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Abstract
Computer science has served to insulate programs and program-
mers from knowledge of the underlying mechanisms used to ma-
nipulate information, however this fiction is increasingly hard to
maintain as computing devices decrease in size and systems in-
crease in complexity. Manifestations of these limits appearing in
computers include scaling issues in interconnect, dissipation, and
coding. Reconfigurable Asynchronous Logic Automata (RALA) is
an alternative formulation of computation that seeks to align log-
ical and physical descriptions by exposing rather than hiding this
underlying reality. Instead of physical units being represented in
computer programs only as abstract symbols, RALA is based on a
lattice of cells that asynchronously pass state tokens corresponding
to physical resources. We introduce the design of RALA, review
its relationships to its many progenitors, and discuss its benefits,
implementation, programming, and extensions.

Categories and Subject Descriptors C.1.3 [Other Architecture
Styles]: Adaptable Architectures

General Terms Design, Languages, Performance, Theory

Keywords Reconfigurable, Asynchronous, Logic, Automata

1. Introduction
Computers are increasingly distributed systems, from multi-core
processors to multi-processor servers to multi-server systems.
However, this physical reality is typically not reflected in how
they are programmed. Common distinctions among programming
languages include whether they are imperative or declarative, com-
piled or interpreted, or strongly or weakly typed. However, these
distinctions all assume that computation happens in a world with
different rules from those that govern the underlying computing
machinery. Each of these program types manipulates arbitrary sym-
bols, unconstrained by physical units.

This is a fiction that is increasingly difficult to maintain. Be-
cause the computational descriptions and physical realities diverge,
ever-faster switches, networks, and memory have been required to
eliminate interconnect bottlenecks, and the productivity of both
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Figure 1. RALA cells and token states. For clarity, AND cells with
duplicated inputs used for logical wires transporting and buffering
tokens are drawn as circles.

programmers and processors in large systems has not kept pace
with the underlying device performance.

The one thing that most programming models don’t describe
is space: geometry is bound late in the scheduling of a program’s
execution. This division dates back to the theoretical foundations
of computation; Turing machines [37] and von Neumann architec-
tures [40] localize information processing in a logical unit, with-
out regard to its spatial extent. There is an equally-long history of
geometrical descriptions of computation, from Wang tiles [42], to
cellular automata [41], to billiard balls [25]. However, these mod-
els have primarily been aimed at modeling rather than implement-
ing logic. Although special-purpose computers have been devel-
oped for spatial computing models, they’ve typically been emulated
rather than equivalent to the underlying hardware [36].

Physical dynamics, in comparison, are inherently distributed,
parallel, asynchronous, and scalable [22]. RALA (Reconfigurable
Asynchronous Logic Automata) seeks to capture these attributes by
building on a foundation that aligns computational and physical de-
scriptions. Computation, communication, and storage then become
derived rather than assumed system properties.

RALA is based on a lattice of cells (in 2D or 3D) that locally
pass tokens representing logical states [13]. In the implementation
presented here there are 8 cell types, shown in Figure 1 and with
functions described below. Four of the cells are used for logic,
two for creating and destroying tokens, one for transporting tokens,
and one for reconfiguration. When these have valid tokens on their
inputs and no tokens on their outputs they pull the former and push
to the latter.

In RALA, the distance that information travels is equal to the
time it takes to travel (in gate delay units), the amount of informa-
tion that can be stored, and the number of operations that can be
performed. These are all coupled, as physical units are.

RALA can be understood as the end-point, and intersection,
of many existing computational paradigms, building the essential
elements of each into every cell:
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Figure 2. Asynchronous operation of a RALA LFSR.

• It is similar to cellular automata, but eliminates the unphysical
need for a global clock, and does not require many cells for
logic [5] or deterministic asynchronous operation [2].

• It is a Petri Net [30] on a lattice with nearest-neighbor connec-
tions.

• It is a form of RISC [28], where the instructions are reduced to
a single logical operation.

• It is a multicore processor that effectively has a core for every
bit.

• It is a field-programmable gate array with single-gate logic
blocks and nearest-neighbor switch matrices; it does not need
a clock, because of its homogeneity a fitter is not needed to
map a logic diagram onto corresponding device resources, and a
larger program can transparently be distributed across multiple
smaller chips.

• It is a systolic array [21] that allows for arbitrary data flow and
logic.

• It is a form of dataflow programming [3, 14, 20] in which the
graph itself is executable, without requiring event scheduling.

• It is a form of reconfigurable [24] asynchronous [32] logic [8]
in which a logical specification is equal to its asynchronous
implementation because each gate implements deterministic
asynchronous operation.

The following sections discuss RALA operation, benefits, im-
plementation, programming, and extensions.

2. Operation
Logic: The RALA implementation used here has four logical cell

types, AND, NAND, OR, and XOR. NAND alone is universal
[19]; the others are included to simplify logic design. Figure 2
shows the operation of an XOR cell in a Linear Feedback Shift
Register (LFSR), with the feedback loops carried by AND cells
with duplicated inputs.

Transport: in Figure 2 the AND cells with duplicated inputs serve
two purposes, moving tokens for interconnect, and buffering
them for delays. However, not all of these are needed as buffers;
RALA includes a non-blocking transport cell that connects its
input and output physically rather than logically, reducing the
overhead in time and energy for the latter. The transport cell is
also used as a crossover, to allow tokens to pass in perpendicular
directions.

Copy and Delete: RALA cells implicitly create and destroy to-
kens when they perform fan-in and fan-out operations, however
asynchronous algorithms can require explicit token creation and
destruction when controlled changes in token numbers are nec-
essary. A token at the designated data input of a copy or delete
cell is passed unchanged if the control input token is a 0; a 1

fold direction: forward=000 backward=001 right=010 left=011
up=101 down=110 end=111

gate: and=000 nand=001 or=010 xor=011
transport=100 copy=101 delete=110 stem=111

input 1: forward=000 backward=001 right=010 left=011
up=101 down=110 not used=111

init 1: 0=00 1=01 x=10
input 2: forward=000 backward=001 right=010 left=011

up=101 down=110 not used=111
init 2: 0=00 1=01 x=10 stay connected=11

output directions: forward backward right left up down: 0=off 1=on

Table 1. RALA stem cell configuration code; a right-hand rule
coordinate system is assumed.

control input causes the copy cell to replicate a data token, and
a delete cell to consume it.

Reconfiguration: because RALA aligns the description of hard-
ware and software, it cannot assume the presence of an omnipo-
tent operating system with global access to system resources.
Instead, control of program execution must be implemented lo-
cally, within the system. RALA accomplishes this with “stem”
cells, which, like their biological counterparts, can be differen-
tiated into other cell types. All RALA cells have internal state
to store their configuration (cell type and inputs); stem cells ex-
pose this state so that it can be set by input tokens. Program
geometry is specified by the universality of folding linear paths
[12]. A linked string of stem cells pass data tokens to the termi-
nal cell, which interprets them according to the code in Table
1. These will cause the terminal cell to either differentiate and
detach, with its input cell becoming the new terminal cell, or
to extend the string in a direction specified relative to its input,
linking to a neighboring cell that is converted back to the stem
cell state and becomes the new terminal cell. Figure 3 shows
the growth of the LFSR in Figure 2. Because each differenti-
ated cell waits for valid inputs and outputs, the circuit turns on
consistently without requiring global communication or coordi-
nation [27].

3. Benefits
Each RALA cell provides a primitive unit of time, space, state, and
logic. Benefits of this uniformity include:

Simplicity: a program is completely specified by the locations and
connections of eight cell types.

Portability: any process technology that can perform cell up-
dates can execute the same RALA program, whether tokens
are passed between system servers, server processors, proces-
sor cores, microcontroller arrays, CMOS cells, or atom lattices.

Scalability: the only design rules are within each cell; as long
as cells are updated locally, the system will operate correctly
globally.

Flexibility: because each cell can buffer, transform, and transfer
tokens, a system’s interconnect, memory, and processing can
be dynamically allocated based on applications and workloads.
Word sizes for memory addressing or arithmetic operations can
be adapted to a program’s needs.

Performance: RALA execution times are determined by the dis-
tance information travels, not clock cycles, so that, for exam-
ple, both sorting and matrix multiplication become linear-time
algorithms (Figures 5 and 7). The speed of logical operations is
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Figure 3. Asynchronous steps in the RALA construction of an
LFSR from a source cell streaming tokens through a stem cell.

the local gate propagation delay, rather than a worst-case global
clock.

Security: Once they’re configured, ALA programs run on what
is effectively special-purpose hardware rather than a general-
purpose processor; attacks that are based on shared resources,
such as buffer overruns, are prevented by spatially separating
programs.

Power: there is no static power consumption, other than leakage;
power is needed only for token transitions. Although leakage
is an increasingly severe limit as gates scale down in feature
size, RALA can instead grow up in system size because it is not
limited by clock domains or chip boundaries.

Yield: because RALA is constructed from simple cells, a fabrica-
tion process need produce only hundreds rather than hundreds
of millions of transistors, and then repeat these units. Faulty
cells can be accommodated by adding spatial error-correction
to RALA programs. This significantly relaxes today’s severe
constraints on optical flatness, planarization, and defect density,
allowing existing processes to be used much further along the
semiconductor scaling roadmap [29].

Programmability: conventional computer programming requires
resource allocation. In a multi-threaded system this entails
spawning and synchronizing threads, in a multi-processor sys-
tem assigning processes to processors, or in a dataflow system
scheduling and executing messages. These actions are implicit
in the design of a RALA program, because they are effectively
performed by each cell.

Verification: the cost of large-scale full-custom ASIC design has
become prohibitive for all but the most important applications,
projected to past $100 million by the 32-nm node [15]. Tap-
ing out a chip requires a substantial effort to validate the de-
sign, including transistor sizing, transition timing, clock skew,

Figure 4. CMOS ALA AND cell.

crosstalk, and parasitics [18]. RALA divides this into software
simulation of a system and the much simpler hardware task of
verifying the operation of a single cell. An added benefit is that
a standard cell library of RALA cell types can be used to im-
mediately convert a RALA program into an equivalent special-
purpose ALA ASIC.

4. Implementation
In a conventional processor, the logic of updating a RALA cell
requires roughly 10 instructions. Therefore, a $100 microprocessor
that executes 109 instructions per second can update 108 cells
per second; at 10 W that corresponds to 10−7 J per cell update
and $10−6 per cell/s. For a $1 microcontroller that executes 107

instructions per second at 10 mW, the corresponding numbers are
10−8 J per cell update and again $10−6 per cell/s.

A non-reconfigurable ALA cell can be implemented with
roughly 100 transistors (shown in Figure 4), and a reconfigurable
RALA cell with about 1000, in dual-rail CMOS logic; in a 90 nm
design this requires on the order of 10−13 J to update a cell, with
a propagation time of 1 ns [11]. Assuming a comparable cost of
$10−6 per transistor [23], this is $10−14 per cell/s. While these
estimates have ignored prefactors, the many orders-of-magnitude
difference in energy and cost are due to corresponding differences
in the number of transistors needed to natively implement RALA
vs simulate it on a general-purpose computer.

RALA might appear to incur overheads due to the absence of
dedicated interconnect or functional units. State-of-the-art gate de-
lays are on the order of ps over micron features [35], corresponding
to ns to cross mm-scale chips with logic rather than wires, compa-
rable to current clock speeds. The largest HPC systems consume
about 10 MW for 1 petaflop/s, or 10−8 J/flop; at 0.1 pJ/cell and as-
suming a 100 bit word size, a RALA adder requires approximately
10 cells for 10−10 J per add, and a multiplier 1000 cells for 10−8

J for a (linear-time) multiply. And at 100 transistors for a non-
reconfigurable cell and 1000 transistors for a reconfigurable cell,
area can be traded off against speed by virtualization with asyn-
chronous cell processors containing memory and event queues, to
reduce the number of transistors per cell to order unity.

5. Programming
The lowest level of RALA programming is explicit placement of
cells types and connections. This is like full-custom logic, but
is immediately executable; the preceding figures can be taken as
executable programs.

A cell-level description misses the functional organization of
a RALA program; one way to convey this is with a hardware
description language. Figure 5 shows a linear-time RALA sort; here
are sections of the definitions of its modules:
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Figure 5. Section of a linear-time RALA sort, interleaving com-
parators and switchers.

#
# upper 10 detector
#
gate(l,’transport’,’wxsx’,1,3)
gate(l,’wire’,’sx’,1,4)
gate(l,’and’,’wxnx’,2,3)
gate(l,’nand’,’wx’,2,4)
#
# upper latch
#
gate(l,’or’,’wxn0’,3,3)
gate(l,’and’,’sxex’,3,4)

and their connections:

c2 = comparator(l,c1.x+c1.dx-1,c1.y+c1.dy,
label=’comparator 2’,flip=’x’,color=’#ffffdd’)

s2 = switcher(l,c2.x-c2.dx,c2.y,
label=’switcher 2’,flip=’x’,color=’#faeefa’)

wire(l,’x’,
c2.cell[’out0’],
s2.cell[’in0’])

wire(l,’x’,
c2.cell[’out1’],
s2.cell[’in1’])

Because programs are spatial structures, this is similar to the
internal representation of a hierarchical parametric CAD system.
Figure 6 shows a RALA programming tool built this way, with a
CAD-like interface [34].

A RALA CAD diagram can be abstracted as a dataflow graph;
because there is a one-to-one map between nodes and links in such
a graph and RALA modules, dataflow representations of high-level
languages [38] can be directly executed as RALA programs.

There is also a direct mapping of mathematics. Figure 7 shows
linear-time RALA matrix multiplication, implementing the flow
of information through the matrices. Along with the spaces repre-
sented by mathematical symbols, there is also a space occupied by
mathematical symbols on a page; RALA can be used to solve prob-
lems in this space by converting the equations onto corresponding
spatial structures [17]. This is computationally universal, providing
a constructive implementation of constraint programming [33].

Figure 6. RALA CAD.

Figure 7. RALA linear-time matrix multiplication, with an array
of adders and linear-time multipliers.

6. Extensions
RALA assumes a regular lattice in 2D or 3D, reflecting the con-
struction of the computational substrate. It could be generalized
to probabilistic operation with random cell locations and connec-
tions [1, 9], however the regularity of the lattice does not repre-
sent a significant scaling cost in fabrication; there are a number of
high-throughput processes that can produce arrays of simple cells,
including soft lithography, self-assembly, parallel direct-write, and
printing digital materials [31].

Mixed-signal applications such as software radios convention-
ally digitize analog signals which are then processed digitally.
Power can be reduced, and speed and noise margins increased, for
these applications by bit-slicing at the end rather than beginning of
the signal chain. Analog logic uses continuous device degrees of
freedom to represent bit probabilities rather than bits; it operates
in the state-space of the corresponding digital problem, but relaxes
the binary constraint to be able to pass through the interior of the
logical hypercube [39]. Programmability can be introduced with an
array of soft cells (shown in Figure 8 [10]), which can be extended
to RALA with asynchronous event logic. Real-time constraints can
be enforced by the external timing of token creation or consump-
tion.

There are a number of quantum systems that naturally imple-
ment the conditional asynchronous dependency of RALA cells, in-
cluding multi-photon transitions in cavity QED [26], and electron
passage through a Coulomb blockade [4]. Implementing RALA
over these systems offers an alternative paradigm for quantum com-
puting that is aligned with device physics. Because of the need for
unitary operation, the universal logical cells would be replaced with
single-bit rotations and a nonlinear two-bit interaction [6], and the
token creation and destruction cells correspond to raising and low-
ering operators.
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Figure 8. Analog logic automata cells.

RALA could also be implemented with classically reversible
logic cells [16] to eliminate the energetic cost of creating and
destroying tokens in logical operations. However, this does require
either steady-state bit sources and sinks or running results back
from outputs to inputs [7]. Non-reversible RALA still operates by
transporting tokens, localizing the energetic cost in token creation
and destruction.

The CMOS implementation described in the previous section
stores configuration in static memory, and transfers tokens with
logical handshaking. The transistor count can be reduced by using
device physics for these functions, storing configuration on floating
gates or in phase-change materials, and handshaking by sensing
charge packets.

7. Conclusion
Although RALA is motivated by scaling limits, it can also be
implemented over existing systems as an alternative program-
ming paradigm offering simplicity and portability. Ongoing work
is developing versions targeting low-level message passing on
high-performance computing clusters, arrays of microcontrollers,
ASICs, and nanostructures. Potential benefits include reducing
power consumption, increasing speed, building larger systems, us-
ing smaller devices, adapting to workloads, and simplifying pro-
gramming.

RALA should be understood not as a new programming model,
but rather as the asymptotic limit of many familiar ones. But in this
limit their intersection aligns physical and computational descrip-
tions, providing an opportunity to revisit assumptions that date back
to the origins of modern computing.
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