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Abstract

We present a theoretical framework for the problem of “sequential event prediction” where
events in a sequence are revealed one by one, and the goal is to determine which event will
next be revealed. The training set is a collection of past sequences of events. An example
application is to predict which item will next be placed into a customer’s online shopping
cart, given his/her past purchases. In the context of this problem, algorithms based on
association rules have distinct advantages over classical statistical and machine learning
methods: they look at correlations based on subsets of co-occurring past events (items a
and b imply item c), they can be applied to the sequential event prediction problem in a
natural way, they can potentially handle the “cold start” problem where the training set
is small, and they yield interpretable predictions. In this work, we present two algorithms
that incorporate association rules. These algorithms can be used both for sequential event
prediction and for supervised classification, and they are simple enough that they can possi-
bly be understood by users, customers, patients, managers, etc. We provide generalization
guarantees on these algorithms based on algorithmic stability analysis from statistical learn-
ing theory. We include a discussion of the strict minimum support threshold often used in
association rule mining, and introduce an “adjusted confidence” measure that provides a
weaker minimum support condition that has advantages over the strict minimum support.

c©2000 Cynthia Rudin, Benjamin Letham, Eugene Kogan, and David Madigan.
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The paper brings together ideas from statistical learning theory, association rule mining
and Bayesian analysis.

Keywords: statistical learning theory, algorithmic stability, association rules, sequence
prediction, associative classification

1. Introduction

We aim to predict the next event within a current event sequence, given a “sequence
database” of past event sequences to learn from. Consider for instance, the data gener-
ated by a customer placing items into the virtual basket of an online grocery store such as
NYC’s Fresh Direct, Peapod by Stop & Shop, or Roche Bros. The customer adds items one
by one into the current basket, creating a sequence of events. The customer has identified
him- or herself, so that all past orders are known. After each item selection, a confirma-
tion screen contains a small list of recommendations for items that are not already in the
basket. If the store can find patterns within the customer’s past purchases, it may be able
to accurately recommend the next item that the customer will add to the basket. Another
example is to predict each next symptom of a sick patient, given the patient’s past sequence
of symptoms and treatments, and a database of the timelines of symptoms and treatments
for other patients. We call the problem of predicting these sequentially revealed events
based on past sequences of events “sequential event prediction.”

In these examples, a subset of past events (for instance, a set of ingredients for a par-
ticular recipe, or a set of symptoms associated with a particular disease) can be useful in
predicting the next event. In order to make predictions using subsets of past events, we
employ association rules (Agrawal et al., 1993). An association rule in this setting is an
implication a → b (such as lettuce and carrots → tomatoes), where a is a subset of items,
and b is a single item. The association rule approach has the distinct advantage in being
able to directly model underlying conditional probabilities P (b|a) eschewing the linearity
assumptions underlying many classical supervised classification, regression, and ranking
methods. Rules also yield predictive models that are interpretable, meaning that for the
rule a→ b, it is clear that b was recommended because a is satisfied.

The association rules approach makes predictions from subsets of co-occurring past
events. Using subsets may make the estimation problem much easier, because it helps
avoid problems with the curse of dimensionality. For instance P (tomatoes | lettuce and
carrots) could be much easier to estimate than P (tomatoes | lettuce, carrots, pears, potatoes,
ketchup, eggs, bread, etc.). This is precisely why learning algorithms created from rules can
be helpful for the “cold start” problem in recommender systems, where predictions need to
be made when there are not enough data available to accurately compute the full probability
of a new item being purchased.

Our main contribution is a framework for sequential event prediction, including a gen-
eralization analysis for algorithms based on association rules. An important part of this
analysis is how a fundamental property of a rule, namely the “support,” is incorporated into
the generalization bounds. The “support” of an itemset for the sequential event prediction
problem is the number of times that the itemset has appeared in the sequence database.
For instance, the support of lettuce is the number of times lettuce has been purchased in
the past. Typically in association rule mining, a strict minimum support threshold con-
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dition is placed on the support of itemsets within a rule, so that rules falling below the
minimum support threshold are simply discarded. The idea of a condition on the support
is not shared with other types of supervised learning algorithms, since they do not use sub-
sets in the same way as when using rules. Thus a new aspect of generalization is explored
in our framework in that it handles predictions created from subsets of data. In classical
supervised learning paradigms, bounds scale only with the sample size, and a large sample
is necessary to create a generalization guarantee. In the context of association rules, the
minimum support threshold forces predictions to be made only when there are enough data.
Thus, in the association rules framework, there are now two mechanisms for generalization:
first a large sample, and second, a minimum support. These are separate mechanisms, in
the sense that it is possible to generalize with a somewhat small sample size and a large
minimum support threshold, and it is also possible to generalize with a large sample size
and no support threshold. We thus derive two types of bounds: large sample bounds, which
scale with the sample size, and small sample bounds, which scale with the minimum sup-
port of rules. Using both large and small sample bounds (that is, the minimum of the two
bounds) gives a complete picture. The large sample bounds are of order O(

√
1/m) as in

classical analysis of supervised learning, where m denotes the number of event sequences
in the database, that is, the number of past baskets ordered by the online grocery store
customer.

Most of our bounds are derived using a specific notion of algorithmic stability called
“pointwise hypothesis stability.” The original notions of algorithmic stability were invented
in the 1970’s and have been revitalized recently (Devroye and Wagner, 1979; Bousquet and
Elisseeff, 2002), the main idea being that algorithms may be better able to generalize if
they are insensitive to small changes in the training data such as the removal or change of
one training example. The pointwise hypothesis stability specifically considers the average
change in loss that will occur at one of the training examples if that example is removed
from the training set. Our generalization analysis uses conditions on the minimum support
of rules in order to bound the pointwise hypothesis stability.

There are two algorithms considered in this work. At the core of each algorithm is
a method for rank-ordering association rules where the list of possible rules is generated
using the customer’s past purchase history and subsets of items within the current basket.
These algorithms build off of the rule mining literature that has been developing since the
early 1990’s (Agrawal et al., 1993) by using an application-specific rule mining method as
a subroutine. Our algorithms are interpretable in two different ways: the predictive model
coming out of the algorithm is interpretable, and the whole algorithm for producing the
predictive model is interpretable. In other words, the algorithms are straightforward enough
that they can be understood by users, customers, patients, managers, etc. Further, the rules
within the predictive model can provide a simple reason to the customer why an item might
be relevant, or identify that a key ingredient is missing from a particular recipe. The rules
provide “IF,THEN,ELSE” conditions, and yield models of the same form as those from the
expert systems literature from the early days of artificial intelligence (Jackson, 1998). Many
authors have emphasized the importance of interpretability and explanation in predictive
modeling (see for example the work of Madigan et al., 1997).

The first of the two algorithms considered in this work uses a fixed minimum support
threshold to exclude rules whose itemsets occur rarely. Then the remaining rules are ranked
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according to the “confidence,” which for rule a → b is the empirical probability that b
will be in the basket given that a is in the basket. The right-hand sides of the highest
ranked rules will be recommended by the algorithm. However, the use of a strict minimum
support threshold is problematic for several well-known reasons, for instance it is known
that important rules (“nuggets,” which are rare but strong rules) are often excluded by a
minimum support threshold condition.

The other algorithm introduced in this work provides an alternative to the minimum
support threshold, in that rules are ranked by an “adjusted” confidence, which is a simple
Bayesian shrinkage estimator of the probability of a rule P (b|a). The right-hand sides of
rules with the highest adjusted confidence are recommended by the algorithm. For this
algorithm, the generalization guarantee is smoothly controlled by a parameter K, which
provides only a weak (less restrictive) minimum support condition. The key benefits of an
algorithm based on the adjusted confidence are that: 1) it allows the possibility of choosing
very accurate (high confidence) rules that have appeared very few times in the training set
(low support), and 2) given two rules with the same or similar prediction accuracy on the
training set (confidence), the rule that appears more frequently (higher support) achieves a
higher adjusted confidence and is thus preferred over the other rule.

All of the bounds are tied to the measure of quality (the loss function) used for the
algorithm. We would like to directly compare the performance of algorithms for various
settings of the adjusted confidence’s K parameter (and for the minimum support threshold
θ). It is problematic to have the loss defined using the same K value as the algorithm, in
that case we would be using a different method of evaluation for each setting of K, and we
would not be able to directly compare performance across different settings of K. To allow
a direct comparison, we select one reference value of the adjusted confidence, called Kr (r
for “reference”), and the loss depends on Kr rather than on K. The bounds are written
generally in terms of Kr. The special case Kr = 0 is where the algorithm is evaluated with
respect to the confidence measure. The small sample bounds for the adjusted confidence
algorithm have two terms: one that generally decreases with K (as the support increases,
there is better generalization) and the other that decreases as K gets closer to Kr (better
generalization as the algorithm is closer to the way it is being measured). These two terms
are thus agreeing if Kr > K and competing if Kr < K. In practice, the choice of K can be
determined in several ways: K can be manually determined (for instance by the customer),
it can be set using side information by “empirical Bayes” as considered by McCormick et al.
(2012), or it can be set via cross-validation on an extra hold-out set.

The novel elements of the paper include: 1) the definition of a new supervised learn-
ing framework for the sequential event prediction problem, 2) generalization analysis that
incorporates the use of association rules, for both classification and sequential event pre-
diction, 3) the algorithm based on adjusted confidence, where the adjusted confidence is
a Bayesian version of the confidence. The work falls in the intersection of several fields
that are rarely connected: association rule mining and associative classification, supervised
machine learning and generalization bounds from statistical learning theory, and Bayesian
analysis.

In terms of applications, the definition of “sequential event prediction” was inspired
by, but not restricted to, online grocery stores. Examples are Fresh Direct, Amazon.com
grocery, and netgrocer.com. Many supermarket chains with local outlets also offer an
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online shop-and-delivery option, such as Peapod (paired with Stop & Shop and Giant).
Other online retailers and recommendation engines may benefit from ranking algorithms
that are transparent to the user like amazon.com’s “customers who purchased this also
purchased that” recommender system. The same techniques used to solve the sequential
event prediction problem could be used in medical applications to predict, for instance, the
winners at each round of a tournament (e.g, the winners of games in a football season),
or the next move of a video game player in order to design a more interesting game. The
work of McCormick et al. (2012) contains a Bayesian algorithm, based on the framework
introduced in this paper, for predicting conditions of medical patients in a clinical trial.

Section 2 describes the two algorithms, one based on a hard thresholding of the support
(min support) and the other based on the soft thresholding (adjusted confidence). Section 3
provides the generalization analysis, Section 4 contains proofs, and Section 5 provides ex-
perimental validation. Section 6 contains a summary of relevant literature. Appendix A
discusses the suitability of regression approaches for solving the sequential event prediction
problem. Appendix B provides additional experimental results. Appendix C contains an
additional proof.

2. Derivation of Algorithms

We assume an interface similar to that of Fresh Direct, where users add items one by
one into the basket. After each selection, a confirmation screen contains a handful of
recommendations for items that are not already in the customer’s basket. The customer’s
past orders are known.

The set of items is X , for instance X={apples, bananas, pears, etc}; X is the set of
possible events. The customer has a past history of orders S which is a collection of m
baskets, S = {zi}i=1,...,m, zi ⊆ X ; S is the sequence database. The customer’s current
basket is usually denoted by B ⊂ X ; B is the current sequence. An algorithm uses B and
S to find rules a → b, where a is in the basket and b is not in the basket. For instance,
if salsa and guacamole are in the basket B and also if salsa, guacamole and tortilla chips
were often purchased together in S, then the rule (salsa and guacamole) → tortilla chips
might be used to recommend tortilla chips.

The support of a, written Sup(a) or #a, is the number of times in the past the customer
has ordered itemset a,

Sup(a) := #a :=

m∑
i=1

1[a⊆zi].

If a = ∅, meaning a contains no items, then #a :=
∑

i 1 = m. The confidence of a rule
a→ b is denoted “Conf” or “fS,0”:

Conf(a→ b) := fS,0(a, b) :=
#(a ∪ b)

#a
,

the fraction of times b is purchased given that a is purchased. It is an estimate of the
conditional probability of b given a. Ultimately an algorithm should order rules by condi-
tional probability; however, the rules that possess the highest confidence values often have
a left-hand side with small support, and their confidence values do not yield good estimates
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for the true conditional probabilities. In this work we introduce the “adjusted” confidence
as a remedy for this problem: The adjusted confidence for rule a→ b is:

fS,K(a, b) :=
#(a ∪ b)
#a+K

.

The adjusted confidence for K = 0 is equivalent to the confidence.
The adjusted confidence is a particular Bayesian estimate of the confidence. Specifically,

assuming a beta prior distribution for the confidence, the posterior mean is given by:

p̂ =
L+ #(a ∪ b)
L+K + #a

,

where L andK denote the parameters of the beta prior distribution. The beta distribution is
the “conjugate” prior distribution for a binomial likelihood. For the adjusted confidence we
choose L = 0. This choice yields the benefits of the lower bounds derived in the remainder
of this section, and the stability properties described later. The prior for the adjusted
confidence tends to bias rules towards the bottom of the ranked list. Any rule achieving a
high adjusted confidence must overcome this bias.

Other possible choices for L and K are meaningful. For instance we could choose the
following:

• Collaborative filtering prior: have L/(L+K) represent the probability of purchasing
item b given that item a was purchased, calculated over a subset of other customers.
This biases estimates of the target user’s behavior towards the “average” user.

• Revenue management prior: choose L and K based on the item’s price, so more
expensive items are more likely to be recommended.

• Time dependent prior: use only the customer’s most recent orders, and choose L and
K to summarize the user’s behavior before this point.

A rule cannot have a high adjusted confidence unless it has a large enough confidence
and also a large enough support on the left-hand side. To see this, consider the case when
we take fS,K(a, b) large, meaning for some η, we have fS,K(a, b) > η, implying:

Conf(a→ b) = fS,0(a, b) > η
#a+K

#a
≥ η,

Sup(a) = #a ≥ (#a+K)

[
#(a ∪ b)
#a+K

]
> (#a+K)η, implying Sup(a) = #a >

ηK

1− η
. (1)

And further, expression (1) implies:

Sup(a ∪ b) = #(a ∪ b) > η(#a+K) > ηK/(1− η).

Thus, rules attaining high values of adjusted confidence have a lower bound on confidence,
and a lower bound on support of both the right and left-hand sides, which means a better
estimate of the conditional probability. The bounds clearly do not provide any advantage
when K = 0 and the confidence is used.
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As K increases, rules with low support are heavily penalized, so they tend not to be at
the top of the list. On the other hand, such rules might be chosen when all other rules have
low confidence. That is an advantage of having no firm minimum support cutoff: “nuggets”
that have fairly low support may filter to the top. Figure 1 illustrates this by showing the
support of rules ordered by adjusted confidence, for two values of K, using a transactional
dataset “T25I10D10KN200” from the IBM Quest Market-Basket Synthetic Data Generator
(Agrawal and Srikant, 1994) which mimics a retail dataset.1 We use all rules with either
one or no items on the left and one item on the right (as produced for instance by GenRules,
presented in Algorithm 1). On each scatter plot, each of the rules is represented by a point.
The rules are ordered on the x-axis by adjusted confidence, and the support of the rule
is indicated on the y-axis. As K increases, rules with the highest adjusted confidence are
required to achieve a higher support, as can be seen from the gap in the lower left corner
of the scatter plot for larger K.

K = 0 K = 10 K = 50

Figure 1: Support vs. rank in adjusted confidence for K = 0, 10, 50. Rules with the highest
adjusted confidence are on the left.

We now formally state the recommendation algorithms. Both algorithms use a subrou-
tine for mining association rules to generate a set of candidate rules. GenRules (Algorithm
1) is one of the simplest such rule mining algorithms, which in practice should be replaced
by a rule mining algorithm that retrieves rules tailored to the application. There is a vast
literature on such algorithms since the field of association rule mining evolved on their de-
velopment, e.g. Apriori (Agrawal et al., 1993). GenRules requires a set A which is the set
of allowed left-hand sides of rules.

2.1 Max Confidence, Min Support Algorithm

The max confidence, min support algorithm, shown as Algorithm 2, is based on the idea of
eliminating rules whose itemsets occur rarely, which is commonly done in the rule-mining
literature. For this algorithm, the rules are ranked by confidence, and rules that do not
achieve a predetermined fixed minimum support threshold are completely omitted. The
algorithm recommends the right-hand sides from the top ranked rules. Specifically, if c

1. The dataset generated is T25I10D10KN200 that contains 10K transactions, 200 items, and where the
average length of transactions is 25 and the average pattern length is 10.
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Algorithm 1: Subroutine GenRules.

Input: (S,B,X ), that is, past orders S = {zi}i=1,...,m, zi ⊆ X , current basket
B ⊂ X , set of items X

Output: Set of all rules {aj → bj}j where bj is a single item that is not in the
basket B, and where aj is either a subset of items in the basket B, or else
it is the empty set. Also the left-hand side aj must be allowed (meaning it
is in A). That is, output rules {aj → bj}j such that bj ∈ X\B and
aj ⊆ B ⊂ X with aj ∈ A, or aj = ∅.

Algorithm 2: Max Confidence, Min Support Algorithm.

Input: (θ,X , S,B, GenRules, c), that is, minimum threshold parameter θ, set of
items X , past orders S = {zi}i=1,...,m, zi ⊆ X , current basket B ⊂ X ,
GenRules generates candidate rules GenRules(S,B,X ) = {aj → bj}j ,
number of recommendations c ≥ 1

Output: Recommendation List, which is a subset of c items in X
1 Apply GenRules(S,B,X ) to get rules {aj → bj}j where aj is in the basket B and bj

is not.
2 Compute score for each rule aj → bj as f̄S,θ(aj , bj) = fS,0(aj , bj) =

#(aj∪bj)
#aj

when

support #aj ≥ θ, and f̄S,θ(aj , bj) = 0 otherwise.
3 Reorder rules by decreasing score.
4 Find the top c rules with distinct right-hand sides, and let Recommendation List be

the right-hand sides of these rules.

items are to be recommended to the user, the algorithm picks the top ranked c distinct
items.

It is common that the minimum support threshold is imposed on the right and left side
Sup(a ∪ b) ≥ θ; however, as long as Sup(a) is large, we can get a reasonable estimate of
P (b|a). In that sense, it is sufficient (and less restrictive) to impose the minimum support
threshold on the left side: Sup(a) ≥ θ. Here θ is a number determined beforehand (for
instance, the support of the left must be at least 5 items). In this work, we only have a
required minimum support on the left side. As a technical note, we might worry about the
minimum support threshold being so high that there are no rules that meet the threshold.
This is actually not a major concern because of the minimum support being imposed only on
the left-hand side: as long as m ≥ θ, all rules ∅→ b meet the minimum support threshold.

The thresholded confidence is denoted by f̄S,θ:

f̄S,θ(a, b) := fS,0(a, b) if #a ≥ θ, and f̄S,θ(a, b) := 0 otherwise.

2.2 Adjusted Confidence Algorithm

The adjusted confidence algorithm is shown as Algorithm 3. A chosen value of K is used
to compute the adjusted confidence for each rule, and rules are then ranked according to
adjusted confidence.
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Algorithm 3: Adjusted Confidence Algorithm.

Input: (K,X , S,B, GenRules, c), that is, parameter K, set of items X , past orders
S = {zi}i=1,...,m, zi ⊆ X , current basket B ⊂ X , GenRules generates
candidate rules GenRules(S,B,X ) = {aj → bj}j , number of
recommendations c ≥ 1

Output: Recommendation List, which is a subset of c items in X
1 Apply GenRules(S,B,X ) to get rules {aj → bj}j where aj is in the basket B and bj

is not.
2 Compute adjusted confidence of each rule aj → bj as fS,K(aj , bj) =

#(aj∪bj)
#aj+K .

3 Reorder rules by decreasing adjusted confidence.
4 Find the top c rules with distinct right-hand sides, and let Recommendation List be

the right-hand sides of these rules.

The definition of the adjusted confidence makes an implicit assumption that the order
in which items were placed into previous baskets is irrelevant. It is easy to include a
dependence on the order by defining a “directed” version of the adjusted confidence, and
calculations can be adapted accordingly. The numerator of the adjusted confidence becomes
the number of past orders where a is placed in the basket before b.

f
(directed)
S,K (a, b) =

#{(a ∪ b) : b follows a}
#a+K

.

2.3 Rule Selection

In classical supervised machine learning problems, like classification and regression, de-
signing features is one of the main engineering challenges. In association rule modeling,
the analogous challenge is designing the allowed sets of items for the left and right sides
of rules. For instance, we can choose to capture only positive correlations, as if customers
were purchasing items from several independent recipes. The present work considers mainly
positive correlations, for the purpose of exposition and to keep things simple. Beyond this,
it is easily possible to capture negative correlations between items by creating “negation”
items, such as ¬b. As an example of using negation rules in the ice cream category, we
impose that for vanilla to be on the right, both chocolate and strawberry need to be on the
left, in either their usual form or negated. Of these, the rule that is used corresponds to the
current basket. In that case, ¬chocolate, ¬strawberry → vanilla could have a high score in
order to recommend vanilla when chocolate and strawberry are not in the basket, whereas
chocolate, ¬strawberry → vanilla might have a low score, conveying that since chocolate is
already in the basket that vanilla should not be recommended. Alternatively, we could cre-
ate a negation item ¬ice cream indicating that the basket contains no ice cream presently,
so sprinkles + ¬ice cream → vanilla could have a high score.

We can also use negation items on the right, where if there is a rule a→ ¬b that receives
a higher score (confidence or adjusted confidence) than any other rules recommending b, we
can choose not to recommend b. Rules can be designed to capture higher level correlations in
specific regimes, for instance the allowed set A can contain up to three items in one product
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category, but only two items in another. It is not practical in general to exhaustively
enumerate and use all possible rules in a rule modeling algorithm due to problems with
computational complexity. The key is to find a small but good set of rules, for instance the
set of rules containing exhaustively all subsets of 1, 2, or 3 items on the left; or perhaps
use the top rules that come out of the Apriori algorithm (Agrawal et al., 1993). In Section
6 we provide citations to surveys on association rule mining and associative classification
that discuss this important issue of rule-construction and rule-engineering.

2.4 Modeling Assumption

The general modeling assumption that we make with the two algorithms above can be
written as follows, where current basket B is composed of items b1, . . . bt, and Xi is the
random variable governing whether item i will be placed into the basket next:

argmax
i=1,...,m

i/∈B

P (Xi = 1|Xb1 = 1, Xb2 = 1, . . . , Xbt = 1)

= argmax
i=1,...,m

i/∈B

max
a∈A

a⊆{b1,...,bt}

P (Xi = 1|Xa1 = 1, Xa2 = 1, . . .).

This expression states that the most likely item to be added next into the basket can be
identified using a subset of items in the basket, denoted a. That subset is restricted to fall
into a class A which is chosen based on the application at hand and the ease in which that
subset can be searched. The set A determines the hypothesis space for learning, and it
would be chosen differently as we move from the small sample regime to the large sample
regime, so that the right side of this expression would eventually look just like the left side
when the sample is large.

The choice of A can help with the problem of “curse of dimensionality” by allowing us
to look at small subsets on the left. A similar example as the one in the introduction is
P (machine will break | a particular part is old) could be much easier to estimate accurately
than the full probability P (machine will break | part 1 did poorly at last inspection, part
2 is very old, part 3 is new, part 4 is ok,..., part 612 is ok, etc.). The large dimensionality
would likely be a problem when estimating the full probability. Further, the approximation
also could actually be sufficient to estimate the full probability. We note that there are
circumstances in which it is natural to only consider positive correlations. In the example
of equipment failure, for instance, individual component failures would always increase the
risk of overall failure. More typically, however, consideration of both positive and negative
correlations will be important.

Our modeling assumption aligns with sequential event prediction, where only part of
a sequence is available to make a prediction at time t. This is a case where standard
linear modeling approaches do not naturally apply, since one would need to make a linear
combination of terms, some of which are unrealized. We discuss this more in Appendix A.

3. Generalization

Our goal in this section is to provide a foundation for supervised learning with association
rules. We will consider several quantities that may be important in the learning process: m,
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K or θ, the size of the set of possible itemsets |A|, and the probability of the least probable
itemsets and items.

We first establish bounds for vanilla supervised binary classification, for “max-score”
association rule classifiers. For a given example, a max-score classifier assigns a score to the
label +1 and a score to the label -1, and chooses the label corresponding to the higher of the
two scores. Max-score association rule classifiers are a special type of “associative classifier”
(Liu et al., 1998) and are also called “decision lists” (Rivest, 1987). The first result in this
section is a uniform bound based on the VC dimension of the set of max-score classifiers.
This bound does not depend explicitly on K, which we hypothesize is an important quantity
for the learning process.

In order to understand how K might affect learning, we use algorithmic stability analy-
sis. This approach originated in the 1970’s (Rogers and Wagner, 1978; Devroye and Wagner,
1979) and was revitalized by Bousquet and Elisseeff (2002). Stability bounds depend on
how the space of functions is searched by the algorithm (rather than the size of the function
space), so it often yields more insightful bounds. These bounds are still not often directly
useful due to large multiplicative constants (in our case a factor of 6), but they capture more
closely the scalability relationship of a particular algorithm with respect to important quan-
tities in the learning process. The calculation required for an algorithmic stability bound is
to show that the empirical error will not dramatically change by altering or removing one
of the training examples and re-running the algorithm. There are many different ways to
measure the stability of an algorithm; most of the bounds presented here use a specific type
of algorithmic stability (pointwise hypothesis stability) so that the bounds scale correctly
with the number of training examples m.

Section 3.1 presents the uniform VC bound for classification with max-score classifiers.
Section 3.2 provides notation. Section 3.3 provides stability bounds for the large sample
asymptotic regime (for both sequential event prediction and classification). Then we con-
sider the new small m regime in Section 3.4, starting with stability bounds that formally
show that minimum support thresholds can lead to better generalization (for both sequen-
tial event prediction and classification). From there, we present small sample bounds for
the adjusted confidence algorithm, for classification and (separately) for sequential event
prediction.

We note that the space of possible baskets (up to a maximum size) is a combinatorially
large, discrete space. Because the space is discrete, all probability estimates converge to
the true probabilities, which means that an algorithm that is statistically consistent can be
obtained by estimating p(b|B) directly for the current basket B. If m is large, prediction is
easy. The difficult part is when we have only enough data to well estimate conditionals that
are much smaller, P (b|a), a ⊂ B. That is the problem we are concerned with. Consistency
does not imply anything about generalization bounds for the finite sample case.

In sequential event prediction, if any item has a higher score than the next item added,
the algorithm incurs an error. (Even if that item is added later on, the algorithm incurs an
error at this timestep.) To measure the size of that error, we can use a 0-1 loss, indicating
whether or not our algorithm gave the highest score to the next item added. However,
the 0-1 loss does not capture how close our algorithm was to correctly predicting the next
item, though this information might be useful in determining how well the algorithm will
generalize. We approximate the 0-1 loss using a modified loss that decays linearly near the
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discontinuity. This modified loss allows us to consider differences in adjusted confidence,
not just whether one is larger than another:

|(adjusted conf. of highest-scoring-correct rule)

−(adjusted conf. of highest-scoring-incorrect rule)|.

However, as discussed in the introduction, if we adjust the loss function’s K value to match
the adjusted confidence K value, then we cannot fairly compare the algorithm’s performance
using two different values of K. An illustration of this point is that for large K, all adjusted
confidence values are � 1, and for small K, the adjusted confidence can be ≈ 1; differences
in adjusted confidence for small K cannot be directly compared to those for large K. Since
we want to directly compare performance asK is adjusted, we fix an evaluation measure that
is separate from the choice of K. Specifically, we use the difference in adjusted confidence
values with respect to a reference Kr:

|({adjusted conf.}Krof highest-scoring-correct ruleK)

−({adjusted conf.}Krof highest-scoring-incorrect ruleK)|.

The reference Kr is a parameter of the loss function, whereas K is a parameter of an
algorithm. We set Kr = 0 to measure loss using the difference in confidence, and K = 0
for an algorithm that chooses rules according to the confidence. As K gets farther from
Kr, the algorithm is more distant from the way it is being evaluated, which leads to worse
generalization. A similar loss will be used in classification, where we incur an error if the
adjusted confidence of the incorrect label is higher than that of the correct label.

3.1 Classification with Association Rules: A Uniform Bound

In the classification problem, each basket receives a single label that is one of two possible
labels {+1,−1}. This contrasts with sequential event prediction where there is a sequence
of labels, one for each item in the basket as it arrives. For classification, we represent
basket x as a binary vector, where entry j is 1 if item j is in the basket. We sample
baskets with labels, z = (x, y), where x ∈ 2X is a set of items (or, equivalently, a binary
feature vector) and y ∈ {−1, 1} is the corresponding label. Each labeled basket z is chosen
randomly (iid) from a fixed (but unknown) probability distribution D over baskets and
labels. Given a training set S of m labeled baskets, we wish to construct a classifier that
can assign the correct label to new, unlabeled baskets. We begin by defining a scoring
function g : A × {−1, 1} → R that assigns a score g(a, y) to a rule a → y. The set of
left-hand sides A can be any collection of itemsets so long as every x ∈ 2X contains at least
one a ∈ A. We define a valid scoring function as one where ∀a ∈ A, g(a, 1) 6= g(a,−1) and
∀a1, a2 ∈ A, maxy∈{−1,1} g(a1, y) 6= maxy∈{−1,1} g(a2, y), i.e., there are no ties. The validity
requirement will be discussed in the following paragraph. Define G to be the class of all
valid scoring functions. We now define a class of decision functions that use a valid scoring
function g ∈ G to provide a label to a basket x, fg : 2X → {−1, 1}. The decision function
assigns the label corresponding to the highest scoring rule whose left-hand side is contained
in x. Specifically,

fg(x) = argmax
y∈{−1,1}

max
a∈A,a⊆x

g(a, y). (2)

12
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We call such a classifier a “max-score association rule classifier” (or “decision list”) because
it uses the association rule with the maximum score to perform the classification. Let
Fmaxscore be the class of all max-score association rule classifiers: Fmaxscore := {fg : g ∈ G}.
We will bound the VC dimension of class Fmaxscore. By definition, the VC dimension is
the size of the largest set of baskets to which arbitrary labels can be assigned using some
fg ∈ Fmaxscore; it is the size of the largest set that can be shattered.

The argmax in (2) is unique because g is valid, thus there are no ties. If ties are allowed
but broken randomly, arbitrary labels can be realized with some probability, for example
by taking g(a, y) = 0 for all a and y. In this case the VC dimension can be considered
to be infinite, which motivates our definition of a valid scoring function. This problem
actually happens with any classification problem where function f(x) = 0 ∀x is within the
hypothesis space, thereby allowing all points to sit on the decision boundary. Our definition
of validity is equivalent to one in which ties are allowed but are broken deterministically
using a pre-determined ordering on the rules. In practice, ties are generally broken in a
deterministic way by the computer, so the inclusion of the function f = 0 is not problematic.

The true error of the max-score association rule classifier is the expected misclassification
error:

TrueErrClass(fg) := E(x,y)∼D1[fg(x)6=y]. (3)

The empirical error is the average misclassification error over a training set of m baskets:

EmpErrClass(fg) :=
1

m

m∑
i=1

1[fg(xi)6=yi].

The main result of this subsection is the following theorem, which indicates that the size of
the allowed set of left-hand sides may influence generalization.

Theorem 1 (VC Dimension for Classification)
The VC dimension h of the set of max-score classifiers is equal to the size of the allowed
set of left hand sides of rules:

VCdim(Fmaxscore) := h := |A|.

From this theorem, classical results such as those of Vapnik (1999, equations 20 and 21)
can be directly applied to obtain a generalization bound:

Corollary 2 (Uniform Generalization Bound for Classification)
With probability at least 1− δ the following holds simultaneously for all fg ∈ Fmaxscore:

TrueErrClass(fg) ≤ EmpErrClass(fg) +
ε

2

(
1 +

√
1 +

4EmpErrClass(fg)

ε

)
,

where ε = 4
|A|
(

ln 2m
|A| + 1

)
− ln δ

m
.
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Note 1 (on uniform bounds): The result of Theorem 1 holds generally, well beyond the
simple adjusted confidence or max confidence, min support algorithms. Those two algo-
rithms correspond to specific choices of the scoring function g: the adjusted confidence
algorithm takes g(a, y) = fS,K(a, y), and the max confidence, min support algorithm takes
g(a, y) = f̄S,θ(a, y). We could use other strategies to choose g, for example, choosing fg ∈ F
to minimize an empirical risk (as we do in Letham et al., 2011).

Note 2 (on replacing itemsets with general boolean operators): Although in this paper we
restrict our attention to left-hand sides that are sets of items (e.g., “apples and oranges”),
association rules can be constructed using the boolean operators AND, OR, and NOT
(e.g., “apples or oranges but not bananas”). In this case, the left-hand sides of rules are
not contained in x, rather they are true with respect to x. By replacing “contained in x”
with “true with respect to x” in the first half of the proof of Theorem 1, it can be seen
that h ≤ |A| even when A contains general boolean association rules. Thus the bound in
Corollary 2 extends to boolean operators.

Note 3 (dependence on |A|): We can use a standard argument involving Hoeffding’s in-
equality and the union bound over elements of Fmaxscore to obtain that with probability at
least 1− δ, the following holds for all f ∈ Fmaxscore:

TrueErrClass(fg) ≤ EmpErrClass(fg) +

√
1

2m

(
ln(2|Fmaxscore|) + ln

1

δ

)
.

The value of |Fmaxscore| is at most 2|A|, since for each a there is a possibility to choose label
1 or −1 using functions from G. The bound then depends on

√
|A| (as classical VC bounds

would also give, using Theorem 1), but not log |A|.

Note 4 (on reducing |A|): It is possible that many of the possible left-hand sides in |A|
are realized with zero probability. (This depends on the unknown probability distribution
that the examples are drawn from.) Because of this, if we are willing to redefine A to
include only realizable left-hand sides, |A| can be replaced in the bound by |A|, where
A = {a ∈ A : Pz(a ⊆ x) > 0} are the itemsets that have some probability of being chosen.

3.2 Notation for Algorithmic Stability Bounds

We will now introduce the notation that will be used for the algorithmic stability bounds,
first for classification and then for sequential event prediction.

3.2.1 Notation for Classification Bounds

Recall that we sample z = (x, y) where x ∈ 2X is a set of items and y ∈ {−1, 1} is the
corresponding label. Each z is sampled randomly (iid) according to a distribution D over
the space 2X ×{−1, 1}. The adjusted confidence algorithm uses the training set S of m iid
baskets to compute the adjusted confidences fS,K and find a rule that will be used to label
the basket. We use z = (x, y) to refer to a general labeled basket, and zi = (xi, yi) to refer
specifically to the ith labeled basket in the training set. We define a highest-scoring-correct
rule for x as a rule with the highest adjusted confidence that predicts the correct label y.
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The left-hand side of a highest-scoring-correct rule obeys:

a+
SxK ∈ argmax

a⊆x,a∈A
fS,K(a, y) = argmax

a⊆x,a∈A

#(a ∪ y)

#a+K
,

where K ≥ 0. If more than one rule is tied for the maximum adjusted confidence, one
can now be chosen randomly. If the true label y is not found in the training set, then the
confidence of all rules with y on the right-hand side will be 0, and we take ∅ → y as the
maximizing rule. We define a highest-scoring incorrect rule for x as a rule with the highest
adjusted confidence that predicts the incorrect label −y, so the left-hand side obeys:

a-
SxK ∈ argmax

a⊆x,a∈A
fS,K(a,−y) = argmax

a⊆x,a∈A

#(a ∪ −y)

#a+K
.

Again, if the label −y is not found in the training set, we take ∅→ −y as the maximizing
rule. Otherwise, ties are broken randomly.

A misclassification error is made for labeled basket z when the highest-scoring-correct
rule, a+

SxK → y, has a lower adjusted confidence than the highest-scoring incorrect rule
a-
SxK → −y. As discussed earlier, we will measure this difference in adjusted confidence

values with respect to a reference Kr in order to allow comparisons with different values of
K. We will take Kr ≥ 0. This leads to the definition of the 0-1 loss for classification:

`class
0−1,Kr

(fS,K , z) :=

{
1 if fS,Kr(a+

SxK , y)− fS,Kr(a-
SxK ,−y) ≤ 0

0 otherwise.

The term fS,Kr(a+
SxK , y)− fS,Kr(a-

SxK ,−y) is the “margin” of example z (that is, the gap
in score between the predictions for the two classes, see also Shen and Wang, 2007).

We will now define the true error which, when K = Kr, is a specific case of TrueErrClass
defined in (3). (The function g is chosen using the dataset, and it is fS,K .) The true error
is an expectation of a loss function with respect to D, and is a random variable since the
training set S is random, S ∼ Dm.

TrueErrClass(fS,K ,Kr) := Ez∼D`class
0−1,Kr

(fS,K , z).

We approximate the true error using a different loss `class
γ,Kr

that is a continuous upper

bound on the 0-1 loss `class
0−1,Kr

. It is defined with respect to Kr and another real-valued
parameter γ > 0 as follows:

`class
γ,Kr

(fS,K , z) := cγ(fS,Kr(a+
SxK , y)− fS,Kr(a-

SxK ,−y)),

where cγ : R→ [0, 1],

cγ(y) =


1 for y ≤ 0

1− y/γ for 0 ≤ y ≤ γ
0 for y ≥ γ.

As γ approaches 0, loss cγ approaches the standard 0-1 loss. Also, `class
0−1,Kr

(fS,K , z) ≤
`class
γ,Kr

(fS,K , z). We define TrueErrClassγ using this loss:

TrueErrClassγ(fS,K ,Kr) = Ez∼D`class
γ,Kr

(fS,K , z),
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where TrueErrClass ≤ TrueErrClassγ . The generalization bounds for classification will
bound TrueErrClass by considering the difference between TrueErrClassγ and its empirical
counterpart that we will soon define. For training basket xi, the left-hand side of a highest-
scoring-correct rule obeys:

a+
SxiK

∈ argmax
a⊆xi,a∈A

fS,K(a, yi),

and the left-hand side of a highest-scoring-incorrect rule obeys:

a-
SxiK ∈ argmax

a⊆xi,a∈A
fS,K(a,−yi).

The empirical error is an average of the loss over the baskets:

EmpErrClassγ(fS,K ,Kr) :=
1

m

m∑
i=1

`class
γ,Kr

(fS,K , zi).

For the max confidence, min support algorithm, we substitute θ where K appears in
the notation. For instance, for general labeled basket z = (x, y), we analogously define:

a+
Sxθ ∈ argmax

a⊆x,a∈A
f̄S,θ(a, y)

a-
Sxθ ∈ argmax

a⊆x,a∈A
f̄S,θ(a,−y)

`class
0−1,Kr

(f̄S,θ, z) =

{
1 if fS,Kr(a+

Sxθ, y)− fS,Kr(a-
Sxθ,−y) ≤ 0

0 otherwise

`class
γ,Kr

(f̄S,θ, z) = cγ(fS,Kr(a+
Sxθ, y)− fS,Kr(a-

Sxθ,−y))

and TrueErrClass(f̄S,θ,Kr) and TrueErrClassγ(f̄S,θ,Kr) are defined analogously as expec-
tations of the losses, and EmpErrClassγ(f̄S,θ,Kr) is again an average of the loss over the
training baskets.

3.2.2 Notation for Sequential Event Prediction Bounds

The notation and the bounds for sequential event prediction are similar to those of classifi-
cation, the main differences being an additional index t to denote the different time steps,
and a set of possible incorrect recommendations in the place of the single incorrect label
−y. For simplicity in notation, the algorithm recommends only one item, c = 1. A basket z
consists of an ordered (permuted) set of items, z ∈ 2X ×Π, where 2X is the set of all subsets
of X , and Π is the set of permutations over at most |X | elements.2 We have a training
set of m baskets S = {zi}1...m that are the customer’s past orders. Denote z ∼ D to mean
that basket z is drawn randomly (iid) according to distribution D over the space of possible
items in baskets and permutations over those items, 2X × Π. The tth item added to the
basket is written z·,t, where the dot is just a placeholder for the generic basket z. The tth

element of the ith basket in the training set is written zi,t. We define the number of items
in basket z by Tz, i.e., Tz := |z|.

2. Even though we define an order for the basket for this discussion of prediction, we are still using the
undirected adjusted confidence to make recommendations rather than the directed version introduced in
Section 2. The results can be trivially extended to the directed case.
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For sequential event prediction, a highest-scoring-correct rule is a highest scoring rule
that has the next item z·,t+1 on the right. The left-hand side a+

SztK of a highest-scoring-
correct rule obeys:

a+
SztK ∈ argmax

a⊆{z·,1,...,z·,t},a∈A
fS,K(a, z·,t+1).

If z·,t+1 has never been purchased, the adjusted confidence for all rules a→ z·,t+1 is 0, and
we choose the maximizing rule to be ∅→ z·,t+1. Also at time 0 when the basket is empty,
the maximizing rule is ∅→ z·,t+1.

The algorithm incurs an error when it recommends an incorrect item. A highest-scoring-
incorrect rule is a highest scoring rule that does not have z·,t+1 on the right. It is denoted
a-
SztK → b-SztK , and obeys:

[a-
SztK , b

-
SztK ] ∈ argmax

a⊆{z·,1,...,z·,t},a∈A
b∈X\{z·,1,...,z·,t+1}

fS,K(a, b).

If there is more than one highest-scoring rule, one is chosen at random (with the exception
that all incorrect rules are tied at zero adjusted confidence, in which case the left side is
taken as ∅ and the right side is chosen randomly). At time t = 0, the left side is again
∅. The adjusted confidence algorithm determines a+

SztK , a-
SztK , and b-SztK , whereas nature

chooses z·,t+1.
If the adjusted confidence of the rule a-

SztK → b-SztK is larger than that of a+
SztK → z·,t+1,

it means that the algorithm recommended the wrong item. The loss function below counts
the proportion of times this happens for each basket, and is defined with respect to Kr.

`0−1,Kr(fS,K , z) :=
1

Tz

Tz−1∑
t=0

{
1 if fS,Kr(a+

SztK , z·,t+1)− fS,Kr(a-
SztK , b

-
SztK) ≤ 0

0 otherwise.

If z contains all items in X , then the recommendation for that last item is deterministic, so
we remove it from the basket (that way, it doesn’t count towards the loss). The true error
for sequential event prediction is an expectation of the loss with respect to D, and is again
a random variable since the training set S is random.

TrueErr(fS,K ,Kr) := Ez∼D`0−1,Kr(fS,K , z).

We create an upper bound for the true error by using a different loss `γ,Kr that is a
continuous upper bound on the 0-1 loss `0−1,Kr . It is defined analogously to classification,
with respect to Kr and cγ :

`γ,Kr(fS,K , z) :=
1

Tz

Tz−1∑
t=0

cγ(fS,Kr(a+
SztK , z·,t+1)− fS,Kr(a-

SztK , b
-
SztK)).

It is true that `0−1,Kr(fS,K , z) ≤ `γ,Kr(fS,K , z). We define TrueErrγ :

TrueErrγ(fS,K ,Kr) := Ez∼D`γ,Kr(fS,K , z),

where TrueErr ≤ TrueErrγ . The first set of results for sequential event prediction below
bound TrueErr by considering the difference between TrueErrγ and its empirical counterpart
that we will soon define.
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For the specific training basket zi, the left-hand side a+
SzitK

of a highest-scoring-correct
rule at time t obeys :

a+
SzitK

∈ argmax
a⊆{zi,1,...,zi,t},a∈A

fS,K(a, zi,t+1),

similarly, a highest-scoring-incorrect rule for zi at time t has:

[a-
SzitK , b

-
SzitK ] ∈ argmax

a⊆{zi,1,...,zi,t},a∈A
b∈X\{zi,1,...,zi,t+1}

fS,K(a, b).

The empirical error is defined as:

EmpErrγ(fS,K ,Kr) :=
1

m

m∑
baskets i=1

`γ,Kr(fS,K , zi).

For the max confidence, min support algorithm, we again substitute θ where K appears
in the notation. For example, we define:

a+
Sztθ ∈ argmax

a⊆{z·,1,...,z·,t},a∈A
f̄S,θ(a, z·,t+1)

[a-
Sztθ, b

-
Sztθ] ∈ argmax

a⊆{z·,1,...,z·,t},a∈A
b∈X\{z·,1,...,z·,t+1}

f̄S,θ(a, b)

`0−1,Kr(f̄S,θ, z) :=
1

Tz

Tz−1∑
t=0

{
1 if fS,Kr(a+

Sztθ, z·,t+1)− fS,Kr(a-
Sztθ, b

-
Sztθ) ≤ 0

0 otherwise

`γ,Kr(f̄S,θ, z) :=
1

Tz

Tz−1∑
t=0

cγ(fS,Kr(a+
Sztθ, z·,t+1)− fS,Kr(a-

Sztθ, b
-
Sztθ)),

TrueErr(f̄S,θ,Kr) and TrueErrγ(f̄S,θ,Kr) are expectations of the losses, and EmpErrγ(f̄S,θ,Kr)
is an average of the loss over the training baskets.

3.3 Generalization Analysis for Large m

The choice of minimum support threshold θ or the choice of parameter K matters mainly
in the regime where m is small. For the max confidence, min support algorithm, when m is
large, then all (realizable) itemsets have appeared more times than the minimum support
threshold with high probability. For the adjusted confidence algorithm, when m is large,
prediction ability is guaranteed as follows.

Theorem 3 (Generalization Bound for Adjusted Confidence Algorithm, Large m)
For set of rules A, K ≥ 0, Kr ≥ 0, with probability at least 1 − δ (with respect to training
set S ∼ Dm),

TrueErr(fS,K ,Kr) ≤ EmpErrγ(fS,K ,Kr) +

√
1

δ

[
1

2m
+ 6β

]
where β =

2|A|
γ

[
1

(m− 1)pminA +K
+

|Kr −K| m
m+K

(m− 1)pminA +Kr

]
+O

(
1

m2

)
,
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and where A = {a ∈ A : Pz(a ⊆ z) > 0} are the itemsets that have some probability of being
chosen. Out of these, any itemset that is the least likely to be chosen has probability pminA:

pminA := min
a∈A

Pz∼D(a ⊆ z).

As a corollary, the same result holds for classification, replacing TrueErr(fS,K ,Kr) with
TrueErrClass(fS,K ,Kr) and EmpErrγ(fS,K ,Kr) with EmpErrClassγ(fS,K ,Kr).

A special case is where Kr = K = 0: the algorithm chooses the rule with maximum
confidence, and accuracy is then judged by the difference in confidence values between the
highest-scoring-incorrect rule and the highest-scoring-correct rule. The bound reduces to:

Corollary 4 (Generalization Bound for Maximum Confidence Setting, Large m)
With probability at least 1− δ (with respect to S ∼ Dm),

TrueErr(fS,0, 0) ≤ EmpErrγ(fS,0, 0) +

√
1

δ

[
1

2m
+

12|A|
γ(m− 1)pminA

]
+O

(
1

m2

)
.

Again the result holds for classification with appropriate substitutions. The use of the
pointwise hypothesis stability within this proof is the key to providing a decay of order√

(1/m). Now that this bound is established, we move to the small sample case, where the
minimum support is the force that provides generalization.

3.4 Generalization Analysis for Small m

The first small sample result is a general bound for the max confidence, min support al-
gorithm, which holds for both classification and sequential event prediction. The max
confidence, min support algorithm has “uniform stability,” which is a stronger kind of sta-
bility than pointwise hypothesis stability. This result strengthens the one in the conference
version of this work (Rudin et al., 2011), where we used the bound for pointwise hypoth-
esis stability; uniform stability implies pointwise hypothesis stability, so the result in the
conference version follows automatically.

Theorem 5 (Generalization Bound for Max Confidence, Min Support)
For θ ≥ 1, Kr ≥ 0, with probability at least 1− δ (with respect to S ∼ Dm), m > θ,

TrueErr(f̄S,θ,Kr) ≤ EmpErrγ(f̄S,θ,Kr) + 2β + (4mβ + 1)

√
ln 1/δ

2m

where β =
2

γ

[
1

θ
+Kr

(
1

θ +Kr

)(
1 +

1

θ

)]
.

Note that |A| does not appear in the bound. For classification, TrueErr(f̄S,θ,Kr) is replaced
by TrueErrClass(f̄S,θ,Kr) and EmpErrγ(f̄S,θ,Kr) is replaced by EmpErrClassγ(f̄S,θ,Kr).
Figure 2 shows β as a function of θ for several different values of Kr. The special case of
interest is when Kr = 0, so that the loss is judged with respect to differences in confidence,
as follows:
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Figure 2: β vs. θ from Theorem 5, with γ = 1. The different curves are different values of
Kr = 0, 1, 5, 10, 50 from bottom to top.

Corollary 6 (Generalization Bound for Max Confidence, Min Support, Kr = 0)
For θ ≥ 1, with probability at least 1− δ (with respect to S ∼ Dm), m > θ,

TrueErr(f̄S,θ, 0) ≤ EmpErrγ(f̄S,θ, 0) +
4

γθ
+

(
8m

γθ
+ 1

)√
ln 1/δ

2m
.

It is common to use a minimum support threshold that is a fraction of m, for instance,
θ = 0.1 × m. In that case, the bound again scales with

√
(1/m). Note that there is no

generalization guarantee when θ = 0; the minimum support threshold enables generalization
in the small m case.

Now we discuss the adjusted confidence algorithm for small m setting. We present
separate small sample bounds for classification and sequential event prediction.

Theorem 7 (Generalization Bound for Adjusted Confidence Algorithm, Small m, For Clas-
sification Only) For K > 0,Kr ≥ 0, with probability at least 1− δ,

TrueErrClass(fS,K ,Kr) ≤ EmpErrClassγ(fS,K ,Kr) +

√
1

δ

[
1

2m
+ 6β

]
where

β =
2

γ

1

K

(
1− (m− 1)py,min

m+K

)

+
2

γ
|Kr −K|Eζ∼Bin(m−1,py,min)

 1

K
(

ζ
m+K−ζ

)
+Kr

(
m

m+K
+

1

K

(
1− ζ

m+K

)) ,
where py,min = min(P (y = 1), P (y = −1)) is the probability of the less popular label.

Again, |A| does not appear in the bound, and generalization is provided by K, and the
difference between K and Kr; the interpretation will be further discussed after we state the
small sample bound for sequential event prediction.
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In the proof of the following theorem, if we were to use the definitions established in
Section 3.2.2, the bound does not simplify beyond a certain point and is difficult to read
at an intuitive level. From that bound, it would not be easy to see what are the important
quantities for the learning process, and how they scale. In what follows, we redefine the
loss function slightly, so that it approximates a 0-1 loss from below instead of from above.
This provides a concise and intuitive bound.

Define a highest-scoring rule a∗SztK → b∗SztK as a rule that achieves the maximum
adjusted confidence, over all of the possible rules. It will either be equal to a+

SztK → z·,t+1

or a-
SztK → b-SztK , depending on which has the larger adjusted confidence:

[a∗SztK , b
∗
SztK ] ∈ argmax

a⊆{z·,1,...,z·,t},a∈A
b∈X\{z·,1,...,z·,t}

fS,K(a, b).

Note that b∗SztK can be equal to z·,t+1 whereas b-SztK cannot. The notation for a∗SzitK and
b∗SzitK is similar, and the new loss is:

`new
0−1,Kr

(fS,K , z) :=
1

Tz

Tz−1∑
t=0

{
1 if fS,Kr(a+

SztK , z·,t+1)− fS,Kr(a∗SztK , b
∗
SztK) < 0

0 otherwise.

By definition, the difference fS,Kr(a+
SztK , z·,t+1)− fS,Kr(a∗SztK , b

∗
SztK) can never be strictly

positive. The continuous approximation is:

`new
γ,Kr

(fS,K , z) :=
1

Tz

Tz−1∑
t=0

cnew
γ (fS,Kr(a+

SztK , z·,t+1)− fS,Kr(a∗SztK , b
∗
SztK)), where

cnew
γ (y) =


1 for y ≤ −γ

−y/γ for −γ ≤ y ≤ 0
0 for y ≥ 0.

As γ approaches 0, the cγ loss approaches the 0-1 loss. We define TrueErrnew
γ and EmpErrnew

γ

using this loss: TrueErrnew
γ (fS,K ,Kr) := Ez∼D`new

γ,Kr
(fS,K , z), and EmpErrnew

γ (fS,K ,Kr) :=
1
m

∑m
i=1 `

new
γ,Kr

(fS,K , zi).
The minimum support threshold condition we used in Theorem 5 is replaced by a weaker

condition on the support. This weaker condition has the benefit of allowing more rules to
be used in order to achieve a better empirical error; however, it is more difficult to get a
generalization guarantee. This support condition is derived from the fact that the adjusted
confidence of the highest-scoring rule a∗SzitK → b∗SzitK exceeds that of the highest-scoring-

correct rule a+
SzitK

→ zi,t+1, which exceeds that of the marginal rule ∅→ zi,t+1:

#a∗SzitK
#a∗SzitK +K

≥
#(a∗SzitK ∪ b

∗
SzitK

)

#a∗SzitK +K
≥

#(a+
SzitK

∪ zi,t+1)

#a+
SzitK

+K
≥ #zi,t+1

m+K
. (4)

This leads to a lower bound on the support #a∗SzitK :

#a∗SzitK ≥ K
(

#zi,t+1

m+K −#zi,t+1

)
. (5)
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This is not a hard minimum support threshold, yet since the support generally increases as
K increases, the bound will give a better guarantee for large K. Note that in the original

notation, we would replace the condition (4) with
#a-SzitK

#a-SzitK
+K ≥

#(a-SzitK
∪b-SzitK

)

#a-SzitK
+K ≥

#b-SzitK

m+K

and proceed with analogous steps in the proof.

Theorem 8 (Generalization Bound for Adjusted Confidence Algorithm, Small m) For K >
0,Kr ≥ 0, with probability at least 1− δ,

TrueErrnew
γ (fS,K ,Kr) ≤ EmpErrnew

γ (fS,K ,Kr) +

√
1

δ

[
1

2m
+ 6β

]
where

β =
2

γ

1

K

(
1− (m− 1)pmin

m+K

)
+

2

γ
|Kr −K|Eζ∼Bin(m−1,pmin)

1

K
(

ζ
m+K−ζ−1

)
+Kr

(
m

m+K
+

1

K

(
1− ζ

m+K

))
,

and where Q = {x ∈ X : Pz∼D(x ∈ z) > 0} are the items that have some probability of
being chosen by the customer. Out of these, any item that is the least likely to be chosen
has probability pmin := minx∈Q Pz∼D(x ∈ z).

The stability β has two main terms. The first term decreases generally as 1/K. The
second term arises from the error in measuring loss with Kr rather than K. In order to
interpret β, consider the following approximation to the expectation in the bound, which
assumes that m is large and that m� K � 0, and that ζ ≈ mpmin:

β ≈ 2

γ

1

K

(
1− (m− 1)pmin

m+K

)
+

2

γ
|Kr −K|

1

K pmin
1−pmin

+Kr
. (6)

Intuitively, if either K is close to Kr or pmin is large (close to 1) then this term becomes
small. Figure 3 shows an example plot of β and the approximation using (6), which we
denote by βApprox.

One can observe that if Kr > K, then both terms tend to improve (decrease) with
increasing K. When Kr < K, then the two terms can compete as K increases.

3.5 Summary of Bounds

We have provided probabilistic guarantees on performance that show the following: 1)
For large m, the association rule-based algorithms have a performance guarantee of the
same order as other bounds for supervised learning. 2) For small m, the minimum support
threshold guarantees generalization (at the expense of possibly removing important rules).
3) The adjusted confidence provides a weaker support threshold, allowing important rules
to be used, while still being able to generalize. 4) All generalization guarantees depend on
the way the goodness of the algorithm is measured (the choice of Kr in the loss function).
5) Important quantities in the learning process may include: |A| or |A|, K or θ, pminA or
pmin (or py,min).
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Figure 3: β and βApprox vs. K, where Kr = 10, pmin = 0.3, m = 20, γ = 1.

4. Proofs

In this section, we prove all results from Section 3.
Proof (Of Theorem 1) First we show that h ≤ |A|. To do this, we must show that for
any collection of baskets x1, . . . , xN , N > |A|, there exists a corresponding set of labels
y1, . . . , yN that cannot be realized by any max-score association rule classifier. For each xi,
we introduce a vector x̄i of length |A|, where each element corresponds to an a ∈ A. The
element of x̄i corresponding to a is 1 if a ⊆ xi and 0 otherwise. Each vector x̄i is an element
of R|A|, so the collection of vectors x̄1, . . . , x̄N must be linearly dependent if N > |A|. By
linear dependence and the fact that every x̄i is non-zero and non-negative, there must exist
coefficients ci and disjoint, non-empty sets M0 and M1 such that:∑

i∈M0

cix̄i =
∑
i∈M1

cix̄i, ci > 0. (7)

Define A0 = {a ∈ A : a ⊆ xi for some i ∈M0} and A1 = {a ∈ A : a ⊆ xi for some i ∈M1}.
If a ⊆ xi for some i ∈ M0, then the corresponding element of x̄i will be 1 and the same
element in the left part of (7) will be strictly positive. Then, (7) implies that a ⊆ xj for
some j ∈ M1. Thus, A0 ⊆ A1, and the reverse argument shows A1 ⊆ A0, so A0 = A1.
There exists a left-hand side with maximum score, a∗ = arg maxa∈A0 maxy∈{−1,1} g(a, y) =
arg maxa∈A1 maxy∈{−1,1} g(a, y). The label assigned to xi, where i is in M0 or M1 and xi
contains itemset a∗, is y∗ = arg maxy∈{−1,1} g(a∗, y). Thus for at least one i ∈ M0 and at
least one j ∈M1, fg(xi) = y∗ = fg(xj). Set yi = −1 for all i ∈M0 and yi = 1 for all i ∈M1

and this set of labels cannot be realized, which shows that h ≤ |A|.
We now show that this upper bound can be achieved by providing a set of |A| baskets

and finding elements of Fmaxscore that can assign them arbitrary labels. Specifically, we list
the elements of A as a1, . . . , a|A| and take xi = ai, for i = 1, . . . , |A|. Thus each basket is
one of the left-hand sides from the allowed set. The elements of A are not all the same size,
and some elements of A may contain other elements; this could cause problems when we
are constructing a max-score classifier that uniquely assigns a given label to each basket.
To get around this, we will place the elements of A in order of increasing size. The possible
sizes of elements of A are denoted l1, . . . , lL, so that l1 < l2 < . . . < lL. We arrange the
elements of A into sets based on their sizes: Sk = {i : |ai| = lk}, k = 1, 2, . . . , L. We are
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now ready to construct a classifier fg so that, given an arbitrary set of labels {yi}i, it can
label the xi’s according to the yi’s. For all i ∈ S1, we set g(ai, yi) = c1, any positive number,
and g(ai,−yi) = 0. Thus, for the corresponding xi, fg(xi) = yi. Similarly, for all i ∈ S2, we
set g(ai, yi) = c2, c2 > c1, and g(ai,−yi) = 0. For any i ∈ S2, it may be that there exists
some j ∈ S1 such that aj ⊂ xi. However, because c2 > c1, the rule with the maximum
score will be “ai → yi” and xi is labeled as desired. In general, for any i ∈ Sk, we set
g(ai, yi) = ck, where ck−1 < ck < ck+1 and g(ai,−yi) = 0 to get fg(xi) = yi. Because this
set of |A| examples can be arbitrarily labeled using elements of Fmaxscore, we have h ≥ |A|,
which combined with the previous result shows that h = |A|.

The remaining theorems are based on the algorithmic stability bounds of Bousquet and
Elisseeff (2002) (B&E). Many of the proofs that we provide for classification are essentially
identical to those for sequential event prediction. In these cases, the proofs are given for
sequential event prediction, and afterwards the translation to classification is outlined. The
proofs follow this outline: first, we show how differences in adjusted confidence values with
respect to Kr can be translated into differences with respect to K (Lemma 11). Then we
bound the difference in adjusted confidence values (Lemma 12) in terms of the support.
Various lower bounds on the support are used to obtain stability for each of the separate
cases: large m (Theorem 3), small m for the max confidence, min support algorithm (Theo-
rem 5, which uses uniform stability), small m for classification with the adjusted confidence
algorithm (Theorem 7), and small m for sequential event prediction with the adjusted con-
fidence algorithm (Theorem 8).

Following notation of Bousquet and Elisseeff (2002), the input space and output space
are X and Y . Their training set is S ∈ Z̄m, S = {z̄1 = (x1, y1), . . . , z̄m = (xm, ym)}.
An algorithm is a function A from Z̄m into F ⊂ Y X which maps a learning set S onto a
function AS from X to Y . The loss is `(f, z̄) = c(f(x), y), where c : Y ×Y → R+. S/i means
to exclude the ith example z̄i. B&E assume that Y ⊂ R but we believe this assumption is
unnecessary. In any case, Y is empty for sequential event prediction. An algorithm A has
pointwise hypothesis stability β with respect to the loss function ` if the following holds:

∀ i ∈ {1, . . . ,m}, ES∼Dm [|`(AS , z̄i)− `(AS/i, z̄i)|] ≤ β.

An algorithm A has uniform stability β with respect to the loss function ` if the following
holds:

∀ S ∈ Z̄m,∀ i ∈ {1, . . . ,m}, ||`(AS , ·)− `(AS/i, ·)||∞ ≤ β.

The empirical error is defined by:

Remp(A,S) :=
1

m

m∑
i=1

`(AS , z̄i)

and the true error is:

R(A,S) := Ez̄[`(AS , z̄)].

We will use the following results that are based on ideas of Devroye and Wagner (1979).
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Theorem 9 (B&E Pointwise Hypothesis Stability Bound)(Bousquet and Elisseeff, 2002,

Theorem 11, first part)
For any learning algorithm A with pointwise hypothesis stability β with respect to a loss
function `, such that the value of ` is at most M , we have with probability 1− δ,

R(A,S) ≤ Remp(A,S) +

√
M2 + 12Mmβ

2mδ
.

Theorem 10 (B&E Uniform Stability Bound)(Bousquet and Elisseeff, 2002, Theorem 12,

first part)
For any learning algorithm A with uniform stability β with respect to a loss function `, such
that the value of ` is at most M , we have with probability 1− δ over a random draw of S,

R ≤ Remp + 2β + (4mβ +M)

√
ln 1/δ

2m
.

Translating B&E’s notation to the adjusted confidence setting for sequential event pre-
diction, z̄i = xi = zi, with zi ∈ 2X × Π. For our problem, f(xi) is the value of the loss
and the yi’s are not defined. In other words, `(AS , z̄i) = c(f(xi), yi) = f(xi) which in our
notation is equal to `γ,Kr(fS,K , zi). For the max confidence, min support setting, `(AS , z̄i)
translates to `γ,Kr(f̄S,θ, zi). The adjusted confidence is bounded by 1 so M = 1.

The following lemma allows us to convert differences in adjusted confidence with respect
to Kr into differences with respect to K.

Lemma 11 (Conversion of Adjusted Confidence) For K ≥ 0, Kr ≥ 0, 0 ≤ s1 ≤ S1,
0 ≤ s2 ≤ S2∣∣∣∣ s1

S1 +Kr
− s2

S2 +Kr

∣∣∣∣ ≤ ∣∣∣∣ s1

S1 +K
− s2

S2 +K

∣∣∣∣ (1 +
|Kr −K|
S1 +Kr

)
+

(
|Kr −K|
S̃ +Kr

)(
s2

S2 +K

)
where S̃ = min(S1, S2).
Proof∣∣∣∣ s1

S1 +Kr
− s2

S2 +Kr

∣∣∣∣
=

∣∣∣∣ s1

S1 +K
− s2

S2 +K
+ (−Kr +K)

[
s1

S1 +K

(
1

S1 +Kr

)
− s2

S2 +K

(
1

S2 +Kr

)]∣∣∣∣
≤

∣∣∣∣ s1

S1 +K
− s2

S2 +K

∣∣∣∣+ |Kr −K|
∣∣∣∣ s1

S1 +K

(
1

S1 +Kr

)
− s2

S2 +K

(
1

S2 +Kr

)∣∣∣∣ . (8)

Taking just the second absolute value term:∣∣∣∣ s1

S1 +K

(
1

S1 +Kr

)
− s2

S2 +K

(
1

S2 +Kr

)∣∣∣∣
=

∣∣∣∣ s1

S1 +K

(
1

S1 +Kr

)
− s2

S2 +K

(
1

S1 +Kr

)
+

s2

S2 +K

(
1

S1 +Kr

)
− s2

S2 +K

(
1

S2 +Kr

)∣∣∣∣
≤

∣∣∣∣ s1

S1 +K
− s2

S2 +K

∣∣∣∣ 1

S1 +Kr
+

s2

S2 +K

∣∣∣∣ 1

S1 +Kr
− 1

S2 +Kr

∣∣∣∣
≤

∣∣∣∣ s1

S1 +K
− s2

S2 +K

∣∣∣∣ 1

S1 +Kr
+

s2

S2 +K

∣∣∣∣ 1

S̃ +Kr

∣∣∣∣ .
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Putting this back into (8) yields the statement.

The next results bound the difference in the highest adjusted confidence values when
the basket zi is removed from S. We require some additional notation in order to exclude
basket i. Denote #/ia to be the number of times a has appeared in S/i, that is, #/ia =∑

i′ 6=i 1[a∈zi′ ]. For sequential event prediction, the left-hand side of a highest-scoring-correct

rule for a general basket z on S/i obeys:

a+
S/iztK

∈ argmax
a⊆{z·,1,...,z·,t},a∈A

fS/i,K(a, z·,t+1) = argmax
a⊆{z·,1,...,z·,t},a∈A

#/i(a ∪ z·,t+1)

#/ia+K
.

A highest-scoring-incorrect rule for basket z on S/i obeys:

[a-
S/iztK

, b-
S/iztK

] ∈ argmax
a⊆{z·,1,...,z·,t},a∈A
b∈X\{z·,1,...,z·,t+1}

fS/i,K(a, b) = argmax
a⊆{z·,1,...,z·,t},a∈A
b∈X\{z·,1,...,z·,t+1}

#/i(a ∪ b)
#/ia+K

.

In Lemma 12 below, we bound the difference in adjusted confidence of a general basket
z when zi is removed from the training set, in the sequential event prediction setting.

Lemma 12 (Difference in Adjusted Confidence)
Define ãz := min(#a-SztK ,#

/ia-
S/iztK

) and âz := min(#a+
SztK ,#

/ia+
S/iztK

). Then,

(I) |fS,K(a-SztK , b
-
SztK)− fS/i,K(a-

S/iztK
, b-
S/iztK

)| ≤ 1

ãz +K
, and

(II) |fS,K(a+
SztK , z·,t+1)− fS/i,K(a+

S/iztK
, z·,t+1)| ≤ 1

âz +K
.

Proof Any itemset a is either in zi or not, thus #/ia ≥ #a− 1 and #/ia ≤ #a. Also the
number of times we see a ∪ b is less than or equal to the number of times we see a. These
observations lead to the following inequalities that will be used throughout the proof:

#/i(a-
SztK ∪ b-SztK) ≥ #(a-

SztK ∪ b-SztK)− 1 (9)

#/ia-
SztK ≤ #a-

SztK (10)

#(a-
S/iztK

∪ b-
S/iztK

) ≥ #/i(a-
S/iztK

∪ b-
S/iztK

) (11)

#a-
S/iztK

≤ #/ia-
S/iztK

+ 1 (12)

#/i(a-
S/iztK

∪ b-
S/iztK

) ≤ #/ia-
S/iztK

(13)

#/i(a+
SztK ∪ z·,t+1) ≥ #(a+

SztK ∪ z·,t+1)− 1 (14)

#/ia+
SztK ≤ #a+

SztK (15)

#(a+
S/iztK

∪ z·,t+1) ≥ #/i(a+
S/iztK

∪ z·,t+1) (16)

#a+
S/iztK

≤ #/ia+
S/iztK

+ 1 (17)

#/i(a+
S/iztK

∪ z·,t+1) ≤ #/ia+
S/iztK

. (18)
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To prove (I) we provide upper bounds for both fS,K(a-
SztK , b

-
SztK)− fS/i,K(a-

S/iztK
, b-
S/iztK

)
and fS/i,K(a-

S/iztK
, b-
S/iztK

)−fS,K(a-
SztK , b

-
SztK). Using that for basket z the adjusted confi-

dence of the highest-scoring-incorrect rule on S/i, a-
S/iztK

→ b-
S/iztK

, exceeds that of another
incorrect rule a-

SztK → b-SztK , and using inequalities (9) and (10),

#/i(a-
S/iztK

∪ b-
S/iztK

)

#/ia-
S/iztK

+K
≥

#/i(a-
SztK ∪ b-SztK)

#/ia-
SztK +K

≥
#(a-

SztK ∪ b-SztK)− 1

#a-
SztK +K

.

Using the inequality above:

fS,K(a-
SztK , b

-
SztK)− fS/i,K(a-

S/iztK
, b-
S/iztK

)

=
#(a-

SztK ∪ b-SztK)

#a-
SztK +K

−
#/i(a-

S/iztK
∪ b-

S/iztK
)

#/ia-
S/iztK

+K

≤
#(a-

SztK ∪ b-SztK)

#a-
SztK +K

−
#(a-

SztK ∪ b-SztK)− 1

#a-
SztK +K

=
1

#a-
SztK +K

. (19)

Considering the other direction, using that the highest-scoring-incorrect rule under S has
higher adjusted confidence than the rule a-

S/iztK
→ b-

S/iztK
and inequalities (11) and (12):

#(a-
SztK ∪ b-SztK)

#a-
SztK +K

≥
#(a-

S/iztK
∪ b-

S/iztK
)

#a-
S/iztK

+K
≥

#/i(a-
S/iztK

∪ b-
S/iztK

)

#/ia-
S/iztK

+ 1 +K
.

Using this, and inequality (13),

fS/i,K(a-
S/iztK

, b-
S/iztK

)− fS,K(a-
SztK , b

-
SztK) =

#/i(a-
S/iztK

∪ b-
S/iztK

)

#/ia-
S/iztK

+K
−

#(a-
SztK ∪ b-SztK)

#a-
SztK +K

≤
#/i(a-

S/iztK
∪ b-

S/iztK
)

#/ia-
S/iztK

+K
−

#/i(a-
S/iztK

∪ b-
S/iztK

)

#/ia-
S/iztK

+ 1 +K
=

#/i(a-
S/iztK

∪ b-
S/iztK

)

(#/ia-
S/iztK

+K)(#/ia-
S/iztK

+ 1 +K)

≤
#/ia-

S/iztK

(#/ia-
S/iztK

+K)(#/ia-
S/iztK

+ 1 +K)
≤ 1

#/ia-
S/iztK

+K
.

Together with (19) this proves (I). The proof of part (II) is identical, using a+
SztK and a+

S/iztK
in the place of a-

SztK and a-
S/iztK

, z·,t+1 in the place of b-SztK and b-
S/iztK

, and inequalities
(14)-(18).

The following lemma is the backbone for our stability computations. The upper bound
in this lemma depends only on the supports of the relevant rules. Recall that ãz :=
min(#a-

SztK ,#
/ia-

S/iztK
) and âz := min(#a+

SztK ,#
/ia+

S/iztK
).

Lemma 13 (Large Support Implies Stability)

|`γ,Kr(fS,K , z)− `γ,Kr(fS/i,K , z)|

≤ 1

γ

1

Tz

Tz−1∑
t=0

[
1

ãz +K
+ |Kr −K|

[
1

ãz +Kr

(
m

m+K
+

1

ãz +K

)]
+

1

âz +K
+ |Kr −K|

[
1

âz +Kr

(
m

m+K
+

1

âz +K

)]]
.
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Proof

|`γ,Kr(fS,K , z)− `γ,Kr(fS/i,K , z)|

=

∣∣∣∣∣ 1

Tz

Tz−1∑
t=0

cγ
(
fS,Kr(a+

SztK , z·,t+1)− fS,Kr(a-
SztK , b

-
SztK)

)
−cγ

(
fS/i,Kr

(a+
S/iztK

, z·,t+1)− fS/i,Kr
(a-
S/iztK

, b-
S/iztK

)
)∣∣∣

≤ 1

γ

1

Tz

Tz−1∑
t=0

|fS,Kr(a+
SztK , z·,t+1)− fS,Kr(a-

SztK , b
-
SztK)

−fS/i,Kr
(a+
S/iztK

, z·,t+1) + fS/i,Kr
(a-
S/iztK

, b-
S/iztK

)|

≤ 1

γ

1

Tz

Tz−1∑
t=0

|fS,Kr(a-
SztK , b

-
SztK)− fS/i,Kr

(a-
S/iztK

, b-
S/iztK

)|

+|fS,Kr(a+
SztK , z·,t+1)− fS/i,Kr

(a+
S/iztK

, z·,t+1)|

=:
1

γ

1

Tz

Tz−1∑
t=0

term1 + term2.

The first inequality above used that cγ is 1/γ-Lipschitz. Consider an upper bound for term1

as follows from Lemma 11:

term1 = |fS,Kr(a-
SztK , b

-
SztK)− fS/i,Kr

(a-
S/iztK

, b-
S/iztK

)|

≤ |fS,K(a-
SztK , b

-
SztK)− fS/i,K(a-

S/iztK
, b-
S/iztK

)|
(

1 +
|Kr −K|

#a-
SztK +Kr

)
+

|Kr −K|
min(#a-

SztK ,#
/ia-

S/iztK
) +Kr

#/i(a-
S/iztK

∪ b-
S/iztK

)

#/ia-
S/iztK

+K

≤ |fS,K(a-
SztK , b

-
SztK)− fS/i,K(a-

S/iztK
, b-
S/iztK

)|
(

1 +
|Kr −K|
ãz +Kr

)
+
|Kr −K|
ãz +Kr

#/i(a-
S/iztK

∪ b-
S/iztK

)

#/ia-
S/iztK

+K
.

Now incorporating Lemma 12 and that
#/i(a-

S/iztK
∪b-

S/iztK
)

#/ia-
S/iztK

+K
≤ m−1

m−1+K ≤
m

m+K ,

term1 ≤ 1

ãz +K

(
1 +
|Kr −K|
ãz +Kr

)
+
|Kr −K|
ãz +Kr

m

m+K

=
1

ãz +K
+ |Kr −K|

[
1

ãz +Kr

(
m

m+K
+

1

ãz +K

)]
.

The same steps can be followed exactly for term2.

The following lemma is used for the proof for the large sample bound.
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Lemma 14 (Asymptotic Expectation of 1/(#a + K)) For any itemset a ∈ A and any
K ≥ 0,

ES∼D
1

#a+K
≤ 1

mpa +K
+O

(
1

m2

)
,

where pa is the probability that a random basket contains a, that is, pa = Pz∼D(a ⊆ z).

Since #a is binomially distributed, #a ∼ Binomial(m, pa), the proof of this lemma can be
found by directly applying Lemma 17 in Appendix C.

We now give the proof of pointwise hypothesis stability for the large sample bound. We
are interested in the change in adjusted confidence of specific basket zi when that same bas-
ket is removed from the training set, that is on S/i. Because Lemma 13 holds for any z, it also
holds for zi, where ãzi := min(#a-

SzitK
,#/ia-

S/izitK
) and âzi := min(#a+

SzitK
,#/ia+

S/izitK
).

Proof (Of Theorem 3) First, note that:

1

ãzi +Kr
=

1

min(#a-
SzitK

,#/ia-
S/izitK

) +Kr

≤ 1

min(#/ia-
SzitK

,#/ia-
S/izitK

) +Kr
≤
∑
a∈A

1

#/ia+Kr
.

By the same reasoning, similar upper bounds hold for 1/(ãzi + K), 1/(âzi + Kr), and
1/(âzi + K). Starting from Lemma 13 using specific basket zi and incorporating these
bounds on each fraction,

|`γ,Kr(fS,K , zi)− `γ,Kr(fS/i,K , zi)|

≤ 2

γ

1

Tzi

Tzi−1∑
t=0

[∑
a∈A

1

#/ia+K
+ |Kr −K|

[(∑
a∈A

1

#/ia+Kr

)(
m

m+K
+
∑
a∈A

1

#/ia+K

)]]
.

(20)

We have also that for any Kr, using that pminA ≤ pa for all a ∈ A, and Lemma 14:

ES/i∼Dm−1

∑
a∈A

1

#/ia+Kr
≤ |A|

(m− 1)pminA +Kr
+O

(
1

m2

)
. (21)
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Thus from (20) and (21), for any 1 ≤ i ≤ m,

ES∼Dm |`γ,Kr(fS,K , zi)− `γ,Kr(fS/i,K , zi)|

≤ 2

γ
Ezi∼D

1

Tzi

Tzi−1∑
t=0

ES/i∼Dm−1

[∑
a∈A

1

#/ia+K

+ |Kr −K|

[(∑
a∈A

1

#/ia+Kr

)(
m

m+K
+
∑
a∈A

1

#/ia+K

)]]

≤ 2

γ
Ezi∼D

1

Tzi

Tzi−1∑
t=0

|A|
(m− 1)pminA +K

+O
(

1

m2

)
+|Kr −K|

[(
|A|

(m− 1)pminA +Kr

)(
m

m+K

)
+O

(
1

m2

)]
=

2

γ

|A|
(m− 1)pminA +K

+ |Kr −K|
2

γ

(
|A|

(m− 1)pminA +Kr

)(
m

m+K

)
+O

(
1

m2

)
=: β,

where in the second inequality, we moved the (
∑

a∈A 1/(#/ia+Kr))(
∑

a∈A 1/(#/ia+K))
terms into the O

(
1
m2

)
. To see this, one can take a Taylor expansion around the mean for

all of the terms similar to 1
#a+K as follows:

1

#a+K
≈ 1

mpa +K
− (#a−mpa)

(mpa +K)2
+

(#a−mpa)2

(mpa +K)3
+ . . . .

When these terms are multiplied together, the result is always O
(

1
m2

)
. Thus, the algorithm

has pointwise hypothesis stability β. Using β within the B&E theorem yields the result.

Proof (Of Theorem 5)
Starting from Lemma 13, we will use the minimum support threshold to provide the upper
bound for the reciprocal of the support of rules. All of the steps used to derive Lemma 13 are
valid for the max confidence, min support setting, only the notation needs to be changed. We
define ãz,θ := min(#a-

Sztθ,#
/ia-

S/iztθ
), and now define also âz,θ := min(#a+

Sztθ,#
/ia+

S/iztθ
).

Lemma 13 provides for f̄S,θ and using K = 0:

|`γ,Kr(f̄S,θ, z)− `γ,Kr(f̄S/i,θ, z)|

≤ 1

γ

1

Tz

Tz−1∑
t=0

[
1

ãz,θ
+Kr

[
1

ãz,θ +Kr

(
1 +

1

ãz,θ

)]
+

1

âz,θ
+Kr

[
1

âz,θ +Kr

(
1 +

1

âz,θ

)]]
.

The requirement of a minimum support threshold ensures that for any particular item
b, the highest scoring rule with b on the right must have support at least θ, that is:

argmax
a⊆{z·,1,...,z·,t},a∈A

f̄S,θ(a, b) includes only itemsets with support at least θ. If b has never

been ordered, maxa f̄S,θ(a, b) = 0 and we choose the maximizing rule to be ∅ → b, with
support m > m − 1 ≥ θ. By this reasoning, all of the rules we use have support at least
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θ: #a-
Sztθ ≥ θ, #/ia-

S/iztθ
≥ θ, #a+

Sztθ ≥ θ, and #/ia+
S/iztθ

≥ θ. Thus, ãz,θ ≥ θ and also
âz,θ ≥ θ. Using this in the previous expression:

|`γ,Kr(f̄S,θ, z)− `γ,Kr(f̄S/i,θ, z)|

≤ 2

γ

1

Tz

Tz−1∑
t=0

[
1

θ
+Kr

[(
1

θ +Kr

)(
1 +

1

θ

)]]
=

2

γ

[
1

θ
+Kr

(
1

θ +Kr

)(
1 +

1

θ

)]
=: β.

This expression holds for all S and for all z. It is thus an upper bound on the uniform
stability. Using β within the B&E theorem yields the result.

The proofs of Theorems 3 and 5 for classification are essentially identical to those pro-
vided above for sequential event prediction. The left-hand side of a highest-scoring-correct
rule for general basket x on S/i obeys:

a+
S/ixK

∈ argmax
a⊆x,a∈A

fS/i,K(a, y) = argmax
a⊆x,a∈A

#/i(a ∪ y)

#/ia+K
.

And the left-hand side of a highest-scoring-incorrect rule for x on S/i obeys:

a-
S/ixK

∈ argmax
a⊆x,a∈A

fS/i,K(a,−y) = argmax
a⊆x,a∈A

#/i(a ∪ −y)

#/ia+K
.

We further define ãx = min(#a-
SxK ,#

/ia-
S/ixK

) and âx := min(#a+
SxK ,#

/ia+
S/ixK

), and ãxi
and âxi as the analogous quantities for specific basket xi. Lemma 12, Lemma 13, and the
proof of Theorem 3 all hold for classification by making the following substitutions in nota-
tion: ãx and ãxi for ãz and ãzi ; âx and âxi for âz and âzi ; a

-
SxK and −y for a-

SztK and b-SztK ;
a+
SxK and y for a+

SztK and z·,t+1; a-
S/ixK

and −y for a-
S/iztK

and b-
S/iztK

; a+
S/ixK

for a+
S/iztK

;

`class
γ,Kr

for `γ,Kr ; and removing entirely 1
Tz

∑Tz−1
t=0 . For Theorem 5, we again replace K with

θ in the notation to define ãx,θ = min(#a-
Sxθ,#

/ia-
S/ixθ

) and âx,θ := min(#a+
Sxθ,#

/ia+
S/ixθ

),
and then substitute ãx,θ and âx,θ for ãz,θ and âz,θ in the proof of the theorem.

The next lemma is specific to classification and is used for the small sample bound for
the adjusted confidence algorithm.

Lemma 15 (Support Thresholds for Adjusted Confidence, Classification)
For specific basket xi, it is true that:

1

ãxi +Kr
≤ α̃Kr , where α̃Kr =

m+K −#/i(−yi)
K(#/i(−yi)) +Kr(m+K −#/i(−yi))

;

1

ãxi +K
≤ α̃K , where α̃K =

1

K

(
1− #/i(−yi)

m+K

)
;

1

âxi +Kr
≤ α̂Kr , where α̂Kr =

m+K −#/iyi

K(#/iyi) +Kr(m+K −#/iyi)
; and,

1

âxi +K
≤ α̂K , where α̂K =

1

K

(
1− #/iyi

m+K

)
.
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Proof First we use the fact that on S, the adjusted confidence of the highest-scoring-
incorrect rule for xi, a

-
SxiK

→ −yi, exceeds that of the rule ∅→ −yi:

#a-
SxiK

#a-
SxiK

+K
≥

#(a-
SxiK

∪ −yi)
#a-

SxiK
+K

≥ #(−yi)
m+K

=
#/i(−yi)
m+K

,

where in the last step we used that basket xi does not have label −yi. Rearranging,

#a-
SxiK ≥ σ̃ where σ̃ := K

(
#/i(−yi)

m+K −#/i(−yi)

)
.

Similarly, the adjusted confidence of the highest-scoring-incorrect rule for xi with dataset
S/i, a-

S/ixiK
→ −yi, exceeds that of the rule ∅→ −yi, thus:

#/ia-
S/ixiK

#/ia-
S/ixiK

+K
≥

#/i(a-
S/ixiK

∪ −yi)
#/ia-

S/ixiK
+K

≥ #/i(−yi)
m− 1 +K

≥ #/i(−yi)
m+K

.

Rearranging, we find that #/ia-
S/ixiK

≥ σ̃. Thus, ãxi = min(#a-
SxiK

,#/ia-
S/ixiK

) ≥ σ̃. We

can derive a similar bound for âxi , beginning with #a+
SxiK

:

#a+
SxiK

#a+
SxiK

+K
≥

#(a+
SxiK

∪ yi)
#a+

SxiK
+K

≥ #yi
m+K

=
#/iyi + 1

m+K
>

#/iyi
m+K

.

The first equality uses that basket xi has label yi. Rearranging,

#a+
SxiK

> σ̂ where σ̂ := K

(
#/iyi

m+K −#/iyi

)
.

Similarly for #/ia+
S/ixiK

:

#/ia+
S/ixiK

#/ia+
S/ixiK

+K
≥

#/i(a+
S/ixiK

∪ yi)
#/ia+

S/ixiK
+K

≥ #/iyi
m− 1 +K

≥ #/iyi
m+K

.

Rearranging, we find #/ia-
S/ixiK

≥ σ̂. Thus âxi = min(#a+
SxiK

,#/ia+
S/ixiK

) ≥ σ̂. These

lower bounds on the supports are now used to create upper bounds for the reciprocals:

1

ãxi +Kr
≤ 1

σ̃ +Kr
= α̃Kr and

1

ãxi +K
≤ 1

σ̃ +K
= α̃K .

The bounds for 1
âxi+Kr

and 1
âxi+K

are obtained in a similar way using σ̂.

The proof of the small sample bound for classification follows directly from this lemma.
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Proof (Of Theorem 7)
From Lemma 13, adapted for classification,

|`class
γ,Kr

(fS,K , zi)− `class
γ,Kr

(fS/i,K , zi)|

≤ 1

γ

[
1

ãxi +K
+ |Kr −K|

[
1

ãxi +Kr

(
m

m+K
+

1

ãxi +K

)]
+

1

âxi +K
+ |Kr −K|

[
1

âxi +Kr

(
m

m+K
+

1

âxi +K

)]]
.

Combining this and Lemma 15, we have:

|`class
γ,Kr

(fS,K , zi)− `class
γ,Kr

(fS/i,K , zi)|

≤ 1

γ

[
α̃K + |Kr −K|α̃Kr

(
m

m+K
+ α̃K

)
+ α̂K + |Kr −K|α̂Kr

(
m

m+K
+ α̂K

)]
=

1

γ
(α̃K + α̂K) +

1

γ
|Kr −K|

[
α̃Kr

(
m

m+K
+ α̃K

)
+ α̂Kr

(
m

m+K
+ α̂K

)]
.

We now provide an upper bound on the expectation of this quantity, beginning with the
first term:

Ez1,...,zm
1

γ
(α̃K + α̂K) = Ez1,...,zm

1

γ

1

K

[(
1− #/i(−yi)

m+K

)
+

(
1− #/iyi

m+K

)]

=
1

γ

1

K

(
2− (m− 1)p−yi

m+K
− (m− 1)pyi

m+K

)
≤ 2

γ

1

K

(
1− (m− 1)py,min

m+K

)
.

Here we used the fact that the mean of the binomial distribution Bin(m − 1, pyi) is
(m−1)pyi , and we use a lower bound for pyi and p−yi , namely py,min = min(P (y = 1), P (y =
−1)) the minimum probability of a randomly chosen basket having any particular label. For
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the second term,

Ez1,...,zm
1

γ
|Kr −K|

[
α̃Kr

(
m

m+K
+ α̃K

)
+ α̂Kr

(
m

m+K
+ α̂K

)]

=
1

γ
|Kr −K|Ez1,...,zm

 1

K
(

#/i(−yi)
m+K−#/i(−yi)

)
+Kr

(
m

m+K
+

1

K

(
1− #/i(−yi)

m+K

))
+

1

γ
|Kr −K|Ez1,...,zm

 1

K
(

#/iyi
m+K−#/iyi

)
+Kr

(
m

m+K
+

1

K

(
1− #/iyi

m+K

))
=

1

γ
|Kr −K|Eζ̃∼Bin(m−1,p−yi )

 1

K
(

ζ̃

m+K−ζ̃

)
+Kr

(
m

m+K
+

1

K

(
1− ζ̃

m+K

))
+

1

γ
|Kr −K|Eζ̂∼Bin(m−1,pyi )

 1

K
(

ζ̂

m+K−ζ̂

)
+Kr

(
m

m+K
+

1

K

(
1− ζ̂

m+K

))
=:

1

γ
|Kr −K|Eζ̃∼Bin(m−1,p−yi )

F (ζ̃) +
1

γ
|Kr −K|Eζ̂∼Bin(m−1,pyi )

F (ζ̂).

Since the function F (ζ) is decreasing as ζ increases, then an upper bound is produced by
using the distribution Bin(m− 1, py,min):

Ez1,...,zm
1

γ
|Kr −K|

[
α̃Kr

(
m

m+K
+ α̃K

)
+ α̂Kr

(
m

m+K
+ α̂K

)]
≤ 2

γ
|Kr −K|Eζ∼Bin(m−1,py,min)F (ζ)

=
2

γ
|Kr −K|Eζ∼Bin(m−1,py,min)

 1

K
(

ζ
m+K−ζ

)
+Kr

(
m

m+K
+

1

K

(
1− ζ

m+K

)) .

The following lemma is similar to the previous lemma, but specific to sequential event
prediction. It uses the support guarantee for the adjusted confidence algorithm (5) in order
to bound the terms of Lemma 13, which holds with the same proof when the loss `γ,Kr is
changed to the new loss `new

γ,Kr
and superscript “-” is replaced by “∗”. We define the analogy

to ãzi as ã∗zi := min(#a∗SzitK ,#
/ia∗

S/izitK
). The result below will immediately yield a proof

of Theorem 8.

Lemma 16 (Support Thresholds for Adjusted Confidence, Sequential Event Prediction)
For specific basket zi, define:

αKr :=
m+K −#zi,t+1

K(#zi,t+1 − 1) +Kr(m+K −#zi,t+1)
and αK :=

1

K

(
1− #zi,t+1 − 1

m+K

)
.
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It is true that:

1

ã∗zi +Kr
≤ αKr ,

1

ã∗zi +K
≤ αK ,

1

âzi +Kr
≤ αKr , and

1

âzi +K
≤ αK .

Proof Starting with (4), we know that a∗SzitK > σ, where

σ := K

(
#zi,t+1 − 1

m+K −#zi,t+1

)
.

We use the same type of argument as in (4), incorporating the fact that on S/i, the adjusted
confidence of the highest scoring rule a∗

S/izitK
→ b∗

S/izitK
exceeds that of the highest-scoring-

correct rule a+
S/izitK

→ zi,t+1, which exceeds that of the rule ∅→ zi,t+1,

#/ia∗
S/izitK

#/ia∗
S/izitK

+K
≥

#/i(a∗
S/izitK

∪ b∗
S/izitK

)

#/ia∗
S/izitK

+K
≥

#/i(a+
S/izitK

∪ zi,t+1)

#/ia+
S/izitK

+K

≥ #/izi,t+1

m− 1 +K
=

#zi,t+1 − 1

m− 1 +K
. (22)

Rearranging, we find that #/ia∗
S/izitK

> σ. Similarly for #a+
SzitK

,

#a+
SzitK

#a+
SzitK

+K
≥

(#a+
SzitK

∪ zi,t+1)

#a+
SzitK

+K
≥ #zi,t+1

m+K

so #a+
SzitK

≥ K
(

#zi,t+1

m+K−#zi,t+1

)
> σ. And again for #/ia+

S/izitK
using (22),

#/ia+
S/izitK

#/ia+
S/izitK

+K
≥

#/i(a+
S/izitK

∪ zi,t+1)

#/ia+
S/izitK

+K
≥ #zi,t+1 − 1

m− 1 +K
.

so #/ia+
S/izitK

≥ σ. We now have ã∗zi = min(#a∗SzitK ,#
/ia∗

S/izitK
) ≥ σ, and also âzi =

min(#a+
SzitK

,#/ia+
S/izitK

) ≥ σ. Since σ is a lower bound on all the supports, it can be used

to create an upper bound for the reciprocals, as follows, using ã∗zi as an example:

1

ã∗zi +Kr
≤ 1

σ +Kr
= αKr and

1

ã∗zi +K
≤ 1

σ +K
= αK .

Proof (Of Theorem 8) First, all of the steps in the proof of Lemma 13 hold when we replace
the loss `γ,Kr with the new loss `new

γ,Kr
, replace cγ with cnew

γ , and ãzi by ã∗zi , so we obtain:

|`new
γ,Kr

(fS,K , zi)− `new
γ,Kr

(fS/i,K , zi)|

≤ 1

γ

1

Tzi

Tzi−1∑
t=0

[
1

ã∗zi +K
+ |Kr −K|

[
1

ã∗zi +Kr

(
m

m+K
+

1

ã∗zi +K

)]
+

1

âzi +K
+ |Kr −K|

[
1

âzi +Kr

(
m

m+K
+

1

âzi +K

)]]
.
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Combining this and Lemma 16, we have:

|`new
γ,Kr

(fS,K , zi)− `new
γ,Kr

(fS/i,K , zi)| ≤
2

γ

1

Tzi

Tzi−1∑
t=0

αK + |Kr −K|αKr

(
m

m+K
+ αK

)
.

To calculate the stability, we need an upper bound on the expectation of this quantity. Let

us first create an upper bound for the expectation of the first term, 2
γ

1
Tzi

∑Tzi−1
t=0 αK :

Ez1,...,zm
2

γ

1

Tzi

Tzi−1∑
t=0

αK = Ez1,...,zm
2

γ

1

Tzi

Tzi−1∑
t=0

1

K

(
1− #zi,t+1 − 1

m+K

)

= Ezi
2

γ

1

Tzi

Tzi−1∑
t=0

1

K

(
1−

Ez1,...,zi−1,zi+1,...,zm#zi,t+1 − 1

m+K

)

= Ezi
2

γ

1

Tzi

Tzi−1∑
t=0

1

K

(
1−

(m− 1)pzi,t+1

m+K

)

≤ Ezi
2

γ

1

Tzi

Tzi−1∑
t=0

1

K

(
1− (m− 1)pmin

m+K

)
=

2

γ

1

K

(
1− (m− 1)pmin

m+K

)
.

The first line above uses the definition of αK , the second line uses the fact that each basket
is chosen independently, the third line uses that zi,t+1 is always contained in zi and also
uses the fact that the mean of the binomial distribution Bin(m− 1, pzi,t+1) is (m− 1)pzi,t+1 .
The fourth line uses that pzi,t+1 has the lower bound pmin, which no longer depends on zi.

We repeat this outline for the second term:

Ez1,...,zm
2

γ
|Kr −K|

1

Tzi

Tzi−1∑
t=0

αKr
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Since the function F is decreasing as ζ increases, then an upper bound is produced by using
the distribution Bin(m− 1, pmin). Namely,
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Tzi
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m
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1

K
(

ζ
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)
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(
m

m+K
+

1
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(
1− ζ

m+K

))
.

In all of the theorems and proofs, the empirical loss and true loss are defined only for
the case where the algorithm only recommends one item (c = 1). It is possible to use a
vector norm to generalize to larger c.

5. Experiments

All datasets chosen for these experiments are publicly available from the UCI machine
learning repository (Frank and Asuncion, 2010), and from the IBM Quest Market-Basket
Synthetic Data Generator (Agrawal and Srikant, 1994). To obtain formatted market-basket
data, categorical data were converted into binary features (one feature per category). Each
feature represents an item, and each example represents a basket. The feature value (0 or 1)
indicates the presence of an item. Training baskets and test baskets were chosen randomly
without replacement from the full dataset. Since these data do not come naturally with a
time ordering, items in the basket were randomly permuted to attain an order. At each
iteration, rules were formed from one item or the empty item on the left, and one item on
the right (See GenRules in Figure 4). Recommendations of one item were made using the
following 15 algorithms: highest support, highest confidence, highest adjusted confidence
for eight K levels, max confidence, min support algorithm for five support threshold levels
θ. All 15 algorithms were evaluated by the average fraction of correct recommendations
(AvgCorrect) per basket. As recommendations were made, it was common to have ties
where multiple items were equally good to recommend, in which case the tie was broken at
random; AvgCorrect is similar to `0−1,K except for this way of dealing with ties.

The parameters of the experiment are: number of training baskets (20 in all cases),
number of test baskets (100 in all cases), values of K for the adjusted confidence algorithm
(0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 15), and values of θ for the max confidence, min support al-
gorithm (1, 2, 3, 5, 10). Note that two of these algorithms are the same: the max confidence
algorithm is the same as the max confidence, min support algorithm for θ=1. Datasets are:
Car Evaluation (25 items, 1728 baskets), Chess King-Rook vs. King-Pawn, (75 items, 3196
baskets), MONK’s problems (19 items, 1711 baskets) Mushroom (119 items, 8124 baskets),
Nursery (32 items, 12960 baskets), Plants (70 items, 34781 baskets), T20I18D10KN22CR50
(22 items, 10000 baskets).
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Algorithm 4: Subroutine GenRules, simplest version that considers only “marginal”
rules.

Input: (S,B,X ), that is, past orders S = {zi}i=1,...,m, zi ⊆ X , current basket
B ⊂ X , set of items X

Output: Set of all rules where aj is an item in the basket B (or the empty set) and
bj is not in B. That is, rules {aj → bj}j such that bj ∈ X\B and either
aj ∈ B or aj = ∅.

Each experiment (training, test, evaluation for all 15 algorithms) was performed 100
times, (totaling 100×100×15 = 150,000 test basket evaluations per dataset, for each of
7 datasets). In Figures 4 through 7, the distribution of AvgCorrect values for datasets
Chess and Monk are shown via boxplot, along with the mean and standard deviation of
AvgCorrect values. Bold indicates that the mean is not significantly different from that of
the algorithm with the largest mean value; that is, bold indicates the highest scores. The
boxplots and means for the other datasets are shown in Figures 9 through 18 in Appendix
B.

Figure 8 summarizes the results of all of the experiments by totaling the number of
datasets for which each algorithm achieved one of the highest scores. The best performing
algorithms were K = 0.01 and K = 0.1, both algorithms achieving one of the top scores for
6 out of 7 of the datasets. The single dataset for which these algorithms did not achieve
one the best scores was the very dense dataset T20I18D10KN22CR50, where the algorithms
requiring a higher support (the max support algorithm, and also the adjusted confidence
algorithm for K = 5, 10, and 15) achieved the highest AvgCorrect score. In that case, the
K = 0.01 and K = 0.1 algorithms still performed better than the max confidence, min
support algorithms for the parameters we tried.

The adjusted confidence algorithm with a very small K is similar to using the max
confidence algorithm, except that whenever there is a tie, the tie is broken in favor of the
rule with largest support. It seems that in most of the datasets we chose, this type of
algorithm performed the best, which indicates two things. First, that for some datasets,
increasing K too much can have the same effect as a too-large minimum support threshold,
in that large values of K could potentially remove the best rules, leading to too much bias,
and where the algorithm cannot explain enough of the variance in the data. Second, when
comparing rules, it is important not to break ties at random as in the max confidence,
min support algorithm, but instead to use the support of the rules. Another observation
is that the performance levels of the adjusted confidence algorithm vary less than those of
the max confidence, min support algorithm. In other words, our experiments indicate that
a less-than-perfect choice of K for the adjusted confidence algorithm is likely to perform
better than a less-than-perfect choice of θ for the max confidence, min support algorithm.

6. Related Works

We provide background on related works within several fields: association rule mining
and associative classification, decision lists, recommender systems, and Bayesian analysis.
There is also a body of literature on pattern mining in sequences, but not in the sequential
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Figure 4: Boxplots of AvgCorrect values for
Chess dataset.

Algorithm mean ± standard dev.

Support 0.0813 ± 0.0046
Confidence 0.0764 ± 0.0053
K=0.0001 0.0831 ± 0.0045
K=0.001 0.0832 ± 0.0048
K=0.01 0.0835 ± 0.0041
K=0.1 0.0831 ± 0.0049
K=1 0.0835 ± 0.0043
K=5 0.0821 ± 0.0049
K=10 0.0821 ± 0.004
K=15 0.0816 ± 0.0049
θ=1 0.0759 ± 0.0049
θ=2 0.0767 ± 0.0045
θ=3 0.078 ± 0.0049
θ=5 0.0794 ± 0.0052
θ=10 0.0813 ± 0.0046

Figure 5: Means and standard deviations for
Chess dataset.

Figure 6: Boxplots of AvgCorrect values for
MONK’s problems dataset.

Algorithm mean ± standard dev.

Support 0.0943 ± 0.0126
Confidence 0.1103 ± 0.0145
K=0.0001 0.1108 ± 0.0137
K=0.001 0.1109 ± 0.0147
K=0.01 0.1104 ± 0.0149
K=0.1 0.11 ± 0.0151
K=1 0.1081 ± 0.0148
K=5 0.0992 ± 0.0138
K=10 0.0947 ± 0.0133
K=15 0.0948 ± 0.012
θ=1 0.1098 ± 0.0138
θ=2 0.1095 ± 0.0146
θ=3 0.1092 ± 0.0146
θ=5 0.1054 ± 0.0143
θ=10 0.0944 ± 0.0129

Figure 7: Means and standard deviations for
MONK’s problems dataset.

event prediction setting defined here. This type of work generally considers the order in
which items are added, and often uses a Markov assumption (see, for instance, Ayres et al.,
2002; Berchtold and Raftery, 2002), whereas in our work, subsets of items are used to
predict the next item, possibly without regard to the order in which they occurred, and a
Markov assumption can be false. There is also work relating statistics to pattern mining and
sequence mining, (e.g., Chernoff bounds for the confidence, Jacquemont et al., 2009). Our
work also relates to multi-class classification, since there is a multi-class classification step at
each point in time t of each sequence. For a recent work on generalization bounds in multi-
class classification see Shen and Wang (2007). Remember that in multi-class classification,
each example is a feature vector, whereas in sequential event prediction, each example is
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Algorithm Number of datasets

Support 1
Confidence 1
K=0.0001 4
K=0.001 5
K=0.01 6
K=0.1 6
K=1 2
K=5 2
K=10 2
K=15 2
θ=1 1
θ=2 1
θ=3 1
θ=5 0
θ=10 1

Figure 8: Summary of experiments: For each algorithm, the number of datasets where it
performed comparably with the best algorithm.

an event sequence. Related work on generalization bounds includes those on algorithmic
stability (Devroye and Wagner, 1979; Bousquet and Elisseeff, 2002).

Mining Association Rules

Association rule mining has proven successful for many applications, including market bas-
ket analysis (cross selling, product placement, affinity promotion, see also Kohavi et al.,
2004), mining gene expression data (Jiang and Gruenwald, 2005), and weblog analysis
(Huang et al., 2002). The majority of literature on association rule mining concerns the
design of efficient algorithms to address the time-and-memory-consuming task of mining
rules within very large databases. Discovering rules is usually a two-step process. First,
itemsets are mined that meet a predetermined minimum support threshold. Then using
this set, rules are formed and the strength of the rules is assessed using “interestingness”
measures, such as the confidence. Many “interestingness” measures have been proposed
in the literature (see Tan et al., 2002; Geng and Hamilton, 2007). It is clearly possible to
use the adjusted confidence as an interestingness measure for database exploration. In that
setting, the adjusted confidence would provide a ranking of rules in terms of their ability to
predict, including both “common sense rules” and “nuggets.”

Although association rule mining has proven successful for many applications, it is well-
known that the usefulness of association rules and their impact on even a wider range of
practical applications remains limited due to problems arising from the minimum support
threshold: first, the large number of rules mined can be intractable to domain experts who
analyze rules and act on them, unless the minimum support threshold is set to a large
value; second, the heuristic choice of the minimum support threshold tends to over-prune
the search space of association rules, disregarding “nuggets” which can be very useful in
many applications. Most prior work relies on the strong requirement of the minimum
support threshold; some exceptions include the works of Li et al. (1999); Koh (2008) and
DuMouchel and Pregibon (2001). Some recent work (Cohen et al., 2001; Wang et al., 2001)

40



A Learning Theory Framework for Sequential Event Prediction and Association Rules

attempts to avoid the support measure altogether. In our work, the use of the adjusted
confidence eliminates the need for the minimum support threshold.

When a set of rules is used to form a classifier, this is called “associative classification”
(see, for instance, Liu et al., 1998).

Decision Lists

A decision list is an ordered set of association rules that forms a classifier (Rivest, 1987).
Usually decision lists are formed the same way as decision trees are formed, which is by
greedily splitting on each nodes to form the tree, and then pruning. However, it is possible to
mine a set of rules, and order them to produce a classifier, as in the associative classification
literature. The work of Bertsimas et al. (2011) uses training data to learn the ordering of
rules to form a decision list for multi-class classification.

The work of Anthony (2004) contains a generalization bound for decision lists, but
each rule in the list requires a linear combination, which is problematic in the sequential
setting by the reasoning in Appendix A. (Similarly, there are many papers using a set of
pre-computed rules as features for supervised learning, where a linear combination of rules
is constructed, rather than a decision list; one recent example is by Friedman and Popescu
2008.)

Recommender Systems

Association rule mining has proven to be particularly useful for finding “goes with” re-
lationships between items purchased simultaneously. Lin et al. (2002) also construct a
recommender system using rules, having a minimum confidence threshold and then an ad-
justable minimum support threshold. Their scoring system is essentially based on support
× confidence, which is not an estimate of P (b|a) for rule a → b. Lawrence et al. (2001)
provide a recommender system for a grocery store, but the setting differs entirely from ours
in that they always recommend items that have never been previously purchased.

In other work, we designed a Bayesian framework that estimates K for the adjusted
confidence by “borrowing strength” across both users and items (McCormick et al., 2012).
We are also looking at different approaches to the sequential event prediction problem,
where we allow the predictions to alter the sequence in which items are placed into the
basket (Letham et al., 2011). This work uses a supervised learning framework for sequential
event prediction.

Often, item-based collaborative filtering is used for problems that are actually sequential
event prediction problems. There are several problems in applying standard item-based
collaborative filtering techniques in sequential event prediction, the first one being that
standard item-based collaborative filtering requires us to compute a similarity measure
between all “co-rated” items. The similarity measure is often symmetric between two items,
there is no distinguishing between P (a|b) and P (b|a). Even if item b is always found when
a is found, P (b|a) = 1, is it possible for b not to be recommended when a is present, even
with more than sufficient data to see the pattern. Further, for an incomplete basket, we do
not have the ratings for all “co-rated” items, since there is no natural way to differentiate
between items that have not yet been purchased in this transaction, and items that will not
be purchased in this transaction, as both have a “rating” of 0 at time t. Thus, the only
ratings that are available are ratings of “1” indicating that an item is in the basket. In other
words, where the association rule approach we present here is intrinsically sequential, it is
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unnatural to force item-based collaborative filtering into a sequential framework. In general,
item-based collaborative filtering is not based in a machine learning framework, in that it
is not based on either loss minimization or probabilistic modeling (as the association rule
approach is). The work of Letham et al. (2011) also shows experimentally that item-based
collaborative filtering can be worse than the max-confidence association rule approach.

Bayesian Analysis

DuMouchel and Pregibon (2001, “D&P”) present a Bayesian approach to the identification
of interesting itemsets. While not a rule mining algorithm per se, the approach could be
extended to produce rules. D&P consider the ratio of observed itemset frequencies to base-
line frequencies computed under a particular independence model. A prior distribution over
the collection of such ratios results in shrinkage estimates for the true ratios. The amount
of shrinkage depends on the observed frequency and tends to be more pronounced for less
frequent itemsets. Our approach differs from D&P in several key regards. Most importantly
we focus directly on Bayesian estimation for rules rather than itemsets. Second, D&P use an
empirical Bayes approach to choose the prior hyperparameters. Since our approach requires
just a single hyperparameter, K, we instead let the user choose an appropriate value (the
value might be determined by cross validation or empirical Bayes). Finally, D&P perform
a stratified analysis; one interesting future direction for our proposed approach would be to
incorporate stratification.

Breese et al. (1998) present a number of different algorithms for collaborative filter-
ing, including two Bayesian approaches. One of their Bayesian approaches clusters users
while the other constructs a Bayesian network. Condliff et al. (1999) present a hierarchical
Bayesian approach to collaborative filtering that “borrows strength” across users. Neither
Breese et al. nor Condliff et al. focus on repeated purchases but both present ideas and tech-
niques that may have relevance to future versions of our approach, especially the borrowing
strength ideas.

7. Conclusion

This work synthesizes tools from several fields to analyze the use of association rules in
a new supervised learning framework. This analysis is necessarily different from that of
classical supervised learning analysis; as we have discussed, association rules provide two
mechanisms for generalization: first a large sample, and second, a minimum support of rules.
We considered two simple algorithms based on association rules: a max confidence, min
support algorithm, and the Bayesian adjusted confidence algorithm. Both algorithms have
a parameter that creates a bound on the support, regulating a tradeoff between accuracy
on the training set and generalization ability. We have also demonstrated that the adjusted
confidence introduced here has some advantages over the minimum support threshold that
is commonly considered in association rule mining: it allows rare rules to be used while still
encouraging generalization, and among rules with similar confidence, it prefers those with
larger support.
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Appendix A. Regression and the Sequential Event Prediction Problem

By using association rules to model conditional probabilities for the sequential event pre-
diction problem, we make a general assumption about the Markov chains governing our
application, namely that a subset of knowledge about the current state can be used to
predict the most likely future state. In this section we will address the suitability of two
natural regression approaches that do not make this assumption. Let Xi be an indicator
variable that is 1 if item i is in the current basket and 0 otherwise.

First regression method: Apply regression (e.g., logistic regression) to create a model
for each item separately. Consider the model for the last item (item m), where the predictor
variables will be Xi for i ∈ {1, . . . ,m−1}, and Xm will be the response variable. This model
would provide:

P (Xm = 1|X1 = x1, . . . , Xm−1 = xm−1) =
1

1 + exp(f)
,

where f =
∑m−1

i=1 λixi + λ0,m, with each xi ∈ {0, 1}.
Because the data are being revealed sequentially, the correct application of this technique

is not straightforward. Only a partial basket is available when predictions need to be made.
It is incorrect to substitute the current state of the basket directly into the formula above.
For instance, if the current basket contains items 1 and 2, so X1 = 1 and X2 = 1, it is
incorrect to write P (Xm|X1 = 1, X2 = 1) = 1

1+exp(f) , where f = λ1 + λ2 + λ0,m. This
statement would be equivalent to the expression:

P (Xm = 1|X1 = 1, X2 = 1) = P (Xm = 1|X1 = 1, X2 = 1, X3 = 0, . . . , Xm−1 = 0),

which is clearly false in general. It is not that, for instance, X3 = 0, it is simply that X3 is
not yet realized.

On the other hand, it is possible to integrate in order to obtain conditional probability
estimates:

P (Xm = 1|X1 = 1, X2 = 1) =∑
x3={0,1},...,xm−1={0,1}

P (Xm = 1|X1 = 1, X2 = 1, X3 = x3 . . . , Xm−1 = xm)×

P (X3 = x3, . . . , Xm−1 = xm),

where estimates of P (X3 = x3, . . . , Xm−1 = xm) would need to be made also for every one
of the 2m−3 combinations of x3, . . . xm−1. Thus, this approach would rely on a large number
of uncertain estimates (given limited data, and even moderately large m), each introducing
errors into the final estimate. This is in contrast to the association rule approaches where
a class of conditional probabilities are directly estimated. Further, the regression method
provided above would not be able to be explained easily to customers or managers. In most
circumstances, it would also require a large amount of computation between recommenda-
tions. Finally, it is not clear how to incorporate the order in which items are placed into the
basket within this type of model, whereas it is trivial to incorporate this into the association
rule techniques as discussed in Section 2.2.

Second regression method: Apply regression methods (e.g., logistic regression) for each
item and at each timestep, in total m×T regression models, where T is the size of the largest
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possible basket. This would give a direct way to incorporate time into the predictions. If
the current basket contains t items, one would use only the models constructed using the
first t items in each basket to predict the next item to be added. However, this would be
making an entirely different assumption than the one given by the rule-mining approach.
The rule-mining approach uses time only implicitly, and purchase patterns are counted the
same regardless of the exact time within the transaction when the pattern occurred. In
contrast, this regression approach would ignore all items added after time t in previous
baskets. If apples were always followed by oranges, but in the past apples and oranges
were always added after timestep t, then this approach would fail to recommend oranges
when apples are added before timestep t. Further, the models for each timestep t must be
constructed from baskets at least as large as t. This means that for very large baskets, there
would only be a few past baskets that could be used to construct the models. Further, if
the current basket is larger than any of the past baskets, the models would be trivial, since
none of the past baskets can be used to construct them.

It may indeed be possible to use regression approaches for the sequential event prediction
problem, but given the discussion above, it is not clear how this should be accomplished.
We explore other ways to solve the sequential event prediction problem using supervised
ranking techniques in another work (Letham et al., 2011).
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Appendix B. Additional Experimental Results

Figure 9: Boxplots of AvgCorrect values for
Cars dataset.

Algorithm mean ± standard dev.

Support 0.115 ± 0.0176
Conf. 0.1125 ± 0.0143

K=0.0001 0.1173 ± 0.0127
K=0.001 0.1163 ± 0.0122
K=0.01 0.1176 ± 0.0117
K=0.1 0.1177 ± 0.0109
K=1 0.1176 ± 0.0116
K=5 0.1204 ± 0.015
K=10 0.1199 ± 0.0172
K=15 0.1192 ± 0.0174
θ=1 0.1133 ± 0.0134
θ=2 0.1119 ± 0.0131
θ=3 0.114 ± 0.0118
θ=5 0.1161 ± 0.0143
θ=10 0.1205 ± 0.0191

Figure 10: Means and standard deviations
for Cars dataset.

Figure 11: Boxplots of AvgCorrect values for
Mushroom dataset.

Algorithm mean ± standard dev.

Support 0.0996 ± 0.0051
Confidence 0.0902 ± 0.0075
K=0.0001 0.1164 ± 0.0061
K=0.001 0.1158 ± 0.0062
K=0.01 0.1161 ± 0.0061
K=0.1 0.116 ± 0.0058
K=1 0.1142 ± 0.0062
K=5 0.1069 ± 0.0052
K=10 0.1044 ± 0.0054
K=15 0.1024 ± 0.0053
θ=1 0.0909 ± 0.007
θ=2 0.0986 ± 0.0077
θ=3 0.1048 ± 0.0064
θ=5 0.1088 ± 0.0069
θ=10 0.1042 ± 0.0057

Figure 12: Means and standard deviations
for Mushroom dataset.

Appendix C.

Lemma 17 For t ∼ Binomial(m, p) and K ≥ 0,

E
[

1

K + t

]
=

1

K +mp
+O

(
1

m2

)
. (23)
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Figure 13: Boxplots of AvgCorrect values for
Nursery dataset.

Algorithm mean ± standard dev.

Support 0.0619 ± 0.0098
Confidence 0.081 ± 0.0094
K=0.0001 0.0898 ± 0.0091
K=0.001 0.0902 ± 0.0093
K=0.01 0.0902 ± 0.0085
K=0.1 0.0903 ± 0.0095
K=1 0.0909 ± 0.0096
K=5 0.0869 ± 0.0139
K=10 0.0804 ± 0.0154
K=15 0.0747 ± 0.0154
θ=1 0.0811 ± 0.0088
θ=2 0.0819 ± 0.0094
θ=3 0.0858 ± 0.0095
θ=5 0.0883 ± 0.0137
θ=10 0.0654 ± 0.0111

Figure 14: Means and standard deviations
for Nursery dataset.

Figure 15: Boxplots of AvgCorrect values for
Plants dataset.

Algorithm mean ± standard dev.

Algorithm mean pm standard dev.
Support 0.0983 ± 0.0494

Confidence 0.1187 ± 0.0465
K=0.0001 0.1271 ± 0.0448
K=0.001 0.1251 ± 0.0454
K=0.01 0.1255 ± 0.0446
K=0.1 0.1251 ± 0.0464
K=1 0.1235 ± 0.0454
K=5 0.1205 ± 0.0466
K=10 0.1141 ± 0.0464
K=15 0.1093 ± 0.0498
θ=1 0.1182 ± 0.0457
θ=2 0.1182 ± 0.0466
θ=3 0.118 ± 0.047
θ=5 0.11 ± 0.0511
θ=10 0.0981 ± 0.0496

Figure 16: Means and standard deviations
for Plants dataset.

The proof of this lemma for K = 0 is provided by Rempala (2003). The proof of this lemma
for K > 0 comes from (Letham et al., 2012), which we provide here for completeness. The
proof of the lemma uses the following result.

Lemma 18 Let X ∼ Binomial(m, p) and let µk = E
[
(X − E[X])k

]
be the kth central

moment. For integer k ≥ 1, µ2k and µ2k+1 are O
(
mk
)
.

Proof We will use induction. For k = 1, the central moments are well known (e.g., Johnson
et al., 2005): µ2 = mp(1− p) and µ3 = mp(1− p)(1− 2p), which are both O(m). We rely
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Figure 17: Boxplots of AvgCorrect values for
T20I18D10KN22CR50 dataset.

Algorithm mean ± standard dev.

Support 0.1874 ± 0.0115
Confidence 0.1728 ± 0.0118
K=0.0001 0.1817 ± 0.012
K=0.001 0.1827 ± 0.0121
K=0.01 0.1821 ± 0.0124
K=0.1 0.183 ± 0.0125
K=1 0.1843 ± 0.0117
K=5 0.1857 ± 0.0119
K=10 0.1871 ± 0.0115
K=15 0.1867 ± 0.0116
θ=1 0.1722 ± 0.0126
θ=2 0.1716 ± 0.0128
θ=3 0.1748 ± 0.0131
θ=5 0.1742 ± 0.0125
θ=10 0.182 ± 0.0125

Figure 18: Means and standard devia-
tions for T20I18D10KN22CR50
dataset.

on the following recursion formula (Johnson et al., 2005; Romanovsky, 1923):

µs+1 = p(1− p)
(
dµs
dp

+msµs−1

)
. (24)

Because µ2 and µ3 are polynomials in p, their derivatives will also be polynomials in p. This
recursion makes it clear that for all s, µs is a polynomial in p whose coefficients include
terms involving m.

For the inductive step, suppose that the result holds for k = s. That is, µ2s and µ2s+1

are O(ms). Then, by (24),

µ2(s+1) = p(1− p)
(
dµ2s+1

dp
+ (2s+ 1)mµ2s

)
. (25)

Differentiating µ2s+1 with respect to p yields a term that is O(ms). The term (2s+ 1)mµ2s

is O(ms+1), and thus µ2(s+1) is O(ms+1). Also,

µ2(s+1)+1 = p(1− p)
(
dµ2(s+1)

dp
+ 2(s+ 1)mµ2s+1

)
. (26)

Here
dµ2(s+1)

dp is O(ms+1) and 2(s+ 1)mµ2s+1 is O(ms+1), and thus µ2(s+1)+1 is O(ms+1).

This shows that if the result holds for k = s then it must also hold for k = s+ 1 which
completes the proof.

We can now prove Lemma 17.
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Proof (Of Lemma 17) We expand 1
K+X at X = mp:

E
[

1

K +X

]
= E

[ ∞∑
i=0

(−1)i
(X −mp)i

(K +mp)i+1

]

=
∞∑
i=0

(−1)i
E
[
(X −mp)i

]
(K +mp)i+1

=
1

K +mp
+
∞∑
i=2

(−1)i
µi

(K +mp)i+1
(27)

where µi is the ith central moment and we recognize that µ1 = 0. By Lemma 18,

µi
(K +mp)i+1

=
O
(
mb

i
2
c
)

O (mi+1)
= O

(
mb

i
2
c−i−1

)
. (28)

The alternating sum in (27) can be split into two sums:

∞∑
i=2

(−1)i
µi

(K +mp)i+1
=
∞∑
i=2

O
(
mb

i
2
c−i−1

)
=
∞∑
i=2

O

(
1

mi

)
+
∞∑
i=3

O

(
1

mi

)
. (29)

These are, for m large enough, bounded by a geometric series that converges to O
(

1
m2

)
.
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