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We extend the event-chain Monte Carlo algorithm from hard-sphere interactions to general potentials. This
event-driven Monte Carlo algorithm is nonlocal and rejection free and allows for the breaking of detailed
balance. The algorithm uses a discretized potential, but its running speed is asymptotically independent of the
discretization. We apply the algorithm to two-dimensional soft spheres and discuss its possible implementation
directly in the continuum limit.
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The event-chain algorithm [1], a nonlocal, rejection-free
Markov chain algorithm for hard-sphere systems, has proved
considerably faster than the local Monte Carlo algorithm. It
has allowed us to show that two-dimensional melting in hard
disks proceeds via a first-order liquid-hexatic transition [2].

In the present addendum to Ref. [1], we generalize the
event-chain algorithm to the case of general potentials,
extending the scope of the original method. As for event-driven
molecular dynamics (MD), we discretize the potential (here
on an energy scale δV ), but unlike the MD algorithm [3,4],
simulations at arbitrary small δV are feasible.

In the event-chain algorithm [1], a randomly chosen disk
is moved in a straight line by a distance � if this generates
no overlap for all �′ � � or else until it hits another particle
i ′. The latter particle, i ′, then moves for the remainder of the
distance � or, again, until it hits yet another particle and so
on (see Fig. 1). The event-chain move is microreversible, and
it satisfies detailed balance if all the displacements are in the
same direction. For hard disks, it is about 40 times faster than
the local Monte Carlo algorithm [5], and it compares favorably
with the MD method [6].

In the event-driven Monte Carlo algorithm, we consider a
discretized potential V (r), with discontinuities such that V (r)
and thus the total potential energy are multiples of a given
energy step δV . From an initial configuration of energy E, a
randomly chosen particle i is moved in a straight line until the
total displacement, at energy E only, equals a fixed value � or
else until it “hits” another particle i ′. A hit (event) occurs when
further motion of particle i would increase the energy beyond
E (see Fig. 2), and another particle, i ′, is moved instead. In a
continuous system, the choice of i ′ is unique. The particle i ′
then moves for the remainder of the distance � or, again, until
it hits yet another particle and so on (see Fig. 2). In the absence
of boundary effects, the move is guaranteed to terminate. It is
again rejection free and microreversible. As in the event-chain
algorithm for hard spheres, detailed balance may be broken,
and the algorithm can be run with moves, say, in the +x and
+y directions only.
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FIG. 1. (Color online) Event-chain algorithm for hard disks [1].
(left) Collective move, with the total displacement � as a fixed
parameter of the algorithm. The move is never rejected. (right) Return
move, demonstrating microreversibility.

The event-driven Monte Carlo algorithm can be imple-
mented by computing the intersection points of the potential
discontinuities with the trajectory of particle i. One recovers
E(x) by adding up the signs in the sorted list of the
intersections. This is illustrated in Fig. 2 for a simple potential.
We note that the value of parameter � is not crucial as long as
the number n of particles displaced within one chain satisfies
1 � n � N .
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FIG. 2. (Color online) Event-driven Monte Carlo displacement.
(left) Particle i moves from its initial configuration until its collision
event with particle i ′ (concentric circles around particles represent
the steps of the potential defined on the right). Only displacements at
energy E are discounted from �. (right) Discretized 1 − r potential
used in this example.
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FIG. 3. (Color online) (left) Pair-correlation function g(r) com-
puted with the local and the event-driven Monte Carlo algorithms
(N = 642, N/V = 1, kT = 0.3). Data agree, which shows the
correctness of the algorithm. (right) Discretization of the r−4 potential
used.

In Fig. 3, we consider particles interacting with the soft-
sphere potential V (r) = 1/r4. V (r) is discretized with an
energy step of δV = 0.1 at large distances and by multiples
of δV at short distances. The algorithm described so far,
which samples the constant-potential-energy ensemble is
complemented with local Metropolis moves in order to sample
the canonical ensemble. To demonstrate the correctness of
the algorithm, we compare its pair-correlation function for a
system with N = 642 particles with the output of a standard
local Monte Carlo algorithm. With this simple implementation,
we reach ∼2 × 109 displacements per hour on a 3 GHz
workstation [7].

We now test the efficiency of the algorithm for a family
of soft-sphere potentials: V (r) = 1/r4, 1/r8, and 1/r16,
discretized with an energy step of δV = 0.1, 0.1, and 0.08,
respectively. We use the same protocol as in the hard-sphere
case [1]: the time unit is a displacement of a particle,
and we compare the autocorrelation functions of the bond-
orientational order parameter � obtained for the event-driven
algorithm and an optimized local Monte Carlo algorithm [8].
We find a speedup of at least 5 for all potentials and parameters
(see Fig. 4), similar to what was found for the hard-sphere
system in the dense-liquid region [1]. Near the liquid-solid
transition, we again notice speedups of ∼10 for systems of
size N = 322 with V (r) = 1/r8 and 1/r16 [9] (see Fig. 4),
which are slightly lower than in the hard-sphere case (∼15
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FIG. 4. (Color online) Autocorrelation function of � of the event-
driven and local Monte Carlo algorithms for N = 322 (cf. Ref. [1]).
(left) V (r) = 1/r4, N/V = 1, and kT = 0.11 (dense liquid). The
speedup is ∼5. (right) V (r) = 1/r16, kT = 1, and N/V = 0.965 (at
the liquid-solid transition). The speedup is ∼10. Time is measured in
displaced particles. The effective speedup is ∼1.5 times higher with
our implementations.

FIG. 5. (Color online) Energy E(x) for the configuration of
Fig. 2, for different discretizations of the 1 − r potential, and in the
continuum limit. The derivative ∂Econt/∂x is piecewise monotonously
decreasing.

for the N = 322 system). We expect the relative speed of the
algorithm to increase further with system size. The effective
speedup (in CPU time) is higher than the time measured in the
number of collisions. Our implementation of the event-driven
algorithm displaces each particle 1.5 times faster than the local
Monte Carlo algorithm.

In the implementation suggested in Fig. 2, the number
of steps between events scales ∝1/δV , and the algorithm
becomes very slow in the limit δV → 0. Unlike for event-
driven molecular dynamics [3], this difficulty can be overcome,
and the speed of the algorithm remains constant for δV →
0. The algorithm is straightforward for a convex potential
as, for example, the continuum limit of the potential in
Fig. 2:

Vcont(r) =
{

0 if r > 1,

1 − r otherwise,

for which E(x) is continuous and piecewise C∞ while ∂E/∂x

is piecewise monotonously decreasing (see Fig. 5). The
root Econt(xroot) = E of the continuous potential is uniquely
determined via a decision tree in subsequent C∞ intervals of
E(x). (A more complicated decision tree exists for nonconvex
potentials, so that the above root can always be computed
exactly [10].) For finite δV , one must only identify the
discontinuity steps of the potential in the interval xroot ±
const[∂E/∂x(xroot)]−1. We have implemented the algorithm
for very large values of 1/δV (with � ∝ δV ) and achieved
constant scaling of the algorithm [7].

The event-driven Monte Carlo algorithm can be imple-
mented for arbitrarily small δV and does not slow down then
(cf. Ref. [7], where δV = 10−2, . . . ,10−6 are considered). The
algorithm can furthermore be formulated in the δV → 0 limit:
To do so, it is necessary to sample the value of δV −1, in
between events, from a distribution with a very large mean.
The collision process in Fig. 2, e.g., becomes probabilistic:
For some values of δV , particle i ′ moves after the collision,
whereas for others, it is particle i ′′. The probabilities for hitting
i and i ′ depend on the positions of the two particles. The event
(hit) in Fig. 2 is readily analyzed because only two particles are
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involved [11]. In general, an event may depend on the positions
of a larger number of particles and become quite intricate. We
have not succeeded in establishing stochastic collision rules
for arbitrary complex events.

In conclusion, in this addendum to Ref. [1], we have
generalized the successful event-chain algorithm from hard
spheres to general potentials and provided details on its
implementation. This algorithm is an alternative to the local
Monte Carlo algorithm [5]. We have demonstrated definite

speedups for a family of discretized soft-sphere potentials and
expect them to improve with system size. Moreover, arbitrarily
small discretization steps can be handled efficiently, which is
not the case in the event-driven MD [3,4,6].

Note added in proof. We note the existence of simultaneous
work [12] on a related rejection-free algorithm for general
potentials.

We thank M. N. Bannerman for helpful discussions.
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