes in the cosmological distance–redshift model alterthe scale
of the measured power spectrum throughDV (z), so we introduce
a scale parameter that depends on this quantity,

ascl(z) =
DV (z)

Dfiducial
V (z)

. (8)

Strictly, we should allow for variations inascl across the redshift
range of the survey, as in P09. However, to first approximation we
can simply allow for a single scale change at an effective redshift
for the surveyzeff . When comparingP̂halo(k), computed using
χfid(z), with a model comoving distance-redshift relationχ(z,p),
in practice we use1

1 This correction was incorrectly applied in previous versions of COS-
MOMC, and is corrected in the code we release. This correction is primarly
important for constraining the BAO scale rather than the turnover scale, and
so previous analyses withCOSMOMCshould be minimally affected.
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∆i =
(

P̂halo(ki) − Phalo,win(ki/ascl,p)
)

. (9)

In Appendix A2 we verify that this approximation is valid forour
sample withzeff = 0.313.

In our cosmological analysis, we include modes up tokmax =
0.2 h Mpc−1, where the model power spectrum deviates from the
input linear power spectrum by< 15%. We also impose a conser-
vative lower bound atkmin = 0.02, above which galactic extinc-
tion corrections (see the analysis in Percival et al. 2007),galaxy
number density modeling, and window function errors shouldbe
negligible.

P09 present a detailed analysis demonstrating that the BAO
contribution to the likelihood surface is non-Gaussian; this is in
large part due to the relatively low signal-to-noise ratio of the BAO
signature in our sample. Therefore, to match expected and recov-
ered confidence intervals, P09 find that the covariance matrix of
the LRG-only sample must be inflated by a factor1.12 = 1.21.
Though our likelihood surface incorporates constraints from the
shape of the power spectrum, for which the original covariance
matrix should be accurate, we conservatively multiply the entire
covariance matrix by this factor required for the BAO constraints
throughout the analysis. Therefore our constraints likelyslightly
underestimate the true constraints available from the data. This fac-
tor is already included in the electronic version we releasewith the
full likelihood code.

3 MODELING THE HALO POWER SPECTRUM

We consider three effects that cause the shape ofPhalo(k,p) to
deviate from the linear power spectrum,Plin(k, p), for cosmolog-
ical parametersp. We will assume that these modifications of the
linear power spectrum can be treated independently. These effects
are the damping of the BAO, the change in the broad shape of the
power spectrum because of non-linear structure formation,and the
bias because we observe galaxies in haloes in redshift spacerather
than the real space matter distribution. We also need to consider the
evolution of these effects with redshift.

Reid et al. (2008) construct a large set of mock LRG cata-
logues based onN -body simulations evaluated at a single cosmo-
logical modelpfid. We use these catalogues to calibrate the model
halo power spectrum, and make detailed comparisons betweenthe
observed and mock density fields in Appendix B.

3.1 BAO damping

The primary effect of non-linear structure formation and peculiar
velocities on the BAOs is to damp them at largek. Eisenstein et al.
(2007b) showed that this can be accurately modelled as a Gaussian
smoothing, where

Pdamp(k,p, σ) = Plin(k,p)e−
k2σ2

2 +Pnw(k,p)
(

1 − e−
k2σ2

2

)

.(10)

HerePlin(k, p) is the linear matter power spectrum computed by
CAMB (Lewis et al. 2000) and shown in the upper left panel of
Fig. 3 for our fiducial cosmological model.Pnw(k,p), defined
by Eqn. 29 of Eisenstein & Hu (1998), is a smooth version of
Plin(k,p) with the baryon oscillations removed. The upper right
panel of Fig. 3 shows the ratioPlin(k)/Pnw(k) for our fiducial
cosmology. The amplitude of the damping is set byσ and depends
on the cosmological parameters, whether the power spectrumis in
real or redshift space, and whether we are considering the matter

or a tracer like the LRGs. We fixσhalo, i.e., the value ofσ ap-
propriate for the reconstructed halo density field, using fits to the
reconstructed halo density field power spectrum in the mock LRG
catalogues presented in Reid et al. (2008) and shown here in Fig. 4.
We performed tests in theΛCDM case which demonstrate that cos-
mological constraints are not altered whenσ is allowed to vary with
cosmologyp according to the dependence given in Eisenstein et al.
(2007b), and in Appendix A3 we show that using a spline fit toPlin

instead of the Eisenstein & Hu (1998) formula forPnw does not
affect the likelihood surface in the region of interest.

3.2 Non-linear structure growth

As the small perturbations in the early universe evolve, gravita-
tional instability drives the density field non-linear, andpower on
small scales is enhanced as structures form.HALOFIT (Smith et al.
2003) provides an analytic formalism to estimate the real space
non-linear matter power as a function of the underlying linear mat-
ter power spectrum. While Eqn. 10 accounts for the effects ofnon-
linear growth of structure on the BAO features inPhalo(k, p),
HALOFIT provides a more accurate fit to the smooth component
of the non-linear growth in the quasi-linear regime (k 6 0.2) when
evaluated with an input spectrumPnw(k, p) rather than the linear
matter power spectrum containing BAO wiggles:

rhalofit(k,p) ≡ Phalofit,nw(k, p)

Pnw(k,p)
(11)

PDM,halofit(k,p) = Pdamp(k,p, σm)rhalofit(k,p). (12)

Eqn. 12 is our modifiedHALOFIT model real space power spec-
trum, using Eqn. 10 to account for BAO damping andHALOFIT for
the smooth component. The bottom left panel of Fig. 3 shows that
PDM(k)/Pdamp(k, σm) andrhalofit agree at the∼ 1.5% level for
k 6 0.2 in our fiducial cosmology. Since we normalize the final
modelPhalo(k, p) using our mock catalogues at the fiducial cos-
mologypfid, in practiceHALOFIT only provides the cosmological
dependence of the non-linear correction to the matter powerspec-
trum:

rDM,damp(k,p) =
rhalofit(k, p)

rhalofit(k,pfid)

PDM (k,pfid)

Pdamp(k,pfid, σDM )
. (13)

rDM,damp(k,p) is our model for the ratio of the non-linear matter
power spectrum to the damped linear power spectrum. The nor-
malization ofrDM,damp accounts for the small offset between the
N -body andHALOFIT results in Fig. 3 at the fiducial cosmology.
In the space of cosmologies consistent with the data, the small
cosmology-dependence of this correction is primarily throughσ8.
In Section 5.2 we find that the LRG-only likelihood surface isin-
dependent of the assumed value ofσ8 over the range 0.7 to 0.9.

3.3 Halo bias

In our likelihood calculation we marginalize over the overall am-
plitude of P̂halo(k), so in this Section we are concerned only with
the scale dependence of the relation between the reconstructed halo
and matter power spectra. Smith et al. (2007) show that the scale
dependence of halo bias in real space is large for the most mas-
sive haloes, but should be rather weak for the halo mass range
which host the majority of the LRGs; Matsubara (2008) demon-
strates this analytically in redshift space in the quasi-linear regime.
Indeed, Reid et al. (2008) find that the power spectrum of the (red-
shift space) reconstructed halo density field is nearly linearly biased
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Figure 3. Upper left panel: Power spectra for the fiducial cosmology.
The solid curve isPlin(k) and the dashed curve isPnw(k)rhalofit,
the non-linear power spectrum fromHALOFIT using Pnw(k) as
the input. Upper right panel: Plin(k)/Pnw(k). Bottom left panel:
PDM(k)/Pdamp(k, σm) measured inN -body simulation snapshots at
zMID , reported in Reid et al. (2008), compared with the smooth correction
predicted byHALOFIT, rhalofit. Bottom right panel: rhalofit at {zNEAR,
zMID , zF AR} = {0.235, 0.342, 0.421}.

with respect to the underlying real space matter power spectrum for
k < 0.2 h Mpc−1 and our fiducialΛCDM model, and we assume
this should remain approximately true in the narrow range ofcos-
mologies consistent with the data. For the fiducial cosmology, we
can use our simulations to calibrate the relation between the halo
and matter spectra:

rhalo,DM(k,pfid) =
Phalo(k,pfid)/Pdamp(k,p, σhalo)

PDM(k,pfid)/Pdamp(k,p, σm)
. (14)

This is our model for the smooth component of the bias betweenthe
halo and dark matter power spectra. To account for any dependence
of rhalo,DM(k,pfid) on the cosmological model and other remain-
ing modeling uncertainties, we introduce a smooth multiplicative
correction to the final modelPhalo(k,p) containing three nuisance
parametersb0, a1 anda2:

Fnuis(k) = b2
0

(

1 + a1

(

k

k⋆

)

+ a2

(

k

k⋆

)2
)

(15)

where we setk⋆ = 0.2 h Mpc−1. The parameterb0 is the effective
bias of the LRGs at the effective sample redshift,zeff , relative to
L⋆ galaxies (Eqn. 18 of Percival et al. 2004). In Section 4 we will
use consistency checks between the observed and mock catalogue
galaxy density fields as well as the halo model framework to es-
tablish the allowed region ofa1 − a2 parameter space. An allowed
trapezoidal region ina1−a2 space is completely specified through
two parameters,u0.1 andu0.2. These two parameters specify the
maximum absolute deviation allowed byFnuis(k)/b2

0 away from
1 for k 6 0.1 (u0.1) and0.1 6 k 6 0.2 (u0.2). When evaluating
the likelihood of a particular cosmological model we marginalize
analytically overb0 using a flat prior onb2

0 > 0, and we marginalize
numerically over the alloweda1−a2 region with a flat prior in this
region. We discuss the impact of these priors on the cosmological
constraints in Appendix C.

3.4 Model fits and evolution with redshift

Our final model halo power spectrum at fixed redshift treats each
of the three non-linear effects independently: Eqn. 10 converts
the linear power spectrum to the damped linear power spectrum,
rDM,damp converts the damped linear power spectrum to the real
space non-linear matter power spectrum,rhalo,DM converts the
real space non-linear matter power spectrum to the redshiftspace
reconstructed halo density field power spectrum (assuming this re-
lation is cosmology independent), andFnuis(k) allows for smooth
deviations from our model due to modeling errors, uncertainties,
and unaccounted cosmological parameter dependencies:

Phalo(k,p) = Pdamp(k,p)rDM,damp(k, p) ×
rhalo,DM(k,pfid)Fnuis(k). (16)

For this multiplicative model, thePDM(k,pfid)/Pdamp(k, p, σm)
terms from Eqns. 13 and 14 cancel, so calibration of the modelonly
requires fits toσhalo and Phalo(k,pfid)/Pdamp(k,pfid, σhalo)
using the mock catalogues.

The model in Eqn. 16 is strictly only valid at a single red-
shift. In order to match our model to the observed redshift dis-
tribution of the LRGs and their associated haloes, we use the
mock halo catalogues constructed in Reid et al. (2008) at three
redshift snapshots. These are centered on the NEAR (zNEAR =
0.235), MID (zMID = 0.342), and FAR (zF AR = 0.421)
LRG subsamples of Tegmark et al. (2006). Fig. 4 shows our fits
to Phalo(k,pfid)/Plin(k,pfid) for each redshift snapshot. We
first fit for σhalo in Eqn. 10 using our LRG mock catalogue re-
sultsPhalo(k,pfid). We include modes betweenk = 0 h Mpc−1

and k = 0.2 h Mpc−1 in the fit and marginalize over an arbi-
trary fourth order polynomial to account for the smooth devia-
tions fromPdamp with k. We findσhalo, NEAR = 9.3 h−1 Mpc,
σhalo, MID = 9.2 h−1 Mpc, andσhalo, F AR = 9.2 h−1 Mpc.
These numbers are roughly consistent with the results presented
in Eisenstein et al. (2007b), and are somewhat degenerate with the
smooth polynomial correction.

After fixing these values forσhalo, we calibrate the smooth
component of the model,rDM,damp(k,pfid)rhalo,DM(k, pfid).
Fork 6 0.2 we fitPhalo(k, pfid)/Pdamp(k,pfid, σhalo) to a sec-
ond order polynomial, and a fourth order polynomial fork 6 0.5.
This component of the fit is shown in the first three panels of
Fig. 4 by the dotted curves, while the solid lines show the full
fit to Phalo(k, pfid)/Plin(k,pfid). Both the BAO-damping and
smooth increase in power withk are well described by our fits out
to k = 0.5 h Mpc−1.

Our final model for the reconstructed halo power spectrum is
a weighted sum over our modelPhalo(k,p) (Eqn. 16) from each
of the NEAR, MID, and FAR redshift slices fit in Fig. 4:

Phalo(k,p) =
∑

i=NEAR,MID,F AR

wiPhalo(k,p, zi) , (17)

where wi specifies the weight of each redshift subsample. The
lower right panel of Fig. 3 shows that the smooth correction for the
non-linear matter power spectrum varies by< 1% over the redshift
range of the LRGs. Moreover, the lower right panel of Fig. 4 shows
that the relative shape of the power spectrum of the reconstructed
halo density field varies by± ∼ 2.5% between the redshift sub-
samples, so moderate biases in the determination of these weights
will induce negligible changes in the predicted shapePhalo(k,p).

In the limit that most pairs of galaxies contributing power to
modek come from the same redshift, the fractional contribution to
the power spectrum from a large redshift subsample is
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Figure 4. BAO-damping times polynomial fits to
Phalo(k,pfid)/Plin(k,pfid) for our mock NEAR, MID, and FAR
LRG reconstructed halo density field subsamples in Reid et al. (2008);
{zNEAR, zMID , zF AR} = {0.235, 0.342, 0.421}. The smooth compo-
nent of these fits (dashed curves) enter our modelPhalo(k,p) through
Eqns. (14), while the amplitude of the BAO suppressionσ2

halo enters in
Eqn. 10.Lower right panel: Ratio of the shape of the smooth components
for the NEAR and FAR redshift subsamples to the MID redshift subsample.

w(zmin, zmax) ∝
∫ zmax

zmin

n2(z)
w2(z)

b2(z)

dV

dz
dz , (18)

where n(z), b(z), and w(z) specify the average number den-
sity, bias, and weight of the sample at redshiftz as defined in
Percival et al. (2004). Since the integrand is slowly varying with
redshift, this approximation should be fairly accurate. Wederive
weightswNEAR = 0.395, wMID = 0.355, andwF AR = 0.250.

3.5 Comparison with fiducial modelPhalo(k,pfid)

Our fiducialPhalo(k,p) model is calibrated on simulations with
the WMAP5 recommended parameters (Komatsu et al. 2009):
(Ωm, Ωb, ΩΛ, ns, σ8, h) = (0.2792, 0.0462, 0.7208, 0.960, 0.817,
0.701). For the 45 observed bandpowers satisfying0.02 < k <
0.2 h Mpc−1, χ2 = 44.0 if we hold nuisance parametersa1 =
a2 = 0 and chooseb0 to minimizeχ2; our fiducial model is there-
fore sufficiently close to the measured̂Phalo(k) to be used to cal-
ibrate the cosmology-dependent model. The best-fitting nuisance
parameters within the allowed range that we determine in Section
4.3, a1 = 0.172 anda2 = −0.198, lower theχ2 to 40.9 for 42
DOF. The best-fitting model to the LRG-only likelihood presented
in Section 5.1 is lower by only∆χ2 ≈ 1.7 for the same treatment
of the three nuisance parameters.

4 QUANTIFYING MODEL UNCERTAINTIES AND
CHECKS FOR SYSTEMATICS

While the non-linear evolution of a collisionless dark matter den-
sity field can be accurately studied usingN -body simulations, there
remain many uncertainties in the mapping between the galaxyand

matter density field. We first review the generic halo model predic-
tions for a galaxy power spectrum, which provide the contextfor
exploring the uncertainties in the relation between the galaxy and
matter density fields. We summarize the results of Appendix B,
which presents our modeling assumptions and consistency checks
between the mock catalogue and SDSS DR7 LRG density fields
that constrain the level of deviation from our modeling assump-
tions. The ultimate goal of this Section is to establish physically-
motivated constraints on the nuisance parametersa1 and a2 in
Eqn. 15 by determiningu0.1 andu0.2 defined in Section 3.3. These
nuisance parameter constraints will then be used to computecos-
mological parameter constraints in Section 5.

4.1 Galaxy power spectra in the halo model

In the simplest picture for a galaxy power spectrum in the halo
model, one considers a separation of the pairs into galaxiesoccu-
pying the same dark matter halo, which contribute toP 1h(k), and
those occupying different dark matter haloes, which contribute to
P 2h(k) (Cooray & Sheth 2002):

Pgal(k) = P 1h
gal(k) + P 2h

gal(k) (19)

P 1h
gal =

∫

dM n(M)
〈Ngal(Ngal − 1)|M)〉

n̄2
gal

(20)

P 2h
gal(k) = b2

galPDM (k). (21)

On large scales, treating the haloes as linear tracers of theunder-
lying matter density field (Eqn. 21) and ignoring the spatialextent
of haloes in Eqn. 20 are good approximations (Reid et al. 2008).
Therefore, in real space, the dominant effect of the inclusion of
satellite galaxies is an excess shot noise given by Eqn. 20, though
they also upweight highly biased halo pairs and slightly increase
bgal as well. However, in redshift space, satellite galaxies aresig-
nificantly displaced along the line of sight from their host haloes
by the FOGs, and power is shuffled between scales, and even the
largest scale modes along the line of sight are damped by the FOG
smearing. There will be residual non-linear redshift spacedistor-
tions in the reconstructed halo density field from imperfectrecon-
struction, and potentially from peculiar motion of isolated LRGs in
their host haloes as well.

4.2 Summary of tests for systematics and remaining
uncertainties

In the context of the halo model, both uncertainty in the distribu-
tion of galaxies in groups as it enters Eqn. 20 and uncertainty in the
structure of the FOG features will introduce uncertainty inthe rela-
tion between the reconstructed halo and matter density fields, and
thus their power spectra. Appendices B1 and B2 discuss the model-
ing assumptions we have used to derive the Reid et al. (2008) mock
LRG catalogues fromN -body simulation halo catalogues, and state
the expected impact on the relation between the reconstructed halo
and matter power spectra.

Appendix B3 introduces several distinct consistency checks of
the uncertainties in Appendices B1 and B2. In Section 2.2 we de-
fine the CiC group finder by which we identify haloes. We demon-
strate that this group finder produces group multiplicity functions
that are in good agreement between the mock and observed LRG
density fields, once fiber collisions are accounted for. While this
agreement demonstrates that our mock catalogues reproducesmall
scale higher-order clustering statistics and FOG featuresof the ob-
served density field, this is not a consistency check since the mocks
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were designed to match these statistics. We find consistencywhen
we compute a second CiC group multiplicity function allowing a
wider separation between pairs perpendicular to the line ofsight
(∆r⊥ = 1.2 h−1 Mpc). If the observed satellite galaxies were sig-
nificantly less concentrated than in our mock catalogues, wewould
detect these galaxies when∆r⊥ increases from 0.8h−1 Mpc to
1.2h−1 Mpc. From this comparison we conclude that residual shot
noise errors from inaccurate halo density field reconstruction are
∼ 2% of the total shot noise correction and do not dominate our
systematic uncertainty. The second consistency check between the
mock and observed LRG catalogues is the distribution of lineof
sight separations between pairs of galaxies in the same CiC group
(Fig B2). This check probes the accuracy of our model of the FOG
features coming from galaxies occupying the same halo, and the
agreement we find indicates that the residual FOG features inthe
reconstructed observed and mock halo density fields will be in
satisfactory agreement. Appendix B4 presents the difference be-
tween the power spectra with and without the halo density field
reconstruction preprocessing step (P̂halo(k) andP̂LRG(k), respec-
tively). This difference agrees with the mock catalogues, provided
one carefully accounts for the impact of fiber collisions. Inother
words, while the treatment of fiber collisions can substantially im-
pactP̂LRG(k), P̂halo(k) is unaffected. In Appendix B5 we demon-
strate that the luminosity weighting used to computeP̂halo(k) but
not accounted for in the mock catalogues does not alter the effec-
tive shot noise level of̂Phalo(k). Appendix B6 presents evidence
that the cosmology dependence of the modelPhalo(k,p) is suf-
ficiently accurate. Finally, we note that Lunnan et al. (prep) have
compared the Reid et al. (2008) mock catalogue genus curve with
the observed genus curves (Gott et al. 2009), and find good agree-
ment with no free parameters.

As discussed in detail in Appendix B2, the vast majority of
LRGs (∼ 94%) are expected to reside at the centre of their host
dark matter haloes (Zheng et al. 2008; Reid et al. 2008). The prin-
cipal modeling uncertainty we identify in Appendix B is the veloc-
ity of these central LRGs within their host haloes; substantial in-
trahalo velocities for these galaxies will suppress power in a scale-
dependent manner (Fig. B1). Note that none of the tests from Ap-
pendix B can directly constrain the level of central LRG velocity
dispersion.

4.3 Constraints onFnuis(k)

In Section 3.3 we introduced a quadratic functionFnuis(k) to
account both for errors in our modeling at the fiducial cosmol-
ogy and for any errors in the cosmology dependence of our
model. We parametrized the amplitude of the total modeling un-
certainty throughu0.1 andu0.2. These parameters, which we de-
termine in this subsection, specify the maximum fractionaldevi-
ation from the model power spectrum atk = 0.1 h Mpc−1 and
k = 0.2 h Mpc−1, respectively. We choose these values ofk be-
causek 6 0.1 is usually considered safely in the linear regime,
while k = 0.2 h Mpc−1 is the maximum wavenumber we attempt
to model.

The dominant uncertainty in our model is in the relation be-
tween the power spectrum of the reconstructed halo density field
and the underlying matter power spectrum, which we describeby
Eqn. 14. Atk = 0.1 h Mpc−1 in the mock catalogues, the re-
constructed halo density field and the redshift space central galaxy
power spectra agree well below the percent level. The total one-halo
correctionP 1h in real space is 7-10%. If we conservatively assume
that the halo reconstruction algorithm incorrectly subtracts the real

space one-halo term by 20%, then the systematic error atk =
0.1 h Mpc−1, u0.1, is allowed to be 2%. Atk = 0.2 h Mpc−1,
the same error would translate to 5% in real space, though in red-
shift space this term is mitigated. In Appendix B4 we find that
the shape difference of̂Phalo(k) and P̂LRG(k) is only 18% at
k = 0.2 h Mpc−1, and only 8% after accounting for the shot noise
introduced by the fiber collision corrections. If we assume that our
modeling and treatment of the one-halo contribution to the FOGs
are accurate at the∼ 50% level, we can estimate a conservative
error atk = 0.2 h Mpc−1 of 5%. Therefore, for all the modeling
uncertainties besides central velocity dispersion that wehave dis-
cussed,u0.1 = 0.02 andu0.2 = 0.05 encompass the estimated un-
certainties. These are our ‘fiducial’ nuisance function constraints.

In Appendix B2 we find that a large amount of central galaxy
misidentification or central–halo velocity bias can reducethe am-
plitude of Phalo(k,p) by a smoothly varying function ofk at a
level that exceeds these fiducial bounds onu0.1 and u0.2. Our
approach to mitigating the impact of uncertain central LRG pe-
culiar velocities is twofold. First, for all of the analysisin Sec-
tion 5 we adopt more conservative bounds for the nuisance func-
tion: u0.1 = 0.04 andu0.2 = 0.10, which nearly encompass the
change in power spectrum shape in Fig. B1 for the extreme velocity
dispersion model. Furthermore, we calibrate a second modelfrom
the mocks with extreme velocity dispersion, and in AppendixC we
determine the cosmological parameter constraints with this model
to establish the level of remaining systematic uncertaintyin our fi-
nal results.

5 COSMOLOGICAL CONSTRAINTS

In this Section we explore the cosmological constraints derived
from the power spectrum of the reconstructed halo density field,
P̂halo(k). We first consider constraints obtained from̂Phalo(k)
alone, and then combine the LRG likelihood with WMAP5 and
the Union Supernova Sample (Kowalski et al. 2008) to explore
joint constraints in several cosmological models. Throughout, we
make use of the COSMOMC package (Lewis & Bridle 2002) to
compute cosmological constraints using the Markov Chain Monte-
Carlo method. A stand-alone module to compute theP̂halo(k) like-
lihood is made publicly available.2

5.1 Constraints from the halo power spectrum

In this subsection we examine the cosmological constraintsde-
rived from theP̂halo(k) alone and in combination with a prior on
Ωmh2 from WMAP5. In the modelPhalo(k,p), the scale factor
ascl in Eqn. 8 is evaluated atzeff = 0.313. For comparison with
other works, we scale our constraint onDV (0.313) using the fidu-
cial distance-redshift relation, for whichDV (0.35)/DV (zeff ) =
1.106; the variation of this ratio with cosmological parameters
is negligible. Following Eisenstein et al. (2005), we consider two
free parametersΩmh2 andDV (0.35). In this subsection we hold
Ωbh

2 = 0.02265, ns = 0.960, andσ8 = 0.817 fixed at their val-
ues in the fiducial cosmological model, and assume a flatΛCDM
model; in§5.2 we relax these assumptions.

For the 45 bandpowers satisfying0.02 < k < 0.2 h Mpc−1,
χ2 is minimized whenDV (0.35) = 1396 and Ωmh2 = 0.136
with best-fitting nuisance parametersa1 = 0.160 and a2 =

2 http://lambda.gsfc.nasa.gov/toolbox/lrgdr/
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data/model Ωmh2 DV (0.35) (Mpc) rs/DV (0.35) Ωmh2DV (0.35) (Mpc) A0.35

kmax = 0.2 0.141
+0.010

−0.012
1380

+61

−73
0.1097

+0.0039

−0.0042
194

+10

−10
0.493

+0.017

−0.017

kmax = 0.15 0.142+0.010
−0.012 1354+64

−77 0.1118+0.0043
−0.0046 191+10

−11 0.485+0.018
−0.018

kmax = 0.1 0.145+0.014
−0.016 1329+104

−116 0.1136+0.0070
−0.0072 192+11

−12 0.480+0.025
−0.024

kmax = 0.2 weakFnuis 0.139+0.015
−0.017 1384+64

−77 0.1099+0.0039
−0.0040 192+17

−16 0.490+0.020
−0.020

kmax = 0.2 VD 0.148+0.011
−0.013 1365+63

−76 0.1096+0.0040
−0.0043 202+11

−11 0.499+0.018
−0.018

kmax = 0.2 + prior 0.135+0.004
−0.006 1411+44

−58 0.1085+0.0036
−0.0036 189.9+7.5

−7.5 0.493+0.016
−0.016

kmax = 0.15 + prior 0.135+0.004
−0.006 1387+48

−61 0.1104+0.0040
−0.0039 186.6+7.9

−7.9 0.485+0.017
−0.017

kmax = 0.1 + prior 0.134+0.005
−0.007 1394+67

−81 0.1101+0.0053
−0.0053 187.1+9.3

−9.2 0.487+0.022
−0.022

kmax = 0.2 weakFnuis + prior 0.133+0.005
−0.007 1404+44

−58 0.1095+0.0036
−0.0037 186.1+8.4

−8.2 0.487+0.017
−0.017

kmax = 0.2 VD + prior 0.136+0.004
−0.006 1417+44

−58 0.1078+0.0035
−0.0035 192.9+7.4

−7.8 0.498+0.016
−0.017

kmax = 0.1 NW + prior 0.134+0.005
−0.007 1436+143

−150 0.1076+0.010
−0.011 192+17

−17 0.500+0.047
−0.045

kmax = 0.2 NW + prior 0.134+0.005
−0.007 1463+134

−142 0.1054+0.0092
−0.0095 196+15

−15 0.510+0.044
−0.042

Table 2.One-dimensional constraints from the LRĜPhalo(k) likelihood, or in combination with the WMAP5Ωmh2 constraintΩmh2 = 0.1326± 0.0063
(‘+ prior’, below the line). We vary thekmax (units of hMpc−1) included in the fit, the nuisance function constraints (fiducial vs weakFnuis), velocity dis-
persion in the model (fiducial vs. ‘VD’), and whether the BAO features are included in the model (fiducial vs ‘NW’). All constraints have assumed theΛCDM

relation betweenΩm, H0, andDV , Ωbh2 = 0.02265, ns = 0.96, andσ8 = 0.817. In the last column we showA0.35 ≡
√

ΩmH2
0DV (0.35)/0.35c

(Eisenstein et al. 2005). Models with weakFnuis constraints or central galaxy velocity dispersion are discussed in Appendix C. Thekmax = 0.2 h Mpc−1

constraints highlighted in bold are our main results, and the other cases are shown for comparison.

Figure 5. Constraints from the LRG DR7̂Phalo(k) for a ΛCDM model
with Ωbh

2 = 0.02265 andns = 0.960 fixed. The dotted contours show
∆χ2 = 2.3 and 6.0 contours for thêPhalo(k) fit to a no-wiggles model.
The solid contours indicate∆χ2 = 2.3, 6.0, and 9.3 contours forkmax =
0.2 hMpc−1 and our fiducialPhalo(k,p) model. The three dashed lines
show the best-fitting and±1σ valuesrs/DV (0.35) = 0.1097 ± 0.0036
from P09.

−0.181: χ2 = 39.6 for 40 degrees of freedom. Thus the assumed
model power spectrum and covariance matrix provide a reasonable
fit to the observed spectrum. In aΛCDM model, this point corre-
sponds toh = 0.67 andΩm = 0.30. Fig 5 showsχ2 contours
in theΩmh2 − DV (0.35) parameter space, while Table 2 reports
marginalized one-dimensional constraints for several combinations
of these parameters.

The information inP̂halo(k) can be roughly divided into
broad-shape information and information from the BAO scale.

Since in this subsectionns is fixed, the shape information is the
location of the turnover in the power spectrum set by matter-
radiation equality, which constrainsΩmh2DV ; information from
the BAO scale constrainsrs/DV . Here, rs is the sound hori-
zon at the baryon-drag epoch, which we evaluate using Eqn. 6
of Eisenstein & Hu (1998). These two scales correspond to con-
straints onhΩ0.93

m andhΩ−0.37
m respectively, in aΛCDM cosmol-

ogy (Tegmark et al. 2006).

To isolate information from the power spectrum turnover
and exclude that of the BAO scale, we alter our model so that
Pdamp(k, p) = Pnw(k,p) in Eqn. 10. The dashed lines in Fig. 5
show the constraints when using this ‘no wiggles’ model. Most
of the available shape information comes from large scales with
k < 0.1 h Mpc−1; we demonstrate this in Table 2 by fitting the
Pdamp(k, p) = Pnw(k,p) model with theΩmh2 prior to the data
up tokmax = 0.1 h Mpc−1 andkmax = 0.2 h Mpc−1. The num-
ber of independent modes is proportional to(k3

max − k3
min); thus

betweenk = 0.1 h Mpc−1 andk = 0.2 h Mpc−1 there are about 7
times more modes than betweenkmin and0.1 h Mpc−1. Neverthe-
less, the constraint onΩmh2DV (0.35) only improves by≈ 10%
with the inclusion of modes betweenkmax = 0.1 h Mpc−1 and
kmax = 0.2 h Mpc−1 and does not shift appreciably. This also in-
dicates that our modeling in the quasi-linear regime0.1 < k <
0.2 h Mpc−1 does not bias or substantially improve this constraint.

If we reintroduce the BAO features in the modelPhalo(k, p),
then the degeneracy betweenDV (0.35) andΩmh2 is partially bro-
ken (solid contours in Fig. 5), and the constraints grow tighter
as we include additional modes. This is understandable as the
region 0.1 < k < 0.2h Mpc−1 includes the location of
the second BAO. The constraints on bothrs/DV (0.35) and
Ωmh2DV (0.35) listed in Table 2 improve withkmax. The mean
value ofΩmh2DV (0.35) is consistent with what we find using the
Pdamp(k, p) = Pnw(k,p) model with the WMAP5Ωmh2 prior,
and does not shift substantially with increasingkmax. Because the
BAO features break the degeneracy betweenΩmh2 andDV (0.35),
the LRG P̂halo(k) provides an independent constraint onΩmh2.
Forns = 0.96, we findΩmh2 = 0.141+0.010

−0.012 , which is consistent
with the WMAP5 constraint,Ωmh2 = 0.1326 ± 0.0063, but with
a 70% larger error.
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Fig. 5 shows that the LRG-only constraints derived with
kmax = 0.2h Mpc−1 are consistent with the intersection of
the power spectrum shape constraint (dotted lines) combined
with constraints onrs/DV (0.35) from P09: the best-fitting and
±1σ lines, 0.1097 ± 0.0036 are shown as dashed lines. Note
that these are one parameter1σ errors. Table 2 shows excellent
agreement for this quantity for the LRG-only constraints, with
rs/DV (0.35) = 0.1097+0.0039

−0.0042 for kmax = 0.2 h Mpc−1. This
agreement reinforces the argument in Appendix A2 that our ne-
glect of the model dependence of the window function does not
introduce significant bias in theDV (0.35) constraint. Moreover,
this constraint does not change if we adopt very weak constraints
on the nuisance function,|Fnuis(0.1 h Mpc−1)|/b2

0 < 0.2 and
|Fnuis(0.2 h Mpc−1)|/b2

0 < 0.5, or use the extreme central galaxy
velocity dispersion model instead. We show in Appendix C that
the largest known source of systematic uncertainty, the central
galaxy velocity dispersion, impacts the cosmological parameter
constraints at well below the statistical errors, and can besafely
neglected for this analysis. We also demonstrate that our results are
robust to the treatment of the nuisance parametersa1 anda2.

We estimate the significance of the detection of the BAO fea-
ture as the difference between the best-fittingχ2 for the fiducial and
no wiggles models whena1, a2, andb2

o are chosen to minimizeχ2;
we find∆χ2

BAO = 8.9. The resulting constraint onrs/DV (0.35)
is much tighter than is available from the shape informationalone.
To see this result, in Table 2 we combine the LRGP̂halo(k) likeli-
hood with a WMAP5 prior onΩmh2. The constraint from the shape
alone, obtained by fitting the no wiggles model, gives a constraint
on rs/DV that is consistent with the constraint from the model in-
cluding BAOs, but with a factor of∼ 2.3 larger errors. Finally, we
note that P09 estimate the total BAO detection significance to be
∆χ2 = 13.1; it is substantially larger than the value we find due to
the inclusion of lower redshift galaxies from both the SDSS main
sample and 2dFGRS.

Finally, Table 2 also reports our constraint onA0.35

(Eisenstein et al. 2005):

A0.35 ≡
√

ΩmH2
0

DV (0.35)

0.35c
. (22)

This parameter is tightly constrained by theP̂halo(k) measurement
and is independent ofH0.

5.2 Dependence of LRG-only constraints on the cosmological
model

In Section 5.1 the cosmological parametersΩbh
2, ns, andσ8 were

fixed at their WMAP5 recommended values. For our purposes,rs

changes negligibly as a function ofΩbh
2 since this parameter is

so tightly constrained by CMB data. The parametersΩmh2 andns

both affect the linear power spectrum and are degenerate in shifting
the contours along the constantrs/DV direction, as illustrated in
the upper panel of Figure 6. This degeneracy is well described as
Ωmh2(ns/0.96)1.2 = 0.141.

In Figure 5, we have assumed theΛCDM relation between
Ωm, h, and DV . This determines the scale at which to apply
the non-linear corrections, which are at fixedk values in units of
h Mpc−1. In the bottom panel of Figure 6 we show that this as-
sumption is not restrictive. The dashed curve fixesh = 0.7 and
assumes no relation betweenh andDV , which also depends onΩk

andw. Varyingσ8 by ±0.1, which enters theHALOFIT calculation
of the smooth component of the non-linear matter power spectrum
in Eqn. 11, changes the contours in Figure 5 negligibly.

Figure 6. Upper panel: Change in∆χ2 = 2.3 contour asns is varied,
with all other parameters as in Fig. 5.ns = 1.02 (dashed),ns = 0.96
(solid), andns = 0.90 (dotted). The degeneracy is well-described as
Ωmh2(ns/0.96)1.2 = 0.14. Lower panel: The impact of assuming a
ΛCDM relation betweenΩm, h, andDV (solid contours) compared with
applying the non-linear corrections ath = 0.7 and assuming no relation
betweenΩm, h, andDV (0.35) (dashed contours). As in Fig 5 the lines
show the constraints for constantrs/DV (0.35) from P09.

5.3 Combined constraints with WMAP5 and Union SN

As probes of the redshift-distance relation, the three cosmologi-
cal datasets we use in this Section are highly complementaryfor
constraining the geometry of the universe and the equation of state
of dark energy: WMAP5 effectively constrains the distance to the
surface of last scatter andΩmh2, supernova data constrains angu-
lar diameter distance ratios up toz ∼ 1, andP̂halo(k) sets joint
constraints onrs/DV (0.35) and Ωmh2(ns/0.96). In Fig. 7 we
show the intersection of these constraints for two models assum-
ing a power law primordial power spectrum and no massive neu-
trinos. The blue bands indicate the WMAP5 constraints and the
green bands show constraints using the Union Supernova Sam-
ple (Kowalski et al. 2008). For thêPhalo(k), we show the con-
straint onA0.35 (open bands), which has assumedns = 0.96 and
Ωbh

2 = 0.02265, and is independent ofH0. In the upper panel, we
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Figure 7. WMAP5, Union supernova sample, and the LRĜPhalo(k)
A0.35 constraint on the geometry of the universe.Upper panel:curva-
ture varies andw = −1 is fixed. The dashed line shows a flat universe,
Ωm + ΩΛ = 1. Lower panel:w varies (assumed independent of redshift),
and a flat universe is assumed. The dashed line indicates a cosmological
constant,w = −1. WMAP5 and Union supernova contours are MCMC
results, while forP̂halo(k), we approximate∆χ2 = 2.3 and∆χ2 = 6
contours by showingA0.35±

√
2.3σA0.35

andA0.35±
√

6.0σA0.35
from

the constraints in the top row of Table 2.

have assumedw = −1 and allow curvature to vary. The three in-
dependent constraints intersect nearΩm = 0.3 and a flat universe
(dashed line). In the lower panel, we assume flatness but allow w
to vary; again the contours intersect nearΩm = 0.3 andw = −1,
a cosmological constant.

In this Section we combine these probes using the Markov
Chain Monte Carlo (MCMC) method to obtain constraints on four
cosmological models: a flat universe with a cosmological constant
(ΛCDM), a ΛCDM universe with curvature (oΛCDM), a flat uni-
verse with a dark energy component with constant equation of
state w (wCDM), and a wCDM universe with curvature (owCDM).
In each model we combine the constraints from̂Phalo(k) with

the WMAP5 results (Dunkley et al. 2009). In the last model, we
also present constraints in combination with both WMAP5 and
the Union Supernova Sample (Kowalski et al. 2008). Marginalized
one-dimensional parameter constraints are presented in Table 3.

The best-fittingΛCDM fit to the WMAP5+LRG likelihoods
is (Ωm, Ωb, ΩΛ, ns, σ8, h) = (0.291, 0.0474, 0.709, 0.960, 0.820,
0.690) with best-fitting nuisance parametersa1 = 0.172 and
a2 = −0.198. This model hasχ2

LRG = 40.0 when fitting to 45
bandpowers, and is shown with the data in Fig. 8. In this model
adding the information from̂Phalo breaks the partial degeneracy
betweenΩm andH0 in the WMAP5 data and reduces the uncer-
tainties in each by a factor of∼ 1.6 compared to WMAP5 alone:
Ωm = 0.289 ± 0.019 and H0 = 69.4 ± 1.6 km s−1 Mpc−1

(Ωm = 0.258 ± 0.03 and H0 = 71.9+2.6
−2.7 km s−1 Mpc−1 for

WMAP5). The constraint onσ8 also tightens by 30% because of
theσ8 − Ωmh2 partial degeneracy in the WMAP5 data. Note that
since we marginalize over the galaxy bias, we have no constraint
onσ8 directly from the LRGs.

In Fig. 9 we show the effect of opening the cosmological pa-
rameter space to include curvature and a constant dark energy equa-
tion of statew. Solid contours show theΛCDM constraint in each
panel for comparison. The dashes show WMAP5-only constraints.
Without theΛCDM assumption, WMAP5 cannot constrainΩm

andH0 separately fromΩmh2. In each of these models, the inclu-
sion of theP̂halo(k) information can break the degeneracy through
the BAO constraint onrs/DV . Table 3 shows that the cold dark
matter density,Ωch

2, constraint improves by∼ 15% compared
to the WMAP5-only constraint (∼ ±0.0063) due to the power
spectrum shape information in the non-ΛCDM models. Moreover,
thers/DV (0.35) constraint does not deviate substantially from the
P̂halo(k)+Ωmh2 prior constraint presented in Table 2. In the con-
text of power-law initial conditions,̂Phalo(k) information does not
improve constraints on the spectral indexns.

Allowing curvature relaxes the constraints onΩm andH0 to
the WMAP5-onlyΛCDM errors on these parameters, while tightly
constrainingΩtot = 1 − Ωk to 1.0114+0.0077

−0.0076 (−0.027 < Ωk <
0.003 with 95% confidence). If instead we assume flatness but al-
low the dark energy equation of state as an additional parameter w
(assumed constant),w is constrained to−0.79 ± 0.15. Since the
effective LRG sample redshift iszeff = 0.313, allowingw to de-
viate from−1 significantly degrades thez = 0 constraints,Ωm

andH0.
When bothΩk andw vary, there remains a large degeneracy

betweenΩm, H0, andw. Curvature is still tightly constrained and
consistent with flatness at the percent level:Ωtot = 1.009±0.012.
Figure 10 demonstrates that supernovae can break the degeneracy
in this model. The combination of all three data sets simultaneously
constrainsΩk within 0.009 andw to 11%, while still improving
constraints onΩm andH0 compared with WMAP5 alone in the
ΛCDM model. AllowingΩk 6= 0 and/orw 6= −1 all act to increase
Ωm and decreaseH0 compared with theΛCDM model. The upper
panel of Figure 10 shows that theΛCDM model is only∼ 1σ away
from the best fit. The full set of constraints on all parameters is
reported in Table 3.

5.4 Additional constraints from the broad P̂halo(k) shape

For the models considered thus far, we have shown that gains in
cosmological parameter constraints from adding constraints on the
broad shape of̂Phalo(k) to WMAP5 results are moderate:∼ 15%
improvement inΩch

2 for all the models considered in Table 3.
On the other hand, when the constraints onΩbh

2 andΩch
2 from
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Figure 8. Points with errors show our measurement ofP̂halo(k). We show
√

Cii as error bars; recall that the points are positively correlated. We plot
the best-fitting WMAP5+LRG ΛCDM model (Ωm,Ωb, ΩΛ, ns, σ8, h) = (0.291, 0.0474, 0.709, 0.960, 0.820, 0.690) with best-fitting nuisance parameters
a1 = 0.172 anda2 = −0.198 (solid curve), for whichχ2 = 40.0; the dashed line shows the same model but witha1 = a2 = 0, for which χ2 = 43.3.
The BAO inset shows the same data and model divided by a splinefit to the smooth component,Psmooth, as in Fig. 4 of P09. In Section 5.1 we find the
significance of the BAO detection in thêPhalo(k) measurement is∆χ2 = 8.9.

WMAP5 are used, our constraint on the BAO scale provides a much
more precise determination ofDV at the effective redshift of the
survey than the shape information alone.

In more extended models than we have thus far considered,
we may expect the additional shape information to allow tighter
constraints. The cosmological parameters most closely constrained
by the broadP (k) shape are those which affect the shape di-
rectly or which affect parameters degenerate with the shape: these
are expected to be the power spectrum spectral slopens, its run-
ning dns/d ln k, neutrino massmν , and the number of relativis-
tic speciesNeff . Thus far in our analysis, we have assumed
dns/d ln k = 0, mν = 0, andNeff = 3.04.

One intuitively expects the measurement ofP̂halo(k) to im-
prove constraints on the primordial power spectrum. In aΛCDM
model where both running of the spectral index and tensors are
allowed, WMAP5 still places relatively tight constraints on the pri-
mordial power spectrum:ns = 1.087+0.072

−0.073 andd ln ns/d ln k =
−0.05 ± 0.03. The measurement reported in this paper probes

at most∆ ln k ∼ 2 and covers a range corresponding toℓ ∼
300−3000; this range overlaps CMB measurements but extends to
smaller scales. Over thisk-range and for this model, WMAP5 con-
strains theP (k) shape to vary by∼ 8% from variations in the pri-
mordial power spectrum. Due to the uncertainties in the relation be-
tween the galaxy and underlying matter density fields, our nuisance
parameters alone allowPhalo(k,p) to vary by up to10−14% over
this region. Therefore we do not expect significant gains onns or
d ln ns/d ln k from our measurement.

The effect of massive neutrinos in the CMB power spec-
trum is to increase the height of the highℓ acoustic peaks: free
streaming neutrinos smooth out perturbations, thus boosting acous-
tic oscillations. In the matter power spectrum instead, neutrino
free streaming gives a scale-dependent suppression of power on
the scales that large scale structure measurements currently probe
(Lesgourgues & Pastor 2006). This makes these two observables
highly complementary in constraining neutrino masses withcos-
mology.
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Figure 9. WMAP5+LRG constraints onΩmh2, Ωm, andH0 for ΛCDM (solid black contours), oΛCDM (shaded green contours), wCDM (shaded red con-
tours), and owCDM (shaded blue contours) models. The first three panels show WMAP5-only constraints (dashed contours) and WMAP5+LRG constraints
(colored contours) in theΩmh2- Ωm plane as the model is varied. In the lower right we show all constraints from WMAP5+LRG for all four models in the
Ωm − h plane, which lie within the tightΩmh2 ≈ 0.133 WMAP5-only constraints.

parameter ΛCDM oΛCDM wCDM owCDM owCDM+SN

Ωm 0.289± 0.019 0.309± 0.025 0.328± 0.037 0.306± 0.050 0.312± 0.022
H0 69.4± 1.6 66.0± 2.7 64.3± 4.1 66.7+5.9

−5.6 65.6± 2.5
DV (0.35) 1349± 23 1415± 49 1398± 45 1424± 49 1418± 49
rs/DV (0.35) 0.1125± 0.0023 0.1084± 0.0034 0.1094± 0.0032 0.1078+0.0033

−0.0034 0.1081± 0.0034
Ωk - −0.0114+0.0076

−0.0077 - -0.009± 0.012 -0.0109± 0.0088
w - - -0.79± 0.15 -1.06± 0.38 -0.99± 0.11
ΩΛ 0.711± 0.019 0.703± 0.021 0.672± 0.037 0.703+0.057

−0.058 0.699± 0.020
Age (Gyr) 13.73± 0.13 14.25± 0.37 13.87± 0.17 14.27± 0.52 14.24± 0.40
Ωtot - 1.0114+0.0077

−0.0076 - 1.009± 0.012 1.0109± 0.0088
100Ωbh2 2.272± 0.058 2.274± 0.059 2.293+0.062

−0.063 2.279+0.066
−0.065 2.276+0.060

−0.059

Ωch2 0.1161+0.0039
−0.0038 0.1110± 0.0052 0.1112+0.0056

−0.0057 0.1103+0.0055
−0.0054 0.1110+0.0051

−0.0052

τ 0.084± 0.016 0.089± 0.017 0.088± 0.017 0.088± 0.017 0.088± 0.017
ns 0.961± 0.013 0.962± 0.014 0.969± 0.015 0.965± 0.016 0.964± 0.014
ln(1010A05) 3.080+0.036

−0.037 3.068± 0.040 3.071+0.040
−0.039 3.064± 0.041 3.068± 0.039

σ8 0.824± 0.025 0.796± 0.032 0.735± 0.073 0.79± 0.11 0.790+0.045
−0.046

Table 3.Marginalized one-dimensional constraints (68%) for WMAP5+LRG for flatΛCDM, ΛCDM with curvature (oΛCDM), flat wCDM (wCDM), wCDM
with curvature (owCDM), and wCDM with curvature and including constraints from the Union Supernova sample. Hereτ is the optical depth to reionization,
ns is the scalar spectral index, andA05 is the amplitude of curvature perturbations atk = 0.05/Mpc; these parameters are constrained directly by the CMB
only.
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Figure 10. For the owCDM model we compare the constraints from
WMAP5+LRG (blue contours), WMAP5+SN (green contours), and
WMAP5+LRG+SN (red contours). In the upper panel the vertical line
indicates a flat universe (Ωk = 0), and the horizontal line indicates
a cosmological constant (w = −1). In the both panels we overplot
the WMAP5+SN 68% contour (solid black) and WMAP5+LRG (dotted
black) for ease of comparison.

We start by comparing the constraints from
WMAP5+P̂halo(k) and WMAP5+BAO (using the P09 BAO
likelihood) in the ΛCDM model with three degenerate massive
neutrino species. While WMAP5 alone finds

∑

mν < 1.3 eV
with 95% confidence, WMAP5+̂Phalo(k) yields

∑

mν < 0.62
eV, which is a significant improvement over

∑

mν < 0.73 eV
(WMAP5+BAO). The upper panel of Fig. 11 compares the likeli-
hood formν for WMAP5 data alone (dashed) and in combination
with P̂halo(k).

A change in the number of relativistic species in the early
universe changes the epoch of matter-radiation equality and thus
shifts the CMB acoustic peaks. The CMB constrains the redshift
of matter-radiation equality through the ratio of the thirdto first
peak heights (Komatsu et al. 2009). If the effective number of rel-

Figure 11. P̂halo(k) improves constraints on neutrinos in theΛCDM
model through both the BAO scale and the broad power spectrumshape
constraints. We show the one dimensional cumulative probability for
WMAP alone (dashed) and WMAP+̂Phalo(k) (solid) for the neutrino mass
(upper panel) and the one dimensional likelihood for the effective number
of relativistic speciesNeff (lower panel).

ativistic speciesNeff is allowed to vary, this constraint defines a
degeneracy betweenΩch

2 andNeff (Dunkley et al. 2009). Note
that the physical quantity that is being constrained is the physi-
cal energy density in relativistic particles. In the standard model
this is given by photons and neutrinos butNν should really be
considered an “effective” number of relativistic neutrinospecies:
Neff = 3.04 for standard neutrinos. Departures from this number
can be interpreted also in terms of decay of dark matter particles,
quintessence, exotic models, and additional hypotheticalrelativis-
tic particles such as a light majoron or a sterile neutrino.

In theΛCDM model, which specifies a rigid relation between
the angular diameter distance at last scattering measured by the
CMB and low redshift distance scales, the degeneracy between
Neff andΩch

2 can be broken by a low redshift distance constraint
such as the BAO. However,Neff will also impact the matter power
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spectrum, which probes the horizon size at matter-radiation equal-
ity (e.g., Eisenstein & Hu 1998). Therefore,P̂halo(k) is an excel-
lent probe ofNeff : WMAP5+P̂halo(k) finds Neff = 4.8+1.8

−1.7,
while WMAP5+BAO yieldsNeff ≈ 6.0 ± 2.5. For comparison,
Komatsu et al. (2009) findNeff = 4.4 ± 1.5 when combining
WMAP, BAO, supernovae, and the Hubble Space Telescope key
project (Freedman et al. 2001). The lower panel of Fig. 11 com-
pares the likelihood forNeff for WMAP5 data alone with a prior
Neff 6 10 (dashed) and in combination witĥPhalo(k); no prior
onNeff is needed in this case.

6 COMPARISON WITH OTHER ANALYSES

6.1 Comparison with previous galaxy clustering results

There have been several previous analyses of the clusteringof
the SDSS LRG spectroscopic sample. Eisenstein et al. (2005)use
the correlation function of the DR3 SDSS LRG sample to de-
rive constraints onΩmh2 = 0.133(ns/0.96)−1.2 ± 0.011 and
DV (0.35) = 1381 ± 64 Mpc, where we have adjusted their con-
straints to match our assumed values ofΩbh

2 andns; recall that
these constraints are not independent. Comparison with their Fig-
ure 7 indicates that our model is slightly more than1σ away from
their best fit. Our analysis prefers largerΩmh2 and lowerrs/DV .
In interpreting this comparison one should consider the differences
in modeling and the fact that we have a factor of∼ 2 larger volume.
Given this larger volume, naively we would expect an improvement
on the constraints by a factor of∼

√
2. Comparison with Table 2

shows that our LRG-only constraints onΩmh2 andDV have ap-
proximately the same uncertainty as Eisenstein et al. (2005). This
is partly because we conservatively increased our covariance ma-
trix by a factor of1.21 to account for the non-Gaussianity in the
BAO contribution to the likelihood surface (see Section 2.4discus-
sion). However, this increase will artificially weaken the constraint
from the shape. Marginalization over the two nuisance parameters
a1 anda2 to account for our uncertainty in thePhalo(k, p) as well
as our conservative cut atkmin also slightly weaken the constraint
from the power spectrum shape.

Tegmark et al. (2006) report cosmological constraints froma
somewhat larger LRG sample (SDSS DR4) and combine their re-
sults with WMAP3 data. To compare LRG-only constraints, we use
the value derived from the Tegmark et al. (2006) power spectrum
in Sánchez & Cole (2008):Ωmh = 0.173 ± 0.017 for ns = 1.0
and h = 0.72. For a ΛCDM model scaled tons = 1.0, our
LRG-only constraints yieldΩmh = 0.200+0.012

−0.011 . Restricting our
analysis tokmax = 0.1 h Mpc−1 to match Tegmark et al. (2006),
we find Ωmh = 0.195 ± 0.013. Besides the increase in sam-
ple volume, the discrepancy between these results could be due to
differences in the FOG compression and the degeneracy between
their nuisance parameterQ (see Eqn. 1) and cosmological param-
eters. A detailed comparison of our modeling approaches is given
in Reid et al. (2008). Note that Sanchez et al. (2009) have also re-
cently completed an analysis of the LRG correlation function, but
they do not present a constraint from their shape measurement with
which we can compare.

Our results agree with analyses of photometric LRG samples.
Padmanabhan et al. (2007) findΩm = 0.30 ± 0.03 for h = 0.7
andns = 1, and Blake et al. (2007) findΩmh = 0.195 ± 0.023
for h = 0.75 andns = 1. Our constraint is also consistent with de-
terminations from other galaxy samples. For the 2dFGRS sample,
Cole et al. (2005) findΩmh = 0.168 ± 0.016 for fixed ns = 1.0

andh = 0.72; allowing a 10% Gaussian uncertainty inh yields
Ωmh = 0.174 ± 0.019, which is within1σ of our LRG-only con-
straint. Our results are also in good agreement with the SDSSmain
sample: Tegmark et al. (2004b) findΩmh = 0.201 ± 0.017, again
with fixedns = 1.0 andh = 0.72.

6.2 Comparison with P09

The P09 constraints overlap significantly with our analysis.
We showed in Section 5.1 that our LRG-only constraint on
rs/DV (0.35) is in very good agreement with the determination
in P09. When combined with the WMAP5 constraint onΩmh2,
our use of the shape information in̂Phalo(k) allows∼ 10% im-
provement onrs/DV (0.35). Moreover, the shape information pro-
vides a tighter constraint onΩch

2. However, the P09 inclusion of
SDSS main and 2dFGRS galaxies allows an additional constraint
onrs/DV (0.2), which generally makes the P09 constraints onΩm

andH0 tighter. Our constraints onΩk andw are comparable to P09.
Across the models we have studied, WMAP5+P̂halo(k) constraints
yield lower values ofH0 than the P09 results. This is driven by the
P09rs/DV (0.2) constraint, which pulls the overall distance scale
slightly lower compared tors/DV (0.35) alone, but does not signal
any inconsistency between these analyses.

6.3 Comparison with Riess et al. (2009)H0

Riess et al. (2009) recently released a new determination ofthe
Hubble constant using a differential distance ladder:H0 = 74.2 ±
3.6 km s−1 Mpc−1. This value is consistent at the∼ 1σ level
with the WMAP5+P̂halo(k) result for theΛCDM model,H0 =
69.4± 1.6 km s−1 Mpc−1. Table 3 shows that if we allowΩk 6= 0
and/orw 6= −1, the mean value ofH0 decreases to∼ 64 − 67
km s−1 Mpc−1. Therefore, combining the Riess et al. (2009) mea-
surement with our constraints should reduce the uncertainties fur-
ther and push the best-fitting model closer toΛCDM. P09 present
constraints including the Riess et al. (2009)H0 constraint for the
owCDM model; the impact should be similar when usingP̂halo(k)
rather than the P09 BAO constraints.

7 CONCLUSIONS

In this paper we have presented the power spectrum of the recon-
structed halo density field derived from a sample of LuminousRed
Galaxies (LRGs) from the Sloan Digital Sky Survey DR7. The size
of LRG DR7 sample has sufficient statistical power that the de-
tails of the relation between LRGs and the underlying linearden-
sity field become important and need to be reliably modeled be-
fore attempting a cosmological interpretation of the data.Here, we
have adopted the method of Reid et al. (2008), which applies apre-
processing step to the measured galaxy density field to reconstruct
the halo density field before computing the halo power spectrum.
On the scales of interest, this power spectrum has a more direct and
robust connection to the underlying linear, real space power spec-
trum than the power spectrum of the LRG galaxies themselves.

We calibrate our method usingN -body simulations with vol-
ume and resolution suitably tuned to trace the halo mass range rele-
vant to LRGs, and provide several consistency checks between the
observed and mock galaxy density fields to support our approach
to model the LRG sample’s clustering properties. In particular, we
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demonstrate the validity of our modeling of the small-scaleclus-
tering and FOG features by matching the observed and mock cat-
alogue higher-order statistics probed by the Counts-in-Cylinders
group multiplicity function as well as the relative line of sight ve-
locities between galaxies occupying the same halo. We discuss and
quantify the sources of systematic error remaining in our model-
ing. For the LRG sample, with̄nP ∼ 1, both the shot noise sub-
traction and the large velocity dispersions of their host haloes can
introduce uncertainty. We identify the largest source of systematic
uncertainty to be the velocity dispersion of central LRGs within
their host haloes, and find its effects on cosmological parameters
to be safely smaller than the size of the statistical errors.We are
able to derive quantitative bounds on our model uncertainties and
propagate these through the cosmological analysis by introducing
nuisance parameters with tightly controlled allowed ranges, based
on our understanding of the sources of non-linearity in the spec-
trum.

Based on our modeling of the LRG sample, we are able to
extend our model forP̂halo(k) to k = 0.2 h Mpc−1, increas-
ing the number of available modes by a factor of∼ 8 over an
analysis restricted tokmax = 0.1 h Mpc−1, as was the case in
the SDSS team’s DR4 analysis (Tegmark et al. 2006). This allows
us to simultaneously constrain the broadband shape of the un-
derlying linear power spectrum and detect the BAO signal with
∆χ2 = 8.9, though most of the shape information is confined to
k < 0.1h Mpc−1.

If we fix ns and Ωbh
2, P̂halo(k) alone constrains both

Ωmh2 = 0.141+0.010
−0.012 andDV (0.35) = 1380+60

−73 . The agreement
of our constraint onΩmh2 at zeff ∼ 0.31 with the one derived
from the CMB atz ∼ 1000 provides a remarkable consistency
check for the standard cosmological model. WhenP̂halo(k) is
combined with WMAP5, the error onΩch

2 is reduced by∼ 15%,
and the constraint onDV (0.35) allows us to place tight constraints
on bothΩm andH0, as well asΩk or w. If we also include the
Union Supernova Sample, all four parameters can be tightly con-
strained:Ωm = 0.312 ± 0.022, H0 = 65.6± 2.5 km s−1 Mpc−1,
Ωk = −0.0109 ± 0.008, andw = −0.99 ± 0.11, which is con-
sistent withΛCDM at the∼ 1σ level. In fact, in the spirit of Oc-
cam’s razor, these constraints can be taken as evidence against both
Ωk 6= 0 andw 6= −1, since their values must conspire to match
the observed angular diameter distance at recombination aswell as
DV (0.35); this can be seen from Fig. 7.

Finally, we show that the shape information in̂Phalo(k) can
improve constraints on both massive neutrinos and the number of
relativistic speciesNeff in a ΛCDM model. In combination with
WMAP5 we find

∑

mν < 0.62 eV at the 95% confidence level
andNeff = 4.8+1.8

−1.7. These represent 16% (30%) improvements
over using the WMAP5+BAO likelihood from P09.

This paper represents a first attempt to analyse the LRG red-
shift survey with a model that accounts for the non-linear galaxy
bias and non-linear redshft space distortions introduced by the so-
called one-halo term, and to propagate the uncertainty in the mod-
eling through the cosmological constraints. We expect thatthe tech-
nique introduced here to estimate the halo density field willbe
useful to further refinements such as reconstruction of the baryon
acoustic peak (Eisenstein et al. 2007a) and measurement ofβ from
redshift space distortions. The modeling efforts presented in this
paper are rather specific to the SDSS LRG sample. However, simi-
lar techniques to probe the relation between the galaxy and under-
lying matter density fields as well as to quantify its uncertainty will
be required in the analysis of larger data sets from future galaxy
surveys.
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APPENDIX A: TESTING MODEL APPROXIMATIONS

In this Appendix we present tests to demonstrate the validity of
several assumptions of our modelPhalo(k,p).

A1 Isotropy tests

Both our Phalo(k,p) model (Eqn. 16) and theascl approxima-
tion (Eqn. 8) assume that the power spectrum modes are distributed
isotropically with respect to the line of sight. We check this assump-
tion in the SDSS DR7 LRG galaxy sample using pairs of galaxies
separated by∆rmin = 15 h−1 Mpc to ∆rmax = 150 h−1 Mpc,
binned into nine equal bins in∆r of width 15h−1 Mpc. We con-
sider the two angles in the triangle defined by the observer and
galaxy pair which give the angle between the galaxy pair separation
vector and the local line of sight vector defined between the ob-
server and one of the galaxies in the pair. These two angles will be
equal in the limit of a pair with∆r ≪ max(χ1, χ2) whereχ1 and
χ2 are the distances to the two galaxies and∆r is the separation
between them. We find

〈

cos2 φ
〉

− 0.333 is−0.01 for the smallest
separation bin (15h−1 Mpc < ∆r < 30 h−1 Mpc) and+0.005
in the largest separation bin. Figure A1 shows the full distribution
versus| cos φ|. The small increase for pairs perpendicular to the
line of sight for the smallest separation bin is due to non-linear
redshift space distortions (FOGs), inducing a potentiallylarge sep-
aration in redshift space between nearby pairs of galaxies in real
space. The few percent deviations from isotropy will induceneg-
ligible variations in the shape of the angle-averagedPhalo(k,p),
since the lower left panel of Figure 7 in Reid et al. (2008) indicates
only a∼ 5% change to the power spectrum shape between real and
redshift space atk = 0.2 h Mpc−1.

A2 DV approximation

As in Section 3.4, we use the approximation that pairs of galaxies
contributing toP̂halo(k) in thek-range of interest are located at the
same redshift to compute the effective survey redshift:

zeff =

∫

zn2(z)w2(z)

b2(z)
dV
dz

dz
∫

n2(z)w2(z)

b2(z)
dV
dz

dz
, (A1)

where n(z), b(z), and w(z) specify the average number den-
sity, bias, and weight of the sample at redshiftz as defined in
Percival et al. (2004). We findzeff = 0.313, and use this redshift
to evaluateascl in Eqn. 8. The effective redshift changes by only
∆z = 0.004 if one instead weights by the expected number of
galaxies at redshiftz. Given the distribution of pairs in the small
separation limit (Eqn. 18) we estimate the fractional bias remain-
ing after the correction in Eqn. 8 is applied as

δDV

DV
≈

∫

(

DV (z)
DV (zeff )

Dfiducial

V
(zeff )

Dfiducial

V
(z)

− 1
)

n2(z)w2(z)

b2(z)
dV
dz

dz
∫

n2(z)w2(z)

b2(z)
dV
dz

dz
(A2)

For aΛCDM model, the fractional bias on the distance scale is<
0.1% in the rangeΩm = 0.2− 0.4 and the rms change is< 1.2%.
This additional variance about the peak is negligible for the BAO
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0.19
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0.21

Figure A1. P (| cos φ|) vs cos φ whereφ is the angle between the galaxy
pair separation vector and the line of sight defined by the observer and one
of the galaxies in the pair (see text). The smallest separation bin (15h−1

Mpc< ∆r < 30h−1 Mpc) shows the largest deviation from isotropy, with
a∼ 5% preference for pairs perpendicular to the line of sight compared to
along the line of sight due to FOGs. The larger separation bins extend to
150 h−1 Mpc and are nearly isotropic, but with a few percent excess of
pairs directly along the line of sight.

scale∼ 100 h−1 Mpc since this is much smaller than the damping
scaleσBAO ∼ 9 h−1 Mpc. We find very similar results for the bias
and rms damping if we instead integrate over the full distribution of
isotropic pairs instead of using theDV approximation in Eqn. A2.

Testing this approximation in more general models is more
subtle, sinceDV (z) depends onH0, Ωm, Ωk, and w. We in-
stead do a consistency check: forΩmh2 constrained by WMAP5,
DV (zeff ) constrained by WMAP5+̂Phalo(k), Ωk = 0, and−2 <
w < −0.5, the maximum fractional bias is∼ 0.5%, and the max-
imum rms change is 3.5%; a similar analysis for−0.025 < Ωk <
0.025 andw = −1 shows much smaller deviations. We therefore
conclude that in the range of models considered here, a single scale
factorascl can accurately account for the effects of the model red-
shift distance relation on the interpretation of the measured power
spectrum.

A3 Comparing Pnw approximations

In the models without massive neutrinos, we have used the
Eisenstein & Hu (1998) formula (Eqn. 29) to computePnw , which
enters our model in Eqn. 10. However, for more general models
such as those containing massive neutrinos or which vary thenum-
ber of relativistic species, it is more convenient to use a spline to
obtain a smooth version ofPlin without BAO features. We fit a
cubic b-spline toPlink1.5 in order to minimize the slope in the
k region of interest. There are eight equally spaced nodes start-
ing atk = 0.0175 Mpc−1 and ending atk = 0.262 Mpc−1, and
an additional node atk = 0.0007 Mpc−1. Note we fix the loca-
tion of the nodes in units of Mpc−1 since the linear power spec-
trum is fixed in those units for fixedΩmh2 and Ωbh

2. Fig. A2
shows that the LRG-only likelihood surfaces computed with these
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Figure A2. Comparison of the LRG-only likelihood surface computed with
the analytic approximation ofPnw in Eqn. 29 of Eisenstein & Hu (1998)
(solid, as in Fig. 5) compared with the result when using the b-spline fit
described in Appendix A3 (dashed).

two approximations agree well in the region preferred by WMAP5:
Ωmh2 = 0.133 ± 0.0063.

APPENDIX B: QUANTIFYING MODEL UNCERTAINTIES
AND CHECKS FOR SYSTEMATICS: DETAILS

In this Appendix we aim to quantify the sources of systematicun-
certainty in the modelPhalo(k). The model is calibrated on the
mock catalogues of Reid et al. (2008). In Appendix B1 and Ap-
pendix B2 we present the detailed assumptions we have made to
produce the mock catalogues from theN -body simulation halo cat-
alogues, and discuss the expected impact of these assumptions on
the predicted relation between the reconstructed halo and matter
density fields. Appendix B3 through B6 present consistency checks
between the observed and mock catalogue LRG density fields that
address the modeling uncertainties. In Section 4.3, the results of
these tests are used to establish quantitative bounds on thenuisance
parameters in Eqn. 15 to be used in our cosmological parameter
analysis.

B1 Halo model parametrization

In Reid et al. (2008) we adopt the following parametrizationfor the
average number of LRGs in a halo of massM (Zheng et al. 2005):

〈N(M)〉 = 〈Ncen〉 (1 + 〈Nsat〉) (B1)

〈Ncen〉 =
1

2

[

1 + erf

(

log10 M − log10 Mmin

σlogM

)]

(B2)

〈Nsat〉 =
(

M − Mcut

M1

)α

. (B3)

For our adopted fiducial cosmological model, we findσlogM ∼
0.6−0.9 in order to match the amplitude of the observed large scale
clustering of the LRGs; the exact parameter values used to generate
the mock catalogues are given in Reid et al. (2008). Since thescale
dependence of halo bias varies with halo mass at the∼ 10% level at

k = 0.15 h Mpc−1 (Smith et al. 2007), changes in the distribution
of LRGs with halo mass that preserve the large scale clustering
amplitude could result in few percent changes in non-linearbias of
the haloes traced by the LRGs. Changes in the distribution ofhalo
biases traced by the LRGs could also alter the relation between the
CiC and true group multiplicity function, which would introduce
further uncertainty in the relation between the reconstructed and
underlying halo density fields.

B2 Distribution of mock galaxies within haloes

In the mock catalogues of Reid et al. (2008) used to calibrateour
modelPhalo(k,p), we have assumed a sharp distinction between
‘central’ and ‘satellite’ galaxies. The first or ‘central’ LRG in each
halo is assumed to sit at the halo centre and move with the mean
velocity of the halo dark matter; roughly 94% of the LRGs in our
sample are central galaxies (Zheng et al. 2008; Reid et al. 2008).
For the∼ 6% of LRGs that are ‘satellites’, we assume that they
trace the phase space distribution of the halo dark matter, so that
their positions and velocities are assigned to be that of a random
dark matter particle in the halo.

We do not evaluate the impact of errors in our assumed real
space distribution of galaxies in their haloes on the fidelity of the
halo density field reconstruction; the impact will be negligible in
the case where there is a single LRG per halo. However, if the
observed galaxies have a significantly different real spacedistri-
bution in their haloes than we have assumed, the relationship be-
tween the reconstructed halo density field and underlying matter
density field will be different in the observed and mock galaxy
catalogues. We test our assumed spatial distribution in Appendix
B3 by checking for consistency between the observed and mock
catalogues for CiC group multiplicity functions, measuredwith
two distinct sets of cylinder parameters. Furthermore, we can use
Eqn. 20 (where the measured CiC group multiplicity functionspec-
ifies 〈Ngal(Ngal − 1)〉) as an upper limit on the error on the shot
noise term due to differences between the model and observedre-
constructed halo density fields.

We consider two possible sources of deviation from our as-
sumed galaxy distribution within haloes. The first is that onoc-
casion an isolated LRG in our sample is not the ‘central’ galaxy
in its halo, but a satellite galaxy, while the ‘central’ galaxy in that
halo is not selected by our sample cuts. We call this situation ‘cen-
tral misidentification’, and denote its probabilityfcen,err, assumed
independent of halo mass for simplicity. The brightest LRGsare in-
deed centrally concentrated, with∼ 80% of them within∼ 0.2rvir

of the X-ray peak (Ho et al. 2009). Lin & Mohr (2004) similarly
find that 80% of the BCGs in their X-ray selected cluster sample
are within∼ 0.1rvir, and in the∼ 8% of cases where the BCG is
outside0.5rvir , the second ranking galaxy in the group is within
0.1rvir. In some of these cases, both the first and second brightest
galaxies would be identified as LRGs; van den Bosch et al. (2007)
showed that the luminosity difference between first and second
brightest galaxies in massive groups is typically small. Inthis sit-
uation there would be no error in our catalogues since we are not
assigning luminosities to our mock LRGs. From these studieswe
would expectfcen,err < 0.2 for the halo mass scales probed
by these studies,M > 1014M⊙, and it is reasonable to assume
this holds at lower masses where there are fewer massive galaxies
per halo. We therefore choosefcen,err = 0.2 as our ‘optimistic’
value in the cases we consider in Fig. B1. Using a galaxy group
and cluster catalogue from SDSS (Yang et al. 2007), Skibba etal.
(prep) find that the fraction of clusters in which the centralgalaxy
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is fainter than the brightest satellite is≈ 30% in the mass range
M ∼ 1013 − 1014M⊙ and≈ 40% for M ∼ 1014 − 1015M⊙.
It is not clear what these results imply for the LRG galaxy sam-
ple, but the parameterfcen,err aims to encompass this case. We
choosefcen,err = 0.4 as our ‘conservative’ estimate for the cases
we consider in Fig. B1.

The second situation we consider is the breakdown of our
assumption that the central galaxy has no peculiar motion with
respect to the mean velocity of the halo dark matter. Any offset
with respect to the halo centre implies that central galaxies are
moving with respect to the halo centre (van den Bosch et al. 2005;
Skibba et al. prep). We call this situation central–halo velocity bias
and parametrize the amplitude asb2

vel = σ2
cen/σ2

DM , the ratio of
the mean square velocity of the central galaxy to the halo dark mat-
ter. Skibba et al. (prep) findbvel ∼ 0.1 once central misidentifica-
tion has been accounted for. This small value is negligible for our
purposes, so we setbvel = 0 in the ‘optimistic’ and ‘conservative’
cases we consider in Fig. B1. However, Coziol et al. (2009) find
bvel ∼ 0.3 for brightest cluster members. This quantity is difficult
to extract from observations, and it is not clear how the literature re-
sults apply to the LRG sample because of the color-magnitudecuts
defining the LRG selection. We setbvel = 0.6 in the ‘extreme’ case
we consider in Fig. B1.

On the large scales of interest, the effect of nonzerofcen,err

or bvel is to give the mock galaxies a velocity with respect to
the halo centre. In Figure B1 we show the impact of nonzero
central galaxy velocities on the recoveredPhalo(k, p) for the
three cases we described above. In the ‘optimistic’ case, weset
(fcen,err, bvel) = (0.2, 0); in the ‘conservative’ case, we set
(fcen,err, bvel) = (0.4, 0); and in the ‘extreme’ case, we set
(fcen,err, bvel) = (0.2, 0.6). To construct mock catalogues in each
of these cases we leave the real space distribution of galaxies fixed.
To mimic central misidentification, we replace the central galaxy’s
velocity with the velocity of a randomly selected dark matter par-
ticle halo member. For central–halo velocity bias, we replace the
central galaxy velocity withbvelvran, wherevran is the velocity of
a randomly selected dark matter particle halo member. For compar-
ison, we also outline both our fiducial nuisance function constraints
(2% deviation atk = 0.1 h Mpc−1 and 5% atk = 0.2 h Mpc−1)
and the conservative nuisance function constraints (4% deviation at
k = 0.1 h Mpc−1 and 10% atk = 0.2 h Mpc−1) established in
Section 4.3. The ‘optimistic’ case is well within the fiducial nui-
sance constraints, and the ‘conservative’ case is well within the
conservative nuisance constraints. The ‘extreme’ case, however, ex-
ceeds the conservative nuisance constraints fork > 0.17 h Mpc−1.
In Section 5 we also evaluate the cosmological parameter con-
straints whenPhalo(k,p) is calibrated using the power spectrum
of the ‘extreme’ velocity dispersion model in order to derive a limit
on the systematic errors on our final results.

B3 Comparison of mock and observed CiC group statistics

In Table B1 we present CiC group multiplicity functions normal-
ized by the number of galaxies per sample for two sets of cylinder
parameters:∆r⊥ 6 0.8 h−1 Mpc, ∆vp = 1800 km s−1 (these
are the parameters used to define our CiC groups and reconstucted
halo density field forPhalo(k,pfid)) and∆r⊥ 6 1.2 h−1 Mpc,
∆vp = 1800 km s−1. The second CiC multiplicity function com-
puted with larger∆r⊥ is used to demonstrate consistency between
the mock and observed catalogues. If the observed satellitegalaxies
were significantly less concentrated than in our mock catalogues,
we would detect these galaxies when∆r⊥ is increased.

0 0.05 0.1 0.15 0.2
0.85

0.9

0.95

1

Figure B1. We compare three models including central galaxy velocity dis-
persion to our fiducial model with no central galaxy velocitydispersion
(fcen,err = bvel = 0) by showing the ratio ofPhalo(k,pfid) for the
models. The dashed curve hasfcen,err = 0.2, bvel = 0 (‘optimistic’);
the long dashed curve hasfcen,err = 0.4, bvel = 0 (‘conservative’); the
dash-dot curve hasfcen,err = 0.2, bvel = 0.6 (‘extreme’). The straight
lines show our fiducial (solid) and conservative (dotted) nuisance parameter
constraints determined in Section 4.3.

The observed groups contain 2158 LRGs that were as-
signed redshifts by the fiber collision correction. According to
Reid & Spergel (2009), where colors are used as a redshift indica-
tor, up to∼ 36% of these may be erroneous assignments; correct-
ing this would remove∼ 780 galaxies from the observed groups.
We find 6.2% of the observed galaxies are ‘satellite’ galaxies us-
ing the reconstructed haloes, or 5.5% if we apply a correction for
erroneous fiber collision assignments, while our mock catalogues
have 5.9%. The structures of the multiplicity functions aregener-
ally similar. Since our mock catalogues were designed to match this
measurement but for LRGs selected as in Zehavi et al. (2005),the
level of agreement is as expected. We verify that the agreement ex-
tends to the multiplicity function when we adjust the group finding
parameter∆r⊥ to be 50% larger. Accounting for the possible con-
tamination from fiber collision corrections, which is likely to man-
ifest mostly atngroup = 2, we see that in general the observed dis-
tribution is smaller than in the mock catalogues at all multiplicities
and for both values of∆r⊥. This result may be understood as one
or more of three possibilities: the mocks having too many satellites
altogether, different amounts of contamination from interlopers due
to errors in the small-scale two-halo redshift space correlation func-
tion, or a tighter distribution of satellite galaxies aboutthe central
one in the mocks. An error of the first kind would result in no error
in the reconstructed density field; errors of the other kindswould re-
sult in small changes to the effective shot noise or FOG features in
the density field. The last line in Table B1 shows that the difference
in the effective one halo term derived from the mock and observed
catalogues is< 2% of the total shot noise correction. Since the dif-
ference betweenP 1hn̄gal measured at∆r⊥ 6 0.8 h−1 Mpc and
∆r⊥ 6 1.2 h−1 Mpc is less for the observed catalogues compared
with the mocks, we cannot be missing significant contributions to
P 1h due to a less concentrated distribution of the satellite galaxies
in the observed haloes compared with the simulated ones; rather,
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ngroup NCiC,obs(n) NCiC,mock(n) Nbig,obs(n) Nbig,mock(n)
2 5283 4717 6432 6280
3 539 658 899 1076
4 110 124 198 252
5 26 28.2 39 71.4
6 7 7.68 27 22.9
7 1 2.32 5 8.65
8 3 0.78 5 3.34
9 0 0.30 0 1.39
10 0 0.10 0 0.66
P 1hn̄gal 0.144 0.143 0.205 0.225

Table B1. The observed and mock catalogue CiC group multiplicity func-
tions of groups withngroup galaxies for our fiducial group finding param-
eters∆r⊥,max = 0.8 h−1 Mpc, ∆vp = 1800 km s−1 and for a bigger
∆r⊥,max = 1.2 h−1 Mpc. The final row shows the ratio of the one-halo
shot noiseP 1h

LRG (Eqn. 20) to the standard shot noise correction1/nLRG.

the increase in the number of groups comes from the increase in
contamination from galaxies residing in nearby haloes. Ourfinal
conservative nuisance parameter bounds, discussed in Section 4.3,
allow an error of the order of 40% in the one-halo shot noise sub-
traction. Also note that because the maximum line of sight sep-
aration (∆vp = 1800 km s−1 or ∼ 20 h−1 Mpc) is so large,
the model CiC multiplicity functions are nearly identical when we
consider the model with ‘extreme’ central galaxy velocity disper-
sion. Finally, adding some spatial dispersion of the central galaxies
would slightly reduce the number of CiC groups for an otherwise
fixed catalogue; this may bring the models and observations into
even closer agreement.

We compute the line of sight separation of galaxies in the same
CiC group as a probe of the accuracy of our model galaxy veloci-
ties at the high halo mass end, where there is more than one LRG
per halo. The comparison is complicated by the presence of fiber
collision corrected galaxies, since their redshifts are artificially set
to that of another galaxy in their group. We discard all such groups,
and discard an equal fraction at eachngroup in our mock sam-
ple. The resulting distributions are shown in Fig. B2. The fiducial
mocks with no central galaxy velocity dispersion appear to fit the
data better, though neither matches the observed sharpnessof the
rise at small separations. Note that the fiducial mock catalogues
with no velocity dispersion are determined only by the observed
NCiC(ngroup); no free parameters have been adjusted to match
the observed velocity distribution. This comparison indicates that
the residual FOG features in the reconstructed observed andmock
halo density fields will be in satisfactory agreement.

B4 Comparison ofP̂halo(k) and P̂LRG(k)

In this subsection we examine the difference between the observed
redshift space monopole spectrum̂PLRG(k) (no density field pre-
processing of FOG features) and the power spectrum of the recon-
structed halo density field,̂Phalo(k), and compare with our mock
galaxy catalogues. This comparison provides an additionalconsis-
tency check between the mock and observed LRG catalogues, and
quantifies the effect of the halo density field reconstruction step on
the measured power spectrum shape.

We consider

∆P (k) = PLRG(k) − b2
relPhalo(k) (B4)

wherebrel is a constant that parametrizes the enhancement of the
overall bias when satellite galaxies are included, since they oc-
cupy the most highly biased regions. In real space on large scales,

Figure B2. Solid line with error bars is the observed probability that a
galaxy has a member of its CiC group with a separation∆rLOS along
the line of sight for pairs of galaxies identified as pairs by the CiC crite-
ria, once all groups containing a fiber collision galaxy are removed. Error
bars indicate fractional errors of1/

√
N(∆(rLOS), giving a sense of the

Poisson level of uncertainty in the measurement without considering the
contribution from cosmic variance. The dashed line is the expected distri-
bution for our model with no central galaxy velocity dispersion, and the
dot-dashed line is for the model with central galaxy velocity dispersion.
Note that∆rLOS = 1 h−1 Mpc corresponds to∆v ≈ 115 km s−1 for
the redshift distribution of our sample.

∆P (k) would be a simple shot noise, but in redshift space we ex-
pect the detailed∆P (k) to result from the transfer of power be-
tween scales caused by the FOGs, making∆P (k) dependent on
the underlying power spectrum shape. We will ignore this possi-
ble < 10% level modification to the expected∆P (k) since we
have demonstrated good agreement between the shape of the mock
and observed halo power spectra. The lower short dashed curve in
Fig. B3 shows the predicted∆P (k) from our mock catalogues,
the upper short dashed curve shows the predicted∆P (k) scaled
by a factor of 1.5, and the solid curve shows∆P (k) for the ob-
served spectra. The observed∆P (k) is clearly shallower than the
predicted shape.

A crucial difference between the observed and mock LRG
density fields is the application of fiber collision corrections dis-
cussed in Section 2.1 in the observed density field. 2158 galaxies
without spectra were added to the LRG sample and assigned the
redshift of the nearest LRG, while the CiC group multiplicity re-
sults in Table B1 indicate that 6857 galaxies are ‘satellite’ galax-
ies. First, since∼ 36% of the fiber-collision corrections are erro-
neous (Reid & Spergel 2009), we expect an additional shot noise
of ∼ 125(h−1 Mpc)3 from these galaxies, which are not repre-
sented in our mock catalogues. Second, the fiber collision corrected
galaxies that are physically associated with a neighboringLRG will
change the distribution of∆P (k) relative to the mocks because
their line of sight separation from the neighboring galaxy has been
eliminated. The long dashed curves in Fig. B3 shows that we can
match the observed∆P (k) as a sum of the mock catalogue∆P (k)
and a shot noise of200(h−1 Mpc)3. The∆P (k) for the observed
spectra is consistent with a constant power fork < 0.2 h Mpc−1

and amounts to a significant difference between the two spectra:
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Figure B3. The solid curve is the difference between the observed spectra
P̂halo(k) andP̂LRG(k), the lower short-dashed curve is the predicted dif-
ference from our simulated catalogues, and the upper short-dashed curve
is the same curve but scaled by a factor of 1.5. The scale dependence of
∆P (k) is smaller for the observed spectra than for the simulation results.
Furthermore, there is some uncertainty in the appropriate value of brel,
which changes the shape of∆P (k). However, at highk, the prediction is
robust to changes inbrel sinceP (k) is small. The long-dashed curves show
∆Pmock(k) + 200(h−1 Mpc)3 for several values ofbrel. This demon-
strates that the difference between̂Phalo(k) and P̂LRG(k) is consistent
with the difference measured in the simulated catalogues ifthe excess shot
noise from fiber collisions is accounted for. Moreover, the difference be-
tween the observed halo and LRG spectra is large compared with the statis-
tical errors on the bandpowers.

∼ 8% at k = 0.1 h Mpc−1 and∼ 18% at k = 0.2 h Mpc−1.
Therefore, differences in the preprocessing of the LRG density field
can lead to changes inP (k) much larger than the statistical errors
on the measurements, which could then be propagated to errors in
the derived cosmological parameters. Note that the reconstructed
halo density field is basically unaffected by errors in the close-pair
fiber collision correction applied to the data, since these galaxies
are all assigned to haloes containing other LRGs already.

In summary, the difference between̂Phalo(k) and P̂LRG(k)
can be understood once we account for the effects of fiber colli-
sions, and the model predictionsPhalo(k,p) are robust to any un-
certainty associated with these effects.

B5 The effect of luminosity-weighting onP̂halo(k)

A further subtle difference between the mock and observed halo
power spectrum is that the mock catalogues were evaluated using
a redshift snapshot with constantn̄LRG, and luminosities were not
assigned to the mock LRGs; each reconstructed halo is weighted
equally when computing the overdensity field. To verify thatthe lu-
minosity weighting used to compute thêPhalo(k) does not signif-
icantly alter the relative amplitude of the shot noise to total power
compared with our mock catalogues, we recomputeP̂halo(k) from
the data with luminosity-independent weights from Feldmanet al.
(1994):

b(L) = 1 (B5)

Figure B4. Ratio of the power spectra computed using the weights in
Eqn. B6 to the standard Percival et al. (2004) weighting scheme after rescal-
ing the overall normalization. We also overplotPlin(k)/Pnw(k) for our
fiducial model to demonstrate no correlation between the small shifts in
the measured power spectrum and expected BAO feature. Errors show the
fractional errors on̂Phalo(k),

√
Cii/P̂halo(k).

w(r,L) =
1

1 + Pon̄LRG
(B6)

where Po = 10000(h−1 Mpc)3. Fig. B4 shows the ratio of
the observed spectra with our fiducial weights compared withthe
luminosity-independent weights. The good agreement even at large
k where the power is small indicates there is no significant differ-
ence from the shot noise subtraction between these two weightings;
we find no statistically significant change in the power spectrum
shape. Moreover, the change in the windowed theory power spec-
trum due to the change in weights is negligible (< 0.1%), indi-
cating that the window function will not be sensitive to the partic-
ular weighting choices of Section 2 for reconstructed haloes con-
taining more than one galaxy. While the luminosity-weighting is
critical for the SDSS main sample (Tegmark et al. 2004b), Fig. 1
shows that the LRGs are close to volume-limited over much of the
redshift range of the sample; it is therefore unsurprising that the
Feldman et al. (1994) and Percival et al. (2004) weighting schemes
produce nearly identical power spectra for the LRG sample.

B6 Checking the cosmological dependence of the model

Our model usesHALOFIT to describe the cosmological parameter
dependence of the non-linearity in the matter power spectrum, and
is calibrated fromN -body simulations at the fiducial cosmology
(Eqn. 13). Belowk = 0.1 h Mpc−1, the dark matter power spec-
trum is linear at the 1% level, apart from the BAO damping, and
it is only ∼ 15% larger than the linear one atk = 0.2 h Mpc−1.
Using the publicly available WMAP5ΛCDM MCMC chain, we
find Phalofit(k)/Plin(k) changes by∼ ±2% for k 6 0.2 in the
space of cosmologies allowed by the WMAP5 data alone; the error
on this small correction will therefore be well below 1%. Therefore
we expect the model of the non-linear matter power spectrum to
be accurate at the< 1% level atk = 0.1 h Mpc−1 and∼ 1% at
k = 0.2 h Mpc−1.
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Figure B5. Agreement betweenPhalo,WMAP3(k)/Pnw(k, pWMAP3)
measured from the catalogues in Reid & Spergel (2009) based on anN -
body simulationz = 0.2 snapshot with WMAP3 cosmological parameters
(points with error bars) vs. the model prediction from Eqn 16atzNEAR =
0.235.

We use the LRG catalogues from Reid & Spergel (2009)
evaluated at the WMAP3 preferred cosmological parameters
(Ωm, Ωb, ΩΛ, ns, σ8, h) = (0.26, 0.044, 0.74, 0.95, 0.77, 0.72)
at z = 0.2 with Lbox = 1 h−1 Gpc to test the cosmological de-
pendence of our modelPhalo(k,p) in Eqn. 13. We plot a mock
catalogue power spectrumPhalo,WMAP3(k)/Pnw(k,pWMAP3)
against ourPhalo(k,p) model predictions for a NEAR subsam-
ple in Fig. B5 to demonstrate the agreement both in the BAO fea-
tures and overall shape of the deviation out tok = 0.55 h Mpc−1.
χ2 = 96.6 for 86 DOF (k 6 0.55) andχ2 = 29.1 for 31 DOF
(k 6 0.2). This provides further evidence that the cosmological
dependence of our modelPhalo(k,p) is sufficiently accurate for
the SDSS DR7 data, which probe a somewhat smaller volume.

APPENDIX C: EFFECTS OF CENTRAL GALAXY
VELOCITY DISPERSION AND NUISANCE
PARAMETERS

In Section 4 we established that the largest remaining knownsource
of systematic uncertainty is the central galaxy velocity dispersion.
To test the impact of this uncertainty on the cosmological con-
straints, we reevaluate thêPhalo(k) likelihood surface using the
‘extreme’ velocity dispersion model in Appendix B2 to calibrate
the modelPhalo(k,p). The maximum likelihood points for the
fiducial, no velocity dispersion model (cross) and the ‘extreme’
velocity dispersion model (’X’) are shown in the upper left panel
of Fig. C1. The systematic shift in the contours between the zero
and extreme central velocity dispersion model is small compared
to the width of the∆χ2 = 2.3 constraint (dotted curve). When
we marginalize over nuisance parametersb2

o, a1, anda2, ∆χ2 be-
tween the maximum likelihood model values for the zero and ex-
treme velocity dispersion models is∼ 0.3. If one instead adopts
the a1, a2, andb2

o values which minimizeχ2, the shift decreases
to ∆χ2 ∼ 0.1; the difference is because the preferred nuisance pa-
rametersa1 anda2 in the no velocity dispersion model are closer

to the boundary of the allowed values. These∆χ2 values are ap-
proximately the same when considering a fit to the model with
or without BAO wiggles. This shift is small compared to the sta-
tistical errors, and since the velocity dispersion model considered
is extreme compared with the available estimates in the literature
(Skibba et al. prep; Coziol et al. 2009), we can safely neglect this
systematic uncertainty in the present analysis.

Within our fiducial nuisance parameter bounds and us-
ing our fiducial model with no central galaxy velocity dis-
persion, we have verified that the effect of the nuisance pa-
rameters in Eqn. 15 is small on thêPhalo(k) cosmologi-
cal parameter constraints. The preferred nuisance parameters
are off-center in the alloweda1 − a2 space, although not
at the boundary:

〈

Fnuis(0.1 h Mpc−1)/b2
0

〉

= 0.016 and
〈(

Fnuis(0.1h Mpc−1) − Fnuis(0.2h Mpc−1)
)

/b2
0

〉

= 0.060 ,
where we have computed a likelihood-weighted average over the
DR7-only constraints. The upper right panel of Fig. C1 shows
∆χ2 = 2.3, 6.0, and 9.3 contours wherea1 = a2 = 0 and b2

o

is varied to minimizeχ2 (dashed contours) compared to our fidu-
cial marginalization overb2

o, a1 anda2 (solid contours). Allowing
nuisance parameters to account for our imperfect modeling induces
both a small shift and widening of the likelihood surface. The dif-
ference in the contours is negligible whenχ2 is evaluated instead at
the valuesa1 anda2 that minimizeχ2. Therefore the hard boundary
we impose ina1 −a2 space does not seriously affect the likelihood
contours, anda1 anda2 are not strongly degenerate with the cos-
mological parameters constrained byP̂halo(k) whena1 anda2 are
tightly constrained by the arguments in Section 4.3.

However, when one substantially relaxes the constraints on
the nuisance function, the constraints from the power spectrum
shape degrade. The lower right panel of Fig. C1 shows how the
χ2 = 2.3, 6.0, and 9.3 constraints relax whena1 anda2 are cho-
sen to minimizeχ2 such thatFnuis(k = 0.1 h Mpc−1)/b2

0 < 0.2
andFnuis(k = 0.2 h Mpc−1)/b2

0 < 0.5. While the constraints on
rs/DV (0.35) are unchanged, the shape information is degraded.
The effects of scale dependent halo bias are well below theseal-
lowed deviations (Smith et al. 2007), and we have argued thatour
reconstruction of the halo density field should leave much smaller
uncertainties as well. The dashed contours in the lower right panel
of Fig. C1 show a further broadening of the constraints whena1

anda2 are varied without restriction to minimizeχ2. For compar-
ison with the adopted nuisance restrictions, the bottom right panel
of Fig. C1 also shows the regions where the best-fitting nuisance
parameters satisfy|Fnuis(k = 0.1 h Mpc−1)|/b2

0 < 0.04 (solid
lines) and|Fnuis(k = 0.2 h Mpc−1)|/b2

0 < 0.1 (dashed lines).
The width of this region is smaller than the statistical errors de-
rived from the shape constraint, which are shown in the upperleft
panel. Consequently, it is unsurprising that our marginalized like-
lihood contours with the fiducial nuisance restrictions deviate only
slightly from the contours wherea1 = a2 = 0. Finally we note that
for the models with and without velocity dispersion, the likelihood-
weighted best-fitting nuisance functions have small deviations from
one atk = 0.1 h Mpc−1 (< 2%), the region containing most of
the shape information. The two models differ in the quasi-linear
regime:

〈(

Fnuis(0.1 h Mpc−1) − Fnuis(0.2 h Mpc−1)
)

/b2
0

〉

=
−0.033 for the velocity dispersion model and 0.060 without veloc-
ity dispersion. However, we cannot distinguish between velocity
dispersion and other modeling uncertainties to explain theshape of
the nuisance function preferred by the data. Moreover, using the
velocity dispersion model does not improve the overallχ2 of the
fit.
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Figure C1. Effects of velocity dispersion and nuisance parameters on constraints from the LRG DR7̂Phalo(k) for a ΛCDM model. In each panel we hold
Ωbh

2 = 0.02265 andns = 0.960 fixed.Upper left panel: ∆χ2 = 2.3 and 6.0 contours for thêPhalo(k) fit to a no-wiggles model with no central velocity
dispersion (solid) and extreme velocity dispersion (dashed). The∆χ2 = 2.3 for the fiducial model with BAO features is shown for comparison by the dotted
line. The cross shows the maximum likelihood point for our fiducial model, while the ’X’ shows it for the extreme velocity dispersion model. The solid line
indicatesrs/DV (0.35) = 0.1097, demonstrating that adopting the velocity dispersion model shifts the likelihood surface along constantrs/DV (0.35).
Upper right panel: ∆χ2 = 2.3, 6.0, and 9.3 contours. The solid contours use our fiducial marginalization overb2o, a1, anda2 (as in Fig. 5), while in the
dotted contours fixa1 = a2 = 0 andb2o to the value which minimizesχ2. Lower left panel: The solid contours as in Fig. 5, while the dashed contours take the
minimumχ2 value for which|F (k = 0.1 hMpc−1)|/b20 < 0.2 and|F (k = 0.2 h Mpc−1)|/b20 < 0.5. Lower right panel: The solid contours as in Fig. 5,
while the dashed contours minimizeχ2 with no restrictions ona1 anda2 . For comparison with the fiducial nuisance restrictions, the solid lines enclose the
region where for the best-fittingχ2, |F (k = 0.1 hMpc−1)|/b20 < 0.04 and the dashed lines enclose|F (k = 0.2 hMpc−1)|/b20 < 0.1.

We conclude that, for this data set, the statistical errors are
comfortably larger than the errors from modeling uncertainties.
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