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We point out that a system which supports chiral superconductivity should also support a chiral pseudogap
phase: a finite temperature phase wherein superconductivity is lost but time-reversal symmetry is still broken.
This chiral pseudogap phase can be viewed as a state with phase incoherent Cooper pairs of a definite angular
momentum. This physical picture suggests that the chiral pseudogap phase should have definite magnetization,
should exhibit a (nonquantized) charge Hall effect, and should possess protected edge states that lead to a quantized
thermal Hall response. We explain how these phenomena are realized in a Ginzburg-Landau description, and
comment on the experimental signatures of the chiral pseudogap phase. We expect this work to be relevant for
all systems that exhibit chiral superconductivity, including doped graphene and strontium ruthenate.
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Chiral superconductors feature pairing gaps that wind
in phase around the Fermi surface (FS), breaking time-
reversal symmetry (TRS).1–4 They realize topological
superconductivity5–8 and exhibit a host of fascinating and tech-
nologically useful properties, such as protected edge states, a
quantized thermal Hall effect, and unconventional zero modes
in vortices.1–4 Chiral p-wave superconductivity is believed to
have been found in strontium ruthenate,9 and chiral d-wave
superconductivity has been established to be the leading
weak-coupling instability in strongly doped graphene.10,11

Systems that may display d + id superconductivity have also
been discussed in Refs. 12 and 13. However, all theoretical
work to date has focused on chiral superconductors at low
temperatures. In this work, we argue that much of the exotic
phenomenology associated with chiral superconductivity can
be exhibited even at high temperatures, when the supercon-
ductivity is absent. In particular, we predict the existence of a
chiral pseudogap phase with a rich phenomenology, including
a magnetic dipole moment, nonquantized charge Hall effect,
protected edge states, and quantized thermal Hall effect. Since
this pseudogap phase does not require low temperatures or
exceptionally clean systems (unlike chiral superconductivity),
we expect it to be advantageous for nanoscience applications.

Emery and Kivelson have pointed out that phase incoherent
Cooper pairs can form at temperatures much higher than the
characteristic temperature for onset of superconductivity.14

This “preformed Cooper pairs” picture has been invoked
as a possible explanation for the pseudogap phase of the
cuprate high-Tc materials. The nature of the pseudogap phase
of the cuprates remains controversial, not least because the
preformed Cooper pairs picture for the cuprates does not lead
to many sharp testable predictions. However, the situation is
markedly different for a chiral superconductor, where a pseu-
dogap phase with phase-incoherent preformed Cooper pairs
can still break time-reversal symmetry. The resulting chiral
pseudogap phase has a rich and distinctive phenomenology,
which should be readily testable experimentally.

In this paper, we provide a Ginzburg-Landau description of
the physics of a chiral superconductor that both demonstrates
that a chiral pseudogap can exist, and also elucidates the
phenomenology of the chiral pseudogap phase. We work for
simplicity in the continuum, assuming continuous rotation
symmetry, although we expect our results to also apply for

lattice systems. We work in two spatial dimensions, since
most materials where chiral superconductivity is expected to
arise are either two-dimensional, or layered three-dimensional
materials. We comment at the end on the likely implications
of our results for systems that are expected to exhibit chiral
superconductivity, such as strontium ruthenate and doped
graphene.

The broad picture is summarized in Fig. 1. At the lowest
temperatures T < Tc, the system is a chiral superconductor.
At high temperatures T > T∗, the system is a Fermi liquid. At
intermediate temperatures Tc < T < T∗ there arises a chiral
pseudogap phase with phase-incoherent Cooper pairs of a
definite angular momentum (Fig. 2). This chiral Cooper pairing
produces a magnetization which may be detected using torque
magnetometry. Moreover, the chiral pseudogap phase inherits
the topological properties of the chiral superconductor, and in
particular has protected edge states that lead to a quantized
thermal Hall response. Finally, at finite temperature the chiral
pseudogap phase also has a (nonquantized) bulk charge Hall
response, even in the clean, dc limit. Such a response is
forbidden in the chiral superconductor (which cannot support
a voltage gradient), and thus the phenomenology of the chiral
pseudogap state is in some ways even richer than that of the
chiral superconductor.

We note that a system with a U (1) × Z2 symmetry, and an
intermediate phase with broken Z2 symmetry only, was also
discussed in Ref. 15. However, the physics of these phases is
very different, since in this case,15 the Z2 symmetry was not
associated with time reversal, and nor was the system coupled
to an electromagnetic gauge field.

I. GINZBURG-LANDAU THEORY

We consider a two-dimensional electron system with
continuous rotation symmetry, and with a doubly degenerate
Cooper instability. Cooper pairing occurs in a channel with
angular momentum l, and the Cooper pair wave functions that
vary around the Fermi surface as ψ1 = η1 cos lϕ and ψ2 =
η2 sin lϕ, respectively, are assumed to have the same energy.
Here the angle ϕ parametrizes position on the two-dimensional
Fermi surface. The degeneracy of the two pairing functions
follows from rotation symmetry. An analogous situation is
believed to arise in strontium ruthenate (with l = 1)9 and also
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FIG. 1. Schematic phase diagram of material exhibiting chiral
superconductivity. At high temperatures, the system is a Fermi liquid.
At low temperatures, it is a chiral superconductor. At intermediate
temperatures, there arises a chiral psedudogap phase, marked by
phase-incoherent Cooper pairs of definite angular momentum. The
chiral pseudogap phase breaks time-reversal symmetry, has a definite
magnetization, and inherits the topological structure of the chiral
superconductor, possessing protected edge states that lead to a
quantized thermal Hall response. In addition, the chiral pseudogap
also exhibits a (nonquantized) dc charge Hall effect, which is
forbidden in the chiral superconductor.

in doped graphene (with l = 2).10 We focus on the spin-singlet
case for simplicity, although we expect our results to also apply
to spin-triplet systems. The gap function behaves as

�(r,t,ϕ) = η1(r,t) cos lϕ + η2(r,t) sin lϕ. (1)

We wish to construct a Ginzburg-Landau free energy func-
tional out of these gap wave functions. The free energy func-
tional should contain all symmetry allowed terms. Fortunately,
the restriction to a system with continuous rotation symmetry
greatly restricts the allowed terms in the free energy functional.
We also assume that the free energy functional should respect
time-reversal symmetry and inversion symmetry. To quartic
order in the gap functions, the static part of the free energy,
F0, takes the form

F0 = (T − TMF )(|η1|2 + |η2|2) + K1(|η1|2 + |η2|2)2

+,K2

∣∣η2
1 + η2

2

∣∣2
, (2)

where TMF is the temperature for onset of Cooper pairing,
and K1,2 > 0. The positivity of K2 means that this system
favors coexistence of the two orders with relative phase ±i.

FIG. 2. The chiral pseudogap phase has chiral, phase-incoherent
Cooper pairs in the bulk, which have a definite angular momentum.
This picture suggests that there should be edge states associated
with skipping orbits for the Cooper pairs, as shown above. This
intuition manifests itself mathematically through a Chern number
for the quasiparticle excitations of the chiral pseudogap phase. The
orbiting Cooper pairs also produce a magnetization, which couples
directly to an external magnetic field, and also to vortices.

As a result, the order parameter takes the form �(r,t,ϕ) =
�(r,t) exp(±ilϕ).

To obtain the physics we are interested in, we must examine
the gradient terms in the free energy. Since we are interested in
finite temperature physics, we neglect temporal fluctuations,
and consider a time-independent Ginzburg-Landau description
of the problem, with η1,2(r,t) = η1,2(r). Note that since we
are dealing with a charged system, we must take into account
the coupling to the electromagnetic field. The electromagnetic
field is introduced by minimal coupling, through i∂ → iD =
i∂ + 2eA (the factor of 2 arises because we have Cooper
pairs). We define D to be a two-component vector, D =
(i∂x + 2eAx,i∂y + 2eAy). At second order in gradients, the
free energy has the form

F∇ = J1(Dη1)∗ · Dη1 + J1(Dη2)∗ · Dη2

+ J2(Dη1)∗ × Dη2 · ẑ − J2(Dη2)∗ × Dη1 · ẑ (3)

= J1(Dη1)∗ · Dη1 + J1(Dη2)∗ · Dη2 + J2η
∗
1(D∗ × D) · ẑη2

− J2η
∗
2(D∗ × D) · ẑη1, (4)

where J1,2 are phenomenological constants, and in going from
the first line to the second we have performed an integration by
parts and have ignored possible boundary terms. We have used
the notation (D∗ × D) · ẑ = [(−i∂ + 2eA) × (i∂ + 2eA)] ·
ẑ = ∂ × ∂ − 2ei(∂xAy − ∂yAx) = ∂ × ∂ − 2eiBz, where Bz

is the magnetic field transverse to the plane.16

We now write η1,2 = �0 exp(iθ1,2), and we neglect (mas-
sive) fluctuations in the magnitude �0. We define new variables
θ+ = 1

2 (θ1 + θ2) and θ− = θ1 − θ2, which are 2π periodic
(a 2π shift in either leaves the physical state unchanged).
Recalling that ∂ × ∂θ1,2 = nv , where nv is the vorticity, we
find that the free energy takes the simple form F = F0(|�0|) +
|�0|2(F+ + F− + F+−), where

F+ = 2J1 [(i∂θ+ + eA) · (i∂θ+ + eA)] , (5)

F− = 1
2 [J1(∂θ−)2 + 8J2Bz sin θ−] + 2K2|�0|2 cos 2θ−,

(6)

F+− = 2J2 sin θ−nv. (7)
We now interpret these equations. First, note that the

anisotropy term in Eq. (6) favors sin θ− = ±1. Next, note that
sin θ− couples to an external magnetic field in the same way as
a magnetization, and can be interpreted as the magnetization
associated with the orbital angular momentum of the chiral
Cooper pairs. We point out that sin θ− serves as an Ising order
parameter for time-reversal symmetry breaking, and couples
to the vortex density (which is expected since the vortices
carry magnetic flux). We also note that the θ− sector (at
Bz = 0) describes an XY model with Ising anisotropy. The
Ising anisotropy is known to be a relevant perturbation17 and
thus at low enough temperatures the phase θ− will be pinned
to sin θ− = ±1, for arbitrarily weak K2. The θ− order will be
destroyed by thermal fluctuations at a temperature T∗, above
which the time-reversal symmetry will be restored.

Meanwhile, the θ+ sector is the action of a superconductor.
It will have a Higgs phase, where the photon is massive, and
θ+ is locked, and it will also have a trivial phase, where
θ+ is disordered, with the phase transition occurring at a
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temperature Tc. The disordering transition will be associated
with proliferation of vortices in θ+. The magnetization sin θ−
imbalances the number of vortices and antivortices, so the
vortex proliferation transition falls into the universality class
of XY models in a magnetic field studied in Ref. 18, and not
the usual Kosterlitz-Thouless universality class.

Finally, we note that the elementary vortices in the theory
carry magnetic flux hc/e (instead of the more usual hc/2e), and
involve a simultaneous 2π winding in θ1 and θ2. This is because
a vortex in θ1 or θ2 alone leaves the phase θ− misaligned
everywhere around it, and hence carries a large anisotropy
energy cost. As a result, the loss of superconductivity at Tc

is associated with a proliferation of double vortices, carrying
magnetic flux hc/e, in an external magnetic field.

Now the temperatures Tc and T ∗ are in principle indepen-
dent. We assume that T ∗ > Tc for the purposes of this paper.
Since Z2 symmetry breaking is more robust against thermal
fluctuations than U (1) symmetry breaking, we believe T ∗ > Tc

represents the generic case for a chiral superconductor.

II. EXPERIMENTAL SIGNATURES OF THE CHIRAL
PSEUDOGAP PHASE

We now discuss experimental signatures of the chiral
pseudogap state. We note that since the chiral pseudogap
state gaps out the full Fermi surface, there should be a gap to
quasiparticle excitations. However, since the chiral pseudogap
state only forms at finite temperature, there will always be
some thermal excitation across the gap. These thermally
excited quasiparticles will see the magnetic field from the
chiral Cooper pairing, and will give rise to a (classical) charge
Hall effect (and thermal Hall effect), in complete analogy
with Hall effect in an external magnetic field. Note that the
chiral pseudogap phase displays a bulk charge Hall effect
even in the dc limit, with a clean sample, whereas the chiral
superconductor cannot display a Hall conductance in this
limit,19 because a superconductor cannot sustain a voltage
drop. Similar effects should also arise from the effect of the
magnetic field on the charged Cooper pairs. However, none of
these effects will be quantized or topological.

A. Topological properties and signatures in transport

The physical picture of the chiral pseudogap state Fig. 2
suggests there should be edge modes associated with “skipping
orbits” for the Cooper pairs, which should also give rise to
some kind of quantized Hall effect. A good way to understand
this is as follows: the (fermionic) quasiparticle spectrum of
the chiral superconductor is gapped, and consists of bands
that carry a Chern number. This is the origin of the quantized
thermal Hall response of the chiral superconductor.20 We are
assuming that we are in the weak pairing regime, where
the chiral superconductivity has topological properties.21

Crucially, the sign of the Chern number depends only on the
sign of the time-reversal symmetry breaking (i.e., whether
θ− = ±π/2 mod 2π ), and is independent of θ+. When we
disorder θ+ to go from the chiral superconductor into the
chiral pseudogap phase, the fermion spectrum remains gapped,
and continues to carry a Chern number. Thus, the edge
states and quantized thermal Hall response exhibited by the

chiral superconductor should also be exhibited by the chiral
pseudogap phase.

While the thermal Hall conductance coming from the edge
states is quantized, experimentally, one measures the total
Hall conductance, obtained by summing over topological
and quasiparticle contributions, and the contribution from
thermally excited quasiparticles is not quantized. However,
we could imagine isolating the “topological” Hall effect from
the classical Hall effect if the width of the pseudogap region
is sufficiently large. The gap to quasiparticle excitations is of
order T∗. Therefore, if Tc � T∗ (i.e., if the chiral pseudogap
region is sufficiently wide), then the fermionic excitations can
be suppressed arbitrarily strongly by working deep in the
pseudogap regime, at Tc < T � T∗. The theoretically clean
limit involves taking Tc → 0, whereupon there will be a truly
quantized thermal Hall response.

If the quasiparticles of the chiral pseudogap state carry
any quantum numbers, the chiral pseudogap state will display
the corresponding quantized Hall effects in addition to the
quantized thermal Hall effect. For example, the quasiparticles
of the d + id pairing state carry spin, and the d + id

superconductor displays a spin quantum Hall effect.20 The
chiral pseudogap phase produced by thermally disordering
the d + id superconductor should inherit this topological
response, and should display a spin quantum Hall effect in
addition to a thermal quantum Hall effect.

A provocative question is whether it is possible for the chiral
pseudogap state to have a charge quantum Hall response—i.e.,
whether it is possible to have a direct second-order transition
from a chiral superconductor to a quantum anomalous (charge)
Hall state. While this is clearly not the generic case, there seems
to be no reason why such a transition should be impossible,
and we believe it is a fruitful topic for further investigation.

B. Mechanical and optical signatures

The chiral pseudogap phase has a net magnetization, which
may be directly measured through magnetic force magnetom-
etry (see, e.g., Ref. 22). Moreover, since the chiral pseudogap
phase has a Hall conductivity (at finite temperature), it should
exhibit a Kerr effect (rotation of the polarization angle of
reflected light). It was demonstrated in Ref. 23 that the Kerr
rotation arising from reflection from a single two-dimensional
sheet of Hall conductance σxy placed on a substrate of
dielectric constant n is

θK ≈ 8π Re σxy

c(n2 − 1)
. (8)

The Kerr signal arising due to a charge Hall response should
be much stronger than the Kerr signal in the absence of a
charge Hall response, and thus should be easier to detect
experimentally. One can also consider a layered system with
multiple layers of chiral pseudogap phase. It is simplest to
consider the limit when there is no tunneling of quasiparticles
or Cooper pairs between layers, so that the different layers
are coupled only through the electromagnetic field. In this
situation, the magnetic dipole interactions between layers
should align the layers so that the same sense of chiral
pseudogap phase is obtained in each layer, i.e., sin θ− = +1
in all layers, or else sin θ− = −1 in all layers. The Kerr
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response from this system is analogous to the Kerr response
of a ferromagnet, discussed in Ref. 24.

C. Domain structure

We note that we have thus far assumed that the Ising sector
(sin θ−) has long-range order. However, an Ising system can
have domains, and the chiral pseudogap state will indeed
have domains with sin θ− = ±1. In the absence of magnetic
disorder, the domain size will be determined by the competi-
tion between the gradient energy cost of domain formation,
and the long-range magnetic dipole interactions between
domains, in analogy with the electronic microemulsion phases
from Ref. 25. If the characteristic domain size is larger
than the system size (or the laser spot size for Kerr effect
measurements), then the domain structure can be neglected,
otherwise it will suppress the experimental signal by a factor
of

√
N , where N is the number of domains.

III. RELEVANCE FOR EXPERIMENTAL SYSTEMS

The only material which is known to be a chiral su-
perconductor is strontium ruthenate. A chiral pseudogap
phase may form in this material, although it will be more
complicated than the chiral pseudogap phase discussed above
because the pairing in strontium ruthenate is spin triplet. This
complicates the analysis because vortices in spin-triplet chiral
superconductors have Majorana zero modes, which endow
them with non-Abelian statistics. A detailed treatment of
spin-triplet superconductors is beyond the scope of the present
work. However, we note that there is numerical evidence
suggesting that disordering a spin-triplet chiral superconductor
can produce a state with quantized thermal Hall effect,26 which
is a key prediction for the chiral pseudogap phase.

A chiral pseudogap phase with spin-singlet pairing (which
is what we discussed in this paper) may arise in graphene
doped to a Van Hove singularity in the density of states.
This system is expected to exhibit spin-singlet, d-wave chiral
superconductivity if interactions are sufficiently weak.10,11

Here, too, there should be a chiral pseudogap phase,
without any of the complications arising from spin-triplet
pairing.

The separation of scales between T∗ and Tc is largest for
systems with small carrier densities.14 For strongly doped
graphene, the carrier density will be very high, so that Tc

is likely to be quite close to T∗. In this case, the chiral
pseudogap phase will not be very relevant. However, if the
carrier density is strongly depleted, for example by localization
on disorder, then the separation between scales might become
more substantial. Since all known methods of doping graphene
to the Van Hove point introduce large amounts of disorder, it
remains possible that the chiral pseudogap phase might be
discovered in doped graphene. A phase that shares some of
the phenomenology of the chiral pseudogap phase was also
proposed for a cobalt-based material in Ref. 27.

Of course, the best-studied superconducting materials are
probably the cuprates. While we are not aware of any
compelling scenario for chiral superconductivity (or chiral
pseudogaps) in the cuprates, it is amusing to note that
there are numerous experiments suggesting both time-reversal

symmetry breaking and a net vorticity in the pseudogap phase
of the cuprates.28,29 Clearly, the mechanism outlined in this
paper for generating a chiral pseudogap phase by disordering a
chiral superconductor does not apply to the cuprates. However,
the experiments28,29 make it tempting to speculate that a chiral
pseudogap phase may still be forming in these materials. A
more detailed analysis of these experiments is beyond the
scope of the present work.

IV. OUTLOOK

The paucity of known chiral superconductors makes it
difficult to find materials that exhibit chiral pseudogaps.
However, given the intense current interest in searching for
realizations of chiral superconductivity, it seems inevitable that
such materials will eventually be found. At that point, a chiral
pseudogap phase will likely be found also. Moreover, we know
from the existing high-Tc materials that pseudogap phases can
survive to much higher temperatures than superconductivity.
Since the chiral pseudogap phase exhibits much of the exotic
phenomenology of the chiral superconductor, and may survive
to significantly higher temperatures, we expect that the chiral
pseudogap phase will not only be of intrinsic theoretical
interest, but will also be highly beneficial for nanoscience
applications.
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APPENDIX: FIRST-PRINCIPLES DERIVATION OF THE
BOSONIC GINZBURG-LANDAU THEORY

In this Appendix, I sketch how the bosonic Ginzburg-
Landau theory presented in Eqs. (2)–(4) may be derived
starting from a fermionic description. For maximum simplicity
I assume a rotation-invariant system (as in the main paper).
Most of the manipulations are standard and follow the
discussion in Ref. 30. We start by writing the partition
function Z in the form of a functional field integral. Thus
we have Z = ∫

D[ψ̄,ψ] exp[−S(ψ̄,ψ)], where ψ̄ and ψ are
Grassmann-valued fields that represent fermions, and S(ψ̄,ψ)
is the imaginary time action. In the Matsubara frequency
representation, the action takes the form

S = T
∑
ωn

∫
k
ψ̄ωn,k,σ (−iωn + εk − μ)ψωn,k,σ

+ T 2
∑

ωn,ω′
n,ωm

∫
k,k′,q

gσσ ′
k,k′,qψ̄ωn+ωm,k+q,σ ψ̄−ωn,−k,σ ′

×ψω′
n+ωm,k′+q,σ ψ−ω′

n,−k′,σ ′ , (A1)

where T is the temperature, ωn = (2n + 1)πT is a fermionic
Matsubara frequency, k is a two-dimensional momentum,
and σ,σ ′ are spin labels (repeated spin indices are summed
over). The dispersion is εk = k2/2m for the special case of an
isotropic system considered in this paper, and μ is the chemical
potential, which controls the Fermi wave vector. The action
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above has been written down in the absence of any vector
potential. We suppress the vector potential to avoid clutter, but
we remind the reader that it may be reintroduced at any time
through minimal substitution k → k − eA.

Meanwhile, the interaction gk,k′ in Eq. (A1) is assumed to
have an attractive component in two independent channels,

both of which have angular momentum l. We define the two
functions d1 and d2 which vary with k as d1 = cos lϕ and
d2 = sin lϕ, respectively, where ϕ is the angle between the
wave vector k and the kx axis. We also assume that l is even,
so the pairing is spin singlet (for specificity). The quartic term
in Eq. (A1) can then be written as

λq

∑
α=1,2

(
ψ̄ωn+ωm,k+q,↑dαψ̄−ωn,−k,↓

)(
ψω′

n+ωm,k′+q,↑dαψ−ω′
n,−k′,↓

)
,

where all frequencies are summed over and momenta are integrated over.
We decouple the quartic term by means of a Hubbard-Stratanovich transformation, introducing the new bosonic

fields η1 = 2λ〈ψd1ψ〉 and η2 = 2λ〈ψd2ψ〉. This leads to a new expression for the partition function, Z =∫
D[η1,η2,ψ̄,ψ] exp(−S(η1,η2,ψ̄,ψ)). The action S is given by

Sωn,k = T
∑
ωn

∫
d2k

(2π )2
ψ̄ωn,k,σ (−iωn + εk − μ)ψωn,k,σ + 1

2λk
(|η1(ωn,k)|2 + |η2(ωn,k)|2)

+ T 2
∑
ωn,ω′

n

∫
d2k d2q

(2π )2
η∗

1(ω′
n,q)[ψωn+ω′

n,k+q,↑d1ψ−ωn,−k,↓] + η∗
2(ω′

n,q)[ψωn+ω′
n,k+q,↑d2ψ−ωn,−k,↓] + c.c. (A2)

Close to the critical temperature, where time-independent Ginzburg-Landau theory is justified, we may restrict ourselves to the
zero-frequency component of the bosonic fields η1 and η2. However, the possible spatial variation of the bosonic fields (i.e., the
wave-vector dependence) should be taken into account. After switching to a Nambu spinor representation and integrating out the
fermions in the manner of Ref. 30, one obtains a purely bosonic action S[η1,η2], where

S =
∫

d2k

(2π )2

1

2λk
(|η1(k)|2 + |η2(k)|2) + Tr ln G. (A3)

Here the Green function G is a 2 × 2 matrix in Nambu spinor space, and is defined by the relation

G−1(ωn,k,k′) =
(

[iωn − (εk − μ)]δ(k − k′) η1(k − k′)d1(k) + η2(k − k′)d2(k)

η∗
1(k − k′)d1(k) + η∗

2(k − k′)d2(k) [iωn + (εk − μ)]δ(k − k′)

)
, (A4)

where δ(k − k′) is a Dirac δ function. If we expand the bosonic
action (A3) in powers of η1,2 up to quartic order in the bosonic
fields, and neglect any spatial variation (i.e., retain the zero
wave-vector component of η1,2 only), then we obtain the
Landau free energy (2). For the particular fermionic model
considered here we obtain K2 = 1

2K1, but this result is not
generic, and different values of K2 would be obtained starting
from different fermionic models.

To obtain the gradient terms in Eqs. (3) and (4), we only
need to work to quadratic order in the bosonic fields η1,2,
but we must retain the nonzero wave-vector components (we
must retain the spatial variation). The terms proportional to
J1 in Eqs. (3) and (4) may be obtained by means of a
standard gradient expansion, as discussed in Ref. 30. However,
a standard gradient expansion misses the terms proportional to
J2 in Eqs. (3) and (4). Nonetheless, these terms are symmetry
allowed, and so should be present in the action.

Intuitively, the J2 terms describe the effect of the intrinsic
orbital magnetization associated with chiral Cooper pairing—
they lead to a coupling between the intrinsic magnetization

and external magnetic fields, and also between the intrinsic
magnetization and the magnetic flux in vortices. One way of
determining J2 is to determine the net orbital magnetization
arising from chiral Cooper pairing. This approach has been
discussed in Ref. 31. However, ideally we would like to derive
this term starting from the action (A3).

To obtain the J2 terms from Eq. (A3) using a gradient
expansion, one must take into account the weak particle-hole
asymmetry of the spectrum. The origin of these terms is closely
related to the chiral anomaly, and is missed by a simple-minded
gradient expansion. How to compute the coefficient J2 using
a gradient expansion has been discussed at great length in
Ref. 32, however, the calculations required are lengthy and
subtle. The magnitude of J2 is of order NlμB , where μB is
the Bohr magneton, and N is the mean Cooper pair density,
as established in Refs. 31 and 32. Since the precise value of
J2 is not important for the present work, we refer the reader to
Ref. 32 for more details on how to calculate J2. For the present
work, we need only the fact that the terms proportional to J2

are symmetry allowed.
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